
© Copyright 2015 Rockwell Collins.
All rights reserved.

Reasoning About LLVM Code Using
Codewalker

David Hardin
Advanced Technology Center
david.hardin@rockwellcollins.com 

© 2015 Rockwell Collins. All rights reserved.

Objectives

• Reason about machine code generated from high-level languages
• Eliminate need to trust compiler frontends by reasoning about

compiler intermediate forms
• Exercise the ACL2 theorem prover, and the integrated

Codewalker facility, to prove properties of binary programs
• Highly automated proof system — minimal user interaction
• High-speed, executable specifications — can be used for validation

testing
• “Pluggable” Instruction Set definitions

© 2015 Rockwell Collins. All rights reserved.

Motivating Work

• J Moore’s Codewalker (released 2015), inspired by Magnus
Myreen’s “decompilation into logic” work

• Magnus Myreen’s Decompilation into Logic (2008 - present)
• Imperative machine code (PPC, x86, ARM) -> HOL4
• Extracts functional behavior of imperative code
• Assures decompilation process is sound

• Andrew Appel (Princeton) observed that “SSA is functional
programming” (1998)

• Our previous work to create an LLVM-to-ACL2 translator
(ACL2-14 paper)
• An untrusted translator, written in OCaml
• Can we use Codewalker to produce a higher-fidelity reasoning

environment for LLVM code?

© 2015 Rockwell Collins. All rights reserved.

LLVM

• LLVM is the intermediate form for many common compilers,
including clang

• LLVM code generation targets exist for a variety of machines
• LLVM is a register-based intermediate in Static Single

Assignment (SSA) form (each variable is assigned exactly
once, statically)

© 2015 Rockwell Collins. All rights reserved.

Example — C Source

unsigned long occurrences(unsigned long val, unsigned int n,
 unsigned long *array) {
 unsigned long num_occur = 0;
 unsigned int j = 0;
 for (j = 0; j < n; j++) {
 if (array[j] == val) num_occur++;
 }
 return num_occur;
}

• We can produce LLVM from C source (for LLVM 3.6.0) as
follows:

clang –O1 –S –emit-llvm occurrences.c

© 2015 Rockwell Collins. All rights reserved.

Example: Generated LLVM from clang
 define i64 @occurrences(i64 %val, i32 %n, i64* %array) {
 %1 = icmp eq i32 %n, 0
 br i1 %1, label %._crit_edge, label %.lr.ph

.lr.ph:
 %indvars.iv = phi i64 [%indvars.iv.next, %.lr.ph], [0, %0]
 %num_occur.01 = phi i64 [%.num_occur.0, %.lr.ph], [0, %0]
 %2 = getelementptr inbounds i64* %array, i64 %indvars.iv
 %3 = load i64* %2, align 8, !tbaa !1
 %4 = icmp eq i64 %3, %val
 %5 = zext i1 %4 to i64
 %.num_occur.0 = add i64 %5, %num_occur.01
 %indvars.iv.next = add i64 %indvars.iv, 1
 %lftr.wideiv = trunc i64 %indvars.iv.next to i32
 %exitcond = icmp eq i32 %lftr.wideiv, %n
 br i1 %exitcond, label %._crit_edge, label %.lr.ph

._crit_edge:
 %num_occur.0.lcssa = phi i64 [0, %0], [%.num_occur.0, %.lr.ph]
 ret i64 %num_occur.0.lcssa
}

© 2015 Rockwell Collins. All rights reserved.

Toolchain Architecture

Proofs

LLVM to sexpr

Instruction
Set Semantics

ACL2
Theorem
Prover

Codewalker

Program-
Specific

Properties

(ADD x
y z)

LLVM
S-expressions

.c

Source

.ll

LLVM

clang

© 2015 Rockwell Collins. All rights reserved.

Converting LLVM Assembly to ACL2 S-Expressions

• Conversion needed so that LLVM programs can both be reasoned
about, as well as executed within the ACL2 environment

• Conversion currently done by hand; could be automated by using
some of the previous translator work

• Fixed-width type information ignored; all computations performed
on arbitrary-precision data
• Didn’t want to tackle both Codewalker and modular arithmetic

complexity at the same time
• No “syntactic sugar” to distinguish register numbers from numeric

constants; use added (CONST n) instruction and a simple stack,
featuring a (POPTO r) operator, to introduce numeric constants

© 2015 Rockwell Collins. All rights reserved.

Converting LLVM to ACL2 (cont’d.)

• Phi instructions at the beginning of blocks declare what values
certain registers should have, based on the identity of the
previous executing block
• Think of phi instructions as “comes from” information

• Needed to make the declarative phi instructions operational so we
could successfully intepret LLVM programs in ACL2

• Decided to introduce register-to-register transfer capability via the
previously added stack, using a (PUSH r1)/(POPTO r2) pair

• We place these register-to-register transfers at the end of blocks
that branch to other blocks containing phi instructions

• Using the stack instructions makes it clear that these instructions
were added to the original LLVM code

• Many other possible solutions

© 2015 Rockwell Collins. All rights reserved.

Example LLVM Code in S-Expression Form
;; reg[2] contains val

;; reg[1] contains n

;; reg[0] contains array base address

<PREAMBLE CODE ELIDED>

;; .lr.ph: ; preds = %0, %.lr.ph

 (GETELPTR 7 0 5) ; 8 reg[7] <- mem address of arr[index]

 (LOAD 8 7) ; 9 reg[8] <- mem[reg[7]] = arr[index]

 (EQ 9 8 2) ; 10 reg[8] == val?

 (ADD 10 6 9) ; 11

 (CONST 1) ; 12

 (POPTO 11) ; 13

 (ADD 12 5 11) ; 14

 (EQ 13 12 1) ; 15 reg[13] <- reg[12] == n?

 (PUSH 12) ; 16

 (POPTO 5) ; 17 phi(j), j <- j+1

 (PUSH 10) ; 18

 (POPTO 6) ; 19 phi(num_occur)

 (BR 13 1 -12) ; 20 loop back to .lr.ph if j+1 < n

;;._crit_edge: ; preds = %.lr.ph, %0

 (PUSH 6) ; 21 push num_occur on stack

 (HALT) ; 22

© 2015 Rockwell Collins. All rights reserved.

Machine Modeling in ACL2

• We begin by defining a machine state data structure whose
components are referenced and/or assigned with each instruction

• Typically, we define machine state elements for the program counter,
other fixed-function registers, the register file, data memory, and
program memory, aggregating these into a single state variable
• Register file components and memory locations are usually

abstracted as Lisp lists, accessed with nth and modified with
update-nth

• ACL2 is a purely functional subset of Common Lisp; thus, in order to
modify machine state, one must construct a new machine state with
the modified components, and return that updated state.
• For large machine states, this can become expensive (much

memory allocation and garbage generation)
• Fortunately, ACL2 also supports single-threaded objects, or stobjs,

that ameliorate this problem

© 2015 Rockwell Collins. All rights reserved.

ACL2 Single-Threaded Objects (stobjs)

• ACL2 enforces strict syntactic rules on stobjs to ensure that “old”
states of a stobj are guaranteed not to exist
• This means that ACL2 can provide destructive implementation

for stobjs, allowing stobj operations to execute quickly
• An ACL2 single-threaded object thus combines:

• A functional semantics about which we can reason
• A relatively high-speed implementation that we can use for

model validation, i.e. by executing tests that run on the
machine being modelled

• stobjs introduce some complications for reasoning, but the ACL2
community has been diligently working on mitigating these issues

© 2015 Rockwell Collins. All rights reserved.

Machine Interpreter

• A top-level machine interpreter whose state is modelled as a stobj
is normally written in ACL2 as follows, where LL2 is the name of
our LLVM subset:

(defun LL2(s n)
 (declare (xargs :stobjs (s)))
 (if (zp n)
 s
 (let ((s (step s)))
 (LL2 s (- n 1)))))

• where s is the machine state, (step s) is a function that
dispatches to an individual instruction function based on the
current opcode, and zp is a standard ACL2 “equals 0” predicate

© 2015 Rockwell Collins. All rights reserved.

Instruction Definitions

• Individual instructions are defined as follows:

;; Semantics of (ADD a b c): increment the pc, and set the value
;; of the first local to the sum of the second and third locals.

(defun execute-ADD (inst s)
 (declare (xargs :stobjs (s)))
 (let* ((s (!loi (arg1 inst)
 (+ (loi (arg2 inst) s) (loi (arg3 inst) s)) s))
 (s (!pc (+ 1 (pc s)) s)))
 s))

• where (pc s) returns the value of the program counter stored in the state s,
(loi n s) returns the value of the nth local variable (or register — both terms
are used) stored in s, and (arg<i> inst)returns the value of the ith operand
of the current instruction;

• (!pc v s) sets the value of the program counter to v, and (!loi j x s) sets
the value of the jth local to x. These latter two functions update the state s.

© 2015 Rockwell Collins. All rights reserved.

Codewalker

• A new facility as of ACL2 7.0 (January 2015), due to J Moore
• Performs “decompilation into logic” of a machine-code program to

a series of “semantic functions” that summarize the program’s
effect on machine state

• Works with an instruction set description written in the usual ACL2
“machine interpreter” style, as earlier described

• Produces proofs that the generated semantic functions are correct
• Inspired by Magnus Myreen’s Ph.D. thesis (2008)

• Myreen’s decompiler utilizes the HOL4 theorem prover
• Three main Codewalker API’s utilized in our work:

• def-model-api
• def-semantics
• def-projection

© 2015 Rockwell Collins. All rights reserved.

def-model-api

• def-model-api instructs Codewalker on the basics of the
machine model:
• The name of the machine interpreter function
• The name of the state variable, and whether it is a stobj
• How to access and update the registers
• Basic machine types
• How to access and update the program counter
• Subroutine linkage (not yet implemented)

© 2015 Rockwell Collins. All rights reserved.

def-semantics

• def-semantics is the main workhorse of the Codewalker facility. It
instructs Codewalker to create “semantic functions” for given regions of
machine code.

• Semantic functions summarize the actions of given machine code
segments on machine state
• Semantic functions are generated by symbolic simulation of the

machine previously described to def-model-api.
• Importantly, the machine interpreter function is not mentioned in

the generated semantic functions
• def-semantics also generates a ‘clock’ function that prescribes the

number of instruction steps that the interpreter must execute in order to
cover the user-specified range of program counters

• Finally, def-semantics generates a theorem that the semantic
function correctly summarizes the changes to the machine state
produced by executing the machine interpreter for the number of steps
indicated by the generated clock function.

© 2015 Rockwell Collins. All rights reserved.

def-semantics Example
(def-semantics
 :init-pc 8
 :focus-regionp (lambda (pc) (and (<= 8 pc) (<= pc 9)))
 :root-name frag
 :hyps+ ((occurrences-programp s) (program-inv s)
 (<= (+ (nth 0 (rd :locals s)) (nth 1 (rd :locals s))) (len (rd :memory s)))))

This generates a semantic function, a clock function, and a correctness theorem for the code
segment of occurrences-program between PC=8 and PC=9, inclusive:

(DEFUN SEM-FRAG-8 (S)
 (DECLARE (XARGS :NON-EXECUTABLE T :MODE :LOGIC))
 (DECLARE (XARGS :STOBJS (S)))
 (PROG2$ (ACL2::THROW-NONEXEC-ERROR 'SEM-FRAG-8 (LIST S))
 (IF (AND (HYPS S) (OCCURRENCES-PROGRAMP S)(PROGRAM-INV S)
 (<= (+ (NTH 0 (RD :LOCALS S)) (NTH 1 (RD :LOCALS S))) (LEN (RD :MEMORY S))))
 (WR :PC 10
 (WR :LOCALS
 (UPDATE-NTH 7 (+ (NTH 0 (RD :LOCALS S)) (NTH 5 (RD :LOCALS S)))
 (UPDATE-NTH 8 (NTH (+ (NTH 0 (RD :LOCALS S)) (NTH 5 (RD :LOCALS S)))
 (RD :MEMORY S))
 (RD :LOCALS S)))
 S))
 S)))

© 2015 Rockwell Collins. All rights reserved.

def-semantics Example (cont’d.)

Generated Clock Function:

(DEFUN CLK-FRAG-8 (S) […]

 (IF (AND (HYPS S) (OCCURRENCES-PROGRAMP S) (PROGRAM-INV S)

 (<= (+ (NTH 0 (RD :LOCALS S)) (NTH 1 (RD :LOCALS S))) (LEN (RD :MEMORY S))))

 2 0)))

Generated Correctness Theorem:

(DEFTHM SEM-FRAG-8—CORRECT

 (IMPLIES

 (AND (HYPS S)

 (OCCURRENCES-PROGRAMP S)

 (PROGRAM-INV S)

 (<= (+ (NTH 0 (RD :LOCALS S)) (NTH 1 (RD :LOCALS S))) (LEN (RD :MEMORY S))

 (EQUAL (RD :PC S) 8))

 (EQUAL (LL2 S (CLK-FRAG-8 S))

 (SEM-FRAG-8 S))))

 where LL2 is the machine interpreter for a subset of LLVM that we previously defined.
Note that, since semantic functions accept a single machine state parameter, and return machine

state, individual semantic functions may be joined by simple functional composition to produce
an overall semantic function for an entire subroutine

© 2015 Rockwell Collins. All rights reserved.

def-semantics, cont’d.

• The example just given is very simple, in the interest of
presenting the output of def-semantics on single slides

• For the occurrences program, we invoke def-semantics twice:
• once to generate a semantic function for the preamble code

before the loop
• once for the loop and postlude code

• We then compose these two generated semantic functions to
produce a semantic function for the entire occurrences program.

© 2015 Rockwell Collins. All rights reserved.

def-projection

• def-semantics eliminates the machine interpreter from the
description of what a segment of machine code accomplishes, making
that segment of code easier to reason about

• def-projection takes a semantic function generated by def-
semantics, and allows us to ‘project out’ a function that computes the
final value of some machine state component, thus eliminating any
explicit mention of the machine state from the function and making
reasoning even easier
• def-projection only works for computations that don’t depend

on state
• Thus, we didn’t use def-projection for the occurrences program

• If the projection is successful, def-projection produces a theorem
stating that the output of the generated projection function, given
appropriate machine state component inputs, is equal to the projected
component of the machine state returned by the semantic function

© 2015 Rockwell Collins. All rights reserved.

Results: Proof

We were able to prove that the LLVM occurrences program implemented a list-based non-
tail-recursive occurlist function, using techniques described in an ACL2-13 paper:

(defun occurlist (val lst)
 (declare (xargs :guard (and (integerp val) (integer-listp lst))))
 (if (endp lst) 0
 (+ (if (= val (car lst)) 1 0)
 (occurlist val (cdr lst)))))

Final Correctness Theorem:

(defthm ll2-running-occurrences-code-=-occurlist
 (implies
 (and (hyps s) (program-inv s) (occurrences-programp s)
 (<= (+ (nth 0 (rd :locals s)) (nth 1 (rd :locals s))) (len (rd :memory s)))
 (= (nth 1 (rd :locals s)) (len (rd :memory s)))
 (equal (rd :pc s) 0))
 (= (nth 6 (rd :locals (ll2 (ll2 s (clk-preamble-0 s))
 (clk-loop-8 (ll2 s (clk-preamble-0 s))))))
 (occurlist (nth 2 (rd :locals s)) (rd :memory s)))) [hints elided])

 We also proved similar correctness results for a number of other small C programs.

© 2015 Rockwell Collins. All rights reserved.

Results: Execution

• We are able to execute LLVM programs on concrete inputs utilizing
the LL2 interpreter

• Since the LL2 state is a stobj:
• State updates are done in-place, and thus are inexpensive
• it is easy to set up an initial state using a sequence of state-

modifying commands, such as !memi
• LL2 is tail-recursive, so it won’t blow up the stack
• Measured performance on a 2012 MacBook Pro: 226,000 LLVM

instructions per second
• One-tenth the performance of our previous translation

approach, which generated Lisp functions for each LLVM
subroutine

• Performance is adequate for basic validation testing

© 2015 Rockwell Collins. All rights reserved.

Codewalker Issues

• Codewalker does not help with the creation of loop invariants; these must
be provided manually

• One cannot yet instruct Codewalker to generate relocatable semantic
functions

• Codewalker does not yet handle subroutine linkages; this is future work
• We have been unable to get Codewalker to successfully process a code

region with nested loops; this work is ongoing
• Myreen’s system also has difficulty with nested loops

• Codewalker is still a bit “touchy”; it is easy to overlook some necessary
input predicate that will cause Codewalker to fail
• Being an early release, Codewalker’s failure messages are currently

not very helpful
• We have not yet employed Codewalker on a machine model with fixed-

width registers; the added complexity of modular arithmetic may present
difficulties

• Issues aside, Codewalker is a very promising new capability for
the experienced ACL2 user!

© 2015 Rockwell Collins. All rights reserved.

Conclusion

We successfully utilized Codewalker to prove key properties
about small LLVM programs, generated from C source by
the clang compiler.

Verification:
• Codewalker enables highly automated formal proofs of

correctness for LLVM programs
• Codewalker provides “pluggable” instruction set definitions
• Verification can occur at the basic block level, thus allowing

for incremental progress
Validation:
• ACL2 single-threaded objects allows for reasonably speedy

execution of the LLVM code interpreter, enabling basic
validation testing.

