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Specification Implementation

Instruction Set Architecture
> add rd, ra, b
sub rd, ra, Tb

>
> jnz imm
>

High-level abstract system (.A) Lower-level concrete system (C)

[C refines A if every behavior of C is a behavior of A. J




Refinement in ACL2 community

Linking Theorem Proving and Model-Checking with
Well-Founded Bisimulation, Manolios, Namjoshi, Sumners,
1999

Verification of Pipelined Machines in ACL2, Manolios, 2000

An Incremental Stuttering Refinement Proof of a
Concurrent Program in ACL2, Sumners, 2000

Proving Preservation of Partial Correctness with ACL2: A
Mechanical Compiler Source Level Correctness Proof,
Goerigk, Wolfgang, 2000

Deductive Verification of Pipelined Machines Using
First-Order Quantification, Sandip, Warren, 2004

Verification of Executable Pipelined Machines with
Bit-Level Interfaces, Manolios, Srinivasan, 2005
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» Pipelining ~~ Stuttering
Many concrete steps ~ One abstract step
Well-founded stuttering simulation and bisimulation

» Superscalar Execution ~~ Skipping
One concrete step ~ Many abstract steps

Existing notions of refinement do not account for “skipping”
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» Skipping refinement!, a notion of refinement that directly
accounts for finite stuttering and finite skipping

» Sound and complete proof method that is amenable for
automated reasoning
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Skipping Refinement
We develop the notion in the framework of labeled transition
systems M = (S, —, L), where:
» S is a set of states
» —-C S x S is the transition relation

» L is the labeling function
Its domain is S, and tells us what is observable in a state.
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Instruction Set Architecture

» add rd, ra, b
~T > sub rd, ra, Tb
> Jjnz imm

M is a skipping refinement of M 4 with respect to a
refinement map 7 : S, — 5S4, if there exists a relation
B C S¢ x S4 such that the following holds.

» (Vs € S¢ :: sBr.s) and

» B is a skipping simulation relation on the disjoint union of

Me and My
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Skipping Simulation (SKS)

B C S x Sisan SKS on M iff for all s,w, such that sBw
following holds.

» L.s=L.wand

> (Vo: fp.o.s: (38: fp.8.w: match(B, o, 8)))

Reason about infinite behaviors.

(Deﬁne an alternate characterization )
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Case Studies

» Optimized Memory controller
Buffers read /write requests to the memory and updates
multiple memory location in a page simultaneously

» JVM-inspired (buffered) Stack Machine
Buffers instructions and eliminates redundant operations
on stack

» Vectorizing compiler transformation
Vectorizes a sequence of scalar instructions to a Single
Instruction Multiple Data (SIMD) instruction
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Vectorizing compiler transformation

Analyze the source program and when possible replace scalar
instructions with SIMD instructions.

a = b + ¢ al |b c
— e 4 f—> —+51MD

» Correctness of the transformation:
Given a scalar program, the target program generated by
the transformation is equivalent to the scalar program.

o
|

» Target program can run faster than the source program.

Proof of correctness by input-output equivalence can be tedious.

[Skipping refinement gives a “local” proof method.]




Scalar Machine: Operational semantics
State

(defdata scalar-op (enum ’(add sub mul ...)))
(defdata scalar-prog (listof scalar-inst))
(defdata sprg-state (record (pc . program-counter)

(regs . register-file)
(sprg . scalar-prog)))
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Scalar Machine: Operational semantics
State

(defdata scalar-op (enum ’(add sub mul ...)))
(defdata scalar-prog (listof scalar-inst))

(defdata sprg-state (record (pc . program-counter)
(regs . register-file)
(sprg . scalar-prog)))

Transition relation for deterministic scalar machine

(defun step-sprg (s)
(let* ((inst (nth (sprg-state-pc s) (sprg-state-sprg s)))
(op (inst-scalar-op inst))
)
(case op
(add (execute-add ... ))
BDM))
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State

(defdata
(defdata
(defdata

(defdata

Vector Machine: Operational semantics

vector-ops (enum ’(vadd vsub vmul ...)))
inst (oneof scalar-inst vector-inst))
vector-prog (listof inst))

vprg-state (record (pc . program-counter)

(regs . register-file)
(vprg . vector-prog)))

Transition relation for deterministic vector machine

(defun step-vprg (s)
(let* ((inst (nth (vprg-state-pc s) (vprg-state-vprg s)))

(case op

(op (get-op inst))
2D

(add (execute-add ...))
(vadd (execute-vadd ...))

-0

14



Vector machines refines scalar machine

Refinement map

(defun ref-map (s)
(let* ((rf (vprg-state-regs s))
(vprg (vprg-state-vprg s))
(vprg-pc (vprg-state-pc s))
(sprg-pc (pcT (1- vprg-pc) vprg)))
(sprg-state sprg-pc
rf
(scalarize-vprg vprg))))

pcT maps value of the vector machine’s program counter to the
corresponding value of the scalar machine’s program counter.



Vector Machines Refines Scalar Machine

Define B = {(s,w)| w = (ref-map s)}.
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Vector Machines Refines Scalar Machine

Define B = {(s,w)| w = (ref-map s)}.

s w s w
| L L
U v U v

one step
(Fv: w — v: uBvV) (Ev:wﬁskv:qu))
[vprg does not stutter] [sprg does not stutter]

An upper bound on skipping (k)

Maximum width of a vector instruction
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Vector Machines Refines Scalar Machine

Final Theorem
S w
l <k
u (¥
bounded skipping on right

(Fv: w ==F v: uBw))

(defthm vprg-skip-refines-sprg
(implies (and (vprg-statep s)
(equal w (ref-map s))
(equal u (step-vprg s)))
(step-sprg-k-skip-rel w (ref-map u))))




Main lemmas
Let s be a vprg-state, vpc be the program counter in s and
inst be the instruction pointed by vpc in vprg.

Let w = (ref-map s) and spc be the program counter in w.

» Lemma 1: If inst is a scalar instruction, then the
corresponding instruction pointed by spc in w is also inst.

» Lemma 2: If inst is a vector instruction composed of &k
scalar instructions, say sg,...,Sk_1, then the corresponding
instruction pointed by spc + i in wis s;, for i € [0,k — 1].

18



Skipping refinement is amenable for mechanical reasoning.

» An a priori knowledge of upper bound on skipping avoids
reasoning about unbounded reachability.

» The proof obligations can often be simplified based on
domain specific knowlege.

19



Other case studies

» Optimized Memory Controller

(defthm optmemc-skip-refines-memc
(implies (and (good-statep s)
(equal w (ref-map s))
(equal u (impl-step s))
(not (and (equal w (ref-map u))
(< (rank u) (rank s)))))
(spec-step-k-skip-rel w (ref-map u))))

» JVM-inspired stack machine

(defthm bstk-skip-refines-stk
(implies (and (good-statep s)
(equal w (ref-map s))
(equal u (impl-step s))
(not (and (equal w (ref-map u))
(< (rank u) (rank s)))))
(spec-step-k-skip-rel w (ref-map u))))

» Same WFSK to analyze correctness of systems.
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Optimized Memory Controller

(defthm optmemc-skip-refines-memc
(implies (and (good-statep s)
(equal w (ref-map s))
(equal u (impl-step s))
(not (and (equal w (ref-map u))
(< (rank u) (rank s)))))
(spec-step-k-skip-rel w (ref-map u))))

JVM-inspired stack machine

(defthm bstk-skip-refines-stk
(implies (and (good-statep s)
(equal w (ref-map s))
(equal u (impl-step s))
(not (and (equal w (ref-map u))
(< (rank u) (rank s)))))
(spec-step-k-skip-rel w (ref-map u))))

Same WFSK to analyze correctness of systems.
ACL2s automatically proves the theorem with no
additional lemmas for buffer depth upto 3.



Conclusion

» A notion of refinement that directly accounts for skipping
behavior in optimized reactive systems.

» A sound and complete proof method for reasoning about
skipping refinement.

» Validated the proof method by mechanically reasoning
correctness of three optimized systems with ACL2s.



Future Work

» Complete local characterization of skipping refinement.
» Compositionality of skipping refinement.
» Use GL-framework for finite state models of systems.

» Refinement-based testing framework.
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