Proving Skipping Refinement with ACL2s

Mitesh Jain and Pete Manolios

Northeastern University

ACL2 2015

1

Motivation

Motivation

► Property-based e.g., Temporal logics

Motivation

- ► Property-based e.g., Temporal logics
- ► Refinement-based

Refinement

Specification

Instruction Set Architecture

- ▶ add rd, ra, rb
- ▶ sub rd, ra, rb
- ▶ jnz imm
- **.**...

High-level abstract system (A)

Refinement

Specification

Implementation

Instruction Set Architecture

- ▶ add rd, ra, rb
- ▶ sub rd, ra, rb
- ▶ jnz imm

High-level abstract system (A)

Lower-level concrete system (C)

Refinement

Specification

Implementation

Instruction Set Architecture

- ▶ add rd, ra, rb
- ▶ sub rd, ra, rb
- ▶ jnz imm

•

High-level abstract system (A)

Lower-level concrete system (C)

 \mathcal{C} refines \mathcal{A} if every behavior of \mathcal{C} is a behavior of \mathcal{A} .

Refinement in ACL2 community

- ► Linking Theorem Proving and Model-Checking with Well-Founded Bisimulation, Manolios, Namjoshi, Sumners, 1999
- ▶ Verification of Pipelined Machines in ACL2, Manolios, 2000
- ▶ An Incremental Stuttering Refinement Proof of a Concurrent Program in ACL2, Sumners, 2000
- Proving Preservation of Partial Correctness with ACL2: A Mechanical Compiler Source Level Correctness Proof, Goerigk, Wolfgang, 2000
- ▶ Deductive Verification of Pipelined Machines Using First-Order Quantification, Sandip, Warren, 2004
- ▶ Verification of Executable Pipelined Machines with Bit-Level Interfaces, Manolios, Srinivasan, 2005

• . . .

${\bf Superscalar\ Microprocessor}$

IF	ID	RF	EX	WB		
IF	ID	RF	EX	WB		
	IF	ID	RF	EX	WB	
	IF	ID	RF	EX	WB	
		IF	ID	RF	EX	WB
		IF	ID	RF	EX	WB

IF	ID	RF	EX	WB		
IF	ID	RF	EX	WB		
	IF	ID	RF	EX	WB	
	IF	ID	RF	EX	WB	
		IF	ID	RF	EX	WB
		IF	ID	RF	EX	WB

Pipelining

► Superscalar Execution

IF	ID	RF	EX	WB		
IF	ID	RF	EX	WB		
	IF	ID	RF	EX	WB	
	IF	ID	RF	EX	WB	
		IF	ID	RF	EX	WB
		IF	ID	RF	EX	WB

- ► Superscalar Execution

IF	ID	RF	EX	WB		
IF	ID	RF	EX	WB		
	IF	ID	RF	EX	WB	
	IF	ID	RF	EX	WB	
		IF	ID	RF	EX	WB
		IF	ID	RF	EX	WB

- ► Superscalar Execution \leadsto Skipping One concrete step \approx Many abstract steps

IF	ID	RF	EX	WB		
IF	ID	RF	EX	WB		
	IF	ID	RF	EX	WB	
	IF	ID	RF	EX	WB	
		IF	ID	RF	EX	WB
		IF	ID	RF	EX	WB

- Superscalar Execution → Skipping
 One concrete step ≈ Many abstract steps

Existing notions of refinement do not account for "skipping"

► Skipping refinement¹, a notion of refinement that directly accounts for **finite stuttering and finite skipping**

¹CAV 2015

- ► Skipping refinement¹, a notion of refinement that directly accounts for **finite stuttering and finite skipping**
- ► Sound and complete proof method that is amenable for automated reasoning

¹CAV 2015

We develop the notion in the framework of labeled transition systems $\mathcal{M} = \langle S, \rightarrow, L \rangle$, where:

- \triangleright S is a set of states
- $\rightarrow \subseteq S \times S$ is the transition relation
- ► L is the labeling function
 Its domain is S, and tells us what is observable in a state.

IF	ID	RF	EX	WB				
IF	ID	RF	EX	WB				
	IF	ID	RF	EX	WB			$\stackrel{\sim}{\sim}$
	IF	ID	RF	EX	WB			
		IF	ID	RF	EX	WB		
		IF	ID	RF	EX	WB		

 \mathcal{M}_C is a skipping refinement of \mathcal{M}_A with respect to a refinement map $r: S_c \to S_A$, if there exists a relation $B \subseteq S_C \times S_A$ such that the following holds.

IF	ID	RF	EX	WB		
IF	ID	RF	EX	WB		
	IF	ID	RF	EX	WB	
	IF	ID	RF	EX	WB	
		IF	ID	RF	EX	WB
		IF	ID	RF	EX	WB

 \mathcal{M}_C is a skipping refinement of \mathcal{M}_A with respect to a refinement map $r: S_c \to S_A$, if there exists a relation $B \subseteq S_C \times S_A$ such that the following holds.

 $\blacktriangleright \langle \forall s \in S_C :: sBr.s \rangle \ and$

IF	ID	RF	EX	WB		
IF	ID	RF	EX	WB		
	IF	ID	RF	EX	WB	
	IF	ID	RF	EX	WB	
		IF	ID	RF	EX	WB
		IF	ID	RF	EX	WB

 \mathcal{M}_C is a skipping refinement of \mathcal{M}_A with respect to a refinement map $r: S_c \to S_A$, if there exists a relation $B \subseteq S_C \times S_A$ such that the following holds.

- $\blacktriangleright \langle \forall s \in S_C :: sBr.s \rangle \ and$
- ▶ B is a <u>skipping simulation</u> relation on the disjoint union of \mathcal{M}_C and \mathcal{M}_A

Skipping Simulation (SKS)

 $B \subseteq S \times S$ is an SKS on \mathcal{M} iff for all s, w, such that sBw following holds.

- L.s = L.w and
- $\langle \forall \sigma : fp.\sigma.s : \langle \exists \delta : fp.\delta.w : match(B, \sigma, \delta) \rangle \rangle$

Skipping Simulation (SKS)

 $B \subseteq S \times S$ is an SKS on \mathcal{M} iff for all s, w, such that sBw following holds.

- L.s = L.w and

Reason about infinite behaviors.

Skipping Simulation (SKS)

 $B \subseteq S \times S$ is an SKS on \mathcal{M} iff for all s, w, such that sBw following holds.

- \triangleright L.s = L.w and

Reason about infinite behaviors.

Define an alternate characterization

$$B\subseteq S\times S$$
 is a WFSK on $\mathcal{M}=\langle S, \rightarrow, L\rangle$ iff :

 $\blacktriangleright \ \langle \forall s,w \in S \colon sBw \colon L.s = L.w \rangle$

 $B \subseteq S \times S$ is a WFSK on $\mathcal{M} = \langle S, \rightarrow, L \rangle$ iff:

- ▶ There exist functions, $rankT: S \times S \to W$, $rankL: S \times S \times S \to \omega$, such that $\langle W, \prec \rangle$ is well-founded and

 $B \subseteq S \times S$ is a WFSK on $\mathcal{M} = \langle S, \rightarrow, L \rangle$ iff:

- ▶ There exist functions, $rankT: S \times S \to W$, $rankL: S \times S \times S \to \omega$, such that $\langle W, \prec \rangle$ is well-founded and $\langle \forall s, u, w \in S: sBw \land s \to u$:

 $B \subseteq S \times S$ is a WFSK on $\mathcal{M} = \langle S, \rightarrow, L \rangle$ iff:

- ▶ There exist functions, $rankT: S \times S \to W$, $rankL: S \times S \times S \to \omega$, such that $\langle W, \prec \rangle$ is well-founded and $\langle \forall s, u, w \in S: sBw \land s \to u$:

 $B \subseteq S \times S$ is a WFSK on $\mathcal{M} = \langle S, \rightarrow, L \rangle$ iff :

- ▶ There exist functions, $rankT: S \times S \to W$, $rankL: S \times S \times S \to \omega$, such that $\langle W, \prec \rangle$ is well-founded and $\langle \forall s, u, w \in S : sBw \land s \to u$:

 $B \subseteq S \times S$ is a WFSK on $\mathcal{M} = \langle S, \rightarrow, L \rangle$ iff :

- ▶ There exist functions, $rankT: S \times S \to W$, $rankL: S \times S \times S \to \omega$, such that $\langle W, \prec \rangle$ is well-founded and $\langle \forall s, u, w \in S : sBw \land s \to u$:

 $B \subseteq S \times S$ is a WFSK on $\mathcal{M} = \langle S, \rightarrow, L \rangle$ iff:

- ▶ There exist functions, $rankT: S \times S \to W$, $rankL: S \times S \times S \to \omega$, such that $\langle W, \prec \rangle$ is well-founded and $\langle \forall s, u, w \in S : sBw \land s \to u$:

rankL(v, s, u) < rankL(w, s, u)

Case Studies

- ▶ Optimized Memory controller
 Buffers read/write requests to the memory and updates
 multiple memory location in a page simultaneously
- ▶ JVM-inspired (buffered) Stack Machine
 Buffers instructions and eliminates redundant operations
 on stack
- ▶ Vectorizing compiler transformation Vectorizes a sequence of scalar instructions to a Single Instruction Multiple Data (SIMD) instruction

Vectorizing compiler transformation

Analyze the source program and when possible replace scalar instructions with SIMD instructions.

► Correctness of the transformation: Given a scalar program, the target program generated by the transformation is equivalent to the scalar program.

Vectorizing compiler transformation

Analyze the source program and when possible replace scalar instructions with SIMD instructions.

- ► Correctness of the transformation: Given a scalar program, the target program generated by the transformation is equivalent to the scalar program.
- ► Target program can run faster than the source program.

Vectorizing compiler transformation

Analyze the source program and when possible replace scalar instructions with SIMD instructions.

- ► Correctness of the transformation: Given a scalar program, the target program generated by the transformation is equivalent to the scalar program.
- ► Target program can run faster than the source program.

Proof of correctness by input-output equivalence can be tedious.

Skipping refinement gives a "local" proof method.

Scalar Machine: Operational semantics

State

Scalar Machine: Operational semantics

State

Transition relation for deterministic scalar machine

Vector Machine: Operational semantics

State

Transition relation for deterministic vector machine

Vector machines refines scalar machine

Refinement map

pcT maps value of the vector machine's program counter to the corresponding value of the scalar machine's program counter.

Define
$$B = \{(s, w) | w = (ref-map s)\}.$$

Define
$$B = \{(s, w) | w = (ref-map s)\}.$$

sprg does not stutter

Define
$$B = \{(s, w) | w = (ref-map s)\}.$$

vprg does not stutter

sprg does not stutter

Define
$$B = \{(s, w) | w = (ref-map s)\}.$$

vprg does not stutter

sprg does not stutter

Define
$$B = \{(s, w) | w = (ref-map s)\}.$$

vprg does not stutter

sprg does not stutter

An <u>upper bound</u> on skipping (k)Maximum width of a vector instruction

Final Theorem

```
bounded skipping on right
                    \langle \exists v : w \to^{\leq k} v : uBv \rangle \rangle
(defthm vprg-skip-refines-sprg
  (implies (and (vprg-statep s)
                    (equal w (ref-map s))
                    (equal u (step-vprg s)))
              (step-sprg-k-skip-rel w (ref-map u))))
```

Main lemmas

Let s be a vprg-state, vpc be the program counter in s and inst be the instruction pointed by vpc in vprg.

Let w = (ref-map s) and spc be the program counter in w.

- ► <u>Lemma 1</u>: If inst is a scalar instruction, then the corresponding instruction pointed by spc in w is also inst.
- ▶ Lemma 2: If inst is a vector instruction composed of k scalar instructions, say $s_0, ..., s_{k-1}$, then the corresponding instruction pointed by $\operatorname{spc} + i$ in w is s_i , for $i \in [0, k-1]$.

Skipping refinement is amenable for mechanical reasoning.

- ▶ An a priori knowledge of upper bound on skipping avoids reasoning about unbounded reachability.
- ▶ The proof obligations can often be simplified based on domain specific knowlege.

Other case studies

► Optimized Memory Controller

► JVM-inspired stack machine

▶ Same WFSK to analyze correctness of systems.

Other case studies

► Optimized Memory Controller

► JVM-inspired stack machine

- ▶ Same WFSK to analyze correctness of systems.
- ► ACL2s automatically proves the theorem with *no* additional lemmas for buffer depth upto 3.

Conclusion

- ▶ A notion of refinement that directly accounts for skipping behavior in optimized reactive systems.
- ▶ A sound and complete proof method for reasoning about skipping refinement.
- ▶ Validated the proof method by mechanically reasoning correctness of three optimized systems with ACL2s.

Future Work

- ► Complete local characterization of skipping refinement.
- ► Compositionality of skipping refinement.
- ▶ Use GL-framework for finite state models of systems.
- ▶ Refinement-based testing framework.

Thank You