Proving Skipping Refinement with ACL2s

Mitesh Jain and Pete Manolios
Northeastern University

ACL2 2015



Motivation




Motivation

» Property-based
e.g., Temporal logics




Motivation

» Property-based
e.g., Temporal logics

» Refinement-based




Refinement

Specification

Instruction Set Architecture
> add rd, ra, b
> sub rd, ra, Tb
> jnz imm

> ...

High-level abstract system (.A)



Refinement

Specification Implementation

Instruction Set Architecture
> add rd, ra, b
> sub rd, ra, Tb
> jnz imm

> ...

High-level abstract system (.A) Lower-level concrete system (C)



Refinement

Specification Implementation

Instruction Set Architecture
> add rd, ra, b
sub rd, ra, Tb

>
> jnz imm
>

High-level abstract system (.A) Lower-level concrete system (C)

[C refines A if every behavior of C is a behavior of A. J




Refinement in ACL2 community

Linking Theorem Proving and Model-Checking with
Well-Founded Bisimulation, Manolios, Namjoshi, Sumners,
1999

Verification of Pipelined Machines in ACL2, Manolios, 2000

An Incremental Stuttering Refinement Proof of a
Concurrent Program in ACL2, Sumners, 2000

Proving Preservation of Partial Correctness with ACL2: A
Mechanical Compiler Source Level Correctness Proof,
Goerigk, Wolfgang, 2000

Deductive Verification of Pipelined Machines Using
First-Order Quantification, Sandip, Warren, 2004

Verification of Executable Pipelined Machines with
Bit-Level Interfaces, Manolios, Srinivasan, 2005



Superscalar Microprocessor

IF 1D RF EX
IF 1D RF EX
IF 1D RF

IF 1D RF

IF 1D

IF 1D




Superscalar Microprocessor

IF 1D RF EX
IF 1D RF EX
IF 1D RF

IF 1D RF

IF 1D

IF 1D

» Pipelining

» Superscalar Execution



Superscalar Microprocessor

IF 1D RF EX
IF 1D RF EX
IF 1D RF

IF 1D RF

IF 1D

IF 1D

Pipelining ~» Stuttering
Many concrete steps ~ One abstract step
Well-founded stuttering simulation and bisimulation

Superscalar Execution



Superscalar Microprocessor

IF 1D RF EX
IF 1D RF EX
IF 1D RF

IF 1D RF

IF 1D

IF 1D

» Pipelining ~~ Stuttering
Many concrete steps ~ One abstract step
Well-founded stuttering simulation and bisimulation

» Superscalar Execution ~~ Skipping
One concrete step ~ Many abstract steps



Superscalar Microprocessor

IF 1D RF EX
IF 1D RF EX
IF 1D RF

IF 1D RF

IF 1D

IF 1D

» Pipelining ~~ Stuttering
Many concrete steps ~ One abstract step
Well-founded stuttering simulation and bisimulation

» Superscalar Execution ~~ Skipping
One concrete step ~ Many abstract steps

Existing notions of refinement do not account for “skipping”



Skipping Refinement

» Skipping refinement!, a notion of refinement that directly
accounts for finite stuttering and finite skipping

LCAV 2015



Skipping Refinement

» Skipping refinement!, a notion of refinement that directly
accounts for finite stuttering and finite skipping

» Sound and complete proof method that is amenable for
automated reasoning

LCAV 2015



Skipping Refinement
We develop the notion in the framework of labeled transition
systems M = (S, —, L), where:
» S is a set of states
» —-C S x S is the transition relation

» L is the labeling function
Its domain is S, and tells us what is observable in a state.



Skipping Refinement

Instruction Set Architecture

» add rd, ra, b
~T > sub rd, ra, Tb
> Jjnz imm

M is a skipping refinement of M 4 with respect to a
refinement map 7 : S, — 5S4, if there exists a relation
B C S¢ x S4 such that the following holds.



Skipping Refinement

Instruction Set Architecture

» add rd, ra, b
~T > sub rd, ra, Tb
> Jjnz imm

M is a skipping refinement of M 4 with respect to a
refinement map 7 : S, — 5S4, if there exists a relation
B C S¢ x S4 such that the following holds.

» (Vs € S¢ :: sBr.s) and



Skipping Refinement

Instruction Set Architecture

» add rd, ra, b
~T > sub rd, ra, Tb
> Jjnz imm

M is a skipping refinement of M 4 with respect to a
refinement map 7 : S, — 5S4, if there exists a relation
B C S¢ x S4 such that the following holds.

» (Vs € S¢ :: sBr.s) and

» B is a skipping simulation relation on the disjoint union of

Me and My




Skipping Simulation (SKS)

B C S x Sisan SKS on M iff for all s,w, such that sBw
following holds.

» L.s=L.wand

> (Vo: fp.o.s: (38: fp.8.w: match(B, o, 8)))




Skipping Simulation (SKS)

B C S x Sisan SKS on M iff for all s,w, such that sBw
following holds.

» L.s=L.wand

> (Vo: fp.o.s: (38: fp.8.w: match(B, o, 8)))

Reason about infinite behaviors.




Skipping Simulation (SKS)

B C S x Sisan SKS on M iff for all s,w, such that sBw
following holds.

» L.s=L.wand

> (Vo: fp.o.s: (38: fp.8.w: match(B, o, 8)))

Reason about infinite behaviors.

(Deﬁne an alternate characterization )




Well-founded Skipping Simulation (WFSK)
BCSxSisaWFSKon M =(S,—,L)iff :
> (Vs,w e S: sBw: L.s = Lw)

10



Well-founded Skipping Simulation (WFSK)
BCSxSisaWFSKon M =(S,—,L)iff :
> (Vs,w e S: sBw: L.s = Lw)

» There exist functions, rankT: S x S — W,
rankL: S x S x S — w, such that (W, <) is well-founded and

10



Well-founded Skipping Simulation (WFSK)
BCSxSisaWFSKon M =(S,—,L)iff :
> (Vs,w e S: sBw: L.s = Lw)

» There exist functions, rankT: S x S — W,
rankL: S x S x S — w, such that (W, <) is well-founded and

(Vs,u,w € S:sBwAs—u

L—®»

10



Well-founded Skipping Simulation (WFSK)
BCSxSisaWFSKon M =(S,—,L)iff :
> (Vs,w e S: sBw: L.s = Lw)

» There exist functions, rankT: S x S — W,
rankL: S x S x S — w, such that (W, <) is well-founded and

(Vs,u,w € S:sBwAs—u

S w
u v
one step

(Fv: w — v: uBYV)

10



Well-founded Skipping Simulation (WFSK)
BCSxSisaWFSKon M =(S,—,L)iff :
> (Vs,w e S: sBw: L.s = Lw)

» There exist functions, rankT: S x S — W,
rankL: S x S x S — w, such that (W, <) is well-founded and

(Vs,u,w € S:sBwAs—u

S w
u v
one step

(Fv: w — v: uBYV)
S w

|

u

stuttering on left
(uBw A rankT (u, w) < rankT (s, w))

10



Well-founded Skipping Simulation (WFSK)
BCSxSisaWFSKon M =(S,—,L)iff :
> (Vs,w e S: sBw: L.s = Lw)

» There exist functions, rankT: S x S — W,
rankL: S x S x S — w, such that (W, <) is well-founded and

(Vs,u,w e S:sBwAs—u:

L

one step
(Fv: w — v: uBYV)

S w S w
o "
o N
u U v

stuttering on left stuttering on right

(uBw A rankT (u, w) < rankT (s, w)) (Fv: w — v: sBv A

rankL(v, s, u) < rankL(w, s, u))

10



Well-founded Skipping Simulation (WFSK)
BCSxSisaWFSKon M =(S,—,L)iff :
> (Vs,w e S: sBw: L.s = Lw)

» There exist functions, rankT: S x S — W,
rankL: S x S x S — w, such that (W, <) is well-founded and

(Vs,u,w e S:sBwAs—u:

S w S w

l l l lz 2

u v u v

one step skipping on right
>2

(Fv: w — v: uBYV) (Jv: w —-=* v: uBv))

S w S w
o "
o N
u U v

stuttering on left stuttering on right

(uBw A rankT (u, w) < rankT (s, w)) (Fv: w — v: sBv A

rankL(v, s, u) < rankL(w, s, u))

10



Case Studies

» Optimized Memory controller
Buffers read /write requests to the memory and updates
multiple memory location in a page simultaneously

» JVM-inspired (buffered) Stack Machine
Buffers instructions and eliminates redundant operations
on stack

» Vectorizing compiler transformation
Vectorizes a sequence of scalar instructions to a Single
Instruction Multiple Data (SIMD) instruction



Vectorizing compiler transformation

Analyze the source program and when possible replace scalar
instructions with SIMD instructions.

a = b + ¢ al |b c
d = e + ¢ —+51MD

» Correctness of the transformation:
Given a scalar program, the target program generated by
the transformation is equivalent to the scalar program.



Vectorizing compiler transformation

Analyze the source program and when possible replace scalar
instructions with SIMD instructions.

a = b + ¢ al |b c
— e 4 f—> —+51MD

» Correctness of the transformation:
Given a scalar program, the target program generated by
the transformation is equivalent to the scalar program.

o
|

» Target program can run faster than the source program.



Vectorizing compiler transformation

Analyze the source program and when possible replace scalar
instructions with SIMD instructions.

a = b + ¢ al |b c
— e 4 f—> —+51MD

» Correctness of the transformation:
Given a scalar program, the target program generated by
the transformation is equivalent to the scalar program.

o
|

» Target program can run faster than the source program.

Proof of correctness by input-output equivalence can be tedious.

[Skipping refinement gives a “local” proof method.]




Scalar Machine: Operational semantics
State

(defdata scalar-op (enum ’(add sub mul ...)))
(defdata scalar-prog (listof scalar-inst))
(defdata sprg-state (record (pc . program-counter)

(regs . register-file)
(sprg . scalar-prog)))

13



Scalar Machine: Operational semantics
State

(defdata scalar-op (enum ’(add sub mul ...)))
(defdata scalar-prog (listof scalar-inst))

(defdata sprg-state (record (pc . program-counter)
(regs . register-file)
(sprg . scalar-prog)))

Transition relation for deterministic scalar machine

(defun step-sprg (s)
(let* ((inst (nth (sprg-state-pc s) (sprg-state-sprg s)))
(op (inst-scalar-op inst))
)
(case op
(add (execute-add ... ))
BDM))

13



State

(defdata
(defdata
(defdata

(defdata

Vector Machine: Operational semantics

vector-ops (enum ’(vadd vsub vmul ...)))
inst (oneof scalar-inst vector-inst))
vector-prog (listof inst))

vprg-state (record (pc . program-counter)

(regs . register-file)
(vprg . vector-prog)))

Transition relation for deterministic vector machine

(defun step-vprg (s)
(let* ((inst (nth (vprg-state-pc s) (vprg-state-vprg s)))

(case op

(op (get-op inst))
2D

(add (execute-add ...))
(vadd (execute-vadd ...))

-0

14



Vector machines refines scalar machine

Refinement map

(defun ref-map (s)
(let* ((rf (vprg-state-regs s))
(vprg (vprg-state-vprg s))
(vprg-pc (vprg-state-pc s))
(sprg-pc (pcT (1- vprg-pc) vprg)))
(sprg-state sprg-pc
rf
(scalarize-vprg vprg))))

pcT maps value of the vector machine’s program counter to the
corresponding value of the scalar machine’s program counter.



Vector Machines Refines Scalar Machine

Define B = {(s,w)| w = (ref-map s)}.

L |

one step
(Fv: w — v: uBvV)

S

u
stuttering on left

(uBw A rankT (u, w) < rankT (s, w))

w

w

Il

(%
skipping on right
(Fv:w —22 4y uBv))

S w
u (%
stuttering on right

(Fv: w — v: sBv A
rankL(v, s, u) < rankL(w, s, u))

16



Vector Machines Refines Scalar Machine

Define B = {(s,w)| w = (ref-map s)}.

S w S w
| L L.
u v u v

one step skipping on right
(Fv: w — v: uBvV) (Fv:w =22 v: uBv))

S w

u

stuttering on left [Sprg doeS not Stuttel“]

(uBw A rankT (u, w) < rankT (s, w))

16



Vector Machines Refines Scalar Machine

Define B = {(s,w)| w = (ref-map s)}.

S w S w

J{ J{ J{ Jrz 2
u v u (%

one step skipping on right
(Fv: w — v: uBvV) (Fv:w =22 v: uBv))

[vprg does not stutter] [sprg does not stutter]

16



Vector Machines Refines Scalar Machine

Define B = {(s,w)| w = (ref-map s)}.

S w S w

J{ J{ J{ Jrz 2
u v u (%
one step

(Fv: w — v: uBvV) (Fv:w —»22 v: uBv))

[vprg does not stutter] [sprg does not stutter]

16



Vector Machines Refines Scalar Machine

Define B = {(s,w)| w = (ref-map s)}.

s w s w
| L L
U v U v

one step
(Fv: w — v: uBvV) (Ev:wﬁskv:qu))
[vprg does not stutter] [sprg does not stutter]

An upper bound on skipping (k)

Maximum width of a vector instruction

16



Vector Machines Refines Scalar Machine

Final Theorem
S w
l <k
u (¥
bounded skipping on right

(Fv: w ==F v: uBw))

(defthm vprg-skip-refines-sprg
(implies (and (vprg-statep s)
(equal w (ref-map s))
(equal u (step-vprg s)))
(step-sprg-k-skip-rel w (ref-map u))))




Main lemmas
Let s be a vprg-state, vpc be the program counter in s and
inst be the instruction pointed by vpc in vprg.

Let w = (ref-map s) and spc be the program counter in w.

» Lemma 1: If inst is a scalar instruction, then the
corresponding instruction pointed by spc in w is also inst.

» Lemma 2: If inst is a vector instruction composed of &k
scalar instructions, say sg,...,Sk_1, then the corresponding
instruction pointed by spc + i in wis s;, for i € [0,k — 1].

18



Skipping refinement is amenable for mechanical reasoning.

» An a priori knowledge of upper bound on skipping avoids
reasoning about unbounded reachability.

» The proof obligations can often be simplified based on
domain specific knowlege.

19



Other case studies

» Optimized Memory Controller

(defthm optmemc-skip-refines-memc
(implies (and (good-statep s)
(equal w (ref-map s))
(equal u (impl-step s))
(not (and (equal w (ref-map u))
(< (rank u) (rank s)))))
(spec-step-k-skip-rel w (ref-map u))))

» JVM-inspired stack machine

(defthm bstk-skip-refines-stk
(implies (and (good-statep s)
(equal w (ref-map s))
(equal u (impl-step s))
(not (and (equal w (ref-map u))
(< (rank u) (rank s)))))
(spec-step-k-skip-rel w (ref-map u))))

» Same WFSK to analyze correctness of systems.



Other case studies

Optimized Memory Controller

(defthm optmemc-skip-refines-memc
(implies (and (good-statep s)
(equal w (ref-map s))
(equal u (impl-step s))
(not (and (equal w (ref-map u))
(< (rank u) (rank s)))))
(spec-step-k-skip-rel w (ref-map u))))

JVM-inspired stack machine

(defthm bstk-skip-refines-stk
(implies (and (good-statep s)
(equal w (ref-map s))
(equal u (impl-step s))
(not (and (equal w (ref-map u))
(< (rank u) (rank s)))))
(spec-step-k-skip-rel w (ref-map u))))

Same WFSK to analyze correctness of systems.
ACL2s automatically proves the theorem with no
additional lemmas for buffer depth upto 3.



Conclusion

» A notion of refinement that directly accounts for skipping
behavior in optimized reactive systems.

» A sound and complete proof method for reasoning about
skipping refinement.

» Validated the proof method by mechanically reasoning
correctness of three optimized systems with ACL2s.



Future Work

» Complete local characterization of skipping refinement.
» Compositionality of skipping refinement.
» Use GL-framework for finite state models of systems.

» Refinement-based testing framework.

N



Thank You



