Fix Your Types

Sol Swords, Jared Davis Eﬂ allr

ACL2 Workshop, October 2015 echnology

Milawa
Defaggregate
Deflist

—7

Defenum
Define

Q
CUTIL %
Defalist "

old and busted

new hotness

FTY
Deffixtype
Deftypes
Deffixequiv

| really like types.

Signature
(svex->a4vec x env masks memo) » (mv res memol)
Arguments

(student->name x)
x — Guard (svex-p x).

VS.
env — Guard (svex-ad4vec-env-p env).
masks — Guard (svex-mask-alist-p masks). dd d
memo — Guard (svex-aig-memotable-p memo). (Ca a r X
Returns

res — Type (a4vec-p res).
memol — Type (svex-aig-memotable-p memol).

Type Safety

i/xdoc/preprocess.lisp

Not a string

{(mv nil sexpr)))
[{mv err wals state) (acll::unsound-eval sexpr))
[{when err)

- {mv (str::cat "Error: failed to evaluate @{ ...): " err)

- {mv (str::cat "Error: failed to ewvaluate @{ ...): "

- :: BOZO this isn't right, we really want something like

+ +3 ~@, but we don't have that unless we use ACL2's

= »: built-in fmt-to-string stuff, which I don't want to

+ :: use due to the problems described in

- »: fmt-to-str-orig.lisp... For now, we can at least just

- +: stringify the error in a dumb way.

= (str::pretty err :config (str::make-printconfig :home-packa
BCC
state))

(ret (cond ((atom vals)

rocks are carnivores

dynamic typing saves time?
recertifying. ..

¥ master

@ jaredcdavis autnored on Jun 30 1 parent f5bc959 commi

Showing 1 changed file with 1 addition and 1 deletion.

Not a context Not a topics-fal

2 HE books/xdoc/preprocess. 11
=
kind (str:; tty sexpr))
acc state)))
1124 -{defun preprocess-eval (str topics-fal comtext base-pkg kpa state acc)
+{defun preprocess-eval (str context topics-fal base-pkg kpa state acc)
"Returns (MV ACC STATE)"
(b* (({mv errmsg sexpr state) (preprocess-eval-parse str base-pkg state))
({when errmsg)
s,

fix horrible, stupid bug

¥ master

vjared:davis authored on Jul 8, 2014 1 parent 8296d3i9 com
=# ragerdl committed on Sep 1, 2014

kenkind
Showing 1 changed file with 1 addition and 1 cleletimNOt a to en In

2 HE books/centaur/vl/loader/parser/modules.lisp
==
count strong
(seqw tokens warnings
{when (eq (vl-loadconfig-redit®bn config) :verilog-2085%)
189 - {:= (vl-match-token :vl-always))
18¢ + {:= (vl-match-token :vl-kwd-always))
{(return :vl-always))
(kwd := {(vl-match-some-token "({:v1-kwd-always
W1-kwd-always_comb
iz

fix bug in bit-use-set handling of statements

¥ master

Fjaredt:davis authored on Dec 30, 2014 1 parent @66al

Showing 1 changed file with 1 addition and 1 deletion. Not tagged

2 HN books/centaur/vl/lint/bit-use-set.lisp

(warnings (vl1-warnigllist-fix warnings))

1826 - (case (tag (vl-stmt-kind %))
162E + (case (vl-stmit-kind x)
13 - Nothing to do for null statements.
13 - Don't think we want to do anything for eventtrigger:

i3 - Dom't think we want to do anything for deassign stat

Not a vector Not an index

books/centaur/misc/stobRswap.lisp

{defun ,swap (,sto
{let* ({bound (1-
{loop for i from

,5tobj2)

gth ,stghl)l))

boung”do

- {(psetf (svref i ,stobjl) (svref i ,stobjlZ)

- {svref i ,stobj2) (svref 1 ,stobjl)))

+ (psetf (svref ,stobjl i) (svref ,stobj2 1)

+ (swvref ,stobj2 1) (swvref ,stobjl 1)))
{mv ,stobjl ,stobj2)))))))

)

mwmn IDEA wnnr ™
~ DOING. -

But | think types help me.

What | want...

e Easily introduce new types

» Safely change existing types

* Write type-safe programs

* Run them efficiently

* Reason about them effectively

Example

struct student {
string name;

D

I

struct student {
string name;
Int age;

};...

———

defund student-p (x) ...)

defund student->name (x) (first x))
defund student->age (x) (second x))
defund make-student (name age) (list

(
(
(
(

(defund student-p (;

(defund student->n:.

(defund student->aj

(defund make-stude

(defthm booleanp-of-student-p ...)
(

(

(

(

defthm student-p-of-make-student ...
defthm stringp-of-student->name...)
defthm natp-of-student->age ...)

defthm student->name-of-make-stud:
(defthm <ctiidant->aca-af-malkke-ctiiden

Easily introduce new types

(defaggregate student
((name stringp)

(age natp)...))

Alternatives
defdata, defstructure, defrec

Safely change existing types

(defaggregate student
(;; (name stringp)
(first stringp)
(last stringp)

(age natp) ...))

(cw “Little ~s0 was tardy!” (student->name x))

Write type-safe programs

(define reportcard ((x student-p))
.returns (report report-p)
. (cat...
“Obviously ” x.name
“Iis far ahead of most ” x.age
“year-olds in many important
areas.” ...) ...))

Run them efficiently

Inlining
Layout options (tagless, illegible)
Honsing options

Type safety handled statically

So far so good!

¥ Easily introduce new types

¥ Safely change existing types

¥ Write type-safe programs
¥ Run them efficiently
? Reason about them effectively

Reason about them effectively

(defthm student->name-of-make-student
(equal (student->name (make-student
:name name
:age age ...))
name))

(defthm student->age-of-make-student
(equal (student->age (make-student...))

age))

Reason about them effectively

(defthm student-p-of-make-student
(implies (and (stringp name)

(natp age))
(student-p (make-student ...))))

(defthm stringp-of-student->name
(implies (student-p x)
(stringp (student->name x))))

End Result stdutil

(defthm vl-plainarglist-p-of-vl-partition-plainarg
(b* (((mv okp warnings plainargs)
(vl-partition-plainarg arg port-width insts mod
ialist elem warnings)))

(implies
(and okp
(force (vl-plainarg-p arg))
(force (posp port-width))
(
(

(force (posp insts))

(force (vl-module-p mod))

(force (equalialist (vI-moditem-alist mod))))
(vl-plainarglist-p plainargs))))

ACL2 6.3

Tedious
Slow
Unreliable

(and okp

(force (vl-plainarg-p arg))
(force (posp port-width))
(
(

(force (posp insts))

(force (vl-module-p mod))

(force (equalialist (vl-moditem-alist mod))))
(vl-plainarglist-p plainargs))))

ACL2 6.3

Discipline + Automation
for eliminating type hypotheses

(defthm vl-plainarglist-p-of-vl-partition-plainarg
(b* (((mv okp warnings plainargs)
(vl-partition-plainarg arg port-width insts ...)))
(vl-plainarglist-p plainargs)))

Treat bad inputs consistently

Functions on Numbers
X*(y+z) = x*y + x*z

~unctions on Naturals
Functions on Strings
-unctions on Conses
-unctions on Sets

< + - * |

zp, nth, logbitp
char, string-append
car, cdr, endp
set::head, set::union

N | How to handle
FIXing Function inputs

1. typep(fix(x))
5. typeP(X) — fIX(X) = X

Example

1. natp(nfix(x))
2. natp(x) — nfix(x) = x

Fixing Equivalence
equiv(x,y) == fix(x) = fix(y)

(defun nat-equiv (x y)
(equal (nfix x) (nfix y)))

(defequiv nat-equiv)

(defthm nth-respects-nat-equiv
(implies (nat-equiv n1 n2)
(equal (nth n1 x) (nth n2 x))))

Discipline

1. Types should have a
corresponding fixing
function and equivalence
relation.

Discipline

2. Typed functions should
produce equal results for
any equivalent inputs.

Fix your inputs

before using them

Automation

1. Introducing types with fixing
functions and equivalences

2. Proving congruences for
functions that use these types

Automation

Deffixtype — Type Database
Basetypes — Definitions for basic types
Deftypes — Automation for new types

Deffixequiv — Automated congruences

Base Types

Type Name Recognizer Fix Equiv

bit bitp bfix bit-equiv

nat natp nfix nat-equiv

int integerp 1fix int-equiv
rational rationalp rfix rational-equiv
acl2-number ACL2-numberp fix number-equiv

true-list true-listp list-fix list-equiv

Deftypes

(defprod student
((name stringp)

(age natp)...))

(defund student-p (x) ...)

(defund student->name (x) (string-fix (1
(defund student->age (x) (nfix (second
(defund make-student (name age) (list
(defund student-fix (x) (if (student-p x)
(defund student-equiv (x y) (equal (stu
(defthm student-fix-when-student-p (ir
(defthm student-p-of-student-fix (stud
(defequiv student-equiv :hints((“Goal”

Deftypes

defprod
deflist
defalist
defoption
deftagsum
deftranssum
defflexsum

+ Mutual Recursion!

Congruences

(define multiply-and-add ((a natp)
(b natp)

(c natp))
...)

(deffixequiv multiply-and-add)

or even fully automatically with a hook

Automation

Deffixtype — Type Database
Basetypes — Definitions for basic types
Deftypes — Automation for new types

Deffixequiv — Automated congruences

Fix Your Types

Sol Swords Jared Davis

Centaur Technology, Inc.
T600-C N. Capital of Texas Hwy, Suite 300
Austin, TX 78731

{sswords, jared}@centtech.com

When using existing ACL2 datatype frameworks, many theorems require type hypotheses. These
hypotheses slow down the theorem prover, are tedious to write, and are easy to forget. We describe a
principled approach to types that provides strong type safety and execution efficiency while avoiding

= sumeto MM Seorcn (RN

ACLZ2::macro-libraries

Fty FTY

[books] /centaur/fty/top.lisp Package

FTY is a macro library for introducing new data types and writing type-safe programs in ACL2. It

automates a systematic discipline for working with types that allows for both efficient reasoning
and execution.

FTY, short for fixtvpe, is a library for type-safe programming in ACL2. It provides significant
automation for introducing new data types and using data types according to the “fixtype
discipline.” Following this discipline allows vou to write type-safe programs that support efficient

reasoning (by minimizing the need for type-related hypotheses) and also have good execution
efficiency.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 39
	Slide 40

