A challenge problem: Toward better ACL2 proof technique

Matt Kaufmann The University of Texas at Austin Dept. of Computer Science, GDC 7.804

> ACL2 Workshop 2015 October 1, 2015

I took a break this summer to return to my roots as a mathematical logician, hosted by Prof. Ali Enayat of the University of Gothenburg, Sweden.

► Lots of fun chats!

- ► Lots of fun chats!
- ► We are co-authoring a tutorial paper on *iterated ultrapowers*.

Introduction

- ► Lots of fun chats!
- ► We are co-authoring a tutorial paper on *iterated ultrapowers*.
- ► A key lemma in that paper can be abstracted to a lemma about finite sequences, with a pretty simple hand proof.

- ► Lots of fun chats!
- ► We are co-authoring a tutorial paper on *iterated ultrapowers*.
- ▶ A key lemma in that paper can be abstracted to a lemma about finite sequences, with a pretty simple hand proof.
- ▶ Why not prove the abstracted lemma in ACL2?

Introduction

I took a break this summer to return to my roots as a mathematical logician, hosted by Prof. Ali Enayat of the University of Gothenburg, Sweden.

- ► Lots of fun chats!
- ► We are co-authoring a tutorial paper on *iterated ultrapowers*.
- ▶ A key lemma in that paper can be abstracted to a lemma about finite sequences, with a pretty simple hand proof.
- ▶ Why not prove the abstracted lemma in ACL2?

Horrors!

It took me about 16 hours to complete that exercise in ACL2.

Possible conclusions:

► I suck at using ACL2?

- ► I suck at using ACL2?
- ► ACL2 sucks?

- ► I suck at using ACL2?
- ► ACL2 sucks?
- ► There are ways to use ACL2 more productively that I didn't use.

- ► I suck at using ACL2?
- ► ACL2 sucks?
- ► There are ways to use ACL2 more productively that I didn't use.
 - Structured development methodologies?

- ► I suck at using ACL2?
- ► ACL2 sucks?
- ► There are ways to use ACL2 more productively that I didn't use.
 - Structured development methodologies?
 - ► More help from existing libraries?

- ► I suck at using ACL2?
- ► ACL2 sucks?
- ► There are ways to use ACL2 more productively that I didn't use.
 - ► Structured development methodologies?
 - ► More help from existing libraries?
 - ► Nicer formalization of the problem?

- ► I suck at using ACL2?
- ► ACL2 sucks?
- ► There are ways to use ACL2 more productively that I didn't use.
 - ► Structured development methodologies?
 - ► More help from existing libraries?
 - ▶ Nicer formalization of the problem?
 - ▶ ...

Goal for today:

Present a challenge to construct an ACL2 proof more efficiently and to present lessons learned . . .

Goal for today:

Present a challenge to construct an ACL2 proof more efficiently and to present lessons learned . . . perhaps in a future ACL2 Workshop.

Goal for today:

Present a challenge to construct an ACL2 proof more efficiently and to present lessons learned . . . perhaps in a future ACL2 Workshop.

In this talk I'll point you to relevant books and I'll also present a very informal hand proof.

The community book

books/demos/proofs/tightness-lemma.lisp contains:

The community book

books/demos/proofs/tightness-lemma.lisp contains:

► a self-contained informal proof (as a Lisp comment) using standard mathematical notation;

The community book

books/demos/proofs/tightness-lemma.lisp contains:

- ► a self-contained informal proof (as a Lisp comment) using standard mathematical notation;
- encapsulate and defun events introducing the requisite notions; and

The community book

books/demos/proofs/tightness-lemma.lisp contains:

- ► a self-contained informal proof (as a Lisp comment) using standard mathematical notation;
- encapsulate and defun events introducing the requisite notions; and
- ▶ a statement of the final theorem.

The community book

books/demos/proofs/tightness-lemma.lisp contains:

- a self-contained informal proof (as a Lisp comment) using standard mathematical notation;
- encapsulate and defun events introducing the requisite notions; and
- ▶ a statement of the final theorem.

I'm putting forth the following challenges.

The community book

books/demos/proofs/tightness-lemma.lisp contains:

- ► a self-contained informal proof (as a Lisp comment) using standard mathematical notation;
- encapsulate and defun events introducing the requisite notions; and
- ▶ a statement of the final theorem.

I'm putting forth the following challenges.

► **Preferred challenge**: Do a better, faster job than the proof given in community book

books/demos/proofs/tightness-lemma-proof.lisp.

NOTE: It's OK to change the formalization!

The community book

books/demos/proofs/tightness-lemma.lisp contains:

- ► a self-contained informal proof (as a Lisp comment) using standard mathematical notation;
- encapsulate and defun events introducing the requisite notions; and
- ▶ a statement of the final theorem.

I'm putting forth the following challenges.

- ► Preferred challenge: Do a better, faster job than the proof given in community book

 books/demos/proofs/tightness-lemma-proof.lisp.
 - **NOTE**: It's OK to change the formalization!
- ► Alternate challenge: "Reverse engineer" that proof into one that shows how to complete such proofs more efficiently.

I'll be sloppy here and using pictures, just to give the idea. A more careful hand proof is in the aforementioned tightness-lemma.lisp book.

I'll be sloppy here and using pictures, just to give the idea. A more careful hand proof is in the aforementioned tightness-lemma.lisp book.

Assume that we have:

- ▶ a set *I* and strict total ordering \prec on *I*;
- ▶ functions f(s) and g(s), on \prec -increasing sequences from I of length n_f and n_g , respectively; and
- ► a unary predicate *P*.

I'll be sloppy here and using pictures, just to give the idea. A more careful hand proof is in the aforementioned tightness-lemma.lisp book.

Assume that we have:

- ▶ a set *I* and strict total ordering \prec on *I*;
- ▶ functions f(s) and g(s), on \prec -increasing sequences from I of length n_f and n_g , respectively; and
- ► a unary predicate *P*.

The next slide illustrates the remaining assumptions for $n_f = 4$ and $n_g = 3$.

ASSUMPTIONS

ASSUMPTIONS

```
(d) If f(s_1) = f(s_2) and all of s_1 precedes all of s_2, then P(f(s_1)):

(s_1) a a a a (s_2) b b b b
```

ASSUMPTIONS

```
(d) If f(s_1) = f(s_2) and all of s_1 precedes all of s_2, then P(f(s_1)):

(s_1) a a a a (s_2) b b b b
```

(e) For disjoint sequences s_1 and s_2 , the truth of the equation $f(s_1) = g(s_2)$ depends only on how s_1 and s_2 are interleaved. (s₁) $\times \times \times \times \times \times$

 (s_2) yyyy

ASSUMPTIONS

```
(d) If f(s_1) = f(s_2) and all of s_1 precedes all of s_2, then P(f(s_1)):

(s_1) a a a a (s_2) b b b b
```

(e) For disjoint sequences s_1 and s_2 , the truth of the equation $f(s_1) = g(s_2)$ depends only on how s_1 and s_2 are interleaved. $(s_1) \times \times \times \times \times$

$$(s_2)$$
 y y y

(g) For two specific disjoint sequences s_f and s_g , $f(s_f) = g(s_g)$.

ASSUMPTIONS

- (d) If $f(s_1) = f(s_2)$ and all of s_1 precedes all of s_2 , then $P(f(s_1))$: (s_1) a a a a (s_2) b b b b
- (g) For two specific disjoint sequences s_f and s_g , $f(s_f) = g(s_g)$. CONCLUSION: $P(f(s_f))$.

VERY INFORMAL PROOF SKETCH

- (d) If $f(s_1) = f(s_2)$ and all of s_1 precedes all of s_2 , then $P(f(s_1))$: (s_1) aaaa (s_2) b b b b
- (e) For disjoint sequences s_1 and s_2 , the truth of the equation $f(s_1) = g(s_2)$ depends only on how s_1 and s_2 are interleaved. (s_1) x x x x
- (s_2) y y y
- (g) For two specific disjoint sequences s_f and s_g , $f(s_f) = g(s_g)$.

VERY INFORMAL PROOF SKETCH

- (d) If $f(s_1) = f(s_2)$ and all of s_1 precedes all of s_2 , then $P(f(s_1))$: (s_1) a a a a (s_2) b b b b
- (e) For disjoint sequences s_1 and s_2 , the truth of the equation $f(s_1) = g(s_2)$ depends only on how s_1 and s_2 are interleaved. (s₁) $\times \times \times \times \times \times$
- (s_2) y y y
- (g) For two specific disjoint sequences s_f and s_g , $f(s_f) = g(s_g)$.

Plan: We will see how to derive $P(f(s_f))$ from (g) by applying (e) repeatedly and then (d).

VERY INFORMAL PROOF SKETCH

- (d) If $f(s_1) = f(s_2)$ and all of s_1 precedes all of s_2 , then $P(f(s_1))$: (s_1) a a a a (s_2) b b b b
- (e) For disjoint sequences s_1 and s_2 , the truth of the equation $f(s_1) = g(s_2)$ depends only on how s_1 and s_2 are interleaved.
- (s_1) x x x x (s_2) y y y
- (g) For two specific disjoint sequences s_f and s_g , $f(s_f) = g(s_g)$.

Plan: We will see how to derive $P(f(s_f))$ from (g) by applying (e) repeatedly and then (d).

$$x \times y \cdot y \times y \times x$$

We wish to show $P(f(s_f))$.

x y y x y

X	X	У	У	X	У	X										
X	Х	У	У	Х	У											X
X	Х	У	У	Х											У	X
X	Х	У	У											Х	У	X
X	X	У											У	X	У	X
Х	Х											У	У	Х	У	X

X	X	У	У	X	У	X												
Х	Х	У	У	Х	У													X
Х	Х	У	У	Х													У	Х
X	X	У	У													X	У	X
X	X	У													У	X	У	X
X	X													У	У	X	У	X
Х													X	У	У	Х	У	X

Now let's erase all but the first and last lines...

 $x \quad x \quad y \quad y \quad x \quad y \quad x$

$$x \quad x \quad y \quad y \quad x \quad y \quad x$$

$$x \times y \cdot y \times x \cdot y \cdot x$$

Now let's erase each y...

 $X \quad X \qquad \qquad X \qquad \qquad X$

x x x x

So, we have the same value of $f(s_f)$ for the first and final s_f :

 $X \quad X \qquad \qquad X \qquad \qquad X$

X X X X

So, we have the same value of $f(s_f)$ for the first and final s_f :

But recall:

(d) If
$$f(s_1) = f(s_2)$$
 and all of s_1 precedes all of s_2 , then $P(f(s_1))$:

$$(s_1)$$
 aaaaa

$$(s_2)$$
 b b b b

So, we have the same value of $f(s_f)$ for the first and final s_f :

But recall:

(d) If
$$f(s_1) = f(s_2)$$
 and all of s_1 precedes all of s_2 , then $P(f(s_1))$: (s_1) as a as a

$$(s_2)$$
 b b b

So $P(f(s_f))$, as was to be shown!

For a more complete informal proof, see community book books/demos/proofs/tightness-lemma.lisp.

For a more complete informal proof, see community book books/demos/proofs/tightness-lemma.lisp.

(E.g.: The ordered set *I* must have "room" to move to the right.)

For a more complete informal proof, see community book books/demos/proofs/tightness-lemma.lisp.

(E.g.: The ordered set *I* must have "room" to move to the right.)

I probably did do a few good things:

For a more complete informal proof, see community book books/demos/proofs/tightness-lemma.lisp.

(E.g.: The ordered set *I* must have "room" to move to the right.) I probably did do a few good things:

► I left comments describing the next main goal.

For a more complete informal proof, see community book books/demos/proofs/tightness-lemma.lisp.

(E.g.: The ordered set *I* must have "room" to move to the right.) I probably did do a few good things:

- ► I left comments describing the next main goal.
- ► I introduced a predicate for the inductive theorem I was trying to prove.

For a more complete informal proof, see community book books/demos/proofs/tightness-lemma.lisp.

(E.g.: The ordered set *I* must have "room" to move to the right.) I probably did do a few good things:

- ► I left comments describing the next main goal.
- ► I introduced a predicate for the inductive theorem I was trying to prove.
- ► I put the proof in a separate book and used SET-ENFORCE-REDUNDANCY, to keep the problem statement clean.

For a more complete informal proof, see community book books/demos/proofs/tightness-lemma.lisp.

(E.g.: The ordered set *I* must have "room" to move to the right.) I probably did do a few good things:

- ► I left comments describing the next main goal.
- ► I introduced a predicate for the inductive theorem I was trying to prove.
- ► I put the proof in a separate book and used SET-ENFORCE-REDUNDANCY, to keep the problem statement clean.

BUT DID IT REALLY NEED TO TAKE 16 HOURS?