
Lessons Learned over 45
Years in Theorem Proving

J Strother Moore
Department of Computer Science
University of Texas at Austin

1



Hope Park Square, Edinburgh, 1971...

2



3



4



ICL 4130

64KB of RAM, paper tape input

Pop-2 CONS time: 400 microseconds

5



6



Lessons

• any project worth doing can be done by

two people

• soundness is paramount

• keep a regression suite and test new

heuristics against it

• beware of bound variables

• being outside the mainstream is ok

7



• being outside the mainstream is ok

– not predicate calculus

– not uniform proof procedure

– not complete

– not typed lambda calculus

– not Fortran or COBOL

– not inductive assertions and vcg

8



• Heroes are worth having:

– John McCarthy - Lisp as a programming

and spec language

– Woody Bledsoe - heuristic theorem

prover

9



• “If you can build a better prover, do it.”

• self-worth is independent of what other

people think

10



My Summer Job, 1968

11



12



Moon

Earth

dark side

13



We put men into orbit around the Moon in

1968 and landed men on the Moon in 1969.

And the whole program was canceled less

than 5 years later because the American

public had lost interest in spaceflight.

One of the most talented engineering

teams ever assembled was disbanded and

scattered.
14



But it doesn’t reflect on the importance of

their achievement or their talent.

15



Why Is ACL2 Successful?

Reason 1: Our mathematical logic is an

executable programming language.

• Many very efficient heavy-duty

implementations

• Supported on many platforms

16



• Many independently provided

programming/system development tools

and environments.

Imagine that in 1971 Boyer and I had

chosen any other programming language of

the time.

17



Reason 2: Our community has invested 45

years

• supporting efficient execution and proof

(so models are dual-purpose)

• integrating a wide variety of proof

techniques (so proofs are more

automatic)

• engineering for industrial scale formulas

• documenting the system

18



• developing reusable books

• interfacing to other tools (e.g., IBM Sixth

Sense, ABC, SAT, MC) (so embedded

theorem proving can glue disparate

fragments together), and

• supporting verification tool building (so

users can build, verify, and then

efficiently execute special-purpose tools)

19



Reason 3: The theorem prover is

semi-automatic:

• finds many straightforward proofs fully

automatically, including inductive proofs

• is primarily guided by rules expressed as

theorems (facilitating proof maintenance)

• admits interactive proof checking – but

discourages it except for exploring proof

strategies

20



At its best, ACL2 puts the human in the

loop where the human is most effective.

21



Reason 4: We have an integrated

environment in which users can

• prototype models

• execute programs

• prove theorems

• develop useful libraries

• develop other verification and analysis

tools

22



Reason 5: We have chosen the right

problems. In our applications, the models

• are bit- and cycle-accurate, not “toys”,

• are useful as pre-fab simulation engines,

and

• permit mathematical abstraction

supported by proof.

23



Reason 6: Our user community is very

talented.

24



Reason 6: Our user community is very

talented.

“The reason the Boyer-Moore theorem

is so ‘good’ is that only smart people

use it!” – anonymous critic, early 1980s

25



Reason 7: Industry has no other alternative

than to use mechanized reasoning; their

artifacts are too complicated to analyze

accurately any other way.

26



But ARE We Succeeding?

Our community is very small.

Is Lisp a help or a hindrance?

Is “first-order” a help or a hindrance?

And does the size of the community matter

much if ours is still the best tool for doing

what we do?

27



But ARE We Succeeding? (con’t)

Verification of useful software is still too

hard!

ACL2 is not automatic enough!

At its worst, the burden on the user is too

heavy!

28



Future Work

Here are some of the scientific challenges

to building a better ACL2:

• create better books, especially for

machine arithmetic

• integrate FSM and SMT decision

procedures

• exploit the parallelizability of function

programs

29



• do more (non-combinatoric) search

• encorporate heuristics for discovering

invariants

• provide counterexamples

• exploit examples to guide search

• support interactive steering and

visualization

30



The Real Challenge

Why are our imaginations so limited?

Most of these ideas are minor compared to

the problem of truly automating software

verification.

31



The Dream

I work with ACL2 all day, trying various

approaches to a problem.

I quit for the day.

During my downtime, ACL2 analyzes

everything it can get its hands on and the

next morning it greets me with “I proved

that1, so now what?”

1Not by a brute force all night run, but by decomposing it properly – something it should also be able to
explain to me.

32



Is ACL2 the right platform to experiment

with?

Does the weight of industrial use and a

legacy regression suite preclude radical

experimentation?

E.g., what would happen if we just threw

ACL2 away and worked on a toy prover

that learns?

33



Who Pays?

What is the funding model for

improvements to ACL2?

Is work on ACL2

• a hobby of Matt’s and J’s,

• research,

• development, or

• maintenance?

34



Sustainability

The 45 year “Boyer-Moore Project” was

built primarily on the passion and

dedication of a few individuals who just

kept going.

But does ACL2’s success discourage the

development better provers?

Do we want ACL2 to outlive us?

35


