
<Insert Picture Here>

A Brief Introduction to Oracle's Use of ACL2 in Verifying Floating-

Point and Integer Arithmetic

David L. Rager, Jo Ebergen, Austin Lee, Dmitry Nadezhin, Ben Selfridge,

Cuong K. Chau

October 1, 2015
1

Goal

• Verify data-path for:

– 32/64-bit floating-point division and square root

• fdivd

• fdivs

• fsqrtd

• fsqrts

– 32/64-bit integer divide

• udivx

• sdivx

• udiv

• sdiv

This work is similar in spirit to work done by AMD, Centaur, and

others.

2

Breaking Down the Problem

3

Outline

• Goal

• Algorithm extraction

• Algorithm verification

• Verifying our process

• Conclude

4

Algorithm Extraction (part A)

• Parsed the circuit into combinations of low-level logical primitives

• Read design using VL2014+Esim (~535 books)

• Abstracted low-level logical

primitives via GL into medium-level

primitives

5

(defstv add16-test-vector

 :mod *add16*

 :inputs '((“clk" 0 ~)

 (“abus" a)

 ("bbus" b))

 :outputs '(("out" _ _ out)))

(def-gl-thm add16-adds

 ...

 :concl (equal (cdr (assoc ‘out (stv-run *add16* (list (cons ‘a a)

 (cons ‘b b))))))

 (mod (+ a b) *2^16*)) ...)

Algorithm Extraction (part B)

• Converted medium-level primitives into higher-level concepts like

+ and *

• Goldschmidt algorithm could be expressed in these high-level

mathematical primitives

• But…

6

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• Start with modules already “black-boxed” via GL
– For example, a tree of carry-save adders (CSAs)

7

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (1) Create ACL2 version of the interconnect
– E.g, the wires that connect the CSAs are connected in a particular

way

8

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (2) Prove that connecting the modules in that way

meets a specification
– E.g, assuming the wires are connected that way, this property holds:

sum+carry*2 = a+b+c+d+e+f+g+h

9

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• Prove that the ACL2 interconnect is the same as the

Verilog interconnect
– E.g, that the Verilog wires really do connect the CSA’s that way!

10

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• Prove that the ACL2 interconnect is the same as the

Verilog interconnect
– Proof (3) via GL using Esim doesn’t scale, use SV in the future

11

Outline

• Goal

• Algorithm extraction

• Algorithm verification

• Verifying our process

• Conclude

12

A Very Simple Model* of the Goldschmidt Division

Algorithms

13

lookup m1 m2 round m13 m14

first

approximation

final

approximation

m3 m4 m5

* this is an intentionally obfuscated model – it may look confusing to those

 familiar with optimized Goldschmidt implementations

• Most margins of error come from:

– Initial lookup table

– Truncation of intermediate multiplication results

• Golden question: Is the final approximation accurate enough to

yield an IEEE754 answer after rounding is applied?

IEEE Specification

14

• An IEEE754 specification for our purposes should:

– Specify add, subtract, multiply, divide, fused-multiply-add, and

square root operations

– Specify denormals

– Specify exceptions

– Permit us to propagate NaN payloads in a way consistent

with Sparc

– Capture the effects of four rounding modes

– Deal with over/underflow

Outline

• Goal

• Algorithm extraction

• Algorithm verification

• Verifying our process

• Conclude

15

Verifying Our Process

• Exercise: designer introduced 3 independent

errors
– All errors broke our proofs…

– ...exactly where the proofs were supposed to break.

– Not really surprising

• Validated specifications and models with

concrete test vectors

• We run nightly regressions of all proofs

• Uses actual Verilog implementation
– Guards against introduction of errors late in design

16

Conclusion

• Capable tool chain

• Cannot achieve necessary coverage without such rigorous

analysis

• No bugs in design

• Thorough analysis yields optimizations

– e.g., 50% and 75% reduction in lookup tables

17

18

