ORACLE

A Brief Introduction to Oracle's Use of ACL2 in Verifying Floating-
Point and Integer Arithmetic

David L. Rager, Jo Ebergen, Austin Lee, Dmitry Nadezhin, Ben Selfridge,
Cuong K. Chau

October 1, 2015

. Goal

- Verify data-path for:

— 32/64-bit floating-point division and square root
* fdivd
« fdivs
- fsqrtd
« fsqrts

— 32/64-bit integer divide
 udivx
 sdivx
* udiv
« sdiv

This work is similar in spirit to work done by AMD, Centaur, and
others.

ORACLE

2

. Breaking Down the Problem

ACL2 Spec —— IEEE754 / IDiv —— Abstraction
Goldschmidt
a [63:0] result [63:0]
. b [63:0] —— Verilog float-exceptions [4:0]
Ve rl |Og opcode [2:0] implementation int-overflow

round-mode [1:0]

ORACLE

3

. Outline

- Goal
- Algorithm extraction = "*#%e =g are

. Algorithm verification actzvese — e |-
o a

- Verifying our process ¥

Ve rilog upwﬁigi : implc\a/ri:iels?ation : :a;ve:::::mns @0l

 Conclude]

ORACLE

4

. Algorithm Extraction (part A)

 Parsed the circuit into combinations of low-level logical primitives
» Read design using VL2014+Esim (~535 books)

 Abstracted low-level logical
primitives via GL into medium-level

primitives :mod *add16*
:inputs ' ((“clk" @ ~)

(defstv addl6-test-vector

(“abus” a)

("bbus" b))
:outputs '(("out"™ _ _ out)))

(def-gl-thm addl16-adds

:concl (equal (cdr (assoc ‘out (stv-run *addle* (list (cons ‘a a)

(cons ‘b b))))))
(mod (+ a b) *2716*)) ...)

ORACLE

5

. Algorithm Extraction (part B)

« Converted medium-level primitives into higher-level concepts like
+and *

« Goldschmidt algorithm could be expressed in these high-level
mathematical primitives

 But...

6

. Breaking Up Is Hard To Do

- Decompose circuit into appropriately-sized blocks

- Start with modules already “black-boxed” via GL
— For example, a tree of carry-save adders (CSAS)

ORACLE

7

. Breaking Up Is Hard To Do

- Decompose circuit into appropriately-sized blocks

* (1) Create ACL2 version of the interconnect

— E.g, the wires that connect the CSAs are connected in a particular
way

i i

"
[

e e

ORACLE
8

. Breaking Up Is Hard To Do

- Decompose circuit into appropriately-sized blocks

* (2) Prove that connecting the modules in that way
meets a specification

— E.g, assuming the wires are connected that way, this property holds:
sum+carry*2 = at+b+c+d+e+f+g+h

HHAH

-u/“’

e & (2) ACL2 [rewriling)

ORACLE
9

. Breaking Up Is Hard To Do

- Decompose circuit into appropriately-sized blocks

* Prove that the ACLZ2 interconnect Is the same as the
Verilog interconnect
— E.qg, that the Verilog wires really do connect the CSA’s that way!

|
/ .
| I \
\ i

--/ﬁﬁ/

e e (@) ACLZ (rewriting) (3) ACLZ (GL)

ORACLE
10

. Breaking Up Is Hard To Do

- Decompose circuit into appropriately-sized blocks

* Prove that the ACL2 interconnect Is the same as the
Verilog interconnect
— Proof (3) via GL using Esim doesn’t scale, use SV in the future

|
/ .
| I \
\ i

--/ﬁﬁ/

e e (@) ACLZ (rewriting) (3) ACLZ (GL)

ORACLE
11

. Outline

» Goal
. . ACL2 Spec ——{ IEEE754/IDiv —— Abstraction
- Algorithm extraction p i A

Goldschmidt

* Algorithm verification — Act2Medel = 3 |
* Verifying our process I

. b (63:0] —— Verilog
Ve rllog opcode [2:0] —— implementation

- Conclude e —

ORACLE

12

. A Very Simple Model* of the Goldschmidt Division

Algorithms
first final
approximation approximation
i
lookup m1 m2 m3 m4 md f--------mee-e m13 m14 round p=—

* Most margins of error come from:
— Initial lookup table
— Truncation of intermediate multiplication results

« Golden guestion: Is the final approximation accurate enough to
yield an IEEE754 answer after rounding is applied?

* this is an intentionally obfuscated model — it may look confusing to those
familiar with optimized Goldschmidt implementations

ORACLE

. IEEE Specification

- An IEEE754 specification for our purposes should:

— Specify add, subtract, multiply, divide, fused-multiply-add, and
square root operations

— Specify denormals
— Specify exceptions

— Permit us to propagate NaN payloads in a way consistent
with Sparc

— Capture the effects of four rounding modes
— Deal with over/underflow

ORACLE

. Outline

- Goal

» Algorithm extraction
» Algorithm verification
* Verifying our process
» Conclude

ORACLE

15

. Verifying Our Process

» Exercise: designer introduced 3 independent

errors

— All errors broke our proofs...
— ...exactly where the proofs were supposed to break.
— Not really surprising

 Validated specifications and models with
concrete test vectors

» We run nightly regressions of all proofs

- Uses actual Verilog implementation
— Guards against introduction of errors late in design

ORACLE

16

Conclusion

Capable tool chain

analysis
No bugs in design

Thorough analysis yields optimizations

— e.g., 50% and 75% reduction in lookup tables

ACL2 Spec ——

IEEE754 / IDiv

I

:

ACL2 Model —

Goldschmidt
algorithm

;

a[63:0]
b [63:0]

Verilog

opcode [2:0] =—

round-mode [1:0] ——

Verilog
implementation

ORACLE

Abstraction

result [63:0]
float-exceptions [4:0]

int-overflow

Cannot achieve necessary coverage without such rigorous

JAN

17

ORACLE

