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Smtlink handles tedious details of proofs so you can focus on
the interesting parts.
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The digital Phase-Locked Loop example[CNA10]
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A PLL is a feedback control system that, given an input
reference clock fref , it outputs a clock at a frequency fDCO

that’s N times of the input clock frequency and aligned with
the reference in phase.
Analog/Mixed-Signal design are composed of both analog and
digital circuits.
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Modelling the digital PLL

The digital PLL is naturally modelled using non-linear
recurrences that update the state variables on each rising edge
of φref .

c(i + 1) = nextc(c(i), v(i), φ(i))
v(i + 1) = nextv (c(i), v(i), φ(i))
φ(i + 1) = nextφ(c(i), v(i), φ(i))1

1Three state variables: capacitance setting c (digital), supply voltage v
(linear), phase correction φ (time-difference of digital transitions).
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Modelling the digital PLL

In more details,

c(i + 1) = saturate(c(i) + gc sgn(φ(i)), cmin, cmax)
v(i + 1) = saturate(v(i) + gv (ccenter − c(i)), vmin, vmax)
φ(i + 1) = wrap(φ(i) + (fdco(c(i), v(i))− fref )− gφφ(i))
fdco(c , v) = 1+αv

1+βc f0
saturate(x , lo, hi) = min(max(x , lo), hi)

wrap(φ) = wrap(φ+ 1), if φ ≤ −1
= φ, if −1 < φ < 1
= wrap(φ− 1), if 1 ≤ φ

Turns out to be a relatively large system of non-linear
arithmetic formulas.
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Convergence
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Requires reasoning about sequences of states.
We want to show that each crossing of φ = 0 is closer to the
origin than the previous one.
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Example: polynomial inequalities

Do you sometimes find it frustrating to prove a theorem like this?
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1 (defthm poly-ineq-example-a

2 (implies (and (rationalp x) (rationalp y)

3 (<= (+ (* 4/5 x x) (* y y)) 1)

4 (<= (- (* x x) (* y y)) 1))

5 (<= y (- (* 3 (- x 17/8) (- x 17/8)) 3))))
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Example: higher order polynomial inequalities

Maybe this? With a higher order term?
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1 (defthm poly-ineq-example-b

2 (implies (and (rationalp x) (rationalp y)

3 (<= (+ (* 2/3 x x) (* y y)) 1)

4 (<= (- (* x x) (* y y)) 1))

5 (<= y (+ 2 (- (* 4/9 x)) (- (* x x x x)) (*

1/4 x x x x x x)) )))
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Example: exponential functions

Or even this one with exponential functions?
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1 (defun ||x^2+y^2||^2 (x y) (+ (* x x) (* y y)))

2 (defthm poly-of-expt-example

3 (implies (and (rationalp x) (rationalp y) (rationalp z)

4 (integerp m) (integerp n)

5 (< 0 z) (< z 1) (< 0 m) (< m n))

6 (<= (* 2 (expt z n) x y)

7 (* (expt z m) (||x^2+y^2||^2 x y) ))))
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Motivation

1 Motivation: provide better proof capabilities for AMS and
other physical systems.

2 ACL2 provides extensive support for induction proofs and for
structuring large, complicated proofs.

3 Z3 has automatic procedures for solving arithmetic formulas.

No direct support for induction.
Need to avoid “too much information” – important to give Z3
the relevant facts to keep the problems tractable.
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Starting with a clause processor

Clause 
Processor

Original
Clause G

SMT 
solver

^ ^ ^…

Clause returned by clause processor
C1 ^ C2 ^ ... ^ Cn ) G

C1 C2 Cn

Verified clause processor & trusted clause processor. We use a
trusted clause processor for the integration.

We utilize clauses C1, C2 ... Cn to get ACL2 to check many of
the steps of our translation.
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Two-step translation architecture

expanded
clause

ACL2 (lisp)
to smt−py
translate

generate
return
clause

simplify
expand &original

clause
ACL2 (lisp)

generate
return
clause

Not(clause)
satisfiable? Z3

(python)
SMT clause

step 2
translation

lisp (ACL2) python (z3)

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false ?unsatno

return

sat, unsat,
unknownor

acl2SMT

GSMTG

G ′, A1, A2, ..., Am

A1 ∧ A2 ∧ ... ∧ Am ∧ (G ′ ⇒ G )

¬GSMT

First translation step: clause transformation

Second translation step: transliteration
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Extract type predicates

Clause 
Processor

Original
Clause G

SMT 
solver

C1 = (T _ G) ^ ((T ) GT ) ) G)

C1

G TGT

Extract type predicates

ACL2 is not typed while Z3 is typed.

It is common for the users to include type-recognizers in the
hypotheses.

We are currently translating rationalp in ACL2 into reals
in Z3.
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Extract type predicates

Clause 
Processor

Original
Clause G

SMT 
solver

C1 = (T _ G) ^ ((T ) GT ) ) G)

C1

G TGT

Extract type predicates

G

T

GT

(implies (and (rationalp x) (rationalp y) (rationalp z)
              (integerp m) (integerp n)
              (< 0 z) (< z 1) (< 0 m) (< m n))
         (<= (* 2 (expt z n) x y)
             (* (expt z m) (||x^2+y^2||^2 x y) )))

(and (rationalp x) (rationalp y) (rationalp z)
     (integerp m) (integerp n))

(implies (and (< 0 z) (< z 1) (< 0 m) (< m n))
         (<= (* 2 (expt z n) x y)
             (* (expt z m) (||x^2+y^2||^2 x y) )))
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Expand functions

Clause 
Processor

Original
Clause G

SMT 
solver

^C1 C2

G GF

C2 = (Tfunc _ G) ^ (GF ) G)

Extract type predicates

Expand functions

Functions are expanded into primitive functions.

Recursive functions are expanded to a user specified level then
replaced with a variable of appropriate type.

Uninterpreted functions stay the same.
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Expand functions

Clause 
Processor

Original
Clause G

SMT 
solver

^C1 C2

G GF

C2 = (Tfunc _ G) ^ (GF ) G)

Extract type predicates

Expand functions

Tfunc(rationalp (||x^2+y^2||^2 x y))

((lambda (VAR1 VAR2) (+ (* VAR1 VAR1) (* VAR2 VAR2))) x y)

(||x^2+y^2||^2 x y)

function expansion

function type clause
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Revisit the expt proof

Let’s take a look at the expt theorem again:

1 (defun ||x^2+y^2||^2 (x y) (+ (* x x) (* y y)))

2 (defthm poly-of-expt-example

3 (implies (and (rationalp x) (rationalp y) (rationalp z)

4 (integerp m) (integerp n)

5 (< 0 z) (< z 1) (< 0 m) (< m n))

6 (<= (* 2 (expt z n) x y)

7 (* (expt z m) (||x^2+y^2||^2 x y) ))))

The reason that this is a theorem is because:

0 < z < 1 and 0 < m < n ⇒ 0 < zn < zm

2xy ≤ x2 + y2
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Substitute subexpressions

Clause 
Processor

Original
Clause G

SMT 
solver

^ ^

C3 = (Tsubs _ G) ^ (GS ) G)

C1 C2 C3

G

Extract type predicates 

Expand functions 

Substitute subexpressions

GS

The user can substitute subexpressions with variables.
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Substitute subexpressions

Clause 
Processor

Original
Clause G

SMT 
solver

^ ^

C3 = (Tsubs _ G) ^ (GS ) G)

C1 C2 C3

G

Extract type predicates 

Expand functions 

Substitute subexpressions

GS

Tsubs

(expt z n)
(expt z m)

(and (rationalp (expt z m))
     (rationalp (expt z n)))

expt_z_m
expt_z_n

subexpression substitution

subexpression types
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User given hypotheses

Clause 
Processor

Original
Clause G

SMT 
solver

^C1 ^ C3

G

H
^ C4C2

C4 = (H _ G) ^ (GH ) G)

Extract type predicates

Expand functions

Substitute subexpressions

User given hypothesis

GH

The user can provide hypotheses about this theorem.

The hypothesis feature conveys facts from the ACL2 world
about these variables to the SMT solver.
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User given hypotheses

Clause 
Processor

Original
Clause G

SMT 
solver

^C1 ^ C3

G

H
^ C4C2

C4 = (H _ G) ^ (GH ) G)

Extract type predicates

Expand functions

Substitute subexpressions

User given hypothesis

GH

;; given hypotheses in the theorem
((lambda (expt_z_n expt_z_m)
   (and (< expt_z_n expt_z_m) (< 0 expt_z_m) (< 0 expt_z_n)))
  (expt z n) (expt z m))

(and (< expt_z_n expt_z_m) (< 0 expt_z_m) (< 0 expt_z_n))

expt_z_m
expt_z_n

hypothesis clause

added hypotheses

H
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The expt proof

The transformed result clause G ′ becomes:

(lambda (expt_z_m expt_z_n) 
 ;; bind substitution variables to their original expressions
  (implies (and (and (< 0 z) (< z 1) (< 0 m) (< m n))
                (and (< expt_z_n expt_z_m) 
                     (< 0 expt_z_m) (< 0 expt_z_n)))
      (<= (* 2 expt_z_m x y)
          (* expt_z_n 
             ((lambda (VAR1 VAR2) 
                      (+ (* VAR1 VAR1) (* VAR2 VAR2))) x y) ))) 
  (expt z m) (expt z n)))

The returned clauses are respectively: T ∨ G , Tfunc ∨ G , Tsubs ∨ G
and H ∨ G .
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The expt proof

The clause processor hint:

1 :hints (("Goal" :clause-processor

2 (Smtlink clause

3 ’((:expand ((:functions ((||x^2+y^2||^2 rationalp)))

4 (:expansion-levels 1)))

5 (:let ((expt_z_m (expt z m) rationalp)

6 (expt_z_n (expt z n) rationalp)))

7 (:hypothesize ((< expt_z_n expt_z_m)

8 (< 0 expt_z_m)

9 (< 0 expt_z_n)))))))
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Trust a little, but not too much

Let G be the original clause, A be all auxiliary clauses generated
during the first translation step and G ′ be the main clause after
this step. Let GSMT be the transliteration result after the second
translation step. Q1 and Q2 are the two sets of clauses returned to
ACL2.

Q1 = (G ′ ∧ A)⇒ G
Q2 = A ∨ G

(1)

Since we assume that the second translation step is sound,
meaning GSMT ⇒ G ′, and the SMT solver proves GSMT , We
conclude that G is a theorem.

18 / 24



Motivation
Integration architecture

Customizing Smtlink
Summary and Future work

Customization interface
Customizing Smtlink
Our digital PLL proof example

Customization interface

1 (local

2 (progn

3 (defun my-smtlink-expt-config ()

4 (declare (xargs :guard t))

5 (change-smtlink-config *default-smtlink-config*

6 :dir-interface ;; SMT file directory

7 "../z3_interface"

8 :SMT-module ;; SMT module name

9 "RewriteExpt"

10 :SMT-class ;; SMT class name

11 "to_smt_w_expt"

12 ))

13 (defattach smt-cnf my-smtlink-expt-config)))

The default Smtlink and the customizable Smtlink uses
different trust tags.
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Customizing Smtlink

As an example, we created a customized Smtlink that adds a
partial theory of expt to Z3.

(expt x 0) → 1

(expt 0 n) → 0, if n > 0
(expt x (+ n1 n2)) → (* (expt x n1) (expt x n2))

(expt x (* c n)) → (* (expt x n) (expt x n) . . . )
(< (expt x m) (expt x n)), if 1 < x and m < n

...

This simplified the use of Smtlink to produce a simpler proof.
The new proof is about half the length of the original.
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An example from the digital Phase-Locked Loop proof

Definitions:

B-term(h) =(1− Kt)
−h(µ

1 + α(d0 + dv )

1 + β(g1h + (equc v0))
− 1)

B-sum(n) =
n∑

h=1

(B-term(h) + B-term(−h))
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An example from the digital Phase-Locked Loop proof

Proof of B-term-neg and B-sum-neg using Smtlink:

1 (defthm B-term-neg

2 (implies (a-bunch-of-hypothesis)

3 (< (+ (B-term h v0 dv g1 Kt)

4 (B-term (- h) v0 dv g1 Kt)) 0))

5 :hints (("Goal"

6 :clause-processor

7 (smtlink-custom-config clause

8 (smt-std-hint "B-term-neg") )))

9 :rule-classes :linear)

10

11 (defthm B-sum-neg

12 (implies (a-bunch-of-hypothesis)

13 (< (B-sum 1 n-minus-2 v0 dv g1 Kt) 0))

14 :hints (("Goal" :in-theory (e/d (B-sum) (B-term)))))
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Future work

Support better counter-example report

Fetch counter-example result from the SMT solver and
interpret it into ACL2 constants.
The clause processor can execute the counter-example to make
sure they are indeed counter-examples.

Add bounded model checking ability

We can use the SMT solver to build a bounded model checker
that can be called through the customizable Smtlink interface.

Typing with less typing

Type information can be extracted from define.
type-alist may contain lemmas/facts that Smtlink can send
to the SMT solver to help with proofs.

Explore other interesting applications
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Summary

Smtlink handles tedious details of proofs so you can focus on the
interesting parts.

We have demonstrated Smtlink for AMS design verification.
Other cyberphysical problems should benefit as well.

Smtlink is designed to be extensible to support, for example:
other domains, and using more of the SMT solver’s
capabilities.
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Summary

Smtlink handles tedious details of proofs so you can focus on the
interesting parts.

It provides an architecture and examples for further research
on combining the complementary strengths of ACL2 and SMT
solvers.

Thank you!
Questions or thoughts?
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Additional material
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Primitive functions are:
binary-+, unary--, binary-*, unary-/, equal, <, if, not, and
lambda along with the constants t, nil, and arbitrary integer
constants.
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An example from the digital Phase-Locked Loop proof

Definition of B-term (I’ve removed guards and returns to save
space):

1 (define B-term-expt (Kt nco)

2 (expt (gamma Kt) (- nco)))

3

4 (define B-term-rest (nco v0 dv g1)

5 (1- (* (mu) (/ (1+ (* *alpha* (+ v0 dv)))

6 (1+ (* *beta* (+ (* g1 nco) (equ-c

v0))))))))

7

8 (define B-term (nco v0 dv g1 Kt)

9 (* (B-term-expt Kt nco) (B-term-rest nco v0 dv g1)))
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An example from the digital Phase-Locked Loop proof

Definition of B-sum (I’ve removed guards and returns to save
space):

1 (define B-sum (nco_lo nco_hi v0 dv g1 Kt)

2 :measure (if (and (integerp nco_hi) (integerp nco_lo)

3 (>= nco_hi nco_lo))

4 (1+ (- nco_hi nco_lo)) 0)

5 (if (and (integerp nco_hi) (integerp nco_lo) (>= nco_hi

nco_lo))

6 (+ (B-term nco_hi v0 dv g1 Kt )

7 (B-term (- nco_hi) v0 dv g1 Kt)

8 (B-sum nco_lo (- nco_hi 1) v0 dv g1 Kt))

9 0))

26 / 24



Additional material
Primitive functions
Our digital PLL proof example - code

An example from the digital Phase-Locked Loop proof

std-smt-hint:

1 (define smt-std-hint (clause-name)

2 :guard (stringp clause-name)

3 ‘( (:expand ((:functions ( (B-term rationalp)

4 (B-term-expt rationalp)

5 (B-term-rest rationalp)

6 (dv0 rationalp)

7 ...

8 (fdco rationalp)

9 (gamma rationalp)

10 (m rationalp)

11 (mu rationalp)))

12 (:expansion-level 1)))

13 (:uninterpreted-functions ((expt rationalp rationalp

rationalp)))

14 (:python-file ,clause-name)))
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An example from the digital Phase-Locked Loop proof

Proof of B-term-neg using Smtlink:

1 (defthm B-term-neg

2 (implies (and (integerp h) (<= 1 h) (< h (/ (* 2 g1)))

3 (hyp-macro g1 Kt v0 dv))

4 (< (+ (B-term h v0 dv g1 Kt) (B-term (- h) v0

dv g1 Kt)) 0))

5 :hints (

6 ("Goal"

7 :in-theory (enable B-term B-term-expt

B-term-rest mu equ-c gamma dv0)

8 :clause-processor

9 (smtlink-custom-config clause (smt-std-hint

"B-term-neg") )))

10 :rule-classes :linear)
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An example from the digital Phase-Locked Loop proof

Proof of B-sum-neg:

1 (defthm B-sum-neg

2 (implies (and (integerp n-minus-2)

3 (<= 1 n-minus-2)

4 (< n-minus-2 (/ (* 2 g1)))

5 (hyp-fn (list :v0 v0 :dv dv :g1 g1 :Kt

Kt)))

6 (< (B-sum 1 n-minus-2 v0 dv g1 Kt) 0))

7 :hints (("Goal" :in-theory (e/d (B-sum) (B-term)))))

26 / 24
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