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Final Exam
CS313K Logic, Sets, and Functions – Spring, 2009

Instructions

Write your name and EID above and circle the unique ID of your discussion
section! Write your answers in the space provided. If your proofs fill more
than the space provided, you may write on the back of the page but please put
“PTO” (“please turn over”) at the bottom and put the Question number at the
top of each back page you use. If you use extra paper, be sure to put your name
and EID and the Question number on each page!

This is a three hour final, Friday, May 15, 2:00–5:00 pm. There are 15 questions
worth a total of 300 points. Some questions are worth more than others. Partial
credit will be given for proof attempts. Some questions subtract points for
incorrect answers; such questions are noted when asked.

N is the set of natural numbers. ∅ is the empty set; 0 is the natural number
zero.

You may refer to the course notes (the red book) during the exam. In your proofs
you may use use any theorem in the course notes. Beware: Some Questions in
the course notes, e.g., “Question 184 (end-means-nil): (endp x) → x = nil”
are not theorems! So if you cite a Question from the book in one of your proofs,
make sure the formula in the Question is a theorem!

You may refer to your own notes if they are on paper. No computers are allowed.
No talking is allowed. No cellphones. Remove sunglasses, hats, baseball caps,
etc.
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Question 1 (20 points): Below is a theorem and proof, followed by some
numbered justification lines. Fill in the justifications in the proof with the
appropriate line numbers. Some justifications may be used more than once;
some will not be used at all.

Theorem:

(A → (B ∨ C)) ↔ ((A ∧ ¬B) → C)

Proof:

(A → (B ∨ C)) ↔ ((A ∧ ¬B) → C)

↔ { } ←− fill in this blank

(¬A ∨ (B ∨ C)) ↔ ((A ∧ ¬B) → C)

↔ { } ←− fill in this blank

((¬A ∨ B) ∨ C) ↔ ((A ∧ ¬B) → C)

↔ { } ←− fill in this blank

((¬A ∨ ¬ ¬ B) ∨ C) ↔ ((A ∧ ¬B) → C)

↔ { } ←− fill in this blank

(¬(A ∧ ¬B)) ∨ C) ↔ ((A ∧ ¬B) → C)

↔ { } ←− fill in this blank

(A ∧ ¬B) → C) ↔ ((A ∧ ¬B) → C)

↔ { } ←− fill in this blank

T

Possible Justifications

1. Associativity

2. Contraposition

3. De Morgan

4. Double Negation

5. Implicative Disjunction

6. Taut p ↔ p

7. Transitivity
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Question 2 (20 points): Prove

((A → (B ∨ C))

∧
(D → A))

→
(B ∨ (D → C))

Hint: You may use the theorem proved in Question 1.
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Question 3 (30 points): Suppose f is a function that produces an answer
satisfying property p. Suppose mapf takes a list and copies it, applying f to
each element. Suppose chkp takes a list and checks that every element has
property p. Then obviously, chkp succeeds on the output of mapf. Prove it.
Formally, you are given:

Axiom p-f

(p (f x))

(defun mapf (x)

(if (endp x)

nil

(cons (f (car x))

(mapf (cdr x)))))

(defun chkp (x)

(if (endp x)

t

(and (p (car x))

(chkp (cdr x)))))

and must prove (chkp (mapf x)).
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Question 4 (10 points): Let (neighborp x y) mean “x has y as a neigh-
bor,” (safep x) mean “x is safe,” and (partner x) mean “x’s partner.” Then
formalize this remark:

If every neighbor of A is safe, then A’s partner is safe.

You may use ACL2 notation or standard infix notation. You need not try to
prove the formula you write.
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Question 5 (20 points): Given the terminology in Question 4 and assuming
that if every neighbor of A is safe, then A’s partner is safe, can you conclude
that A’s partner is a neighbor of A? If so, prove it. If not, give definitions of
neighborp, safep, and partner, and a value for A that falsify the claim.
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Question 6 (10 points): Given the terminology of Question 4, formalize the
remark that A has exactly two neighbors. No proof is required.
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Question 7 (10 points): Given the terminology of Question 4, formalize the
remark that there are at least two neighbors of A that have the same partner.
No proof is required.
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Question 8 (15 points): Suppose A is a true list of length 16. Let’s denote
the length of A by |A| and the ith element of A by A[i]. Suppose A has the
following property.

(∀i : i ∈ N ∧ i < |A|) → A[i] = i2

1. What do you know about A[12]?

2. What do you know about A[16]?

3. Is this always true: (∃j : A[j]=j)?
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Question 9 (5 points, but see below): One of the formulas below is equiv-
alent to the negation of

(neighborp A B) → (∃x : (∀y : (neighborp B y) → (neighborp A x))).

Circle the number of the appropriate formula. The correct answer is worth 5
points. But an incorrect answer will cost you 5 points! Leaving this question
blank (not circling any of the numbers below) will neither add nor subtract
points.

1. (neighborp A B) → ¬(∃x : (∀y : (neighborp B y) → (neighborp A x)))

2. ¬(neighborp A B)∨¬(∃x : (∀y : (neighborp B y) → (neighborp A x)))

3. (neighborp A B)∧ (∀x : (∃y : (neighborp B y)∧¬(neighborp A x)))

4. (neighborp A B)∧(∀x : (∃y : (neighborp B y) → ¬(neighborp A x)))

5. (neighborp A B)∨(∃x : (∀y : (neighborp B y) → ¬(neighborp A x)))
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Question 10 (30 points): Write down in roster notation each of the following
finite sets:

1. ({1, 2, 3} ∩ {0, 2, 4, 6})∪ {1, 3, 5}

2. ({{}} ∩ {∅}) ∪ ({1, 3, 5} ∩ {0, 2, 4})

3. {x : x ∈ N ∧ x2 ≤ 16}

4. {x2 : (∃y : y ∈ N ∧ (y < 4) ∧ 2y = x)}

5. {A, B, C} × {t, nil}

6. ℘({A}) × ℘({B})
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Question 11 (30 points): Prove (A ∪ (B ∩ C)) = ((A ∪ B) ∩ (A ∪ C)).
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Question 12 (30 points): Prove (A \ B) ⊆ A.
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Question 13 (30 points, but see below):

Let R = {< x, y >: (evenp x) → (evenp y)} where (evenp x) means “x is
an even natural number.”

Check the properties R has (on the natural numbers). A correct answer (whether
“yes” or “no”) is worth 2 points, but an incorrect answer will cost 2 points! A
missing answer will not add or subtract points. Be careful! I recommend that
you write down the required formulas on scratch paper and prove or disprove
them; but you need not show your work, just check the correct answers.

yes no

1. R ⊆ N× {t, ni}
2. < 1, 2 >∈ R

3. R is a relation
4. R is a function
5. R is reflexive
6. R is irreflexive
7. R is symmetric
8. R is asymmetric
9. R is antisymmetric
10. R is transitive
11. R is total
12. R is connected
13. R is an equivalence relation
14. R is a partial order
15. R is a total order
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Question 14 (20 points, but see below):

Let A1 = {t, yes, 1}, A2 = {nil, no, -1}, and A3 = {undef, 0}.

Let A = A1 ∪ A2 ∪ A3.

Let R = (A1 × A1) ∪ (A2 × A2) ∪ (A3 × A3). Note that R is an equivalence
relation on A. Define can (for “canonical”) as follows:

(defun can (x) (cond ((mem x ’(t yes 1)) 1)

((mem x ’(nil no -1)) -1)

(t 0)))

Each correct answer is worth 2 points; each incorrect answer costs 2 points.
Omitting an answer neither adds nor subtracts points.

1. How many elements are in A?

2. How many elements are in A × A?

3. Show an element in A × A that is not in R.

4. How many elements are in R?

5. Show the partitions induced on A by R.

6. Is undef ∈ [1]R?

7. Is nil ∈ [−1]R?

8. What is (can 23)?

9. Show an element of {u : (consp u)∧ (can (car u)) = (can (cdr u))}
that is not an element of R.

10. Is it a theorem that: R = ({< x, y >: (can x) = (can y)} ∩ (A × A))?
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Question 15 (20 points, but see below):

Let f = {< x, y >: (x ∈ N) ∧ (y = 2x)}.

Each correct answer is worth 2 points; each incorrect answer costs 2 points.
Omitting an answer neither adds nor subtracts points.

1. What is dom(f)?

2. What is f(123)?

3. What is ran(f)? Write the answer in set notation without using “f”.

4. Is it a theorem that (f : N → N)?

5. Is f 1:1?

6. Is f onto N?

7. What is (f ◦ f)(3)?

8. Define a function g such that (f ◦ g) 6= (g ◦ f).

9. Prove, for your g above, (∃x : (f ◦ g)(x) 6= (g ◦ f)(x))

10. If f−1 is a function, what is f−1(32)? If f−1 is not a function, explain
why not.
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