
CS313K: Logic, Sets, and

Functions

J Strother Moore
Department of Computer Sciences

University of Texas at Austin

Lecture 12 – Chap 4 (4.3, 4.4, 4.5)

1



Announcements

The mean grade in the midterm was 73. I expected

it to be about 83. I conclude that Midterm 1 was

too long.

I will curve the grades of Midterm 1 so that the

mean is 83.

2



I will announce the curving mechanism on

Thursday. For the moment, just understand that

the posted grades are raw scores and they will be

adjusted upwards.

3



T1: (equal (rev (app x y))

(app (rev y) (rev x)))

T2: (iff (true-listp (app x y))

(true-listp y))

T3: (implies (true-listp x)

(equal (rev (rev x)) x))

4



T1: (rev (app x y)) = (app (rev y) (rev x))

T2: (true-listp (app x y)) ↔ (true-listp y)

T3: (true-listp x) → (rev (rev x)) = x

5



In some of your classes, professors will introduce

notation of their own. For example, they might say,

“if x and y are sequences then x � y denotes the

concatenation of x followed by y, and x denotes the

reverse of x.” They might also say “Let S be the

set of all sequences” and assume implicitly that

sequences are true-lists. Given such conventions,

“x ∈ S” means “x is an element of the set S” or

“(true-listp x).”

6



T1: x � y = y � x.

T2: (x � y) ∈ S ↔ (y ∈ S)

T3: x ∈ S → x = x

However it is written, you should understand the

logical meaning of these sentences to be:

7



T1: (rev (app x y)) = (app (rev y) (rev x))

T2: (true-listp (app x y)) ↔ (true-listp y)

T3: (true-listp x) → (rev (rev x)) = x

8



Theorem:

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (app (rev a) b))))

9



(implies (and (true-listp a) (true-listp b))

(true-listp (app (rev b)

(rev (rev a)))))

10



(implies (and (true-listp a) (true-listp b))

(true-listp (rev (rev a))))

11



(implies (and (true-listp a) (true-listp b))

(true-listp a))

12



(implies (and (true-listp a) (true-listp b))

t)

13



t

14



The Rules of Inference are precisely described in

Section 4.4.

The reason they’re described precisely is so you can

learn to do proofs without making mistakes.

I don’t care if you learn the “implementation” of the

rules. Who cares what π is in your steps? I don’t!

But you must learn how to use the rules flawlessly

and naturally.

15



Theorem:

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (app (rev a) b))))

16



Transformation 1 (Rewrite: Steps 1 and 2):

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (app (rev a) b))))

↑ π

Rewrite at π

17



Transformation 1 (Rewrite: Steps 1 and 2):

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (app (rev a) b))))

Rewrite at π with

T1: (equal (rev (app x y))

(app (rev y)

(rev x)))

18



Transformation 1 (Rewrite: Steps 3 and 4):

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (app (rev a) b))))

Rewrite at π with

T1: (implies t ; φh

(equal (rev (app x y)) ; α =

(app (rev y) ; β

(rev x))))

eqv = equal

σ={x ← (rev a), y ← b}

19



Transformation 1 (Rewrite: Steps 5 and 6):

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (app (rev a) b))))

Rewrite at π with

T1: (implies t ; φh

(equal (rev (app x y)) ; α

(app (rev y) ; β

(rev x))))

eqv = equal

σ={x ← (rev a), y ← b}

Prove: ((true-listp a) ∧ (true-listp b)) → t

20



Transformation 1 (Rewrite: Step 7):

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (app (rev a) b))))

Rewrite at π with

T1: (implies t ; φh

(equal (rev (app x y)) ; α

(app (rev y) ; β

(rev x))))

eqv = equal

σ={x ← (rev a), y ← b}

β/σ = (app (rev b)

(rev (rev a)))

21



Transformation 1 (Rewrite: Step 7):

(implies (and (true-listp a) (true-listp b))

(true-listp (app (rev b)

(rev (rev a)))))

Rewrite at π with

T1: (implies t ; φh

(equal (rev (app x y)) ; α

(app (rev y) ; β

(rev x))))

eqv = equal

σ={x ← (rev a), y ← b}

β/σ = (app (rev b)

(rev (rev a)))

22



Transformation 2:

(implies (and (true-listp a) (true-listp b))

(true-listp (app (rev b)

(rev (rev a)))))

23



Transformation 2 (Rewrite: Steps 1,2,3,4,5,6):

(implies (and (true-listp a) (true-listp b))

(true-listp (app (rev b)

(rev (rev a)))))

Rewrite with

T2: (iff (true-listp (app x y)) ; α ↔

(true-listp y)) ; β

eqv = iff

σ = {x←(rev b), y←(rev (rev a))}

β/σ = (true-listp (rev (rev a)))

Prove (true-listp a) ∧ (true-listp b) → t

24



Transformation 2 (Rewrite: Steps 1,2,3,4,5,6):

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (rev a))))

Rewrite with

T2: (iff (true-listp (app x y)) ; α ↔

(true-listp y)) ; β

eqv = iff

σ = {x←(rev b), y←(rev (rev a))}

β/σ = (true-listp (rev (rev a)))

Prove (true-listp a) ∧ (true-listp b) → t

25



Transformation 3:

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (rev a))))

26



Transformation 3:

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (rev a))))

27



Transformation 3 (Rewrite: Steps 1,2,3,4,5):

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (rev a))))

Rewrite with

T3:(implies(true-listp x) ; φh

(equal (rev (rev x)) x));α = β

eqv=equal

σ={x ← a}

β/σ=a

φh/σ = (true-listp a)

28



Transformation 3 (Rewrite: Steps 1,2,3,4,5):

(implies (and (true-listp a) (true-listp b))

(true-listp (rev (rev a))))

Rewrite with

T3:(implies(true-listp x) ; φh

(equal (rev (rev x)) x));α = β

eqv=equal

σ={x ← a}

β/σ=a

φh/σ = (true-listp a)

Prove (true-listp a) ∧ (true-listp b)

→ (true-listp a)

29



Transformation 3 (Rewrite: Steps 1,2,3,4,5):

(implies (and (true-listp a) (true-listp b))

(true-listp a))

Rewrite with

T3:(implies(true-listp x) ; φh

(equal (rev (rev x)) x));α = β

eqv=equal

σ={x ← a}

β/σ=a

φh/σ = (true-listp a)

Prove (true-listp a) ∧ (true-listp b)

→ (true-listp a)

30



Transformation 4:

(implies (and (true-listp a) (true-listp b))

(true-listp a))

31



Transformation 4:

(implies (and (true-listp a) ; α ↔ β (β = t)

(true-listp b))

(true-listp a)) ; α

Use Hyp 1, δ = (true-listp a)

α = (true-listp a), β = t, eqv = iff

32



Transformation 4:

(implies (and (true-listp a) ; α ↔ β (β = t)

(true-listp b))

t) ; β

Use Hyp 1, δ = (true-listp a)

α = (true-listp a), β = t, eqv = iff

33



Transformation 5:

(implies (and (true-listp a)

(true-listp b))

t)

Taut: (implies p t)

σ={p←(and (true-listp a) (true-listp b))}

34



Transformation 6:

t

35



Thm (implies p t)

Proof:

(implies p t)

= {rewrite with def implies}

(if p (if t t nil) t)

Case 1: p=nil

(if p (if t t nil) t)

= {by hyp 1}

(if nil (if t t nil) t)

= {by comp}

t

36



Case 2: p6=nil (p ↔ t)

(if p (if t t nil) t)

= {by hyp}

(if t (if t t nil) t)

= {by comp}

t

Q.E.D.

37


