CS313K: Logic, Sets, and
Functions

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Lecture 12 — Chap 4 (4.3, 4.4, 4.5)

Announcements

The mean grade in the midterm was 73. | expected
It to be about 83. | conclude that Midterm 1 was

too long.

| will curve the grades of Midterm 1 so that the
mean is 33.

| will announce the curving mechanism on
Thursday. For the moment, just understand that
the posted grades are raw scores and they will be

adjusted upwards.

T1: (equal (rev (app x y))
(app (rev y) (rev x)))

T2: (iff (true-listp (app x y))
(true-listp y))

T3: (implies (true-listp x)
(equal (rev (rev x)) x))

T1: (rev (app x y)) = (app (rev y) (rev x))
T2: (true-listp (app x y)) < (true-listp y)

T3: (true-listp x) — (rev (rev x)) = X

In some of your classes, professors will introduce
notation of their own. For example, they might say,
“if x and y are sequences then x ¢ y denotes the
concatenation of x followed by vy, and T denotes the
reverse of x." They might also say “Let S be the
set of all sequences” and assume implicitly that
sequences are true-lists. Given such conventions,

“r € S means “x is an element of the set 5" or

“(true-listp x)."

Tl: © ¢y = vy © .

T2: (z ¢ y)e S < (y € 5)

However it is written, you should understand the
logical meaning of these sentences to be:

T1: (rev (app x y)) = (app (rev y) (rev x))
T2: (true-listp (app x y)) < (true-listp y)

T3: (true-listp x) — (rev (rev x)) = X

Theorem:
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (app (rev a) b))))

(implies (and (true-listp a) (true-listp b))
(true-listp (app (rev b)
(rev (rev a)))))

10

(implies (and (true-listp a) (true-listp b))
(true-listp (rev (rev a))))

11

(implies (and (true-listp a) (true-listp b))
(true-listp a))

12

(implies (and (true-listp a) (true-listp b))
t)

13

14

The Rules of Inference are precisely described in
Section 4.4,

The reason they're described precisely is so you can
earn to do proofs without making mistakes.

don't care if you learn the “implementation” of the
rules. Who cares what 7 is in your steps? | don't!

But you must learn how to use the rules flawlessly
and naturally.

15

Theorem:
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (app (rev a) b))))

16

Transformation 1 (Rewrite: Steps 1 and 2):
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (app (rev a) b))))
T

Rewrite at

17

Transformation 1 (Rewrite: Steps 1 and 2):
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (app (rev a) b))))

Rewrite at 7 with
T1: (equal (rev (app x y))
(app (rev y)
(rev x)))

18

Transformation 1 (Rewrite: Steps 3 and 4):
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (app (rev a) b))))

Rewrite at m with

T1: (implies t s Op
(equal (rev (app x y)) ;o =
y ; O
x))))

equ = equal
o={x «— (rev a), y < b}

19

Transformation 1 (Rewrite: Steps 5 and 6):
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (app (rev a) b))))

Rewrite at m with

T1: (implies t 5 Op
(equal (rev (app x y)) 5 Q
y ; O

x))))

equ = equal
o={x «— (rev a), y « b}
Prove: ((true-listp a) A (true-listp b)) — t

20

Transformation 1 (Rewrite: Step 7):
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (app (rev a) b))))

Rewrite at m with

T1: (implies t s Op
(equal (rev (app x y)) 5 Q
y ; O

x))))

equ = equal
o={x «— (rev a), y « b}

B/o = b

(rev a)

21

Transformation 1 (Rewrite: Step 7):
(implies (and (true-listp a) (true-listp b))

(true-listp b
(rev a)))))
Rewrite at 7 with
T1: (implies t s Op
(equal (rev (app x y)) 5 Q
y ; O
x))))

equ = equal
o={x «— (rev a), y < b}

B/o = b

(rev a)

22

Transformation 2:
(implies (and (true-listp a) (true-listp b))
(true-listp (app (rev b)
(rev (rev a)))))

23

Transformation 2 (Rewrite: Steps 1,2,3,4,5,6):
(implies (and (true-listp a) (true-listp b))
(true-listp (app (rev b)
(rev (rev a)))))
Rewrite with
T2: (iff (true-listp (app x y)) ;
y)) ;
equ = 1iff
= {x+—(rev b), y—(rev (rev a))}

(rev (rev a))

6/

Prove (true-listp a) A (true-listp b) — t

24

Transformation 2 (Rewrite: Steps 1,2,3,4,5,6):
(implies (and (true-listp a) (true-listp b))
(rev (rev a))))

Rewrite with

T2: (iff (true-listp (app x y)) ;
y)) ; O

iff

x<—(rev b), y—(rev (rev a))}

equ

g =
B/o (rev (rev a))

Prove (true-listp a) A (true-listp b) — t

~ |

25

Transformation 3:
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (rev a))))

26

Transformation 3:
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (rev a))))

27

Transformation 3 (Rewrite: Steps 1,2,3,4,5):
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (rev a))))

Rewrite with
T3: (implies(true-listp x) ; Op

(equal (rev (rev x)) x));a=p0
equ=equal

¢n/o = (true-listp a)

28

Transformation 3 (Rewrite: Steps 1,2,3,4,5):
(implies (and (true-listp a) (true-listp b))
(true-listp (rev (rev a))))

Rewrite with

T3:(implies(true-listp x) ; On
(equal (rev (rev x)) x));a=p

equ=equal

¢n/o = (true-listp a)
Prove (true-listp a) A (true-listp b)
— (true-listp a)

29

Transformation 3 (Rewrite: Steps 1,2,3,4,5):
(implies (and (true-listp a) (true-listp b))
(true-listp a))

Rewrite with

T3:(implies(true-listp x) ; On
(equal (rev (rev x)) x));a=p

equ=equal

¢n/o = (true-listp a)
Prove (true-listp a) A (true-listp b)
— (true-listp a)

30

Transformation 4:
(implies (and (true-listp a) (true-listp b))
(true-listp a))

31

Transformation 4:

(implies (and (true-listp a) ; a <« [(8= 1
(true-listp b))
(true-listp a)) e’

Use Hyp 1, 0 = (true-listp a)
a = (true-listp a), B = t, equ = iff

32

Transformation 4:
(implies (and (true-listp a) ; a «— [(8= 1
(true-listp b))

t) ; 0

Use Hyp 1, 0 = (true-listp a)
a = (true-listp a), B = t, equv = iff

33

Transformation 5:
(implies (and (true-listp a)
(true-listp b))
t)

Taut: (implies p t)
a={p<—(and (true—listp a) (true—listp b))}

34

Transformation 6:
T

35

Thm (implies p t)

Proof:

(implies p t)

= {rewrite with def implies}
(if p (if t t nil) t)

Case 1: p=nil

(if p (if t t nil) t)

= {by hyp 1}

(if nil (if t t nil) t)
= {by comp}

T

36

Case 2: p#nil (p < t)
(if p (if t t nil) t)

= {by hyp}

(if t (if t t nil) t)

- {by comp}

T

Q.E.D.

37

