CS313K: Logic, Sets, and Functions

J Strother Moore Department of Computer Sciences University of Texas at Austin

Lecture 14 - Chap 4 (4.6, 4.7, 4.8)

Announcement

The book says problems 194, 199, 215, 216, 219 are due on March 16. Wrong!

They're due on March 23 – the Tuesday after Spring Break.

Lemmas are like methods (!). They allow you to avoid doing the same work repeatedly.

```
... (app (cons e a) b) ...
                                          {def app}
\longleftrightarrow
... (if (endp (cons e a))
          (cons (first (cons e a))
                  (app (rest (cons e a)) b))) ...
                                      {endp-cons}
\longleftrightarrow
... (if nil
         b
         (cons (first (cons e a))
                (app (rest (cons e a)) b))) ...
```

```
\{if-ax-2\}
\longleftrightarrow
... (cons (first (cons e a))
             (app (rest (cons e a)) b)) ...
                                          {first-cons}
\longleftrightarrow
... (cons e
             (app (rest (cons e a)) b)) ...
                                           {rest-cons}
\longleftrightarrow
... (cons e
             (app a b)) ...
```

You have to repeat this work every time you expand (app (cons) ...), unless you prove the lemma:

Lemma app-cons:

```
(app (cons x y) z) = (cons x (app y z))
```

```
... (app (cons e a) b) ...
                                                             {def app}
\longleftrightarrow
... (if (endp (cons e a)) ...) ...
                                                         {endp-cons}
\longleftrightarrow
... (if nil ...) ...
                                                            \{if-ax-2\}
\longleftrightarrow
... (cons (first (cons e a)) ...) ...
                                                       {first-cons}
\longleftrightarrow
... (cons e (app (rest (cons e a)) b)) ...
                                                         {rest-cons}
\longleftrightarrow
... (cons e (app a b)) ...
```

```
... (app (cons e a) b) ...  \longleftrightarrow \\ \text{(cons e (app a b)) ...}
```

In your homework, use lemmas! Don't just grind out the same sequence of steps over and over again.

Proof Advice

"Promote and Forward Chain!"

```
((A \rightarrow (B \land C))
\land
(B \rightarrow D)
\land
(C \rightarrow E))
\rightarrow
(A \rightarrow (D \land E))
```

Suppose you want to prove γ using a case split justified by $\alpha \vee \beta$.

```
Case 1: (\alpha \rightarrow \gamma)
```

. . .

```
Case 2: (\beta \rightarrow \gamma)
```

. . .

Proving Something by Rewriting to T

Remember, to prove γ you can show how to rewrite γ to t, i.e., you prove $\gamma \leftrightarrow$ t.

```
Case 1:
(\alpha \rightarrow \gamma)
\leftrightarrow (\alpha \rightarrow \gamma')
\leftrightarrow (\alpha \rightarrow \gamma'')
\cdots
\leftrightarrow (\alpha \rightarrow t)
\leftrightarrow t
Case 2: ...
```

```
Case 1:
(\alpha \rightarrow \gamma)
\leftrightarrow (\alpha \rightarrow \gamma')
\leftrightarrow (\alpha \rightarrow \gamma'')
\cdots
\leftrightarrow (\alpha \rightarrow t)
\leftrightarrow t
Case 2: ...
```

```
Case 1: \alpha
\gamma
\leftrightarrow \gamma\prime
\leftrightarrow \gamma\prime\prime
\cdots
\leftrightarrow t
```

```
Case 1: \alpha (Remember: \alpha is a hypothesis!) \gamma \leftrightarrow \gamma\prime \leftrightarrow \gamma\prime\prime \cdots \leftrightarrow t
```

Setup

When I refer to the "basic axioms" below I mean the axioms about if, t, nil, consp, cons, first, rest, endp, etc in Section 4.3.