CS313K: Logic, Sets, and Functions

J Strother Moore Department of Computer Sciences University of Texas at Austin

Lecture 15 - Chap 4 (4.9, 4.10)

Derived Rule: Hyp (for IF)

If you are trying to simplify an if while maintaining propositional equivalence and you see the test of the if in a propositional position in the true branch, you may replace it by t.

The symmetric replacement (by nil) is permitted in the false branch.

(if
$$\alpha$$
 (... α ...) β)
$$\uparrow_{\pi}$$

$$\leftrightarrow$$
(if α (... t ...) β)

where π admits propositional replacement.

(if
$$\alpha$$
 (... α ...) β) \leftrightarrow (if α (... t ...) β) \uparrow_{π}

Proof

Case 1:
$$\alpha \neq \text{nil}$$

$$lhs \leftrightarrow \{ \mathrm{Hyp} \}$$

(if t (... t ...)
$$\beta$$
)

$$rhs \leftrightarrow \{ \mathrm{Hyp} \}$$
 (if t (... t ...) β)

```
Case 2: \alpha = \text{nil}
                                                                        {Hyp}
lhs \leftrightarrow
(if nil (... \alpha ...) \beta)
                                                                   \{if-ax2\}
\longleftrightarrow
                                                                        {Hyp}
rhs \leftrightarrow
(if nil (... t ...) \beta)
                                                                   {if-ax2}
\longleftrightarrow
```