SECTION 14

VERIFYING A SCHEDULER

ON WHY IT IS IMPOSSIBLE TO PROVE THAT THE BDX930 DISPATCHER IMPLEMENTS A
TIME-SHARING SYSTEM

Robert S. Boyer
J Strother Moore

The SIFT system, as coded by Chuck Weinstock, is all written in Pascal
except for about a page of machine code. The reason that machine code is
used at all is that the SIFT system implements a small time-sharing
system in which Pascal programs for separate application tasks are
executed according to a schedule with real-time constraints. The Pascal
language has no provision for handling the notion of an "interrupt" such
as the B930 clock interrupt. The Pascal language also lacks the notion
of running a Pascal subroutine for a given amount of time, suspending it,
saving away the suspension, and later activating the suspension. Machine
code was used to overcome these inadequacies of Pascal (and most other
higher order languages). Code which handles clock interrupts and
suspends processes is called a dispatcher.

The BDX930 SIFT dispatcher consists of the following 14 BDX930 instructioms.

CINT PUSHF 15 save the flags
PUSHM 1,13 Save registers
PUSHM 0,0 and the resume address
LOAD 0,ACLK indicate a clock tick
SCHG TRA 1,15 save the current stack pointer
LDM 15,15,STACK point at the "exec" stack
PUSHM 0,1 . set function code and resume stack
JSS* ASCHE call the scheduler which is a pascal function
TRA 15,12 that returns the new tasks ri15 value.
POPM 0,0 restore the resume PC to RO
POPM 1,13 restore some registers.
POPF 15 and the flags
CONT ES allow interrupts
RET 0 and go resume this routine

When the current task is interrupted by a clock interrupt before normal
termination, control is transferred to CINT by the clock interrupt
mechanism. The code at CINT pushes onto the task’s Pascal stack the
current flags, registers, and pc, and sets a flag in register 0 to
indicate that the task was interrupted prematurely. Control then reaches
SCHG.

On the other hand, when the current task terminates normally, code not
shown here does the following: the clock interrupt mechanism is
disabled, the necessary reinitialization information is saved om its
Pascal stack, register 0 is set to indicate that the task was terminated
normally, and control is transferred to SCHG.

In either case, the dispatcher then saves the task’s stack pointer,
reinstates a stack pointer used exclusively by the dispatcher and
scheduler and jumps off to the Pascal code for the scheduler. The
scheduler stores in the task table the task’s stack and saved state
information. The scheduler returns to the dispatcher the stack and state
information for the next task to be run. The dispatcher then reinstates
the flags, registers, and pc for that task, enables interrupts, and
returns to the task.

Thus, the dispatcher and scheduler apparently implement a time-sharing
system in which each user task is running on a "virtual" BDX930. We set
out to try to prove that the 14 lines of code above correctly implemented
those virtual BDX930s.

A reasonably simple specification of the time-sharing system goes

something like this: The real BDX930 is supporting n vitual BDX930s, each
devoted to a different user task. The virtual BDX930s are identical to the
real BDX930 except for the absence of clock interrupts and certain parts of
memory. A "mapping function" can be defined that maps the state of the
real machine into an n-tuple of states of the virtual machines. When an
instruction is executed on the real machine either the n-tuple of virtual
states is unchanged or else one of the virtual states is advanced by omne
instruction and the remaining states are unchanged.

To capture the semantics of the instruction set, we encoded in our logic
a recursive function that describes the state changes induced by each
BDX930 instruction. Thirty pages are required to describe the top level
driver and the state changes induced by each instruction (in terms of
certain still undefined bit-level functions such as the 8-bit signed
addition function). We encountered difficulty getting the mechanical
theorem-prover to process such a large definition. However, the system was
improved and the function was eventually admitted. We still anticipate
great difficulty proving anything about the function because of its large
size. However, the problems that have stopped us have nothing to do with
mechanical proof; instead they are in formalizing a suitable
specification.

We discuss three problems below: specifying the interrupt mechanism on
the BDX930, specifying the mapping function, the specifying the
restrictions on user tasks.

Interrupts: Clock interrupts on the BDX930 occur at a specified interval.
But it is difficult to get precise statements regarding how long any
given instruction will take. The situation is complicated by the fact
that some cycles are stolen to service writes to the data file by
concurrent processors, thus introducing a true nondeterminacy in precise
timings. The best one can expect is to get some kind of interval
indicating how fast or slow each instruction is. For these reasons we
abandoned the idea of trying to model precisely the clock interrupt
mechanism. :

In our model of the BDX930, an interrupt can occur at any time while
interrupts are enabled. One must state explicitly where interrupts are
assumed not to occur. This exposes a problem in the dispatcher above.
If control reaches the dispatcher because of the clock interrupt
mechanism, the dispatcher and the scheduler are executed with clock
interrupts enabled. A clock interrupt during either of these processes
causes chaos. In our model, we must assume explicitly that no clock
interrupt occurs during this processing. To prove that no interrupts can
occur, one must determine the maximum time it takes to execute the
dispatcher and scheduler. To do this one must (a) have a precise
specification of the times taken by individual BDX930 operations and (b)
treat the scheduler as BDX930 code rather than Pascal. This particular
problem could be avoided if the dispatcher always disabled interrupts on
entry. However, the complete lack of constraint on interrupts in the
current model is unsettling and unrealistic.

Mapping Function: To determine the state of each virtual machine the
mapping function must consider each task and determine the state of the
task. Consider how one might determine the contents of the thirteen
saved registers in each task. The registers of a suspended task are
stored in positions 2 through 14 of the stack saved for the task in the
task table. The registers of the active task are somewhat more difficult
to ascertain. If the program counter (pc) is.in the code for the active
task, the virtual registers are in the corresponding actual registers.
But if the pc is in the dispatcher or scheduler, the virtual registers
may be in any number of places. For example, if the instruction at CINT
has just been executed, they are in the actual registers. But if the
instruction just after CINT has just been executed, the virtual registers
are in positions 1 through 13 of the stack in register 15. And if the
second instruction after CINT has just been executed, they are in
positions 2 through 14 of that stack.

In general, to recover the state of the active task, it is necessary to
consider (while defining the mapping function) each instruction in the
dispatcher and scheduler. Furthermore, it is necessary to treat the
scheduler as BDX930 code rather than as Pascal code, since otherwise one
cannot trace where in the real machine the components of the state are
being kept while in transit to the task table.

Restrictions on User Tasks: Two restrictions on user tasks are necessary
if the dispatcher is to implement the kind of time-sharing system
described.

The first concerns the size of the Pascal stack for each task. Recall
that the state of an interrupted process is saved by pushing the flags,
13 registers, and the pc on the stack. If there is insufficient room on
the stack, instructions or data (possibly from another task) are
overwritten. Thus, one restriction on the user tasks is that they never
come within 15 words of exhausting the allocated stack space. But the
stack is used primarily to store temporaries and subroutine links and its
management is entirely under the control of the Pascal compiler. One
cannot determine whether a given Pascal program satisfies this
restriction unless one looks at the code generated by a given compiler.
Note that in general it is impossible to verify with a static analysis
that a given user task -- even displayed as BDX930 code -- does not use too
much of the stack, since depth of recursion and other runtime
considerations influence stack use.

S

The second restriction is more subtle. In its attempt to save the state
of an interrupted process, the dispatcher saves only the flags,
registers, and pc. It is assumed that all other parts of the state of
the task are private to the task itself and will not be affected by the
execution of other tasks. In particular, tasks may not share variables
that are read and written. At first sight one may conclude that this
assumption can be checked by confirming that the Pascal code for a set of
tasks share no variables. However, such a check is insufficient. Again,
the compiler must be considered. Suppose that the compiler uses certain
memory locations as temporaries. Then those temporaries must be saved by
the dispatcher too. But if user tasks are considered to be unrestricted
BDX930 code, the check becomes even more difficult because it is not
possible to determine with a static analysis what memory locations are
read and written. It is also necessary to require of user tasks that
they not use the clock interrupt mechanism and not overwrite the area of
the BDX930 dedicated to the operating system. Specifying the
requirements on user programs requires a rigorous formal understanding of
the BDX930, the Pascal compiler, and the linking loader. Thus an attempt
to verify the few lines of machine code in SIFT lead to the requirement
that we have formal specifications for several huge objects which have
never yet been adequately formalized.

This concludes our discussion of difficulties encountered while trying to
formalize the simple time-sharing system sketched above. However, the
worst is yet to come. The simple model sketched is inadequate for SIFT
because tasks are supposed to share data.

It is common in SIFT for task A to compute a result and put it somewhere
for a later task, B, to read. For example, many tasks share parts of the
datafile with the prevote task. But this suddenly introduces the notion
of time. In the simple model, tasks A and B each run on their own
processor and do not interract. If each task is to be repeated
indefinitely then each processor endlessly iterates its own task. There
is no sense in which the iterations of A are synchronized with those of
B. Under the current SIFT scheme however, the dispatcher is used to
"time share" tasks that share data, but the schedules tables are arranged
so that the iterations of A do not overlap those of B.

If one attempts to patch things up while preserving the notion that A and
B are running on independent virtual BDX930s, one is forced to introduce
the notion of communicating virtual machines -- an idea somewhat more
complicated than the truth. We now question the utility of the
abstraction of virtual machines. Indeed, the whole idea that the
dispatcher is implementing a time-sharing system comes into question since
a major use of it is to orchestrate fixed sequences of subroutine calls.

The time-sharing/virtual machine idea is completely destroyed by the
reconfiguration task. This tasks redefines the task table. Thus, after
termination of the reconfiguration task, the tasks run by the dispatcher
have no relation to those run before reconfiguration. It is impossible
to view the dispatcher as a time-sharing system implementing virtual
BDX930s running concurrently when one "process" can wipe out the others.

In our view, it is 2 mistake to think of the dispatcher in abstract
terms. It seems to be just a program running on a von Neumann machine.
By carefully arranging certain tables you can program the machine to
execute a few instructions from here and then a few instructions from
there, almost as though you had two different machines. By cleverly
arranging those tables you can make one piece of code share data with
another, almost as though your machines were communicating. By being
still more clever you can synchronize them to the point that the two
programs appear to be running sequentially on just one machine. Indeed,
by carelessly arranging those same tables you can cause arbitrary chaos.
But the moral is clear: you are programming a single machine and not a
set of virtual machines.

We think that things might be a lot more clear if schedules were not
encoded as tables that were interpretted by the scheduler and dispatcher
but were merely Pascal programs that iteratively called fixed sequences
of subroutines.

Research Topics Worthy of Consideration

Abstract Interpreters:

Interrupts:

Real time -- Newtonian time -- clock synchronization:

/

/

SECTION 15

FORMAL DEFINITION OF BDXS30

The B930 Adventure

We started with a shell defn for the B930 state which had 16
components, 12 of which were numerically typed. When we ran
that through the <BOYER> theorem prover it blew up on the
CONS.EQUAL axiom because it tried to normalize the IFs

on the rhs of the equality.

We changed DEFNO and MAKE.REWRITE.RULES so that the bodies
of defns and the rhs’s of rewrites were not altered by the
system.

Because we anticipate being wiped out by all the nonrec

defns in the B930, we considered editing REWRITE.FNCALL to
make it open up nonrec fns more carefully than now. It has
been suggested that we adopt some draconian restriction

(e.g., open only if no IFs are introduced) just to force us

to think about more reasonable restrictions. That would

make us fail to prove (AND P Q) -> (AND Q P) by

simplification alone. (We could actually prove it, by

virtue of the expansion of ANDs in hypotheses if we

recognized (AND P Q) as an AND.) Another idea was similar

to Woody’s pairings (as we have always imagined it) namely keep
track of what tests the fns were interested in and have some
high level procedure split on the most important ones to force
certain fns to open together. In the end we decided mot to
touch REWRITE.FNCALL for now but it is lying in wait for the
B930 to come along.

A BOOT.STRAP failed because DIFFERENCE was no longer
numerically typed (and so RECURSION.BY.DIFFERENCE was
rejected as an induction lemma) because it returns I after
testing not (ZEROP I).

We considered several alternatives. One was the idea of a
"type set lemma", e.g., (NOT (ZEROP X)) -> (NUMBERP X),
which could be implemented by generalizing RECOGNIZER.ALIST
to two alists, one for use when the recognizer is assumed
true and one for when it is assumed false. E.g., NLISTP
would be bound the type bits for LISTP on the false alist
and bound to the complement on the true alist. ZEROP would
be on the false one, bound to numbers. This would probably
not slow down TYPE.SET. We’d have to write some code

to recognize type set lemmas and produce the bit patterns
from the recognizer proposition.

A second alternative was to define a new class of functioms
called "defined recognizers" which were boolean valued
nonrec fns and to open them up all the time (in
preprocessing) and to normalize. That is the approach we
took. We changed PUT.TYPE.PRESCRIPTION to so preprocess
sdefns before guessing the type. But we left the
unpreprocessed sdefn as the one used in theorem proving.

We then decided to address a problem Bernie raised, namely
that (EQUAL NIL NIL) is proved rather circuitously by
expanding the abbreviation PACK.EQUAL to the equality of the
unpacks and (using CONS.EQUAL under the rule in
CLAUSIFY.INPUT that says you can split a conjunction at the
top level) rewrote that to the conjoined equalities of the
ascii codes. When we tried to reproduce the silly proof
with the just modified theorem prover it was not so silly
because CONS.EQUAL wasn’t used. The reason was that in the
modified tp the rhs of CONS.EQUAL is (AND & &) instead of
(IF & & F) and so is not recognized as a conjunction!

We are reluctant to let this state of affairs persist
because we are basically happy with the current
preprocessing of large ves and don’t want to inadvertantly
change that preprocessing. We thought perhaps we should
always expand ANDs (and other boot strap propositional fns)
and normalize. But that blows us out of the water on a 16
~component shell.

On the subject of abbreviations, we were troubled by the
fact that PACK.EQUAL is an abbreviation but ADD1.EQUAL is
not. Thank goodness for that (and the fact that ADD1.EQUAL
is not a conjunction), since otherwise (EQUAL 1000 1000)
would blow us out of the water a la Bernie. But it seems
odd that two schematically related rewrite rules are not
treated equally.

Finally, Bernie’s problem would never have arisen had the
preprocessing put expressions im reduced form. One
suggestion is to make CONS.TERM always apply 1fns, instead
of just doing it for shells. If we did that, one might
argue that we ought to review the uses of FCONS.TERM to
determine whether they should be replaced by CONS.TERMs to
enforce a new invariant on terms, namely that they are
always in reduced form.

Another subject we have discussed is that we should make
nonrecursive functions and unconditional rewrite rules
behave identically. This idea was suggested after
considering further how we might handle a 16 component shell
with type restrictions. E.g., we could make CONS.EQUAL
rewrite (EQUAL (CONS X Y) (CONS U V)) to the conjunction of
things like

(EQUAL (CAR (CONS X Y)) (CAR (CONS U V))).

And then treat the rewrite rule (CAR (CONS X Y)) = (IF type
X dv) in the way we treat nonrec defns, namely not apply
such rewrites when they introduce too many IFs or otherwise
blow us up.

If we decided to make unconditional rewrites and nonrec fas
behave identically we could do it by eliminating nonrec defns
altogether and just storing them as rewrite rules.

Another idea on the subject of large shells is that we could
rewrite the equality of two conses to the equality of some
coercions, eg. (FIX X) = (FIX U), instead of naked IFs, and
then let the nonrec fn handler worry about the explosion.

Still another suggestion was to eliminate shells other than
the boot strap ones and force people to use lists the way
mathematicians do. That will probably require some better
handling of nonrec fns than we have now since abbreviations
become quite useful. There is also the worry that things will
get sticky the way they did in Edinburgh when we couldn’t
distinguish lists from numbers.

(SETQ XXX *(
(ADD.SHELL STATE NIL STATEP
((MEM (NONE.OF) ZERO)
(PC (NONE.OF) ZERD)
(ACS (NONE.OF) ZERO)
(OV (NONE.OF) ZERO)
(IE (NONE.OF) ZERO)
(IR (NONE.OF) ZERO)
(F1 (NONE.OF) ZERO)
(F2 (NONE.OF) ZERO)
(EXT1 (NONE.OF) ZERO)
- (EXT2 (NONE.OF) ZERO)
(EXT3 (NONE.OF) ZERO)
(HALT (NONE.OF) FALSE)
(ERROR (NONE.OF) FALSE)
(CONTROL .PANELP (NONE.OF) FALSE)
(INDIRECT.CNT (NONE.OF) ZERO)
(EXECR.CNT (NONE.OF) ZERO)))

(DEFN FETCH (MEM LOC)
(IF (NLISTP MEM) 0
(IF (EQUAL (CAAR MEM) LOC) (CDAR MEM) (FETCH (CDR MEM) LOC))))
(DEFN PUT (LOC VAL MEM) (CONS (CONS LOC VAL) MEM))

(DEFN SET.MEM (LOC VAL ST)
(STATE (PUT LOC VAL (MEM ST))
(PC ST)
(ACS ST)
(OV ST)
(IE ST)
(IR ST)
(F1 ST)
(F2 ST)
(EXT1 ST)
(EXT2 ST)
(EXT3 ST)
(HALT ST)
(ERROR ST)
(CONTROL . PANELP ST)
(INDIRECT.CNT ST)
(EXECR.CNT ST)))

(DEFN SET.PC (PC ST)
(STATE (MEM ST)

PC
(ACS ST)
(OV ST)
(IE ST)
(IR ST)
(F1 ST)
(F2 ST)
(EXT1 ST)
(EXT2 ST)
(EXT3 ST)
(HALT ST)
(ERROR ST)
(CONTROL . PANELP ST)
(INDIRECT.CNT ST)
(EXECR.CNT ST)))

(DEFN SET.AC (AC VAL ST)

(STATE (MEM ST)
(PC ST)
(PUT AC VAL (ACS ST))
(OV ST)
(IE ST)
(IR ST)
(F1 ST)
(F2 ST)
(EXT1 ST)
(EXT2 ST)
(EXT3 ST)
(HALT ST)
(ERROR ST)
(CONTROL .PANELP ST)
(INDIRECT.CNT ST)
(EXECR.CNT ST)))

(DEFN SET.AC.&.AC+1 (AC PAIR ST)
(STATE (MEM ST)
(PC ST) ‘
(PUT AC (CAR PAIR) (PUT (ADD1 AC) (CDR PAIR) (ACS ST)))
(OV ST)
(IE ST)
(IR ST)
(F1 ST)
(F2 ST)
(EXT1 ST)
(EXT2 ST)
(EXT3 ST)
(HALT ST)
(ERROR ST)
(CONTROL .PANELP ST)
(INDIRECT.CNT ST)
(EXECR.CNT ST)))

(DEFN SET.OV (VAL ST)
(STATE (MEM ST)

(PC ST)
(ACS ST)
VAL
(IE ST)
(IR ST)
(F1 ST)
(F2 ST)
(EXT1 ST)
(EXT2 ST)
(EXT3 ST)
(HALT ST)
(ERROR ST)
(CONTROL . PANELP ST)
(INDIRECT.CNT ST)
(EXECR.CNT ST)))

(DEFN SET.IE (VAL ST)
(STATE (MEM ST)

(PC ST)

(ACS ST)

(DEFN SET.F1
(STATE

(DEFN SET.F2
(STATE

(OV ST)

VAL

(IR ST)

(F1 ST)

(F2 ST)

(EXT1 ST)

(EXT2 ST)

(EXT3 ST)

(HALT ST)

(ERROR ST)
(CONTROL . PANELP ST)
(INDIRECT.CNT ST)
(EXECR.CNT ST)))

(VAL ST)

(MEM ST)

(PC ST)

(ACS ST)

(OV ST)

(IE ST)

(IR ST)

VAL

(F2 ST)

(EXT1 ST)

(EXT2 ST)

(EXT3 ST)

(HALT ST)

(ERROR ST)
(CONTROL .PANELP ST)
(INDIRECT.CNT ST)
(EXECR.CNT ST)))
(VAL ST)

(MEM ST)

(PC ST)

(ACS ST)

(OV ST)

(IE ST)

(IR ST)

(F1 ST)

VAL

(EXT1 ST)

(EXT2 ST)

(EXT3 ST)

(HALT ST)

(ERROR ST)
(CONTROL . PANELP ST)
(INDIRECT.CNT ST)
(EXECR.CNT ST)))

(DEFN SET.HALT (VAL ST)

(STATE

(MEM ST)
(PC ST)
(ACS ST)
(OV ST)
(IE ST)
(IR ST)
(F1 ST)
(F2 ST)

(EXT1 ST)

(EXT2 ST)

(EXT3 ST)

VAL

(ERROR ST)
(CONTROL . PANELP ST)
(INDIRECT.CNT ST)
(EXECR.CNT ST)))

(DEFN SET.ERROR (VAL ST)

(DEFN

(DEFN

(DEFN
(DEFN
(DEFN
(DEFN
(DEFN
(DEFN
(DEFN
(DEFN
(DEFN
(DEFN

(DEFN

(STATE (MEM ST)
(PC ST)
(ACS ST)
(OV ST)
(IE ST)
(IR ST)
(F1 ST)
(F2 ST)
(EXT1 ST)
(EXT2 ST)
(EXT3 ST)
(HALT ST)
VAL
(CONTROL.PANELP ST)
(INDIRECT.CNT ST)
(EXECR.CNT ST)))

EXPT (I J)
(IF (ZEROP J) 1 (TIMES I (EXPT I (SUBL J)))))

FIELD (WRD HI LO) (REMAINDER (QUOTIENT WRD (EXPT 2 L0))
(EXPT 2 (ADD1 (DIFFERENCE HI LO0))))

(* to be defined to return the integer
represented by bits HI through LO
inclusive in the binary representation
of the integer WRD.))

AM (WRD) (FIELD WRD 11 10))
IBIT (WRD) (FIELD WRD 15 15))
D (WRD) (FIELD WRD 7 0))

OP1 (WRD) (FIELD WRD 14 12))
OP2 (WRD) (FIELD WRD 11 8))

A (WRD) (FIELD WRD 7 4))

B (WRD) (FIELD WRD 3 0))

AC (WRD) (FETCH WRD 9 8))

OP3 (WRD) (FIELD WRD 7 4))
DELTA (WRD) (FETCH WRD 3 0))

TURN.OFF .HI.BIT (WRD) (FIELD WRD 14 0))

(DCL B930.ADD.SBIT (WRD DISPL)

(* adds the 16 bit quantity WRD to the 8 bit
signed quantity DISPL and produces a new 16 bit
quantity. This fn is always used to
construct an address -- e.g., a pc or

stack pointer or effective address.

We are not sure what happens if WRD represents

a negative quantity. Also, we assume such
arithmetic isn’t senstive to the F1 flg. Also

we don’t know what happens when an overflow occurs.))

(DCL B930.ADD.4BIT (WRD DELTA)
(* adds 16 bits to 4 bit signed quantity to
produce new 16 bit thing. The comments about
B930.ADD.8BIT apply here too.))

(DEFN PC+1 (ST) -(B930.ADD.8BIT (PC ST) 1))

(DEFN TRACE.INDIRECT.CHAIN (WRD MEM CNT)
(IF (ZEROP CNT)
0

(IF (EQUAL (IBIT WRD) 1)
(TRACE.INDIRECT.CHAIN (FETCH MEM (TURN.OFF.HI.BIT WRD))
MEM (SUB1 CNT))
WRD))
(* We suppose you turn the high bit off before you treat WRD as
an address. The ISP doesn’t.))

(DEFN MAR (WRD ST)
(TRACE . INDIRECT . CHAIN
(IF (EQUAL (AM WRD) 0)
D WRD)

(IF (EQUAL (AM WRD) 1)
(B930.ADD.8BIT (PC ST) (D WRD))
(IF (EQUAL (AM WRD) 2)
(B930.ADD.8BIT (FETCH (ACS ST) 0)
(D_WRD))
(B930.ADD.8BIT (FETCH (ACS ST) 1)
(D WRD)))))
(MEM ST) (INDIRECT.CNT ST))

(* The ISP seems to just add the displacement when we think it
ought to use the 8-bit add and permit negative displacements.
The ISP indicates that the indirect bit is to be interpreted
as here, i.e., once calculate an address from D etc and then
chain through the indirect pointers. But the programmers manual
has evidence that the MAR calculation is more akin to the PDP-10
style where one recomputes the effective address recursively.
Every place we call MAR on WRD2 of a double word instr, we pass
an ST whose PC points to the first of the two words. Should it
pass BUMP.PC of ST instead? The ISP indicates yes with its
GROUP command, but the manual indicates no under the discussion
of JSS.))

(DCL B930.ADDR (WRD1 WRD2 F1) (* Returns the 16 bit number the

B930 would if asked to add

WRD1 and WRD2 with F1 set to 1 or 0.))
(DCL B930.SUBR (WRD1 WRD2 F1))

(DCL B930.ADDR.OV (WRD1 WRD2 F1) (* Returns value of OV flag after
the appropriate B930 add. What
is the parity of the bit? Sometimes
-- e.g. in DECEQ -- we set the

OV flg to O meaning NO OVERFLOW. Is
that right?))
(DCL B930.SUBR.OV (WRD1 WRD2 F1))

(DEFN JU (WRD1 WRD2 ST) (SET.PC (MAR WRD1 ST) ST))
(DEFN JSAO (WRD1 WRD2 ST)
(SET.PC (MAR WRD1 ST)
(SET.AC 0 (PC+1 ST) ST))

(* We compute MAR w.r.t. the unmodified state. But the
manual and the ISP imply that MAR is computed after
smashing ac 0; We did it this way just because it
seemed more likely.))

(DEFN JSA1 (WRD1 WRD2 ST)
(SET.PC (MAR WRD1 ST)
(SET.AC 1 (PC+1 ST) ST))
(* See JSA0)) :
(DEFN JMAO (WRD1 WRD2 ST)
(SET.PC (MAR WRD1 ST) ~
(SET.AC 0 (PC+1 ST)
(SET.MEM (B930.ADD.8BIT (FETCH (ACS ST) 15) 1)
(FETCH (ACS ST) 0) .
(SET.AC 15 (B930.ADD.8BIT (FETCH (ACS ST) 15) 1)
ST))))
(* we are unsure of whether we are to compute
MAR of the original ST as here or of
state after the modifications below. Note that the treatment
of indirect address chains is affected.))
(DEFN ADD (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (AC WRD1)
(B930.ADDR (FETCH (ACS ST) (AC WRD1))
(FETCH (MEM ST) (MAR WRD1 ST))
(F1 ST))
(SET.QV (B930.ADDR.OV
(FETCH (ACS ST) (AC WRD1))
(FETCH (MEM ST) (MAR WRD1 ST))
(F1 ST))

ST))))
(DEFN SUB (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (AC WRD1)
(B930.SUBR (FETCH (ACS ST) (AC WRD1))
(FETCH (MEM ST) (MAR WRD1 ST))
(F1 ST))
(SET.OV (B930.SUBR.OV
(FETCH (ACS ST) (AC WRD1))
(FETCH (MEM ST) (MAR WRD1 ST))
(F1 ST))
ST))))
(DEFN CMP (WRD1 WRD2 ST)
(SET.PC
(B930.ADD.8BIT (PC ST)
(IF (B930.LESSP (FETCH (ACS ST)
(AC WRD1))
(FETCH (MEM ST)
(MAR WRD1 ST)))
3
(IF (B930.EQP (FETCH (ACS ST) (AC WRD1))
(FETCH (MEM ST) (MAR WRD1 ST)))

1
2))
(SET.OV (B930.CMP.OV WRD1 %an ST) ST)))
(DEFN LOAD (WRD1 WRD2 ST)
) (BUMP.PC (SET.AC (AC WRD1) -
(FETCH (MEM ST) (MAR WRD1 ST)) '
ST
(DEFN STO (WRD1 WRD2 ST) N
(BUMP.PC (SET.MEM (MAR WRD1 ST)
(FETCH (ACS ST) (AC WRD1))
ST
(DEFN TRA/NOP (WRD1 WRD2 ST) "
(BUMP.PC (SET.AC (A WRD1)
(FETCH (ACS ST) (B WRD1))
ST)))
(DEFN DECEQ (WRD1 WRD2 ST)
(IF (EQUAL (FETCH (ACS ST) (A WRD1)) 1)
(SET.PC '
(B930.ADD.4BIT (PC+1 ST)
(B WRD1))
(SET.AC (A WRD1) 0
(SET.OV 0 ST)))
(BUMP.PC (SET.AC (A WRD1)
(B930.SUBR (FETCH (ACS ST) (A WRD1))
1
(F1 ST))
(SET.OV (B930.SUBR.OV (FETCH (ACS ST)
(A WRD1))
1
(F1 ST))
ST)))))
(DEFN LCM (WRD1 WRD2 ST) o~
(BUMP.PC (SET.AC (A WRD1)
(B930.LCM (FETCH (ACS ST)

(B WRD1)))
ST)))

(DEFN RLS (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (A WRD1)
(B930.RLS (FETCH (ACS ST) (A WRD1))
(B WRD1))
ST)))
(DEFN B930.CONT (OLD FN)
(IF (EQUAL FN 0) OLD
(IF (EQUAL FN 1) 0
(IF (EQUAL FN 2) 1 (IF (EQUAL OLD 0) 1 0)))))

(DEFN CONT (WRD1 WRD2 ST)
(BUMP . PC
(SET.F1 (B930.CONT (F1 ST) (FIELD WRD1 5 4))
(SET.F2 (B930.CONT (F2 ST) (FIELD WRD1 7 6))
(SET.IE (B930.CONT (IE ST) (FIELD WRD1 3 2))
(SET.OV (B930.CONT (OV ST) (FIELD WRD1 1 0)) ST))))))

(DEFN DECNE (WRD1 WRD2 ST)
(IF (NOT (EQUAL (FETCH (ACS ST) (A WRD1)) 1))

(SET.PC 7~

(B930.ADD.4BIT (PC+1 ST)
(B WRD1))
(SET.AC (A WRD1)
(B930.SUBR (FETCH (ACS ST) (A WRD1))
1

(F1 ST))
(SET.OV (B930.SUBR.OV (FETCH (ACS ST)
(A WRD1))
1
(F1 ST))
ST))) :

(BUMP.PC (SET.AC (A WRD1) O
(SET.OV 0 ST)))))
(DEFN ANDOP (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (A WRD1)
(B930.AND (FETCH (ACS ST) (A WRD1))
(FETCH (ACS ST) (B WRD1)))
ST)))

(DEFN RLL (WRD1 WRD2 ST)
(IF (NOT (EVEN (A WRD1)))
(SET.ERROR T ST)
(BUMP.PC
(SET.AC.&.AC+1 (A WRD1)
(B930.RLL (FETCH (ACS ST)
(A WRD1))
(FETCH (ACS ST)
(ADD1 (A WRD1)))
(B WRD1))
ST))))
(DEFN ADDR (WRD1 WRD2 ST)
(BUMP.PC
(SET.AC (A WRD1)
(B930.ADDR (FETCH (ACS ST) (A WRD1))
(FETCH (ACS ST) (B WRD1))
(F1 ST))
(SET.0OV (B930.ADDR.OV
(FETCH (ACS ST) (A WRD1))
(FETCH (ACS ST) (B WRD1))
(F1 ST))
ST))))
(DEFN IR/CLA (WRD1 WRD2 ST)
(IF (EQUAL (A WRD1) (B WRD1))
(BUMP.PC (SET.AC (A WRD1) 0 ST))
(BUMP.PC
(SET.AC (A WRD1)
(FETCH (ACS ST) (B WRD1))
(SET.AC (B WRD1)
(FETCH (ACS ST) (A WRD1))
ST))))
(* The ISP uses arithmetic to achieve this effect. The manual
does not mention the use of arithmetic. Neither document
suggests that OV gets set.)

)

(DEFN OROP (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (A WRD1)
(B930.0R (FETCH (ACS ST) (A WRD1))
(FETCH (ACS ST) (B WRD1)))
ST)))

(DCL B930.MPY (A B) (* Returns the double word value of A times B.
The manual and the ISP both suggest that something
weird happens at -1 but nobody seems to know what
it is. The manual suggests that something weird
happens with the most negative number. Finally, [
the result is apparently left shifted ome.))
(DEFN MPY (WRD1 WRD2 ST)
(IF (OR (NOT (EVEN (A WRD1)))
(EQUAL (A WRD1) (B WRD1))
(EQUAL (ADD1 (A WRD1)) (B WRD1)))
(SET.ERROR T ST)
(BUMP.PC
(SET.AC.&.AC+1 (A WRD1)
(B930.MPY (FETCH (ACS ST) (A WRD1))
(FETCH (ACS ST) (B WRD1)))
§T))))
(DEFN CLAG/SUBR (WRD1 WRD2 ST)
(BUMP.PC
(SET.AC (A WRD1)
(B930.SUBR (FETCH (ACS ST) (A WRD1))
(FETCH (ACS ST) (B WRD1))
(F1 ST))
(SET.0V (B930.SUBR.OV
(FETCH (ACS ST) (A WRD1))
(FETCH (ACS ST) (B WRD1))
(F1 ST)) .
ST))) ’
(* The ISP says OV gets zeroed but we think not.))

(DEFN ACM (WRD1 WRD2 ST)
(BUMP.PC
(SET.AC (A WRD1) ' Ve
(B930.SUBR 0
(FETCH (ACS ST) (B WRD1))
(F1 8T))
(SET.OV (B930.SUBR.OV
0
(FETCH (ACS ST) (B WRD1))
(F1 8T))
ST))))
(DEFN CMPR (WRD1 WRD2 ST)
(SET.PC (B930.ADD.8BIT (PC ST)
(IF (B930.LESSP (FETCH (ACS ST)
(A WRD1))
(FETCH (ACS ST)
(B WRD1)))
3
(IF (B930.EQP (FETCH (ACS ST) (A WRD1))
(FETCH (ACS ST) (B WRD1)))
1
2
(SET.OV (B930.CMP.0OV WRD1 WRD2 ST) ST)))
(DEFN DIV (WRD1 WRD2 ST)
(IF (OR (NOT (EVEN (A WRD1)))
(EQUAL (A WRD1) (B WRD1))
(EQUAL (ADD1 (A WRD1)) (B WRD1)))
(SET.ERROR T ST)
(BUMP.PC
(SET.AC.&.AC+1 (A WRD1) ~

(B930.DIV (FETCH (ACS ST) (A WRD1))
(FETCH (ACS ST) (ADD1 (A WRD1)))
(FETCH (ACS ST) (B WRD1)))
(SET.OV
(B930.DIV.OV
(FETCH (ACS ST) (A WRD1))
(FETCH (ACS ST) (ADD1 (A WRD1)))
(FETCH (ACS ST) (B WRD1)))
ST))) :
(* The ISP contains an errlt in that SP[A] instead of SP[A]@SP[A+1] is
compared with SP[B])

)
(DEFN SLSA (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (A WRD1)
(B930.SLSA (FETCH (ACS ST) (A WRD1))

(B WRD1))
(SET.OV (B930.SLSA.OV (FETCH (ACS ST)(A WRD1))
(B WRD1))
ST))))

(DEFN SLLA (WRD1 WRD2 ST)
(IF (NOT (EVEN (A WRD1)))
(SET.ERROR T ST)
(BUMP . PC
(SET.AC.&.AC+1 (A WRD1)
(B930.SLLA (FETCH (ACS ST)
(A WRD1))
(FETCH (ACS ST)
(ADD1 (A WRD1)))

(B WRD1))
(SET.OV
(B930.SLLA (FETCH (ACS ST)
(A WRD1))
(FETCH (ACS ST)
(ADD1 (A WRD1)))
(B WRD1))
ST)))))

(DEFN SKGT (WRD1 WRD2 ST)
(IF (B930.LESSP 0 (FETCH (ACS ST) (A WRD1)))

(SET.FC

(B930.ADD.4BIT (PC+1 ST)
(B WRD1))

ST)

(BUMP.PC ST)))
(DEFN SKLT (WRD1 WRD2 ST)
(IF (B930.LESSP (FETCH (ACS ST) (A WRD1)) 0)

(SET.PC

(B930.ADD.4BIT (PC+1 ST)
(B WRD1))

ST)

(BUMP.PC ST)))
(DEFN SLSL (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (A WRD1)
(B930.SLSL (FETCH (ACS ST) (A WRD1))
(B WRD1))
ST)))
(DEFN SLLL (WRD1 WRD2 ST)
(IF (NOT (EVEN (A WRD1)))
(SET.ERROR T ST)
(BUMP . PC

(SET.AC.&.AC+1 (A WRD1)
(B930.SLLL (FETCH (ACS ST)
(A WRD1))
(FETCH (ACS ST)
(ADD1 (A WRD1)))
(B WRD1))
ST))))
(DEFN SKGE (WRD1 WRD2 ST)
(IF (NOT (B930.LESSP (FETCH (ACS ST) (A WRD1)) 0))

(SET.PC

(B930.ADD.4BIT (PC+1 ST)
(B WRD1))

ST)

(BUMP.PC ST)))
(DEFN SKLE (WRD1 WRD2 ST)
(IF (NOT (B930.LESSP 0 (FETCH (ACS ST) (A WRD1))))

(SET.PC

(B930.ADD.4BIT (PC+1 ST)
(B WRD1))

ST)

(BUMP.PC ST)))
(DEFN SRSA (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (A WRD1)
(B930.SRSA (FETCH (ACS ST) (A WRD1))

(B WRD1))
ST)))

(DEFN SRLA (WRD1 WRD2 ST)
(IF (NOT (EVEN (A WRD1)))
(SET.ERROR T ST)
(BUMP.PC
(SET.AC.&.AC+1 (A WRD1)
(B930.SRLA (FETCH (ACS ST)
(A WRD1))
(FETCH (ACS ST)
(ADD1 (A WRD1)))
(B WRD1))
ST))))
(DEFN SKEQ (WRD1 WRD2 ST)
(IF (B930.EQP 0 (FETCH (ACS ST) (A WRD1)))

(SET.PC

(B930.ADD.4BIT (PC+1 ST)
(B WRD1))

ST)

(BUMP.PC ST)))
(DEFN SRSL (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (A WRD1)
(B930.SRSL (FETCH (ACS ST) (A WRD1))

(B WRD1))
ST)))

(DEFN SRLL (WRD1 WRD2 ST)
(IF (NOT (EVEN (A WRD1)))
(SET.ERROR T ST)
(BUMP.PC
(SET.AC.&.AC+1 (A WRD1)
(B930.SRLL (FETCH (ACS ST)
(A WRD1))
(FETCH (ACS ST)
(ADD1 (A WRD1)))
(B WRD1))

ST
(DEFN SKNE (WRD1 WRD2 %%3)
(IF (NOT (B930.EQP 0 (FETCH (ACS ST) (A WRD1))))
(SET.PC
B930.ADD.4BIT (PC+1 ST) (B WRD1
o éT) () ())
, (BUMP.PC ST)))

(DEFN IAR (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (A WRD1)
(B930.ADDR (FETCH (ACS ST) (A WRD1))
(IF (LESSP (B WRD1) 8)
(B WRD1)
(DIFFERENCE
(PLUS (EXPT 2 15)
(B WRD1))
(EXPT 2 3)))
(F1 ST))
(SET.OV (B930.ADDR.OV (FETCH (ACS ST) (A WRD1))
-(IF (LESSP (B WRD1) 8)
(B WRD1)
(DIFFERENCE
(PLUS (EXPT 2 15)
(B WRD1))
(EXPT 2 3)))

(F1 5T))))))

" (DEFN SFE1 (WRD1 WRD2 ST)
’ (IF (EQUAL (EXT1 ST) 0)
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)
(BUMP.PC ST)) (* We have assumed that TRUE means 1 and FALSE 0))

(DEFN SFE2 (WRD1 WRD2 ST)
(IF (EQUAL (EXT2 ST) 0)
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)
(BUMP.PC ST)))

(DEFN SFE3 (WRD1 WRD2 ST)
(IF (EQUAL (EXT3 ST) 0)
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)
(BUMP.PC ST)))

(DEFN SRIE (WRD1 WRD2 ST)
(IF (EQUAL (IE ST) 0)
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)
(BUMP.PC ST))

(DEFN

(DEFN.

(DEFN

(DEFN

(DEFN

(DEFN

(DEFN

(DEFN

(DEFN

(* The ISP calls this instr SFIE))

SROV (WRD1 WRD2 ST)
(IF (EQUAL (OV ST) 0)
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)
(BUMP.PC ST)))
SFIR (WRD1 WRD2 ST)
(IF (EQUAL (IR ST) 0)
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)
(BUMP.PC ST)))
SRF1 (WRD1 WRD2 ST)
(IF (EQUAL (F1 ST) 0)
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)
(BUMP.PC ST)))
SRF2 (WRD1 WRD2 ST)
(IF (EQUAL (F2 ST) 0)
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)
(BUMP.PC ST)))

STE1 (WRD1 WRD2 ST)
(IF (NOT(EQUAL (EXT1 ST) 0))
(SET.PC (B930.ADD.4BIT (PC+1 ST)
: (B WRD1))
ST)
(BUMP.PC ST)))

STE2 (WRD1 WRD2 ST)
(IF (NOT(EQUAL (EXT2 ST) 0))
(SET.PC (B930.ADD.4BIT (PC+1 ST)
' (B WRD1))
ST)
(BUMP.PC ST)))

STE3 (WRD1 WRD2 ST)
(IF (NOT(EQUAL (EXT3 ST) 0))
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)
(BUMP.PC ST)))

SSIE (WRD1 WRD2 ST)
(IF (NOT(EQUAL (IE ST) 0))
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)
(BUMP.PC ST)))
SSOV (WRD1 WRD2 ST)
(IF (NOT(EQUAL (OV ST) 0))
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
ST)

(BUMP.PC ST)))
(DEFN STIR (WRD1 WRDZ ST)
(IF (NOT(EQUAL (IR ST) 0))
(SET.PC (B930.ADD.4BIT (PC+1 ST)
y (B WRD1))
= | ST)
(BUMP.PC ST)))
(DEFN SSF1 (WRD1 WRD2 ST)
(IF (NOT(EQUAL (F1 ST) 0))
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
sT)
(BUMP.PC ST)))
(DEFN SSF2 (WRD1 WRD2 ST)
(IF (NOT(EQUAL (F2 ST) 0))
(SET.PC (B930.ADD.4BIT (PC+1 ST)
(B WRD1))
sT)
(BUMP.PC ST)))

(DEFN SET.MULTIPLE.ACS (AC ADDR N ST)
(IF (ZEROP N)
ST
(IF (LESSP AC 16)
(SET.MULTIPLE.ACS (ADD1 AC)
(ADD1 ADDR)
(SUB1 N)
(SET.AC AC (FETCH. (MEM ST) ADDR) ST))
(SET.ERROR T ST)))
(* We assume that if asked to smash acs beyond 15 we cause
an error, but will have modified the preceding acs. -
- We don’t consider the possibility that ADDR is pushed
beyond 15 bits.))

(DEFN LDM (WRD1 WRD2 ST)
(SET.PC (B930.ADD.8BIT (PC ST) 2)
(SET.MULTIPLE.ACS (A WRD1)
(MAR WRD2 ST)
(ADD1 (DELTA WRD1))
ST))

(* Is the MAR to be calculated each iteration as in the ISP or just
once as we have done? The manual says that B+l consecutive memory
words are moved -- which agrees with us.

Also, when calculating the MAR of the second

word of an instruction, does the PC point to the first or second
word? We assume the second. What if the effective address is
eventually bumped beyond the end of memory?))

(DEFN SET.MULTIPLE.MEM (AC ADDR N ST)
(IF (ZEROP N)
ST
(IF (LESSP AC 16)
(STORE.MULTIPLE.MEM (ADD1 AC)
(ADD1 ADDR)
(SUB1 N)
(SET.MEM ADDR (FETCH (ACS ST) AC) ST))
(SET.ERROR T ST)))
(* We assume that if asked to access acs beyond 15 we cause

an error, but will have modified the preceding acs.
We don’t comsider the possibility that ADDR is pushed
beyond 15 bits.))

(DEFN STM (WRD1 WRD2 ST)
(SET.PC (B930.ADD.8BIT (PC ST) 2)
(SET.MULTIPLE.MEM (A WRD1)
(MAR WRDZ ST)
(ADD1 (DELTA WRD1))
§T))
(* See the questions under LDM))

(DEFN PADDM/POPM/PUSHM (WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD2) 0)
(PADDM WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD2) 1)
(POPM WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD2) 2)
(PUSHM WRD1 WRD2 ST)
(SET.ERROR T ST)))))

(DEFN POPM (WRD1 WRD2 ST)
(IF (OR (LESSP (FETCH (ACS ST) (B WRD2))
(ADD1 (DELTA WRD1)))
(LESSP (A WRD2) (DELTA WRD1)))
(SET.ERROR T ST)
(SET.PC (B930.ADD.8BIT (PC ST) 2)
(SET.AC (B WRD2)
(DIFFERENCE (FETCH (ACS ST) (B WRD2))
(ADD1 (DELTA WRD1)))
(SET.MULTIPLE.ACS (DIFFERENCE (A WRD2) (DELTA WRD1))
(DIFFERENCE (FETCH (ACS ST) (B WRD2))
(DELTA WRD1))
(ADD1 (DELTA WRD1))
§T))))
(* We don’t know what happens if the initial A is too small to
be decremented delta+l times. We don’t know what happens if
the stack pointer in B is negative or too small to be popped
delta+l times. We cause errors. We assume the ISP is wrong
when it says you go back to the stack pointer in B each time
-- permitting it to be one of the acs smashed -- instead of
just moving delta+l comsecutive words as stated by the manual.))

(DEFN PUSHM (WRD1 WRD2 ST)
(IF (OR (NOT (LESSP (IPLUS (FETCH (ACS ST) (B WRD2)) (ADD1 (DELTA WRD1)))
(EXPT 2 16)))
(NOT (LESSP (IPLUS (A WRD2) (DELTA WRD1)) 16)))
(SET.ERROR T ST)
(SET.PC (B930.ADD.SBIT (PC ST) 2)
(SET.AC (B WRD2) -
(IPLUS (FETCH (ACS ST) (B WRD2)) (ADD1 (DELTA WRD1)))
(SET.MULTIPLE.MEM (A WRD2)
(ADD1 (FETCH (ACS ST) (B WRD2)))
(ADD1 (DELTA WRD1))

ST))))

(* see the comments under POPM))

L

(DEFN EXOR (WRD1 WRD2 ST)
(BUMP.PC (SET.AC (A WRD1)
(B930.EXOR (FETCH (ACS ST)
(A WRD1))
(FETCH (ACS ST)
(B WRD1)))
ST)))

(DEFN HALT (WRD1 WRD2 ST)
(IF (CONTROL.PANELP ST)
(BUMP.PC (SET.HALT T ST))
(BUMP.PC ST)))

(DEFN RET (WRD1 WRD2 ST)
(IF (ZEROP (FETCH (ACS ST) 15))
(SET.ERROR T ST)
(SET.PC (B930.ADD.8BIT (FETCH (ACS ST) 0) (D WRD1))
(SET.AC 0 (FETCH (MEM ST) (FETCH (ACS ST) 15))
(SET.AC 15 (SUB1 (FETCH (ACS ST) 15))
sT)))

(* We don’t know if the new PC is supposed to permit a negative
displacement or not, i.e., whether we can really use our
8-bit adder. The ISP is wrong because it doesn’t reference
memory, it just loads ac 15 into ac 0)))

(DEFN JSS (WRD1 WRD2 ST)
(SET.PC (MAR WRD2 ST)
(SET.MEM (B930.ADD.8BIT (FETCH (ACS ST) 15) 1)
(B930.ADD.8BIT (PC ST) 2)
(SET.AC 15
(B930.ADD.8BIT (FETCH (ACS ST) 15) 1)
ST)))

(* We don’t really know the order of things. Is the stack
smashed and the stack pointer bumped before or after the MAR
calculation? Another question concerns the right half of
the first word of the instr. The manual does not specify
whether those bits are important or not. Our dispatcher,
EXEC17, treats them as though the manual said they were
don’t cares.))

(DEFN RPS (WRD1 WRD2 ST)
(IF (ZEROP (FETCH (ACS ST) 15))
(SET.ERROR T ST)
(SET.PC (B930.ADD.SBIT (FETCH (MEM ST)
(FETCH (ACS ST) 15))

(D WRD2))
(SET.AC 15
(SUB1 (FETCH (ACS ST) 15))
ST)))

(* Is the right half of the first word of the instr important?
Our EXEC17 treates it as don’t care.))

(DEFN POPF (WRD1 WRD2 ST)
(IF (ZEROP (FETCH (ACS ST) (B WRD2)))
(SET.ERROR T ST)
(SET.PC (B930.ADD.SBIT (PC ST) 2)
(SET.SW (FETCH (MEM ST) (FETCH (ACS ST) (B WRD2)))
(SET.AC (B WRD2)

(SUB1 (FETCH (ACS ST) (B WRD2)))
ST))))

(* What is the difference between the "status word" of the
programmers manual and the "switch register" of the ISP?
Is the manual setting of switches and POPF the only
way of setting SW?))

(DEFN PUSHF (WRD1 WRD2 ST)
(SET.PC (B930.ADD.8BIT (PC ST) 2)
(SET.MEM (B930.ADD.SBIT (FETCH (ACS ST) (B WRD2)) 1)
(SW ST) _
(SET.AC (B WRD2)
(B930.ADD.8BIT (FETCH (ACS ST)
(B WRD2))
1) :

ST)))
(> See POPF))

(DCL EXECR (WRD1 WRDZ ST) (* We should think carefully about
what the PC is set to when the imnstr
is executed.))

(DEFN EXECO7 (WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 13)

(IF (AND (EQUAL (OP1 WRD2) 1)
(EQUAL (AC WRD2) 1))
(LDM WRD1 WRD2 ST)
(SET.ERROR T ST))
(IF (EQUAL (OP2 WRD1) 14)
(IF (AND (EQUAL (OP1 WRD2) 1)
(EQUAL (AC WRD2) 1))
(STM WRD1 WRD2 ST)
(SET.ERROR T ST))
(IF (EQUAL (OP2 WRD1) 15)
(IF (AND (EQUAL (A WRD1) 0)
(EQUAL (IBIT WRD2) 0)
(EQUAL (OP1 WRD2) 4))
(PADDM/POPM/PUSHM WRD1 WRD2 ST)
(SET.ERROR T ST))
(SET.ERROR T ST)))) .

(* The ISP says that any OP2 other than 13, 14, and 15 is a no op;
we say error. The programmers manual implies that in additiom to
the conditions on OP2 of WRD1 there are specific bit patterns required
in WRD2. We cause errors if these bits are not set correctly.
EXCEPT, the manual says that A of WRD1 in PUSHM is don’t care and
we require zeroes as in PADDM.))

(DEFN EXECOO (WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 0)
(TRA/NOP WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 1)
(DECEQ WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 2)
(LCM WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 3)
(RLS WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 4)
(CONT WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 5)

S

L

i

(DECNE WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 6)
(ANDOP WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 7)
(RLL WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 8)
(ADDR WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 9)
(IR/CLA WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 10)
(OROP WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 11)
(MPY WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 12)
(CLAO/SUBR WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 13)
(ACM WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 14)
(CMPR WRD1 WRD2 ST)
(DIV WRD1 WRD2 ST)))))))))))))))))

(DEFN EXECF (WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 0)
(SFE1 WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 1)
(SFE2 WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 2)
(SFE3 WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 3)
(SRIE WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 4)
(SROV WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 5)
(SFIR WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 6)
(SRF1 WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 7)
(SRF2 WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 8)
(STE1 WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 9)
(STE2 WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 10)
(STE3 WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 11)
(SSIE WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 12)
(SSOV WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 13)
(STIR WRD1 WRD2 ST)
(IF (EQUAL (OP3 WRD1) 14)
(SSF1 WRD1 WRD2 ST)
(SSF2 WRD1 WRD2 ST)))))))))))))))))

(DEFN EXEC10 (WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 0)
(SLSA WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 1)
(SLLA WRD1 WRD2 ST)

(IF (EQUAL (OP2 WRD1) 2)
(SKGT WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 3)
(SKLT WRD1 WRDZ2 ST)
(IF (EQUAL (OP2 WRD1) 4)
(SLSL WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 5)
(SLLL WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 6)
(SKGE WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 7)
(SKLE WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 8)
(SRSA WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 9)
(SRLA WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 10)
(SKEQ WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 11)
(EXECF WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 12)
(SRSL WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 13)
(SRLL WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 14)
(SKNE WRD1 WRD2 ST)

(IAR WRD1 WRD2 ST)))))))))))))))))

(DEFN EXEC17 (WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 0)
(DADDR WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 1)
(DSUBR WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 3)
(EXOR WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 12)
(HALT WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD1) 13)
(RET WRD1 WRDZ ST)
(IF (EQUAL (OP2 WRD1) 15)
(IF (EQUAL (OP1 WRD2) 1)
(IF (EQUAL (AC WRD2) 0)
(JSS WRD1 WRD2 ST)
(IF (EQUAL (OP2 WRD2) 2)

(IF (EQUAL (IBIT WRD2) 0)

(RPS WRD1 WRD2 ST)
(SET.ERROR T ST))
(IF (EQUAL (OP2 WRD2) 14)

(IF (EQUAL (IBIT WRD2) 0)
(EXECR WRD1 WRD2 ST)

(SET.ERROR T ST))
(SET.ERROR T ST))))
(IF (EQUAL (OP1 WRD2) 2)
(IF (EQUAL (OP2 WRD2) 0)

(IF (EQUAL (IBIT WRD2) 0)

(DMPY WRD1 WRD2 ST)
(SET.ERROR T ST))
(IF (EQUAL (OP2 WRD2) 1)

(IF (EQUAL (IBIT WRD2) 0)

(DACM WRD1 WRD2 ST)
(SET.ERROR T ST))
(SET.ERRCR T ST)))
(IF (EQUAL (GP1 WRD2) 4)
(IF (EQUAL (OP2 WRD2) 5)
(IF (EQUAL (IBIT WRD2) 0)
(POPF WRD1 WRD2 ST)
(SET.ERROR T ST))
(IF (EQUAL (OP2 WRD2) 6)
(IF (AND (EQUAL (IBIT WRD2) 0)
(EQUAL (A WRD2) 15))
(PUSHF WRD1 WRD2 ST)
(SET.ERROR T ST))
, (SET.ERROR T ST)))
(SET.ERRCR T ST))))
(SET.ERROR T ST))))))))

(DEFN EXECUTE (WRD1 WRD2 ST)
(IF (EQUAL (OP1 WRD1) 0)
(IF (EQUAL (IBIT WRD1) 0)
(EXECO0 WRD1 WRD2 ST)
: (EXEC10 WRD1 WRD2 ST))
(IF (EQUAL (OP1 WRD1) 1)
(IF (EQUAL (AC WRD1) 0)
(JU WRD1 WRD2 ST)
(IF (EQUAL (AC WRD1) 1)
(JSAO WRD1 WRD2 ST)
(IF (EQUAL (AC WRD1) 2)
(JSA1 WRD1 WRD2 ST)
(JMAO WRD1 WRD2 ST))))
(IF (EQUAL (OP1 WRD1) 2)
(ADD WRD1 WRD2 ST)
(IF (EQUAL (OP1 WRD1) 3)
(SUB WRD1 WRD2 ST)
(IF (EQUAL (OP1 WRD1) 4)
(CMP WRD1 WRD2 ST)
(IF (EQUAL (OP1 WRD1) 5)
(LOAD WRD1 WRD2 ST)
(IF (EQUAL (OP1 WRD1) 6)
(STO WRD1 WRD2 ST)
(IF (EQUAL (IBIT WRD1) 0)
(EXECO7 WRD1 WRD2 ST)
(EXEC17 WRD1 WRD2 ST))))))))))

(DEFN B930 (ST INSTR.CNT INTER.INSTR.LST)
(IF (ZEROP INSTR.CNT)
(LIST ST INSTR.CNT) -
(IF (ERROR ST) (LIST ST INSTR.CNT)
(IF (HALT ST) (LIST ST INSTR.CNT)
(B930
(IF (AND (IE ST)
(MEMBER INSTR.CNT INTER.INSTR.LST))
(EXECUTE (FETCH (MEM ST) 2001Q) (FETCH (MEM ST) 2002Q) ST)
(EXECUTE (FETCH (MEM ST) (PC ST))
(FETCH (MEM ST) (PC+1 ST))
ST))
(SUB1 INSTR.CNT)
INTER.INSTR.LST))))
(* We assume from Chuck’s code rather than the programmers manual

. or ISP that interrupts jump to 2001 octal = 2001Q
For all purposes in the execution of the imnstruction at 2001,
the PC points to the instruction we were about to execute.)

)))
STOP

