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Preface

This story grew in the telling. We set out to edit the proceedings of a work-
shop on the ACL2 theorem prover—adding a little introductory material
to tie the research papers together—and ended up not with one but with
two books. The subject of both books is computer-aided reasoning, from
the ACL2 perspective. The first book is about how do it; the second book,
this one, is about what can be done.

The creation of ACL2, by Kaufmann and Moore, was the first step
in the process of writing this book. It was a step that took many years
and involved many people and organizations. We only list the names of
the people here, but in the Preface to the first book we give more com-
plete acknowledgments. For help in creating ACL2 and developing many of
the modeling and proof techniques used here, Kaufmann and Moore thank
Ken Albin, Larry Akers, Bill Bevier, Bob Boyer, Bishop Brock, Alessan-
dro Cimatti, Rich Cohen, George Cotter, John Cowles, Art Flatau, Noah
Friedman, Ruben Gamboa, Fausto Giunchiglia, Norm Glick, David Greve,
Don Good, David Hardin, Calvin Harrison, Joe Hill, Warren Hunt, Terry
Ireland, Robert Krug, Laura Lawless, Bill Legato, Tom Lynch, Panagiotis
(Pete) Manolios, William McCune, Robert Morris, Dave Opitz, Laurence
Pierre, Dave Reed, David Russinoff, Jun Sawada, Bill Schelter, Bill Scherlis,
Larry Smith, Mike Smith, Rob Sumners, Ralph Wachter, Matthew Wild-
ing, and Bill Young. We also are indebted to those who defined Common
Lisp, and the entire user communities of both ACL2 and its predecessor, the
Boyer-Moore theorem prover (Nqthm). Bob Boyer deserves special recog-
nition for his contributions to ACL2’s design and implementation during
the first few years of its development.

Financial and moral support during the first eight years of ACL2’s cre-
ation was provided by the U.S. Department of Defense, including DARPA
and the Office of Naval Research, and Computational Logic, Inc. Subse-
quently, ACL2’s development has been supported in part by the University
of Texas at Austin, the Austin Renovation Center of EDS, Inc., Advanced
Micro Devices, Inc., and Rockwell Collins, Inc.

Turning from the ACL2 system to this book, we owe our greatest debt
to the participants in the 1999 workshop where the idea of these books was
born. Ken Albin, Warren Hunt, and Matthew Wilding were among the first
to push for a workshop. We thank those participants who wrote material
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for the book, including Vernon Austel and all those listed in the table of
contents.

In addition to all the contributors and many of the people named above,
we thank Rajeev Joshi, Yi Mao, Jennifer Maas, George Porter, and David
Streckmann for proof reading drafts of various portions of the book.

We thank the series editor, Mike Hinchey, and Lance Wobus at Kluwer,
who patiently tolerated and adjusted to the increasing scope of this enter-
prise.

For many months now, much of our “free time” has been spent writ-
ing and editing these books. Without the cooperation and understanding
support of our wives we simply would not have done it. So we thank them
most of all.

Matt Kaufmann
Austin, Tezxas Panagiotis Manolios
February 2000 J Strother Moore
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Introduction

This book shows what can be done with computer aided reasoning. In-
cluded here are descriptions of mathematical, hardware, and software sys-
tems. These systems and their desired properties are modeled with formulas
in a mathematical language. That language has an associated mechanized
reasoning tool, called ACL2, which is used to prove that these properties
hold. With these techniques it is possible to describe components clearly
and reliably, permitting them to be combined in new ways with predictable
results.

The heart of the book reports on a sequence of case studies carried out
by twenty-one researchers, including the three editors. The case studies are
summarized starting on page 21. These studies are self-contained technical
papers. They contain exercises for the reader who wants to master the ma-
terial. In addition, complete ACL2 solutions for both the exercises and the
results reported in each case study are available on the Web, as described
below.

The book is meant for two audiences: those looking for innovative ways
to design, build, and maintain systems (especially hardware and software)
faster and more reliably, and those wishing to learn how to do this. The
former audience includes project managers in the hardware or software in-
dustry and students in survey-oriented software engineering courses. The
latter audience includes students and professionals pursuing rigorous ap-
proaches to hardware and software engineering or formal methods, who
may consider applying such methods in their work. We include in this au-
dience fellow researchers in formal methods who are building “competing”
systems and who wish to keep abreast of what is happening in the ACL2
camp.

We assume you are familiar with computer programming. We also as-
sume you are familiar with traditional mathematical notation: for example,
“f(z,y)” denotes the application of the function f to (the values denoted
by) z and y, and “|z|” denotes either the absolute value of z or its cardi-
nality, depending on the context.

We also assume that you are comfortable with the idea that mathemat-
ics can be used to describe and predict the behavior of physical artifacts.
This notion is fundamental to modern engineering. It is non-controversial
that mathematically assisted engineering allows the construction of reliable
complex systems faster than can be built by “intuitive engineering.”
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A major difficulty with applying mathematical modeling and analysis to
the engineering of hardware and software systems is that the mathematics
traditionally taught in college—calculus—is inappropriate for application
to discrete systems. An appropriate mathematical framework is symbolic
logic, where it is possible to describe and analyze the properties of recursive
functions on inductively constructed domains. Mechanical tools exist to
assist people in reasoning about such systems, relieving them of the heavy
burden of logical correctness while targeting their talents towards creative
insights and the high level decomposition of the problem.

If you are a member of the audience looking for innovative ways to
build systems, you need not care about the mathematical details as long
as you accept that mathematical modeling and analysis are the keys to
better engineering and that practitioners must be trained in appropriate
mathematics and tools. The operative questions are probably “What can
be done by these people with their tools?” and “How long does it take?”
This book addresses these questions.

If you are a member of the other audience and wish to learn how to do
such modeling and analysis, we recommend that you eventually also read
the companion book, Computer-Aided Reasoning: An Approach [58]. But
the present book is of interest because it shows you what is possible. It also
provides many exercises on which you can hone the skills taught in [58].

Flipping through this book will reveal a certain uniformity: Lisp expres-
sions appear everywhere! That is because the mathematical logic used here,
ACL2, is based on Common Lisp. To be more precise, it is a functional
(side-effect free) extension of a subset of Common Lisp. Such a language
is ideally suited to many modeling problems, because it supports formal
models—of algorithms, compilers, microprocessors, machine languages—
that are both executable and analyzable. That is, the formal models do
double duty: they specify the results to be delivered and they can be used
as efficient simulators. For example, before proving a floating-point multi-
plier correct, one might test it with millions of test vectors. Or, engineers
unfamiliar with formal methods might compile and run Java programs on
a formal model of a microprocessor. Such applications are real and are
described here. Indeed, the ACL2 system itself is written almost entirely
in the ACL2 language; its size (6 megabytes of source code), reliability,
efficiency, and general utility demonstrate the practicality of the language.

What is surprising to many people is the range of ideas that can be
discussed with such a simple language. The heart of this book consists of
fourteen chapters written by various contributors. The ACL2 language is
used to model and analyze problems in the following areas: graph theory,
model checking, integral calculus, microprocessor simulation, pipelined ar-
chitectures, an occurrence-oriented hardware description language, VHDL,
symbolic trajectory analysis, floating-point multiplication, a safety-critical
compiler, Trojan horses, a proof checker for the Otter theorem prover, a
mathematical challenge by Knuth, and non-standard real analysis. The
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breadth of this collection is more impressive once you realize that all the
claims are expressed in a formal mathematical system and all the theorems
cited are proved mechanically. The list of authors also shows that you do
not have to be the creators of ACL2 to use the system well.

One might group these case studies into four categories: tutorial, hard-
ware, software, and mathematics. But there is much overlap. The tutorial
on model checking explains, with the precision of ACL2, an algorithm used
primarily in hardware verification; but the chapter then proves the algo-
rithm correct, an exercise in software verification. The hardware models are
written in executable Lisp; hence, the theorems proved are really theorems
about software systems that simulate hardware. The safety-critical com-
piler uses modular arithmetic and hence depends on the Chinese remainder
theorem, which is normally considered a mathematical exercise.

The book is divided into two parts. In Part I we deal very briefly with
certain preliminaries: the effort involved in pursing this approach, followed
by an extremely brief discussion of the ACL2 logic and its mechanization
that is intended to provide the necessary background for the second part.
The heart of the book is Part I, where the case studies are presented.

The authors of these case studies were asked to do three things that
are quite unusual. First, they were asked to provide exercises in their
particular applications. Second, they were asked to provide solutions to all
their exercises so that we, the editors, could post them on the Web. Third,
they were asked to provide us with the entire ACL2 scripts necessary to
formalize the models and prove all the properties discussed in their studies.
These too are on the Web, as described below. When we say, for example,
that one of the case studies formalizes a floating-point multiplier and proves
it correct, we mean that not only can you read an English description of
the model and how it was proved correct, but you can obtain the entire
transcript of the project and replay the proofs, if you wish, on your copy
of ACL2. Several industrial projects were “sanitized” for inclusion here (or
were not included at all). But the resulting scripts are extremely valuable
to the serious student of formal methods. Every case study can be treated
as an exercise in formalizing the model and proof described, and a complete
solution is available to help you through the hard parts.

Recall that we edited the book with two audiences in mind. If you are
a member of the first audience, looking to survey the state of the art, we
recommend that you read both parts, but not pay too much attention to
the formulas in the second part. Most of the case studies paraphrase the
formulas. Just remember that not only can the informal remarks be made
mathematically precise but they are being made precise; not only can the
arguments be checked by machine, they were checked by machine. Indeed,
you can obtain the scripts if you wish. We also recommend that you read
the exercises, even though we do not expect you to do them. By reading
them you will learn what experienced users think are reasonable challenges
for people expecting to move on to industrial applications.
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If you are a member of the second audience, trying to learn how to do
this, then your approach to this book depends on whether you are already
familiar with ACL2. If so, we recommend that you skim Part I. Then, read
the first three case studies of Part II, doing many of the exercises as you go.
Once you get through that, we recommend reading the rest of Part IT and
doing the exercises for those studies that seem relevant to your own work.

On the other hand, if you want to learn ACL2 but have not yet begun,
we recommend reading this book in the “survey style” suggested above,
so you get an idea of the kind of thinking required. We then recommend
that you read and work your way through the companion book [58], and
then return to the exercises in this book, starting with the first three case
studies.

The ACL2 system is available for free on the Web (under the terms
of the Gnu General Public License). The ACL2 home page is http://-
WWW.cs.utexas.edu/users/moore/acl2. There you will find the source
code of the system, downloadable images for several platforms, installation
instructions, two guided tours, a quick reference card, tutorials, an online
User’s Manual, useful email addresses (including how to join the mailing
list or ask the community for help), scientific papers about applications,
and much more.

The ACL2 online documentation is almost 3 megabytes of hypertext
and is available in several formats. The HTML version can be inspected
from the ACL2 home page with your browser. Other formats are explained
in the “Documentation” section of the installation instructions accessible
from the ACI12 home page.

Important: In this book, you will often see underlined strings in type-
writer font in such phrases as “see defthm.” These are references to the
online documentation. To pursue them, go to the ACL2 home page, click
on “The User’s Manual” link, and then click on the “Index of all docu-
mented topics.” You will see a list from A to Z. Click on the appropriate
letter and scan the topics for the one referenced (in this case, defthm) and
click on it.

While the online documentation is quite extensive, it is not organized
linearly. There are several tutorials and fully worked problems, but the
documentation is primarily a reference manual. If you are a newcomer to
ACL2 and want to learn how to use it effectively, we strongly recommend
that you read the companion book [58].

Solutions to all the exercises are available online. Go to the ACL2 home
page, click on the link to this book and follow the directions there. The
directions also explain how to obtain the ACL2 scripts for each case study.

You will note that on the Web page for this book there is a link named
“Errata.” As the name suggests, there you will find corrections to the
printed version of the book. But more importantly, you may find differences
between the version of ACL2 described in the printed book (Version 2.5)
and whatever version is current when you go to the home page. The ideas
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discussed here are fundamental. But we do display such syntactic entities
as command names, session logs, etc. These may change. Therefore, look
at the online Errata when you first begin to use ACL2 in conjunction with
this book.

We believe it is appropriate to use this book in graduate and upper-
division undergraduate courses on Software Engineering or Formal Meth-
ods. It could be used in conjunction with other books in courses on Hard-
ware Design, Discrete Mathematics, or Theory (especially courses stressing
formalism, rigor, or mechanized support). It is also appropriate for courses
on Artificial Intelligence or Automated Reasoning.






Part 1

Preliminaries






Overview

When people talk about “theorems” and “proofs” most of us either think of
the elementary results of high school geometry, e.g., “If two distinct lines
intersect, then they intersect in exactly one point,” or famous unsolved
problems, such as Goldbach’s question, “Is there an even number greater
than 2 that is not the sum of two primes?”.

But consider the following theorems of a different sort.

¢ The hardware implementing floating point multiplication produces
answers in accordance with the IEEE floating-point standard.

¢ The desired instruction set architecture is implemented by the pipe-
lined architecture.

¢ The program identifies the five highest peaks in the data stream and
stores the addresses of those peaks.

¢ The compilation algorithm produces object code that preserves the
semantics of the source program.

¢ The processor is “secure.”

These statements are informal, but they can be made formal. And once
made formal, such statements can sometimes be shown to be true: they can
be proved as theorems of the mathematical logic in which they are formal-
ized. We know, because each of the statements above has been formalized
and proved, using the formal logic used in this book. Indeed, the proofs
were checked mechanically by the system used in this book. Furthermore,
the computing systems studied were not “toys.” Each system and theorem
was of interest to an industrial sponsor or designer.

2.1 Some Questions
You probably have many questions, ranging from the philosophical to the
practical.

¢ How can anyone make mathematically precise statements about phys-
ical artifacts like computers?
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¢ What does it mean to say that such a statement is true?

¢ How does the computer program described in this book work? What
does it do?

¢ Can a computer program really help a person reason?
¢ Who can learn to use it?
¢ How long does it take to learn?

¢ How automatic is it? How long does it take to prove a statement like
those above?

¢ How realistic are the problems to which it has been applied?

Most of this book is devoted to the last question. It is answered by showing
you the case studies and their solutions. But we will briefly address the
other questions now.

2.2 Some Answers

You cannot prove theorems about physical artifacts. Theorems are proved
about mathematical models of physical artifacts. More precisely, mathe-
matical formulas can be written to describe the behavior of artifacts. We
call those formulas “models” of the artifacts. Part of an engineer’s job
training is to learn how to create mathematical models of structures. These
models address some concerns and ignore others: the shape and composi-
tion of the supporting beams are carefully modeled, but the texture and
color of the paint might be ignored. These models are then used to answer
questions about the behavior of the artifact before it is actually constructed.
The same basic ideas can be applied to the design of computing arti-
facts. But how would you describe, say, a microcode engine or a compiler?
You certainly would not write differential equations. You might write the
description as a computer program. That is, you might construct a program
that produces the desired behavior in response to given input. Such pro-
grams are called “simulators” in hardware design and are sometimes called
“prototypes” in software design. They are models of the artifact (and they
often ignore important aspects, like power consumption or user interface).
But generally such models are used to test the artifact, by executing the
code for the model on concrete examples to see if it behaves as intended.
Of course, bugs could also be found by inspection of the model itself. A
clever programmer might stare at the code for the model and realize that
a certain input causes “unintended” behavior. What is this programmer
doing? She is not executing the model. She is reasoning abstractly—
symbolically—about the model. Now imagine that we could offer her some
mechanical assistance in the symbolic manipulation of the model.
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To offer mechanical assistance, we need to “program” the model in a
language that is unambiguous, a language that is simple enough to reason
about but rich enough to model a lot of computing systems. It helps if
the language is executable, so we can continue to use testing as a way to
evaluate and analyze our models. What language shall we use?

The answer in this book is a functional programming language based
on Common Lisp. The language is called ACL2. To the newcomer, it is a
variant of Lisp, without side-effects. Models of interesting systems can be
coded up in this language, compiled with off-the-shelf Common Lisp com-
pilers, and made to execute fairly efficiently on a variety of platforms. This
book is full of examples, but Chapter 8 discusses microprocessor models
and simulation efficiency at length.

Now suppose we want to reason about a model. For example, suppose
we want to determine whether its output has a certain relationship to its
input. We do this by defining the relation as another Lisp program and
composing it with the model. The question we then want to answer is
whether this composite expression always return the answer t. This is akin
to annotating a conventional model with a test to determine whether the
computed answer is correct.

To convince ourselves that the answer is always t (or, often, to discover
why it is not), we might symbolically expand the model, “running” it on
indeterminate data and imagining the possible execution paths. This might
be called “symbolic simulation” but in a mathematical setting it is just
simplification of symbolic expressions.

We handle loops (or recursions) in the model by thinking about “what
the loop is doing” in general. That is, we posit some property that is true
whenever we arrive at the top of the loop (not just the first time) and we
try to show that it is true the next time we arrive at the top of the loop. If
we can do that, and if the property is true the first time, then it is always
true. This kind of reasoning is familiar to all programmers and is, of course,
just mathematical induction.

To aid the “clever programmer” in the inspection and analysis of a
model, we have a mechanical theorem prover. The theorem prover pro-
vides, among many other features, a powerful symbolic simplifier and a
sophisticated mechanism for inventing inductive arguments.

The system is rule driven in the sense that its behavior is affected by
rules in a database. These rules mainly tell it how to simplify expressions
but also control many other aspects of the system. The rules are “pro-
grammed” into the database by the user, after considering the model in
question and the kinds of problems it presents. But the ACL2 user cannot
add just any rule. If that were so, the logical correctness of the system’s
arguments would depend on the infallibility of its human user. Instead,
every rule in the database is derived from a mathematical theorem which
must first be proved by ACL2. So the user writes conjectures, which, if
proved by the system, are turned into rules by the system, which, in turn,
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determine how the system behaves in the future. The user’s job is entirely
strategic. Blunders by the human might prevent the system from finding
a proof, but they will not make the system assent to something that does
not follow logically.!

This design empowers the user to think creativity about how to ma-
nipulate the concepts. Along the way, the user codifies strategies that the
system will apply to prove theorems in the particular application domain.

2.3 Anecdotal Evidence from Two Projects

The ACL2 system was designed by Boyer, Moore, and Kaufmann in re-
sponse to the problems faced by users of the Boyer-Moore theorem prover,
Nqthm [7], in applying that system to large-scale proof projects [59]. Those
projects included the proof of Godel’s incompleteness theorem [102], the
verification of the gate-level description of the FM9001 microprocessor [53],
the KIT operating system [2], the CLI stack [3] (which consists of some ver-
ified applications written in a high-level language, a verified compiler for
that language, a verified assembler/loader targeting the FM9001), and the
Berkeley C string library (as compiled by gcc for the Motorola MC68020)
[9]. For a more complete summary of Nqthm’s applications, see [7]. Such
projects set the standards against which we measure ACL2.

How hard is it to use ACL2 to prove theorems of commercial interest?
What is involved? Here are very brief descriptions of two major ACL2
projects, with emphasis on what had to be done, who did it, and how long
it took.

2.3.1 The Motorola CAP DSP

The Motorola Complex Arithmetic Processor (CAP) is a single-chip DSP
(digital signal processing) co-processor optimized for communications sig-
nal processing. The CAP project started in 1992 at the Motorola Govern-
ment and Systems Technology Group, Scottsdale, Arizona [38]. The project
lasted several years.

The CAP is an interestingly complex microprocessor. Aspects of its de-
sign include separate program and data memories, 252 programmer-visible
registers, 6 independently addressable data and parameter memories with
the data memories logically partitioned (under program control) into source
and destination memories, and an ALU with 4 multiplier-accumulators and
a 6-adder array. The instruction word is 64 bits, which is decoded into a
317-bit low-level control word within the ALU. The instruction set includes

1In order to provide greater flexibility for the proof process, ACL2 allows the user to
explicitly add axioms and temporarily skip proofs.
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Task Man-Months
Microarchitecture model 15
Sequential model and equivalence proof 5
Reusable books 6
Microcode proofs 2
Meetings and reports 3

Figure 2.1: CAP Tasks Breakdown

no-overhead looping constructs. As many as 10 different registers can be
involved in the determination of the next program counter and a single
instruction can simultaneously modify over 100 registers. The 3-stage in-
struction pipeline contains hazards visible to the programmer.

The motivation behind this complexity and unusual design was to allow
Motorola engineers to code DSP application programs in CAP microcode
and have those programs execute extremely efficiently.

One ACL2 user (Bishop Brock) was assigned the job of providing for-
mal methods support for the design effort. Brock spent 31 months on the
project, the first seven of which were in Scottsdale interacting with the
design team. The rest of Brock’s time was in Austin, Texas. During the
project Brock described the machine at two levels: the microarchitecture
level, which includes the pipeline, and the microcode programmer’s level,
which is a simpler sequential machine. Anecdotal evidence suggests that
Brock contributed to the design in minor ways merely by recording design
decisions formally and commenting on their implications.

Using ACL2, Brock proved that the two views of the machine are equiv-
alent provided the microcode being executed does not expose any hazards.
The formalization of when a hazard is present in microcode was an im-
portant contribution. Brock defined a function that recognizes whether a
piece of CAP microcode is hazard-free. The equivalence theorem he proved
shows that his function is adequate. Because the function is executable,
Brock certified DSP application programs to be hazard-free merely by exe-
cuting the function on the microcode. About 50 programs were so certified.
Hazards were found and eliminated. Brock also proved several application
programs correct with respect to the sequential model. See [12, 13]. In the
course of the work, Brock developed several ACL2 books—collections of
theorems encoding useful theorem proving strategies in certain domains—
which are independent of the CAP project and have found use in other
ACL2 projects. Among the books he produced is the extremely useful
integer hardware specification (ihs) library.

A breakdown of Brock’s tasks and the time taken on each is provided
in Figure 2.1. Because the design was under constant evolution during the
period, the formal models were also under constant evolution and “the”
equivalence theorem was proved many times. This highlights the advantage
of developing general proof strategies embodied in books. It also highlights
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the utility of having a good inference engine: minor changes in the theorem
being proved do not necessarily disrupt the proof replay.

It generally takes much longer for the ACL2 user to develop the mod-
els, theorems, and libraries than it does for the theorem prover to check
successful proof scripts. The CAP proofs can be reproduced in about one
hour on a 200 MHz Sun Microsystems Ultra 2 with 256 MB of memory.

2.3.2 Division on the AMD-K5

A considerably simpler ACL2 project was the modeling and correctness
proof for the floating point division microcode on the AMD-K52 micro-
processor. This was carried out by ACL2 authors Moore and Kaufmann
together with AMD designer Tom Lynch.

The divide microcode is less than one page long. Its informal analysis
by the AMD designers [66] was about 10 pages long and relied on common
knowledge among floating-point designers, as well as on some subtle original
arguments. Peer review was limited and time was short. Informal proofs
of similar length for other algorithms had previously been found incorrect
during testing of the “proved” part. Hence, confidence in the analysis was
not commensurate with the risks involved and AMD decided to have the
proof mechanically checked with ACL2.

Ten weeks elapsed from the time the project started to the time the
final theorem was mechanically proved (June—August, 1995). At the be-
ginning of that period Lynch explained the microcode to Moore. With
help from Warren Hunt, Moore came to a partial understanding of the mi-
crocode and began to formalize its semantics and the specification. This
involved formalizing many floating-point concepts. Until that time, ACL2
had never been used to prove anything about floating-point arithmetic.
Approximately 80% of the project’s time was devoted to the formal devel-
opment of concepts and relationships that are common knowledge in the
floating-point design community.

About one month into the project, Moore enlisted the aid of Kaufmann.
Moore and Kaufmann divided the work of formalization and proof between
them, “contracting” with each other to prove certain lemmas. Lynch was
involved in the formal phase of the proof whenever the informal arguments
“broke down” or were unclear. The key lemma (Theorem 1 of [79]) was
mechanically checked approximately one month after Kaufmann joined the
project. Moore then worked alone two more weeks to complete the proof.

The theorem has since been changed several times, most recently in
response to the reviewers of [79]. The “social process of mathematics” was
at work here on an accurate formal modeling of the algorithm and its desired
properties. Each time the theorem was changed, Moore used ACL2 to prove

2AMD, the AMD logo and combinations thereof, AMD Athlon, and AMD-K5 are
trademarks of Advanced Micro Devices, Inc.
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the modified conjecture (when correct), working from the revised proof
script. The new proofs were most often constructed automatically because
the changes were slight (e.g., narrowing by 1 the bounds of a representable
exponent).

Approximately 130 functions were defined. Forty-seven of them are
specific to the algorithm and its proof. The others are general-purpose
floating-point concepts. Approximately 1,200 lemmas were mechanically
proved. Sixty percent of them are of general interest. The other 40% are
specific to the analysis of the particular algorithm. It takes approximately
one hour (on a 200 MHz Sun Microsystems Ultra 2 with 256 MB of memory)
to replay the entire sequence of definitions and theorems starting from
scratch.

2.4 Sociology

Industrial ACL2 proof projects usually involve several people, although
often only one person interacts with the theorem prover. Several people are
involved because it is rare to find a single person who has the requisite skills.
Some members of the group must completely understand the application in
question: what informal property is supposed to be true and why. We will
call these people the implementors. In addition, the group must include
one or more people who know how to

¢ use the ACL2 logic to formalize informally described concepts,
¢ do pencil-and-paper proofs of ACL2 formulas, and
¢ drive the ACL2 theorem prover.

We will call these people the formalizers.

Often, the formalizers do not have an intuitive grasp of the problem
at the beginning of the project. This is because they are often a late
addition to a pre-existing team of implementors who have been studying
the practicality of the proposed “product.”

Usually the first step in a project is for the implementors to explain to
the formalizers what the product does and how it does it. The implementors
might not give clues to why they expect the product’s design to be correct;
and if they do, their notion of “correctness” may not seem anything like a
property that can be nicely formalized. Indeed, the notion of an explicit,
abstract statement of correctness is foreign to many implementors. From
their perspective, correctness is best described as the absence of “bugs”
that are obvious to the end-user. “Bugs” may be detected “by inspection”
but are more likely to be exposed through testing.

It is not uncommon for the crucial first meeting to go badly. The differ-
ent attitudes of the two sides are obvious. The implementors are anxious to
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construct something that “works” and are determined to “sell” the project.
They feel that their reputations, if not their jobs, are on the line. Further-
more, they may have never presented the details of the project to anyone
outside the management structure. They almost certainly have never tried
to explain the internal workings to outsiders, much less to outsiders unable
to speak the in-house language and not possessing the common knowledge
of the field. To make matters worse, the implementors may be defensive:
they feel that the formalizers are out to find fault in their design and may
exaggerate the importance of their discoveries.

Meanwhile, the formalizers are asking for the impossible and the im-
plementors are not able to deliver it. The formalizers want an utterly
precise specification of the component in isolation, understandable to the
non-expert. They too feel that their reputations are on the line. They know
they must get results soon, because of the project deadlines and because of
skepticism within the company of the worth of formal methods. But the
whole project seems vague, poorly understood, and rushed. And they too
are defensive; they have never tried anything quite like this project and do
not know how vast a body of mathematics they have to formalize just to
get to where the implementors start in their informal argument.

Consider the following a worst-case scenario. Both sides may leave this
crucial first meeting feeling frustrated and alarmed. The “team” is full of
ignorant people! When either side tries to speak the language of the other,
they either reinforce the impression of ignorance or inadvertently mislead!
Neither side seems to value the skills or objectives of the other. The mutual
defensiveness exacerbates the problem. The implementors hide their main
worries about the design and try to bluff their way around them. The
formalizers hide their main worries about the inadequacy of their tools and
try to blame the problem on poorly understood goals.

As you might well imagine, this would be a difficult beginning! Crucial
to the success of the project is good communication and mutual respect
between these two “sides.” Indeed, the polarization into two sides is de-
structive. The implementors should regard the formalizers as friends: the
bugs they find will be fixed before they get out. The formalizers should
see the implementors as friends: their designs are state-of-the-art solutions
to novel problems; bugs are inevitable but the implementors often have
exceedingly well-honed intuitions about how to solve their problems. The
skill-sets of the two sides are complementary and should be appreciated by
all. The implementors have good intuitions—it is not random chance that
enables them to produce complex designs that almost always work—but
they do not have the formalization skills to prove their designs correct.
The formalizers are masters at casting intuitive ideas into logic, but do not
have the engineering experience to navigate through the tradeoffs of behav-
ior, performance, cost, and time-to-market. Each side has to trust that the
other will fill the gaps. Each side has to be honest with the other. The
implementors must explain why they mistrust their design. The formalizers
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must confess that they do not understand the goal or the methods, that the
extant formal work in the field is miniscule, and that the expressive power
of whatever formalism they are using limits their ability to capture what
is desired. All team members should agree that the goal is to produce a
better understood product.

Often the main contributions of the formalizers are to foster communi-
cation and reduce ambiguity. As the team coalesces, the formalizers become
lexicographers: they record the precise meanings of terms used by the team
and look out for misunderstandings between team members. Bugs are of-
ten found by trying to make precise the statement of what the product is
supposed to do and why the implementation works.

Once the basic ideas have been formalized and agreed upon, the imple-
mentors and formalizers can design clear interfaces between the modules
and get on with their main tasks, of producing implementations and proofs.
Often feedback between the tasks is very helpful. You know the team has
come together when the implementors ask the formalizers whether it is per-
mitted to assume that a certain module has a given property, or when the
formalizers ask the implementors for help in proving some key property.

2.5 Toy Models

The formalizers will often be struggling with several issues at once: un-
derstanding the informal descriptions of the product, discovering and for-
malizing the relevant knowledge that the implementors take for granted,
and formalizing the design and its specification. To a large extent this
phenomenon is caused by the fact that formal methods is only now being
injected into industry. Once a significant portion of a group’s past projects
has been formalized, along with the then-common knowledge, it will be
much easier to keep up. But at this moment in history, keeping up during
the earliest phases of a project can be quite stressful.

When working on a new project, we recommend that the formalizers
start by formalizing the simplest imaginable model, e.g., the instruction
set with one data operation and a branch instruction, or the protocol with
a simple handshake. Choosing this initial model requires some experience.
The trick is to choose a model that exhibits the “new” problems—problems
the formalizers have never dealt with—that will be encountered when the
model is elaborated to the interesting case. Such toy models are extremely
useful for developing the form of the model, the statement of its key proper-
ties, tool support (e.g., simulation support), and the structure of the proofs.
Since iteration is often required to get things to fit together properly, it is
crucial that this initial foray into the unknown be done with a small enough
model to permit complete understanding and rapid, radical revision.

The most common insight gained from this process is that intermedi-
ate abstractions are being used implicitly. Informal language is so flexible
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we often develop new models without realizing it. “Imagine that we did
runtime error checking” calls into being an intermediate model in which
certain conditions are checked at runtime and explicitly signaled. Often,
subsequent arguments are couched in terms of the original model but in
fact are being conducted about this new model. Without careful scrutiny,
one may not be aware that two models are being used by the team and
that the two models have important relationships, e.g., that they produce
identical outcomes when one of them satisfies some additional constraint
that cannot even be expressed about the other.

Once such insights are made, they not only dramatically influence the
formalization of the actual models but they influence the language used by
the design team to discuss the evolving implementation.

A toy model is also a good sandbox in which the implementors and
formalizers can learn to communicate and can come to a clear agreement
as to what is to be modeled, formalized, and proved.

Finally, it is crucial that the project management understand the impor-
tance of these initial toy models. The premature introduction of realistic
complexity into the model can delay the completion of the project. A well-
chosen toy can provide a road map to a correct design, implementation,
and proof.

2.6 Requirements on the User

The “typical” ACL2 user has a bachelor’s degree in computer science or
mathematics. We expect that reading [58] and working the exercises there
will be sufficient training to prepare a newcomer for the exercises here.
How long does it take for a novice to become an effective ACL2 user?
Let us first answer a different question.® How long does it take for a
novice to become an effective C programmer? (Substitute for “C” your
favorite programming language.) It takes weeks or months to learn the
language but months or years to become a good programmer. The long
learning curve is not due to the complexity of the programming language
but to the complexity of the whole enterprise of programming. Shallow is-
sues, like syntax and basic data structures, are easy to learn and allow you
to write useful programs. Deep skills—like system decomposition, proper
design of the interfaces between modules, and recognizing when to let ef-
ficiency impact clarity or vice-versa—take much longer to master. Once
deep skills are learned, they carry over almost intact to other languages
and other projects. Learning to be a good programmer need not require
using a computer to run your programs. The deep skills can be learned
from disciplined reflection and analysis. But writing your programs in an

3The following three paragraphs are taken verbatim from our discussion of this issue
in [58] because they answer the question so appropriately in the current context.
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implemented language and running them is rewarding, it often highlights
details or even methodological errors that might not have been noticed
otherwise, and, mainly, it gives you the opportunity to practice.

We hope that you find the above comments about programming non-
controversial because analogous comments can be made about learning to
use ACL2 (or any other mechanized proof system).

How long does it take for a novice to become an effective ACL2 user?
It takes weeks or months to learn to use the language and theorem prover,
but months or years to become really good at it. The long learning curve
is not due to the complexity of ACL2—the logic or the system—but to the
complexity of the whole enterprise of formal mathematical proof. Shallow
issues, like syntax and how to give hints to the theorem prover, are easy to
learn and allow you carry out interesting proof projects. But deep skills—
like the decomposition of a problem into lemmas, how to define concepts
to make proofs easier, and when to strive for generality and when not to—
take much longer to master. These skills, once learned, carry over to other
proof systems and other projects. You can learn these deep skills without
doing mechanical proofs at all—indeed, you may feel that you have learned
these skills from your mathematical training. Your appraisal of your skills
may be correct. But writing your theorems in a truly formal language and
checking your proofs mechanically is rewarding, it often points out details
and even methodological errors that you might not have noticed otherwise,
and, mainly, it gives you the opportunity to practice.






Summaries of the Case Studies

There are fourteen case studies, organized as follows. The first three, writ-
ten individually by the editors, are especially appropriate for beginners, but
contain useful information for all readers. The next six chapters are related
to the formalization, specification, and verification of computer hardware.
The next two deal explicitly with computer software applications. The last
three focus on problems in logic and mathematics. We say “explicitly”
above because all the applications can be seen as illustrative of software
verification: since the logic is in essence Lisp, the models being verified are
in essence just software systems.

As noted in the Introduction, each case study is supported by material
on the Web, including full solutions to the exercises and all definitions and
theorems discussed. See page 4.

¢ Chapter 5, An Exercise in Graph Theory, by J Moore. This chapter
formalizes the notion of a directed graph and shows how to prove the
correctness of a depth-first path finding algorithm. The chapter re-
quires no specialized knowledge of graph theory and is meant entirely
as an exercise in formalization and use of ACL2.

¢ Chapter 6, Modular Proof: The Fundamental Theorem of Calcu-
lus, by Matt Kaufmann. This chapter presents a modular, top-down
ACL2 proof methodology and then uses the methodology to outline
a formalization and proof of the Fundamental Theorem of Calculus.
While the example is based on the non-standard extension of ACL2
described by Gamboa in Chapter 18, non-standard analysis is not
a prerequisite either for this chapter or for the proof methodology
presented.

¢ Chapter 7, Mu-Calculus Model-Checking, by Panagiotis Manolios.
The Mu-Calculus is a formal logic into which many temporal logics,
including CTL, CTL*, and LTL, can be translated. This chapter
presents a formal development of the syntax and semantics for the
Mu-Calculus, a model-checker for the Mu-Calculus in ACL2, and a
discussion of the translation of other temporal logics into the Mu-
Calculus. There are several self-contained sections in which the reader
is presented with exercises whose solutions lead to books on set theory,
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fixpoint theory, and relation theory. These books will be of interest
even to readers not interested in the Mu-Calculus.

Chapter 8, High-Speed, Analyzable Simulators, by David Greve, Mat-
thew Wilding, and David Hardin. High-speed simulation models are
routinely developed during the design of complex hardware systems
in order to predict performance, detect design flaws, and allow hard-
ware/software co-design. Writing such an executable model in ACL2
brings the additional benefit of formal analysis; however, much care
is required to construct an ACL2 model that is both fast and analyz-
able. In this chapter, techniques are described for the construction of
high-speed formally analyzable simulators in ACL2. Their utility is
demonstrated on a simple processor model.

Chapter 9, Verification of a Simple Pipelined Machine Model, by Jun
Sawada. An ACL2 model of a three-stage pipelined machine is de-
fined, along with a model of the corresponding sequential machine.
Then a proof of the equivalence between the two machines is pre-
sented. More importantly, the method of decomposing the proof ap-
plies to much more complicated pipelined architectures.

Chapter 10, The DE Language, by Warren Hunt. The DE language
is an occurrence-oriented description language that permits the hier-
archical definition of finite-state machines in the style of a hardware
description language. The syntax and semantics of the language are
formalized and the formalization is used to prove the correctness of a
simple hardware circuit. Such formal HDLs have been used to prove
properties of much more complicated designs.

Chapter 11, Using Macros to Mimic VHDL, by Dominique Borrione,
Philippe Georgelin, and Vanderlei Rodrigues. The purpose of this
project was to formalize a small synthesizable behavioral subset of
VHDL, preserving as much as possible the syntactic flavor of VHDL
and facilitating verification by symbolic simulation and theorem prov-
ing.

Chapter 12, Symbolic Trajectory Evaluation, by Damir Jamsek. Sym-
bolic Trajectory Evaluation (STE) is a form of model checking fun-
damentally based on symbolic simulation. This chapter presents a
formal treatment of STE, including ACL2 proofs of results presented
in the Seger and Joyce paper [101].

Chapter 13, RTL: A Verified Floating-Point Multiplier, by David
M. Russinoff and Arthur Flatau. This chapter describes a mechanical
proof system for designs represented in the RTL language of Advanced
Micro Devices. The system consists of a translator to the ACL2 logi-
cal programming language and a methodology for verifying properties
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of the resulting programs using the ACL2 prover. The correctness of
a simple floating-point multiplier is proved.

¢ Chapter 14, Design Verification of a Safety-Critical Embedded Veri-
fier, by Piergiorgio Bertoli and Paolo Traverso. This case study shows
the use of ACL2 for the design verification of a piece of safety-critical
software, the Embedded Verifier. The Embedded Verifier checks on-
line that each execution of a safety-critical translator is correct. The
translator is a component of a software system used by Union Switch
& Signal to build trainborne control systems.

¢ Chapter 15, Compiler Verification Revisited, by Wolfgang Goerigk.
This study illustrates a fact observed by Ken Thompson [106] in his
Turing Award Lecture: the machine code of a correct compiler can be
altered to contain a Trojan Horse so that the compiler passes almost
every test, including the so-called bootstrap test in which it compiles
its own source code with identical results, and still be capable of
generating “bad” code. The compiler, the object code machine, and
the experiments are formalized in ACL2.

¢ Chapter 16, Ivy: A Proof Checker for First-order Logic, by William
McCune and Olga Shumsky. In this case study, a proof checker for
first-order logic is proved sound for finite interpretations. More gen-
erally, the study shows how non-ACL2 programs can be combined
with ACL2 functions in such a way that useful properties can be
proved about the composite programs. Nothing is proved about the
non-ACL2 programs. Instead, the results of the non-ACL2 programs
are checked at run time by ACL2 functions, and properties of these
checker functions are proved.

¢ Chapter 17, Knuth’s Generalization of McCarthy’s 91 Function, by
John Cowles. This project deals with a challenge by Donald Knuth
[63] for a “proof by computer” of a theorem about his generalization
of John McCarthy’s famous “91 function.” The generalization in-
volves real numbers, and the case study uses ACL2 to meet Knuth’s
challenge by mechanically verifying results not only about the field of
all real numbers, but also about every subfield of that field.

¢ Chapter 18, Continuity and Differentiability, by Ruben Gamboa. This
chapter shows how an extended version of ACL2 can be used to reason
about the real and complex numbers, using non-standard analysis. It
describes some modifications to ACL2 that introduce the irrational
real and complex numbers into ACL2’s number system. It then shows
how the modified ACL2 can prove classic theorems of analysis, such
as the intermediate-value and mean-value theorems.

We close this chapter with a brief sketch of an interesting case study
not included in this book.
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ACL2 was used by Vernon Austel and Sean Smith at IBM Research
in the formal analysis of the bootstrapping code for the IBM 4758 secure
coprocessor.l Roughly speaking, a secure coprocessor is a small computer
inside a container that should prevent an attacker from reading or modify-
ing its data using unauthorized means (for example, by opening it up and
directly reading the contents of memory using a probe); the device should
detect such attempts and take defensive action, such as erasing crypto-
graphic keys. In the case of the 4758, the container is about the size of a
thick book and the device has successfully withstood all physical attacks
mounted against it as of this writing. The U.S. government established
Federal Information Processing Standard 140-1 (or FIPS 140-1) to impose
requirements on cryptographic devices for use in government work.2 FIPS
140-1 defines four levels of effectiveness concerning software and hardware,
level four being the highest. In order for cryptographic hardware to achieve
level four, it must withstand any physical attack; in order for software to
achieve level four, it must be formally modeled.

The 4758 has been evaluated by an independent commercial evaluator
according to the FIPS 140-1 criteria and has achieved level four in both
hardware and software. A detailed description of the security-critical soft-
ware in a state machine notation was required for the software evaluation,
together with a careful description of the properties the state machine has
that collectively justify calling the device “secure” for the purpose to which
it is put. Translating this state machine into ACL2 was straightforward;
translating the four properties that define the notion of “secure” was some-
times not straightforward.

The state machine (and hence the ACL2 model) is fairly low-level, in
that all data structures in the software being modeled are represented in
the state machine (albeit abstractly), and one state transition in the model
corresponds to roughly ten lines of C code; however, no formal connection
between the code and the state machine was established. The ACL2 code
for the model is about 15,000 lines long, including comments, and required
approximately three person months to develop.

This case study is not further discussed in this book because the ACL2
code implementing it is proprietary. Indeed, several of the case studies
presented here are distillations of larger proprietary projects.

We believe it is good for prospective users of any tool or methodology
to know about the existence of proprietary applications. Often the main
obstacle to trying out a new technology is deciding whether it might be
applicable. One aim of this book is to be a guide for those who wish to
learn ACL2. As such, we felt it necessary to focus on reproducible results
and case studies that can be disclosed in full detail.

1Information concerning the IBM 4758 may be obtained at http://www.ibm.com/-
security/cryptocards.

2The NIST Web page concerning FIPS 140-1 is http://csrc.nist.gov/cryptval/-
#140-1.
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We believe that when you read the case studies you too will be convinced
that formality is truly practical. The practical requirement is to learn how
to be truly formal.






ACL2 Essentials

We present here a brief, and very informal, introduction to ACL2. Our
purpose is to provide just enough ACL2 background to support reading the
ACL2 formulas displayed in this book’s case studies. The reader interested
in learning more about ACL2 is invited to take a look at the companion
volume, [58], and to visit the ACL2 home page (see page 4).

ACL2 is both a logic and a programming language. As a programming
language it is closely related to the Common Lisp programming language
[104, 21]. In fact, ACL2 is intended to be consistent with Common Lisp
where the two languages overlap. We do not assume that the reader is fa-
miliar with Common Lisp, but point out that most of these ACL2 essentials
apply to Common Lisp as well.

Data types are presented in Section 4.1 and expressions are presented
in Section 4.2. Readers already familiar with Lisp can probably skip most
of these two sections. In Section 4.3 we discuss definitions, how to state
properties (theorems) about defined notions, and how to submit definitions,
theorems, and other events during an ACL2 session.

4.1 Data Types

The universe of ACL2 objects consists of several data types.

Numbers include the integers, rationals, and complex rational numbers.

Strings such as "abcd" are sequences of characters.

Symbols such as ABC and A-TYPICAL-SYMBOL may be viewed as struc-
tures containing two fields, each of which is a string: a package name and a
symbol name. The package name is beyond the scope of this introduction,
except to say that it is usually implicit with one major exception: symbols
printed with a leading colon (:) have a package name of "KEYWORD". For
example, :HINTS is a symbol with package name "KEYWORD" and symbol
name "HINTS". In fact ACL2 is case-insensitive, at least for our purposes
here, except for strings. So for example, :hints and :HINTS are the same
symbol, both with symbol name "HINTS". We generally use lower-case in
this book except when displaying ACL2 output.

Objects of the above types are called atoms. ACL2 also contains ordered
pairs called conses. Binary trees are represented in ACL2 as conses whose
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two components may be either conses (i.e., binary trees) or atoms. These
binary trees thus have atoms at their leaves.

In the remainder of this section, we discuss a few important data struc-
tures that can be constructed from the small set of data types described
above.

A true list (often referred to simply as a list) is either the special atom
nil, which represents the empty list and is sometimes written (), or else
a cons whose second component is a (true) list. Lists are represented by
enclosing their elements in parentheses. For example, (3 2 4) is a list
with the following elements, or members: the numbers 3, 2, and 4. More
literally, it is a cons whose first component, called its car, is 3 and whose
second component, called its cdr, is the list (2 4).! The list (2 4) in turn
has a car of 2 and a cdr of (4), which in turn is the list whose car is 4 and
whose cdr is (), the symbol nil. Lists can of course be nested. The list (A
5/6 (3 2 4) "B") has elements A (a symbol), 5/6 (a rational), (3 2 4)
(a list), and "B" (a string).

ACL2 uses two symbols to represent the Boolean values true and false:
t and nil, respectively. Notice that this is the same nil that is used to
represent the empty list. Such overloading is not generally confusing. It
comes from four decades of Lisp tradition and is analogous to the treatment
of 0 as a Boolean in the C programming language.

A very common data structure is the association list, or alist for short,
which is a true list of cons pairs. An alist represents a mapping, so that
(roughly speaking) when a pair is an element of an alist, then the car of
that pair is associated with the cdr of that pair. We say more about alists
on page 32.

4.2 Expressions

ACL2 expressions (or terms) evaluate to the data objects described in the
preceding section. Expressions are, in turn, represented by certain of the
data objects. There are essentially four kinds of expressions (see term for
details?):

¢ the symbols t, nil, and those whose package name is "KEYWORD",
which evaluate to themselves;

¢ all other symbols, which take their values from the environment;

¢ (quote z), also written ’z, whose value is the ACL2 object z;

1The names “car” and “cdr” come from Lisp.
2Recall our convention of underlining topics discussed in ACL2’s online documenta-
tion. See page 4.
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¢ (f z1 2o ... z,) where n > 0, f is a symbol® denoting an n-ary
function, and each z; is a term, whose value is the result of applying
that function to the values of the z;.

Figure 4.1 should clarify the above notion of value. It also serves to
introduce some important primitive (built-in) functions, many of which are
used frequently in the case studies. (Many others are not listed here, but we
expect their meanings to be reasonably clear from context, and the ACL2
documentation can resolve ambiguity when necessary.) In addition, they
introduce the notation for same-line comments: text from a semicolon (;) to
the end of the line is treated by ACL2 (and Common Lisp) as a comment.
The function symbols of Figure 4.1, including <, are all underlined to remind
you of the online documentation.

We will see a few more built-in functions in Section 4.3. Note also that
(car (cdr x)) may be written as (cadr x), that (cdr (cdr x)) may be
written as (cddr x), and so on. Some prefer to use nth for zero-based
access to elements of a list; so (nth 0 x) has the same value as (car
x), (nth 1 x) as (cadr x), (nth 2 x) as (caddr x), and (nth 3 x) as
(cadddr x).

The expression language is slightly complicated by macros. The fol-
lowing built-in macros are most easily understood as though they were
operators of indeterminate arity. Let v; be value of xi below.

(+ x1 x2 ... xn) ; the sum of vi,va,... ,Upn

(* x1 x2 ... xn) ; the product of v1,v2,... ,Up
(list x1 x2 ... xn) ; the list (v1,v2,...,Vp)

(and x1 x2 ... xn) ; Un if each v; is not nil, else nil
(or x1 x2 ... xn) ; v; for the least i such that v;

; is mot nil, if any; else, nil
Two more built-in macros extend the function if defined in Figure 4.1.
The macro cond is applied to 2-element lists each of the form (test form)
and returns the value of the first form for which the test has a value other
than nil.

(cond (test; formi)
(tests forms)

.(-t;estn_l formg_1)
(t fO’I"mn))

(if testy forma
(if tests formes

(if test,_1 form,_

formy) ... )

3 f can also be something called a lambda ezpression, but it is safe to ignore this point
for purposes of the case studies.
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Term Value
3 ; The number 3
-3/4 ; The number -3/4
X ; Depends on the environment
(car x) ; If the value of x is a cons,
;  its first component, else nil
(cdr x) ; If the value of x is a cons,
;  its second component, else nil
(consp x) ; T if the value of x is a cons, else nil
(acl2-numberp x) ; T if the value of x is a number, else nil
(integerp x) ; T if the value of x is an integer, else nil
(rationalp x) ; T if the value of x is a rational number,
;  else nil
(zp x) ; T if the value of x is 0 or is not a
o ; natural number, else nil
(nfix x) ; The value of x if it is a natural
; number, else 0
xy ; T if the value of x is less than the
; wvalue of y, else nil
(1- %) ; One less than the value of x
(1+ x) ; One more than the value of x
(equal x y) ; T if the values of x and y are the
;  same, else nil
(iff x y) ; T if the values of x and y are either both
; nil or both non-nil, else nil
(if x y z) ; The value of z if the value of x is nil,
;  else the value of y
(implies x y) ; T if the value of x is nil or the
;  wvalue of y is not nil, else nil
(not x) ; T if the value of x is nil, else nil

Figure 4.1: Some Terms and Built-in Function Symbols
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Related macros case and case-match are used occasionally. Their
meanings may be clear from context; if not, we recommend consulting the
ACL2 documentation. We say a bit more about macros in the next section.

Finally, we introduce the constructs let and let*. Each of these forms
takes two “arguments”: a list of bindings (2-element lists) followed by a
form to be evaluated relative to those bindings. Consider first this example.

(let ((x (+ 5 3))
(y (-53))
(* xy))

How is this form evaluated? First, x and y are bound in parallel to the
values of their respective forms, i.e., to 8 and 2, respectively. Then (* x
y) is evaluated in the resulting environment by multiplying 8 by 2 to get the
final value of 16. The construct let* is similar, but evaluates the bindings
sequentially. So, the following expression has the same value as the one
above.

(let* ((a 3)

(x (+ 5 a))
(y (- 5a)))
(* xy))

Let us do a bit of expression evaluation involving lists. Two important
built-in list manipulation functions are append, which concatenates two
lists, and assoc, which finds the first cons pair having a given car in a
given alist. This time we illustrate evaluation using the ACL2 read-eval-
print loop. First we illustrate append. User input is on lines following the
prompt, “ACL2 !>”; the rest is printed by ACL2.

ACL2 !'>(append ’(1 2) ’(a b))
(1 2 AB)
ACL2 !>

Before turning to assoc, we introduce so-called dot notation. The cons pair
with car a and cdr b is sometimes written (a . b). The following examples
illustrate this notation. Notice that (z; ... z, . nil) represents the
same value as (z1 ... z,).

ACL2 !>(cons 3 4)

.4

ACL2 !>(cons ’a ’b)

(A . B)

ACL2 !'>(cons 3 nil)

3)

ACL2 !>’(3 . nil) ; same as (quote (3 . nil))
(3

ACL2 !>’ (3)

3
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ACL2 !>(cons 3 (cons 4 5))

(34 . 5)
ACL2 !>(cons 3 (cons 4 nil))
(3 4)

ACL2 !'>(1list (cons ’a 2) (cons ’b 4) (cons ’b 6))
((A.2) (B. 4 (B. 6))
ACL2 !>

Now we are ready to give examples illustrating assoc. We use the alist
shown just above. Notice that assoc returns either a cons or nil.

ACL2 !>(assoc ’b ((a . 2) (b . 4) (b . 6)))

(B . 4)

ACL2 !'>(assoc ’e ((a . 2) (b . 4) (b . 6)))
NIL

ACL2 !>

For a more complete discussion of expressions see the ACL2 documen-
tation for term. The description above should generally be sufficient for
reading the case studies. Most of the built-in functions used in this book
are either mentioned above or in the next section.

4.3 Events

The ACL2 user strives to define functions and to lead ACL2 to proofs of
theorems about the built-in and defined functions. Function definitions and
theorems are the most important types of events. In this section we give
the syntax of these events and a couple of others.

4.3.1 Function Definitions

The basic form for defining a function is defun. Most of the built-in func-
tions are defined (in the ACL2 source code) using defun. For example, the
built-in function not is defined as follows.

(defun not (p)
(if p nil t))
This definition says: “Define function not, with formal parameter list (p),
so that the application of not to such a list is equal to (if p nil t).”
Definitions may be used to build up hierarchies of concepts. For exam-
ple, the built-in function consp that recognizes cons data objects may be
used, together with the function not defined above, to define the following
function atom, which recognizes non-conses, i.e., atoms.

(defun atom (x)
(not (consp x)))
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We can take this a step further. In many cases we want a function that
distinguishes non-empty lists from nil. Although atom does this, Common
Lisp provides another function endp that may be slightly more efficient
than atom. ACL2 builds in the following definition for endp.*

(defun endp (x)
(declare (xargs :guard (or (consp x) (equal x nil))))
(atom x))

The list above that starts with declare, inserted between the formal pa-
rameter list (x) and the body (atom x), is called a declare form, which
unlike the body, is not a function application. It is generally harmless for
the casual reader to ignore declare forms, and it is beyond the scope of this
introduction to discuss them in much detail. The subform (xargs ... )
is used to provide ACL2-specific information. In this case, ACL2 is being
informed that the formal parameter x is intended to have a “type” speci-
fied by the indicated term, i.e., x should either be a cons or nil. Through
this mechanism we can allow ACL2 to use the underlying Common Lisp
execution engine in a direct manner to achieve greater execution speed; see
guard for details.

In the same spirit as with endp, ACL2 has definitions for fast equality
tests: eq can be used when at least one argument is a symbol and eql
can be used when at least one argument is a number, symbol, or char-
acter. Logically, however, endp is the same function as atom, and all of
equal, eq, and eql are the same function. For example, it is a theorem
that (endp 1st) is equal to (atom 1lst). Some built-in functions use eql
and have built-in analogues that use equal and eq, for example: assoc,
assoc-equal, and assoc-eq. As with the {eql,equal,eq} family, these
functions are all semantically the same.

ACL2 supports recursive definition, i.e., definition where the body of
the function mentions the function being defined. Here is a definition of
the built-in function member, which checks for membership in a list. Notice
that when (member e x) is not equal to nil, it is the first tail of list x that
starts with e. We omit the guard below, which allows the use of eql below.

(defun member (e x)
(cond ((endp x) nil)
((eql e (car x)) x)
(t (member e (cdr x)))))

Recall that cond picks out the form corresponding to the first test that is
true (non-nil). So for example, we can see that (member 3 ’(4 5)) is
equal to (member 3 ’(5)) using this definition: Suppose the value of e is
3 and the value of x is the value of ’ (4 5), i.e., the list (4 5). Then the
value of (endp x) is nil, so we move past the first pair in the cond. Next,

4Certain details not germane to the discussion are omitted from some of these defi-
nitions.
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the value of (car x) is 4 since car takes the first element of a list; so,
the value of (eql e (car x)) is nil since 3 does not equal 4. Hence the
second test in the cond does not apply. Since t is not nil, the final pair in
the cond does apply, showing that (member 3 ’(4 5)) has the same value
as (member 3 ’(5)). Similar reasoning shows that (member 3 ’(5)) has
the same value as (member 3 ’()), which in turn has the value nil. This
chain of reasoning suggests how to compute with recursive definitions, in
this case computing the value of (member 3 ’(4 5)) to be nil.

It is possible to introduce inconsistency with recursive definitions, for
example by defining f(z) to equal 1+ f(z) (from which we obtain 0 = 1 by
arithmetic). ACL2’s definitional principle (see defun) avoids this problem
by requiring, in essence, a proof of termination. Consider for example the
definition of member, above. The recursive call of member is made only
under the conditions that the first two tests of the cond are false (nil),
i.€., x is not an atom and e is not the first element of x. The first of these
two conditions guarantees that (cdr x) is a “smaller” list than x.

In the above example ACL2 uses a built-in measure (see defun) on
the size of x. However, there are cases where one needs to help ACL2 by
specifying a particular measure. For example, one can add the following
declare form just before the body of member, above, to specify the length
(len x) of the list x as the measure.

(declare (xargs :measure (len x)))

4.3.2 Theorems

We have seen how to define functions using defun. The analogous con-
struct for submitting theorems to ACL2 is defthm. Here is an example, a
theorem with name member-append, which says that a is an element of the
concatenation of (lists) x and y if and only if a is an element of at least one
of them.

(defthm member-append
(iff (member a (append x y))
(or (member a x) (member a y))))

ACL2 can prove the above theorem without any help. More complex
theorems generally require user assistance. Probably the most common
form of help is to prove lemmas to be used automatically in subsequent
proofs. In fact it is easy to imagine that one would prove the lemma above
in order to cause the theorem prover, in proofs of subsequent theorems,
to simplify terms of the form (member a (append x y)) to correspond-
ing terms (or (member a x) (member a y)). Such simplification is an
example of rewriting, a further description of which is beyond the scope
of these Essentials. But sometimes one needs to give explicit hints for
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a proof, or to give explicit directions for how to store a theorem, which
is otherwise stored by default as a rewrite rule (see rewrite). Here is
an example called equal-char-code, from ACL2 source file axioms.lisp,
which states that two characters are equal if they have the same char-code.
The :rule-classes value nil says that this theorem is not to be stored
as a rule, and the :hints direct ACL2 to use two explicit instances of a
previously-proved theorem called code-char-char-code-is-identity.

(defthm equal-char-code
(implies (and (characterp x)
(characterp y))
(implies (equal (char-code x) (char-code y))
(equal x y)))
:rule-classes nil
:hints (("Goal" :use
((:instance
code-char-char-code-is-identity
(c x))
(:instance
code-char-char-code-is-identity
(c IN)
In the case studies, the reader is often spared the trouble of looking at these
details by way of “...”. An example follows.

(defthm equal-char-code
(implies (and (characterp x)
(characterp y))
(implies (equal (char-code x) (char-code y))
(equal x y)))
:rule-classes nil
:hints ...)

4.3.3 Macros and Backquote

Users can define macros to extend the language. The symbol cadr is defined
as a macro in the ACL2 source code. Here is its definition.

(defmacro cadr (x)
(list ’car (list ’cdr x)))

The body of the macro constructs an expression that is used in place of
calls to cadr.
This macro could be written using “backquote” notation.

(defmacro cadr (x)
‘(car (cdr ,x)))
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Backquote allows the exhibition of what might be called “near-constants.”
Tt is like the normal single quote (’) except that any expression after a
comma is evaluated and the value used as the next element. If the comma
is immediately followed by @, the value of the expression is spliced in.

Macros can be defined to take a varying number of arguments and can
use arbitrary processing to construct the new expression. Here is the defi-
nition of list.

(defmacro list (&rest args)
(list-macro args))

The symbol list-macro is just a defined function.

(defun list-macro (1lst)
(if (consp 1lst)
(cons ’cons
(cons (car 1st)
(cons (list-macro (cdr 1st)) nil)))
nil))

Thus, (1ist a b ¢) expands to (cons a (cons b (cons c nil))).

4.3.4 Single-Threaded Objects

ACL2 provides single-threaded objects; they are sometimes called “stobjs”
(pronounced “stob-jays”). Logically, such objects are just lists containing
several components. Logically, they are “changed” in the usual way, by
constructing new lists of the appropriate shape from the parts of the old
one. Stobjs are introduced with defstobj, together with functions for
accessing and “changing” their components.

But syntactic restrictions insure that once a stobj is modified, it is
impossible for any function to obtain the “old” list structure. The ACL2
system takes advantage of this fact, by modifying stobjs destructively while
preserving the applicative semantics. See stobj or [8].

4.3.5 Structuring Mechanisms

Files composed of events are called books. Ultimately, the goal of the ACL2
user is to get ACL2 to accept all the events in a book, discharging all proof
obligations. Once a book is thus certified (see certify-book), its events
may be included into an ACL2 session using include-book.

Some events in a book may be wrapped with local, as in the following.

(local
(defthm my-lemma
)
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Local events are proved when the book is certified by ACL2, but they are
omitted by include-book.

ACL2 provides another structuring mechanism, encapsulate. This
mechanism provides both a scoping mechanism and a way to introduce
functions that are constrained by axioms, rather than defined. (When
there are no constraints on a function then the shorthand defstub may be
used.) Here is an example that constrains a function fn of one argument
to return a cons.

(encapsulate
;5 stgnatures:
((fn (x) t))
;5 local definition:
(local (defun fn (x) (coms x x)))
;; exported theorem:
(defthm consp-fn
(consp (fn x))))

4.4 Concluding Remarks

The discussion in this chapter has been very informal and highly incomplete.
It was designed to provide sufficient information to enable the reader to
make sense of the case studies that follow. The companion volume, [58],
gives a more thorough and precise introduction geared towards potential
ACL2 users. We also strongly encourage anyone interested in using ACL2 to
visit the ACL2 documentation and tours on the ACL2 home page, http://-
www.cs.utexas.edu/users/moore/acl?.
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Abstract

We define a function that finds a path between two given nodes of a given
directed graph, if such a path exists. We prove the function terminates and
we prove that it is correct. Aside from illustrating one way to formalize
directed graphs in ACL2, this chapter illustrates the importance of the
user’s decomposition of a problem into mathematically tractable parts and
the importance of defining new concepts to formalize those parts. Our
proof involves such auxiliary notions as that of a simple (loop-free) path,
the process for obtaining a simple path from an arbitrary path, and an
algorithm for collecting all simple paths. The algorithm we analyze is a
naive one that executes in time exponential in the number of edges. This
chapter requires no specialized knowledge of graph theory; indeed, the main
thrusts of the chapter have nothing to do with graph theory. They are: to
develop your formalization skills and to refine your expectations of what a
formalization will involve. Appropriate expectations of a project are often
the key to success.

Introduction

Consider the obvious depth-first algorithm for looking for a path from a to
b in a given directed graph, g: if a is b, we are done; otherwise, consider
each neighbor of a in turn and try to find a path from it to b. If such a path
is found, then extend it via the edge from a to the neighbor. Care must
be taken to avoid loops in the graph; a simple solution is never to consider
any path that visits the same node twice. In addition, some convention
must be made to indicate whether the search succeeded or failed (and, in
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the former case, to indicate the path found). We will define (find-path a
b g) in accordance with the sketch above.

The correctness of find-path may be informally stated as “if there is a
path, p, from node a to node b in graph g, then (find-path a b g) finds
such a path.” This may be formalized as shown below.

(implies (and (graphp g)
(nodep a g)
(nodep b g)
(path-from-to p a b g))
(path-from-to (find-path a b g) a b g))

Now think about the theorem above. How does the existence of path
p insure that find-path will succeed? In particular, find-path will not
necessarily find p! Indeed, p may be a “non-simple” path (i.e., one with
loops). Here is the informal correctness argument.

Informal Proof Sketch: It is fairly obvious from the definition
of find-path that it returns a path from a to b unless it signals
failure. So the problem is to show that find-path does not
signal failure. Now given a path p from a to b, we can obtain
a simple path, p’, from a to b. Furthermore, p’ is a member
of the set, S, of all simple paths from a to b, showing that S is
non-empty. But find-path signals failure only if S is empty. O

ACL2 certainly cannot discover this proof! However, it can be led to it.
To formalize this argument we must formalize more than just the concepts
used to state the goal. Some concepts, e.g., that of “simple path,” are
introduced during the proof. Many relationships between these concepts
are left implicit. The key observations made in the sketch are not themselves
proved. All of this may leave the false impression that the theorem has been
proved and that the proof is quite short.

Learning how to formalize ideas that are informally understood is crucial
to using ACL2. An under-appreciated but essential skill, long known to
mathematicians, is recognizing when new concepts are needed, especially
if those concepts are not identified in the informal arguments. Being alert
to situations that may call for new lemmas of certain forms makes it easier
to apply The Method (see the companion book [58] or see the-method),
because you know what to look for as you inspect failed proofs.

And now for some psychological remarks: developing your expectations
of the amount of work involved can make the difference between success
and failure. Your experience of using The Method will be much more
positive if you correctly anticipate that a step will require certain kinds of
lemmas, even if you do not know what form they will take. The failure
of the system to complete the step validates your intuitions and provides
you with the information you need. In this situation, the theorem prover is
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often regarded as a partner or a useful tool in the creation of the proof. On
the other hand, if you are unrealistically expecting the system to complete
the step for you, its failure disappoints you. Repeated disappointment leads
to disillusionment; the theorem prover becomes an adversary. It is easy in
this situation to abandon the project as unworkable.

In this chapter we formalize and prove the theorem above. But much
of the chapter is aimed at helping you develop your expectations.

For the record, it took me about 8 hours to develop the script described
here, from my first contemplation of the problem. About 20 definitions and
70 theorems are involved. It takes ACL2 less than 30 seconds to process
the script. I have worked about two weeks writing up the proof, not to
make it more elegant but to explain the original intuitions and the process.

The supporting material contains four books of interest. The book
find-pathl contains my original script, developed more or less by following
The Method. That script contains many “general purpose” lemmas about
list processing. So next I segregated these into a book named helpers, and
I created the book find-path2, which is concerned only with the graph-
theory part of this problem. But find-path? is still linearly structured,
reflecting basically the post-order traversal of my originally imagined proof
tree. So in find-path3 I defined the macro named top-down.

(defmacro top-down (main &rest others)
‘(progn ,@others ,main))

Thus, (top-down main e;...e,) expands into a command that first pro-
cesses the e; and then processes main. I use top-down to structure the
proof as it is described here. Kaufmann’s article, Chapter 6, presents much
more flexible proof-structuring devices. After reading this chapter you are
encouraged to look at the three find-pathi books to see how proof scripts
can be made more perspicuous. If you wish to use The Method to do this
entire chapter as an exercise, look to find-pathi for my solutions.

5.1 Getting Started

We use two books to make this proof simpler to describe.

(include-book "/projects/acl2/v2-5/books/arithmetic/top")
(include-book "helpers")

The supporting book helpers contains a definition of rev, the list re-
verse function defined in terms of append rather than the tail recursive
reverse native to ACL2. In addition, it contains nineteen theorems about
rev and/or several native ACL2 functions including append, member (which
checks membership in a list), subsetp (which checks the subset relation be-
tween two lists), no-duplicatesp (which checks that a list has no duplicate
elements), and last (which returns the last consp cdr of a list). We use
these results largely without noting them below.
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Exercise 5.1 Is this a theorem? Why not? Prove the theorem it suggests.

(defthm member-append
(equal (member x (append a b))
(or (member x a)
(member x b))))

Exercise 5.2 Given the definition of rev, prove car-last-rev below.

(defun rev (x)
(if (endp x)
nil
(append (rev (cdr x)) (list (car x)))))
(defthm car-last-rev
(equal (car (last (rev x)))
(car x)))

Exercise 5.3 How would you rewrite
(no-duplicatesp (append a (cons e b)))

to simplify it? Prove the theorem.

5.2 The Primitives of Directed Graphs

The most basic notion we must define is that of a “directed graph.” In
this work, we use the word “graph” always to mean directed graph. We
represent a graph as an alist.

Formally then a graph is a list of pairs; each pair consists of a key and
a value. Each key is the name of a node of the graph. The value associated
with a key is the list of neighbor nodes immediately accessible from the
given node. For sanity, we insist that each node name appear only once
as a key in the alist, and that the list of neighbors of a node contain no
duplications. These restrictions play no part in the proof and could be
dropped. Note the use of top-down to structure the presentation.

(top-down
(defun graphp (g)
(and (alistp g)
(no-duplicatesp (all-nodes g))
(graphlp g (all-nodes g))))
; Where
(defun all-nodes (g)
(cond ((endp g) nil)
(t (cons (car (car g))
(all-nodes (cdr g))))))
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(defun graphlp (g nodes)
(cond ((endp g) t)
(t (and (consp (car g))
(true-listp (cdr (car g)))
(subsetp (cdr (car g)) nodes)
(no-duplicatesp (cdr (car g)))
(graphlp (cdr g) nodes))))))

The functions for recognizing nodes in a graph and for computing the
neighbors of a node are defined below.

(defun nodep (x g)
(member x (all-nodes g)))
(defun neighbors (node g)
(cond ((endp g) nil)
((equal node (car (car g))) (cdr (car g)))
(t (neighbors node (cdr g)))))

The formal definition of a path in a graph g is given by pathp. A path
is a non-empty list with the property that each element except the first is
a neighbor of the preceding element.

(defun pathp (p g)
(cond ((endp p) nil)
((endp (cdr p))
(equal (cdr p) nil))
(t (and (member (cadr p)
(neighbors (car p) g))
(pathp (cdr p) g)))))

Having defined a path, it is convenient to define the notion of path-from-
-to, which checks that p is a path in g, with initial element a and final
element b.

(defun path-from-to (p a b g)
(and (pathp p g)
(equal (car p) a)
(equal (car (last p)) b)))

We test and illustrate these concepts by observing the theorem named
Examplel below. The theorem is proved by evaluation! But by making it
a theorem and including it in a certified book we can help document how
our functions behave and provide tests should we wish to change them in
the future. Figure 5.1 shows a picture of the graph g used in Examplel.

(defthm Examplel
(let ((g ’((A B)
(B B Q)
(CACD)
(D A B Q)
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EROMR G

Figure 5.1: The graph in Examplel

(and (graphp g)

(not (graphp (cdr g)))
(nodep ’A g)
(not (nodep ’E g))
(pathp (A B CD C A B B) g)
(path-from-to (A B B C) ’A ’C g)
(not (pathp (A B D) g))))

:rule-classes nil)

5.3 The Specification of Find-Path

We desire a function find-path with the following property.

(defthm Spec-of-Find-Path
(implies (and (graphp g)
(nodep a g)
(nodep b g)
(path-from-to p a b g))
(path-from-to (find-path a b g) a b g)))

After we define find-path we will actually prove a stronger theorem
about it.

(defthm Main
(implies (path-from-to p a b g)
(path-from-to (find-path a b g) a b g)))

Spec-of-Find-Path follows easily from Main: the first three hypotheses of
Spec-of-Find-Path are irrelevant!

This is an aspect of ACL2’s typeless language. (Find-path a b g) is
defined to return something, whether g is a graph or not and whether a and
b are nodes in it or not. Main establishes that if (path-from-to p a b g)
is true then so is (path-from-to (find-path a b g) a b g), regardless
of the “types” of the variables.
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Many new users struggle with an apparent dilemma: which of these two
theorems is to be preferred? The answer is: both! The two theorems have
different purposes. The weaker theorem, Spec-of-Find-Path, is desirable
as a specification of a not-yet-defined function: it makes it easier for the
implementor because it does not overconstrain the function on irrelevant
inputs. The stronger theorem, Main, is desirable as a theorem about an
already-defined function: if a defined function actually has such an elegant
property, use it! In particular, the stronger theorem is easier to use (e.g.,
as a rewrite rule), because it has fewer hypotheses. In addition, such strong
theorems are often easier to prove by induction, though that consideration
is irrelevant here because we will not prove Main by induction. Thus, we
prove both theorems. The stronger one is for “internal use” (i.e., it will be
stored as a rewrite rule) while the weaker one is for “external use” (i.e., it
will be stored with :rule-classes nil).

Because such theorems as Main are easier to use and often easier to
prove, it is advantageous to define our functions so as to insure such strong
properties. A side-effect is that, quite often, the definitions are simpler than
they would be if we included a lot of checks for type correctness.! How is
it possible to define find-path so that it “works” even for non-graphs?
Before we answer that, let us reconsider our representation of graphs.

Our representation is non-unique: many different objects can repre-
sent the same graph. For example, the lists >((A A B) (B A B)) and
>((B A B) (A B A)) are different objects that represent the same graph.
Our functions are not sensitive to the order in which the keys presented.
Path-from-to is not sensitive to the order in which the neighbors are pre-
sented. Find-path will be sensitive to the order of the neighbors only in
the sense that the order affects which path it finds, not whether it succeeds
or fails.

Therefore, we could choose to strengthen the notion of graphp to require
that graphs be presented in some canonical order. But even if we strength-
ened graphp, the path-from-to and find-path defined here would still
enjoy the relationship above, even for non-canonical “graphs.”

In a similar vein, our functions are not sensitive to other aspects of the
concrete representation of graphs. For example, graphp requires that every
neighbor listed for a node also appear as a key, with some associated list
of neighbors. Suppose some “graph” fails to list some neighbor as a key.
All our functions behave just as though the neighbor were listed and had
the empty list of neighbors. Similarly, graphp requires that a graph list
every node only once as a key. But if some “graph” has two entries for
the same key, all our functions use the first entry and they all ignore the
second. Thus, our notion of graphp could be weakened without affecting
the relationship between path-from-to and find-path. In fact, it could
be weakened to accept any object!

I This discussion ignores guards. Our functions would have to be coded somewhat
differently if we wished to verify their guards. See guard.
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In the sense illustrated above, our functions “coerce” any object into
some graph. By insuring that all the functions—in particular both path-
-from-to and find-path—coerce non-graphs to graphs in exactly the same
way, we can prove theorems like Main without making restrictions on the
form of graphs. This would not be the case, for example, if path-from-to
used the first occurrence of a key to determine the neighbors and find-path
used the last! If we defined the functions that way, we would need to include
a graphp hypothesis to insure that there is only one such occurrence.

Defining all the functions in a family to coerce “unexpected” inputs in
the same way is a useful skill. It is generally done—as here—by defining the
primitive functions for a representation—e.g., neighbors— and then using
them consistently without checking for irrelevant conditions first. This is a
good discipline in part because it allows one to state and prove theorems
without a lot of cluttering hypotheses.

5.4 The Definitions of Find-Path and Find-Next-Step

In this section we define find-path, as follows.

(defun find-path (a b g)
(cond ((equal a b) (list a))
(t (find-next-step (neighbors a g)
(list a)
b g)))

Find-path finds a path from a to b, if possible. If a and b are equal,
the path is the singleton list containing a. Otherwise, find-path calls
find-next-step to search for a path. That function takes four arguments
and, in this call, those arguments are the neighbors of a, a stack of nodes,
the target node b, and the graph g. The stack is represented as a list and
initially the stack has one node on it, namely a. In general, the topmost
node on the stack can be thought of as the current node and the stack itself
(in reverse order) can be thought of as a path from the original source node
to the current node. Roughly speaking, find-next-step does a depth-first
search through the neighbors, looking for the first one from which it can
build a path to b without visiting any node already on the stack. If and
when find-next-step finds the target b among the neighbors, it builds
the appropriate path from the stack. If it fails to find a path, it returns the
symbol ’failure.

Here is the definition of find-next-step, ignoring the necessary mea-
sure hint.

(defun find-next-step (c stack b g)
(cond
((endp c) ’failure) ; (D)
((member (car c) stack) ; (2)
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(find-next-step (cdr c) stack b g))

((equal (car c) b) i (3)
(rev (cons b stack)))
(t (let ((temp (find-next-step ; (4)

(neighbors (car c) g)
(cons (car c) stack)

b g)))
(if (equal temp ’failure) ; (4a)
(find-next-step (cdr c) stack b g) ; (4b)
temp))))) ; (4c)

Reading it clause-by-clause: (1) If there are no neighbors left to consider,
return *failure. (2) If the next neighbor is a member of the stack, con-
tinue to the neighbor after that. (3) If the next neighbor is the target,
construct a suitable path using the stack. Finally, (4) call find-next-step
recursively, letting the result be called temp. In the recursive call, try to
find a path to the target through the neighbors of the next neighbor, after
pushing that neighbor onto the stack. Then (4a) if temp is *failure, there
is no path to b through the neighbor just tried and so (4b) try the rest
of the neighbors, using the input stack. Otherwise, (4c) return the path
found.

Some readers may have preferred mutually-recursive definitions of func-
tions find-path and find-next-step. However, mutually-recursive func-
tions are somewhat more awkward to reason about formally than simple
recursive functions.

Few programmers would code this algorithm. Its run time is exponential
in the number of edges in the graph: we repeat the work done for a node
upon each simple arrival at the node, even though a previous arrival at the
node via a different path would have fully explored the simple paths from
it and found that none reaches the target. By coloring the nodes we can
produce a linear time algorithm. It is tempting to improve find-path in
this way. We resist the temptation and explain why later.

Instead, let us consider the admission of find-path and find-next-
-step as defined above. The former is easily admitted after the latter. But
how do we admit find-next-step? We must exhibit a measure of the
arguments of find-next-step that gets smaller in each recursive call.

Exercise 5.4 Before reading on, think about find-next-step. Why does
it terminate?

The measure we have in mind is a lexicographic combination of two
measures. The first is the number of nodes of g not yet on the stack.
Naively speaking, that number decreases every time we add a new neighbor
to the stack. But not every recursive call adds an item to the stack. In
particular, as we scan the neighbors of a node, the stack is fixed. Thus, the
second component of our lexicographic measure is the number of neighbors
left to be explored.
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Figure 5.2: The graph in Example2

Exercise 5.5 Before reading on, formalize what was just said. Define
(measure c stack g) to decrease in each recursion in find-next-step.

Here is our definition.

(defun measure (c stack g)
(cons (+ 1 (count-non-members (all-nodes g) stack))

(len ©)))

Exercise 5.6 Define count-non-members.

Exercise 5.7 The termination proof is more subtle than you might expect.
The recursive call on line (4) generates the measure conjecture shown be-
low.

(implies (and (not (endp c))
(not (member (car c) stack))
(not (equal (car c) b)))
(e0-ord-< (measure (neighbors (car c) g)
(cons (car c) stack)
g)
(measure c stack g)))
ACL2 proves this automatically. But is it really o theorem? The naive
explanation sketched above can be elaborated as follows. “In the recursion,
the stack grows by one item, (car c), which previously was not a member
of the stack. Thus, the number of unvisited nodes in g decreases.” But
this naive argument assumes that the new item is a node in g. What if it
is not? The subtlety of this argument is the price we pay for not checking
that g is a graph and that c is a list of nodes in it. The reward is a much
simpler definition and main theorem. But why does measure decrease?

Here is an example of find-path on the graph of Figure 5.2.

(defthm Example2
(let ((g ’((A B)
(B CF)
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(C D F)

(D E F)

(E F)

(FBCDE))))

(and (graphp g)
(equal (find-path A ’E g) (A B C D E))
(path-from-to (A B C D E) ’A ’E g)
(path-from-to (A B F E) ’A ’E g)
(equal (find-path ’F ’A g) ’failure)))
:rule-classes nil)

The conjuncts inform us that g is a graph, find-path succeeds from A to
E, the alleged path found is indeed a suitable path, there is a shorter path
from A to E, and that find-path fails to find a path from F to A.

5.5 Sketch of the Proof of Our Main Theorem

Recall the strong conjecture about find-path.

(defthm Main
(implies (path-from-to p a b g)
(path-from-to (find-path a b g) a b g))
:hints ...)

Here we begin to formalize the proof sketched on page 42, by stating the four
observations as formulas. In subsequent sections, we define the necessary
concepts and prove each of the observations. We will eventually prove Main
by filling in the hints above to use our observations.

Proof Sketch
If find-path does not signal failure, then it actually does return a path
from the indicated source, a, to the indicated target, b.

(defthm Observation-0
(implies (not (equal (find-path a b g) ’failure))
(path-from-to (find-path a b g) a b g))
:rule-classes nil)

(One might call this “weak correctness” because it does not preclude the
possibility that £ind-path fails unnecessarily often.) The proof of Main is
thus reduced to showing that find-path does not fail unnecessarily.

If there is a path p from a to b, then there is a simple path. Rather
than use defun-sk to introduce an existential quantifier, we will define
a function, simplify-path, to construct a simple path from an arbitrary
path, and use it in the statement of our observation.

(defthm Observation-1
(implies (path-from-to p a b g)
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(and (simple-pathp (simplify-path p) g)
(path-from-to (simplify-path p) a b g)))
:rule-classes nil)

Furthermore, if there is a simple path from a to b, then it is a member
of the set of all simple paths from a to b, as constructed by the (soon to be
defined) function find-all-simple-paths.

(defthm Observation-2
(implies (and (simple-pathp p g)
(path-from-to p a b g))
(member p (find-all-simple-paths a b g)))
:rule-classes nil
thints ...)

From Observations 1 and 2, together with the hypothesis of our Main the-
orem, we know that the set of all simple paths from a to b is non-empty.

We therefore conclude the proof by observing that find-path succeeds
precisely when the set of all simple paths is non-empty.

(defthm Observation-3
(iff (find-all-simple-paths a b g)
(not (equal (find-path a b g) ’failure)))
:rule-classes nil)

O

5.6 Observation 0

(defthm Observation-0
(implies (not (equal (find-path a b g) ’failure))
(path-from-to (find-path a b g) a b g))
:rule-classes nil)

We have to prove that if find-path does not report failure, then it returns
a path, the path starts at a, and the path ends at b. Roughly speaking,
these theorems follow immediately from three analogous theorems about
the function find-next-step, in terms of which find-path is defined.
However, to prove things about find-next-step one must use induction,
because it is a recursive function. And to prove inductive theorems one
must find suitably strong statements of those theorems. So below you will
see three inductively provable theorems about find-next-step. The first
says it returns a path and the next two say that the source and target of
that path are appropriate. ACL2 proves these without assistance. But the
real contribution of the user here was to find suitably strong statements
of these properties. Basically, when looking for theorems like these, one
wants to ask the question: what is the most general situation in which the
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function can be called? More formally, contemplate a call of the function
with distinct variables in every argument position.

We anticipate the lemmas noted above from our experience, not from a
detailed a look at the proof of Observation-0. In particular, our expec-
tations are that we should seek lemmas about find-next-step, that they
will be proved inductively, and that they must be general. We find them
by applying The Method to Observation-0.

The first lemma is that find-next-step returns a path in the graph,
when it does not report failure. For this to be true, the initial stack must be
a non-empty list which, when reversed, is a path in the graph. Furthermore,
the list ¢ of neighbors to consider for extending that path must be a subset
of the neighbors of the top of the stack.

(defthm pathp-find-next-step
(implies (and (true-listp stack)
(consp stack)
(pathp (rev stack) g)
(subsetp ¢ (neighbors (car stack) g))
(not (equal (find-next-step c stack b g)
’failure)))
(pathp (find-next-step c stack b g) g)))

ACL2 proves this inductively, but finding its proof via The Method requires
that we find several other lemmas. In our decomposition of the proof, we
identified eleven such lemmas. All but one were list processing lemmas now
in the support book helpers. They were suggested by the occurrence in
failed proofs of such terms as (append (append x y) z), (last (append
a b)) and (subsetp x x).

Exercise 5.8 The theorem above requires one lemma that is not just list
processing. It was suggested by a failed proof of pathp-find-next-step in
which the following term arose.

(pathp (append (rev stack)
(1ist (car c)))
g)
What is it about find-next-step that led us to expect the need for such a
lemma? What is the suggested lemma?

Exercise 5.9 As an ezercise in using The Method, get ACL2 to prove the
theorem above, without all of the necessary list processing helpers in the
database. Start by doing

(rebuild "find-pathl.lisp"
’pathp-append)

to initialize the database. The second argument to rebuild tells ACL2 to
to stop loading the file after processing the event named pathp-append.
Then, prove pathp-find-next-step.
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The second lemma states that find-next-step returns a list whose first
element is the last (bottom-most) element of its initial stack.

(defthm car-find-next-step
(implies (and (true-listp stack)
(consp stack)
(not (equal (find-next-step c stack b g)
’failure)))
(equal (car (find-next-step c stack b g))
(car (last stack)))))

The third is that find-next-step returns a list whose last element is the
target.

(defthm car-last-find-next-step
(implies (and (true-listp stack)
(consp stack)
(not (equal (find-next-step c stack b g)
>failure)))
(equal (car (last (find-next-step c stack b g)))
b)))

Note that all three of these lemmas are made rewrite rules. These three
results give us Observation-0 directly.

Exercise 5.10 Starting with the database constructed by the successful
completion of Exercise 5.9, prove car-find-next-step and car-last-
-find-next-step above.

5.7 Observation 1

The next observation constructively establishes that if p is a path then
there exists a simple path with the same end points.

(defun simple-pathp (p g)
(and (no-duplicatesp p)
(pathp p g)))
Here is the definition of simplify-path.

(top-down
(defun simplify-path (p)

(cond ((endp p) nil)
((member (car p) (cdr p))
(simplify-path (chop (car p) (cdr p))))
(t (cons (car p) (simplify-path (cdr p))))))

; where
(defun chop (e p)
(cond ((endp p) nil)
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((equal e (car p)) p)
(t (chop e (cdr p))))))

When simplify-path finds that some element of the path occurs later
in the path, it uses the function chop to delete from the path the first
occurrence of that element and all subsequent elements up to the sec-
ond occurrence, thus removing one loop from the path. The admission
of simplify-path is mildly interesting. ACL2 has to prove that chop re-
turns a list that is shorter than p. This is an inductive proof, but ACL2
manages it without help.?

Since the result of simplify-path is obtained by repeatedly applying
chop to its input under certain conditions, we can expect that every induc-
tive lemma we need about simplify-path will require proving an inductive
analogue about chop. Developing this sense of expectation is important.
With it, you can easily sketch a proof. Without it, you may be worn down
by the continued need to state unexpected lemmas!

Here is a typical pair of lemmas. The first shown is a fact about
simplify-path that is used repeatedly in the proof of Observation-1.
The second is the corresponding fact about chop.

(top-down
(defthm simplify-path-iff-consp
(iff (consp (simplify-path p)) (consp p)))
; Proof: An easy induction, using:
(defthm chop-iff-consp
(implies (member e p)
(consp (chop e p)))))

We now turn our attention to Observation-1. Its conclusion is a
conjunction of two requirements on (simplify-path p). The first is a
simple-path condition and the second is a path-from-to condition. But
each of these concepts is defined as a conjunction of others. The simple-
-path condition breaks down to a pathp condition and a no-duplicatesp
condition. The path-from-to condition breaks down to the same pathp
condition, and conditions on both the car of the path and the car of the
last of the path. We prove these four conjuncts about simplify-path
separately. Each requires a corresponding property about chop.

With the foregoing as prelude, the details, which were finalized by ap-
plying The Method, should be more or less obvious to you. After following
The Method to develop the proof, we structured it using top-down.

(top-down
(defthm Observation-1
(implies (path-from-to p a b g)
(and (simple-pathp (simplify-path p) g)

2The astute reader might notice that chop is equivalent to member. We keep the name
chop for pedagogical reasons.
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(path-from-to (simplify-path p) a b g)))
:rule-classes nil)
;3 Proof of Observation-1
(top-down
(defthm car-simplify-path
(equal (car (simplify-path p)) (car p)))
;; by an easy induction using the analogous
(defthm car-chop
(implies (member e p)
(equal (car (chop e p)) e))))
(top-down
(defthm car-last-simplify-path
(equal (car (last (simplify-path p))) (car (last p))))
;; by an easy induction using the analogous
(defthm car-last-chop
(implies (member e p)
(equal (car (last (chop e p)))
(car (last p))))))
(top-down
(defthm pathp-simplify-path
(implies (pathp p g)
(pathp (simplify-path p) g)))
;; by an easy induction using the analogous
(defthm pathp-chop
(implies (and (member e p)
(pathp p g))
(pathp (chop e p) g))))
(top-down
(defthm no-duplicatesp-simplify-path
(no-duplicatesp (simplify-path p)))
;; Proof
(top-down
(defthm not-member-simplify-path
(implies (not (member x p))
(not (member x (simplify-path p)))))
;; by an easy induction using the analogous
(defthm not-member-chop
(implies (not (member x p))
(not (member x (chop e p)))))))
;3 Q.E.D. Observation-1
)
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5.8 Observation 2

The next observation is the key to the whole exercise. We wish to prove
that if p is a simple path from a to b, then it is among the paths col-
lected by find-all-simple-paths. We must define find-all-simple-
-paths first. The definition is below. The reader will note that this func-
tion is analogous to find-path, and find-all-next-steps is analogous to
find-next-step. But these new functions do not signal failure when no
path is found. Nor do they quit when the first path is found. Instead, they
find and collect all simple paths. The measure justifying the admission of
find-all-next-steps is exactly the same as before.

(top-down
(defun find-all-simple-paths (a b g)
(if (equal a b)
(list (1ist a))
(find-all-next-steps (neighbors a g)
(list a)
b g)))
; where
(defun find-all-next-steps (c stack b g)
(declare (xargs :measure (measure c stack g)))
(cond
((endp c) nil)
((member (car c) stack)
(find-all-next-steps (cdr c) stack b g))
((equal (car c) b)
(cons (rev (cons b stack))
(find-all-next-steps (cdr c) stack b g)))
(t (append (find-all-next-steps (neighbors (car c) g)
(cons (car c) stack)
b g)
(find-all-next-steps (cdr c) stack b g))))))

The similarity between these two functions and find-path and find-next-
-step will be important when we come to prove Observation 3, the relation
between them. It is a good idea when defining auxiliary functions such as
these to define them so as to make the proof obligations as easy as possible.

Observation 2 requires that we show that every simple path p between
a and b is in the list of paths collected by (find-all-simple-paths a b
g)-

Before proceeding, let us do a shallow analysis, to refine our expectations
and structure our search for a proof. How will the proof go? Clearly, since
find-all-simple-paths is defined in terms of find-all-next-steps, we
must prove a property about that function that is analogous to Observa-
tion 2. But because find-all-next-steps is recursive, the proof will be
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inductive and the property we seek must be very general. So think about
(find-all-next-steps c stack b g). When is something a member of
the result?

We may assume that stack is non-empty and contains no duplications.
Obviously, every path in the final list will be some extension of the reverse of
stack, so the typical element will be of the form (append (rev stack) p).
What is a sufficient condition on the extension, p, to insure membership?
P must start at some element of ¢ and will end at b and will be a path.
Furthermore, p must share no elements with stack.

Below is a formal rendering of this analysis. You will note that there is
no mention of b in the formula; instead, the last element of p is used in its
place.

(defthm Crux
(implies (and (true-listp stack)
(consp stack)
(pathp p g)
(member (car p) c)
(no-duplicatesp (append stack p)))
(member (append (rev stack) p)
(find-all-next-steps c stack
(car (last p)) g)))
:rule-classes nil
:hints ...)

This theorem is named “Crux” because it is the hardest part of the entire
proof. Perhaps the single most difficult aspect of Crux was stating it!
However the inductive proof is somewhat subtle.

We are trying to prove that a certain object, namely, the one con-
structed by (append (rev stack) p), is a member of the list returned
by find-all-next-steps. Call this “certain object” a. How is a put into
the answer returned by find-all-next-steps? Find-all-next-steps ex-
plores all the nodes in c and extends the stack appropriately for each one.
At the bottom, it reverses the stack and adds that path to its answer; at
all other levels it just concatenates the answers together.

Most subtle formal proofs start with an informal idea. Here is what
came to me: imagine that find-all-next-steps were miraculously able to
extend the stack only by successive elements of p. Then it would obviously
build up « in the stack and put it in the answer.

A little more formally, think of tracing the computation of find-all-
-next-steps and watching it choose just the successive elements of path
p from among the neighbors at each successive level. That is, when find-
-all-next-stepsis pursuing the paths from a neighbor that is not the next
node in p, we are not too interested in the result— « will be generated by a
call further along in the cdr of ¢ and will survive in the answer produced by
subsequent concatenations—so we just want an inductive hypothesis about
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(cdr c). On the other hand, we are quite interested when the neighbor is
(car p). The addition of that neighbor, i.e., (car p), to the stack builds
up part of @ and the inductive hypothesis for that stack and (cdr p) tells
us that « is in the list returned.

So much for intuitions. The devil is in the details. Below, we present a
proof.

Proof Sketch
Denote the Crux formula above by (¢ ¢ stack p g). We induct according
to the following scheme.

(and (implies (endp c) ; Base
(¢ c stack p g))
(implies (and (not (endp c)) ; Ind Step 1

(member (car c) stack)
(¢ (cdr c) stack p g))
(¢ c stack p g))
(implies (and (not (endp c)) ; Ind Step 2
(not (member (car c) stack))
(equal (car c) (car p))
(¢ (neighbors (car c) g)
(cons (car c) stack)
(cdr p)
g))
(¢ c stack p g))
(implies (and (not (endp c)) ; Ind Step 3
(not (member (car c) stack))
(not (equal (car c) (car p)))
(¢ (cdr c) stack p g))
(¢ c stack p g)))

The first conjunct is the Base Case. The other three are Induction Steps.
The Induction Step 2 is the interesting one.

Base Case
(implies
(endp c) ; (0)
(implies (and (true-listp stack) ; (D)
(consp stack) i (2)
(pathp p g) ; (3
(member (car p) c) ; (4)
(no-duplicatesp (append stack p))) ; (5)
(member (append (rev stack) p) ; (6)

(find—all—next—steps c stack
(car (last p))
g))))

From (0) we see that c is empty. But then hypothesis (4) is contradicted.
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Induction Step 1

(implies
(and
(not (endp c)) ; (0
(member (car c) stack) ; (1)
(implies
(and (true-listp stack) ; (27)
(consp stack) ; (37)
(pathp p g) ; (47)
(member (car p) (cdr c)) ; (57)
(no-duplicatesp (append stack p))) ; (67)
(member (append (rev stack) p) ; (7))
(find-all-next-steps (cdr c) ; (87)
stack ; (97)
(car (last p)) ; (107)
g)))) ; (112)
(implies (and (true-listp stack) i (2)
(consp stack) ; (3)
(pathp p g) ; (@)
(member (car p) c) ; (B)
(no-duplicatesp (append stack p))) ; (6)
(member (append (rev stack) p) ; (1)
(find-all-next-steps ¢ ; (8)
stack ; (9
(car (last p)); (10)
g)))) ; (11)

Note that lines (2°)—-(11) constitute the induction hypothesis. Lines (2)—
(11) constitute the induction conclusion. We get to assume (0) and (1),
the induction hypothesis (27)—(11’), and the hypotheses (2)—(6) of the
induction conclusion. We have to prove the conclusion of the conclusion,
namely the member expression that starts on line (7). We know that the
member expression that starts on line (7’) is true provided we can show
that the hypotheses (2?)—(6’) of the induction hypothesis are true.

By (0) and (1) and the definition of find-all-next-steps, the find-
-all-next-steps expression at (8) is equal to the find-all-next-steps
expression at (8’). The proof would be finished if we could relieve the
hypotheses (2?)—-(6’) of the induction hypothesis. Note that (2°), (3?),
(4°), and (6’) are all identical to their counterparts (2), (3), (4), and
(6), which are given. We are left to show that (5) implies (5°), that is,
that when (car p) isin c it is in (cdr c). By the definition of member, if
(car p) isin c, then it is either equal to (car c) or it is a member of (cdr
c). If the latter, we are done. So assume (car p) is (car c). Then by (1)
and equality, (car p) is in stack. But if (car p) is in stack, then there
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are duplications in (append stack p), contradicting (6). Recall Exercise
5.3.

ACL2 does this proof without help, given the theorems in the supporting
book helpers.

Induction Step 2

(implies
(and
(not (endp c)) ; (0
(not (member (car c) stack)) ; (1)
(equal (car c) (car p)) ; (2)
(implies
(and (true-listp (cons (car c) stack)) ; (3)
(consp (cons (car c) stack)) ; (47)
(pathp (cdr p) g) ; (87)
(member (cadr p) (neighbors (car c) g)) ; (67)
(no-duplicatesp (append (cons (car c) stack); (7?)
(cdr p))))
(member (append (rev (cons (car c) stack)) ; (87)
(cdr p))
(find-all-next-steps ; (97)
(neighbors (car c) g)
(cons (car c) stack)
(car (last (cdr p)))
g))))
(implies (and (true-listp stack) ; (3)
(consp stack) i (4
(pathp p g) ; (5)
(member (car p) c) ; (6)
(no-duplicatesp (append stack p))) ; (D
(member (append (rev stack) p) ; (8)
(find-all-next-steps c ; (9)
stack
(car (last p))
g£))))

Elementary list processing lemmas in the book helpers, together with (2),
tell us that the append expression at (8’) is equal to the append expression
at (8). By the definition of find-all-next-steps, the find-all-next-
-steps at (9) is equal to the following.

(if (equal (car c) (car (last p))) ; (9a)
(cons (rev (cons (car (last p)) stack)) ; (9b)
(find-all-next-steps (cdr c)
stack

(car (last p))
g))
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(append (find-all-next-steps (neighbors (car c) g) ; (9¢)
(cons (car c) stack)
(car (last p))
g)

(find-all-next-steps (cdr c)

stack
(car (last p))
g)))

If (9a) is false, that is (car c) is different from (car (last p)), (9) is
(9¢), and the induction hypothesis is sufficient to finish, if we can relieve the
hypotheses of the induction hypothesis. The only problematic hypothesis
is (6?), and given (5), which tells us that p is a path in g, and (2), which
says that (car c) is (car p), it is pretty easy to see that (cadr p) is
a member of the neighbors of (car p). But this follows from the pathp
hypothesis only if (cadr p) is an element of p. What if p is a singleton?
If p were a singleton, then (car p) would be (car (last p)), contrary to
our assumption that (9a) is false.

So suppose (9a) is true, i.e., (car c) is (car (last p)). Then (9) is
(9b). We must show that the append call in (8) is a member of (9b). From
the fact that (car c) is both (car p) and (car (last p)), and (7), we
conclude that p has length 1. That being the case, the first element of
(9b), namely (rev (cons (car (last p)) stack)), is equal to (append
(rev stack) p), which is the append term in (8).

Given the helpers book, ACL2 needs no additional help with this ar-
gument either.

Induction Step 3

(implies
(and
(not (endp c)) H ()
(not (member (car c) stack)) ; (1)
(not (equal (car c) (car p))) ;i (2)
(implies
(and (true-listp stack) ; (37)
(consp stack) ; (47)
(pathp p g) ; (87)
(member (car p) (cdr c)) ; (67)
(no-duplicatesp (append stack p))) ; (77)
(member (append (rev stack) p) ; (87)
(find-all-next-steps (cdr c) ; (97)
stack
(car (last p))
g))))
(implies (and (true-listp stack) ; (3)

(consp stack) ; (4)
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(pathp p g) ; (B)
(member (car p) c) ; (6)
(no-duplicatesp (append stack p))) ; (1)
(member (append (rev stack) p) ; (8)
(find-all-next-steps c ; (9)

stack

(car (last p))
g))))

Observe that (3)—(5) and (7) imply (3’)—(5’) and (7’), because corre-
sponding hypotheses are identical. Furthermore, (6) implies (6’) because
of (2). Thus, we have relieved the hypotheses of the induction hypothesis.
That leaves us with proving that the member expression at (8’) implies the
member expression at (8). That is handled by the lemma Crux-cdr, below.
ACL2 cannot discover this lemma by itself.
That completes the inductive proof of Crux.

O

As noted earlier, it is good practice, when searching for a proof, to
write down the theorem you are proving and the inductive argument used.
Writing down the induction hypotheses is especially important. As shown
above, this can be quite verbose. But with practice you will learn to recog-
nize certain patterns of formula formation and proof obligations, such as the
effect of the inductive substitutions and the need to relieve the hypotheses
of the induction hypothesis. Once these patterns are well established, you
will find that the disciplined use of well-chosen notational conventions will
allow you to explore a proof without writing so much. After some practice
you will probably find yourself just writing down the theorem, the induc-
tive case analysis and the substitutions, and then “reading off” and jotting
down the lemmas you need. But be aware that the mental process is more
like the detailed proof above.

The proof patterns manifest themselves in ACL2’s output. Our tedious
consideration of how to relieve the hypotheses of the induction hypothesis
(e.g., , showing that “(5) implies (5°)” in Induction Step 1) appears as
case analysis in ACL2 output. When ACL2 simplifies

(implies (and c
(implies (and ...p§...)
q)
(implies (and ...p5...)
)

it will generate such subgoals as (implies (and ¢ (NOT pg) ...p5...)
q), except that the subterms will have been simplified. By recognizing the
origin of such subgoals and understanding patterns of proof, you will be
able to use ACL2 as an assistant. Rather than write the proof on paper
you will let ACL2 do the induction and simplifications and then read its
output. That is why The Method works. Expert users of ACL2 rarely turn
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to paper to work out low-level technical details. For more on this topic,
see [60]. But we encourage beginners to develop the necessary skills by
sketching proofs on paper first, until the patterns become clear.

Exercise 5.11 To get ACL2 to do the induction above, it is necessary to
supply an induction hint. Such hints are given by exhibiting a function call
that suggests the desired induction. Our hint is

(defthm Crux

:rule-classes nil
:hints (("Goal" :induct
(induction-hint-function p ¢ stack g))))

Thus, induction-hint-function must be defined to suggest the induction
done above. See the companion book [58] and hints. Define and admit
induction-hint-function. Note: Until we prove Crux-cdr, ACL2 will
be unable to complete the proof of Crux, even if you code the induction hint
correctly.

We now turn to the proof of the just-mentioned lemma for going from
(87) to (8).

(defthm Crux-cdr
(implies
(and (consp c)
(member p (find-all-next-steps (cdr c) stack b g)))
(member p (find-all-next-steps c stack b g)))
:hints ...)

This is a pretty obvious property of find-all-next-steps because the
set of paths found for (cdr c) is a subset of that found for ¢, when c is
non-empty. However, as stated, it cannot be proved by induction because
it is too weak. Instead, we prove the following stronger property.

(defthm subsetp-find-all-next-steps
P P
(implies (subsetp c d)
p P
(subsetp (find-all-next-steps c stack b g)
(find-all-next-steps d stack b g))))

Exercise 5.12 The stronger property, above, is a fundamental and “obvi-
ous” property of find-all-next-steps. Prove it, both by hand and with
ACL2. To do the ACL2 proof, first execute the following.

(rebuild "find-path2.lisp"
’induction-hint-function)

Then use The Method.
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Exercise 5.13 The exercise above is made easier by the fact that the nec-
essary list processing lemmas are in the supporting book helpers, which is
included above. But these lemmas were originally discovered by using The
Method. So, back up to the initial state, with :ubt! 1, and then erecute
the following.

(rebuild "find-pathl.lisp"
’induction-hint-function)

Then prove subsetp-find-all-next-steps again, using The Method. Ob-
viously, you should place the lemmas formulated in the previous exercise
above subsetp-find-all-next-steps in your script—unless you wish to
“rediscover” them. But to prove them you will need to discover the helper
lemmas yourself.

Given subsetp-find-all-next-steps, our proof of Crux-cdr is as
shown by the hint below.

(defthm Crux-cdr
(implies
(and (consp c)
(member p (find-all-next-steps (cdr c) stack b g)))
(member p (find-all-next-steps c stack b g)))
thints
(("Goal"
:use (:instance subset-member-member
(a (find-all-next-steps (cdr c) stack b g))
(b (find-all-next-steps c stack b g))
(e p))

:in-theory (disable subsetp-member-member))))
Here is the lemma mentioned in the :use hint.

(defthm subsetp-member-member
(implies (and (subsetp a b)
(member e a))

(member e b)))

Recall how :use hints are implemented: the indicated theorem is in-
stantiated and added as a hypothesis. So with the hint above we in-
struct ACL2 to instantiate subsetp-member-member with the substitution
[a < (find-all-next-steps (cdr c) stack b g); b <« (find-all-next-
-steps c stack b g); e < p|. The instance thus created is added as a
hypothesis, producing the goal shown below.

(implies
(implies
(and (subsetp (find-all-next-steps (cdr c) stack b g)
(find-all-next-steps c stack b g))
(member p (find-all-next-steps (cdr c) stack b g)))
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(member p (find-all-next-steps c stack b g)))
(implies
(and (consp c)
(member p (find-all-next-steps (cdr c) stack b g)))
(member p (find-all-next-steps c stack b g))))

This goal is proved by rewriting the subsetp hypothesis to true, by back-
chaining through subsetp-find-all-next-steps. To relieve the hypoth-
esis of that lemma, namely, (subsetp (cdr c) c) in this case, ACL2 uses
(consp c) and the definition of subsetp. Note that our hint above also
included an :in-theory disabling the lemma used. We discuss the reason
for this on page 67.

So where are we? We have just finished explaining the proof of Crux.

(defthm Crux
(implies (and (true-listp stack)
(consp stack)
(pathp p g)
(member (car p) c)
(no-duplicatesp (append stack p)))
(member (append (rev stack) p)
(find-all-next-steps c stack
(car (last p)) g)))
:rule-classes nil
:hints ...)

Observation 2 follows from Crux.

(defthm Observation-2
(implies (and (simple-pathp p g)
(path-from-to p a b g))
(member p (find-all-simple-paths a b g)))
:rule-classes nil
:hints (("Goal"
:use ((:instance Crux ...)))))

Exercise 5.14 Fill in the dots above with a substitution so that Observa-
tion-2 is proved from the resulting instance of Crux by simplification.

5.9 Observation 3

(defthm Observation-3
(iff (find-all-simple-paths a b g)
(not (equal (find-path a b g) ’failure)))
:rule-classes nil)
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Exercise 5.15 Prove Observation-3.

5.10 The Main Theorem

Recall our sketch of the proof of Main on page 51. We have now completed
the proofs of the four observations, each of which was made :rule-classes
nil. Hence, in our proof of Main we must give explicit hints to use these
observations.

(defthm Main
(implies (path-from-to p a b g)
(path-from-to (find-path a b g) a b g))
:hints (("Goal"
:use (Observation-0
Observation-1
(:instance Observation-2
(p (simplify-path p)))
Observation-3)
:in-theory (disable find-path
find-all-simple-paths))))

Note that we disable two functions. This illustrates a common and
bothersome aspect of the implementation of :use hints. Once the observa-
tions are instantiated and added as hypotheses, the new goal, which might
be written as

(implies (and observationg
observation,
observations
observations)

main)

is simplified. But if the simplifier can prove observationg, say, then it is
removed from the hypotheses and we are in the same state we would have
been had we not provided observationg as a hint. That is why we chose
:rule-classes nil for our four observations: to keep the stored version
of Observation-i from rewriting the observation; away. But things are
more subtle than that. If find-path is expanded, then the simplifier can
prove observationg by appealing to the same lemmas we used to prove
Observation-0 in the first place. To prevent that, we disable the two
non-recursive function symbols that occur in the observations.

5.11 The Specification of Find-Path

Finally, we wish to prove that find-path satisfies its specification.
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(defthm Spec-of-Find-Path
(implies (and (graphp g)
(nodep a g)
(nodep b g)
(path-from-to p a b g))
(path-from-to (find-path a b g) a b g))
:hints (("Goal" ...)))

Exercise 5.16 Fill in the dots above to make the proof go through. Note
that Main is proved as a rewrite rule.

Exercise 5.17 The introduction of find-all-simple-paths is not strict-
ly necessary. It is possible to prove directly that the existence of a simple
path implies that £ind-path will not fail. Formalize and prove this lemma.

5.12 Reflexive Definitions

As noted, our find-path runs in exponential time. We can reduce it to
linear time by “coloring” or “marking” the nodes as we visit them. We can
formalize this by adding a new argument to find-next-step, called mt (for
“mark table”). The table is just a list of all the nodes visited so far, by
any recursive call. The new function should fail immediately if it arrives at
a marked node. Otherwise, in addition to returning the winning path (or
failure signal), it should return an extended mark table. The returned table
should contain all the nodes in the old table plus any new nodes visited.
The measure used for admission is lexicographic, as before, but the first
component is the number of unmarked nodes of the graph (rather than the
number of “unstacked” nodes). Linearity is assured by the fact that the
edges from a given node are explored at most once.

But the termination argument for this new function is much more subtle.
Consider exploring the neighbors, ni, ns, ... ,ny of some node. Suppose n,
is not in the mark table, m¢. Then the new function will explore the neigh-
bors of ny, using (cons n; mt) as the mark table. It will obtain a path or
failure message and a new mark table, mt'. Suppose no path through n
is found. Then the function will recursively consider ns,... ,ng, using the
mark table mt' obtained from the first recursive call. Note carefully: the
mark table given to the second recursive call is one of the results returned
by the first recursive call. The measure depends on properties of the re-
turned table, in particular, that it contain all the entries of the input table.
(Contemplate termination if some recursive call “unmarks” a node.) But
the measure conjectures must be proved before the function is admitted.

Such function definitions are said to be reflexive. Here is a sequence of
exercises to teach you how to admit reflexive definitions.
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Exercise 5.18 Does the following function terminate?

(defun £ (x)
(if (zp x)
0
(+1( & x1))))))

What are the measure conjectures to be proved? Is there any measure for
which the measure conjectures can be proved before £ is defined? Can you
admit this definition under the ACL2 definitional principle?

Exercise 5.19 Consider the following function.

(defun £ (x)
(declare (xargs :measure (m x)))
(if (zp x)
0
(if (e0-ord-< (m (£ (- x 1))) (m x))
(+1 (£ (£ (- x1))))
’impossible)))

What are the measure conjectures? Can you define m so that this is admis-
sible? Admit the function.

Exercise 5.20 Prove that the admitted £ satisfies the originally desired
equation.

(defthm f-satisfies-original-equation
(equal (f x)
(if (zp x)
0
(+1 (& & (-x1)))))))

Hint: Prove that the test on eO-ord-< always succeeds. Note that this
ezxercise does not establish that the original equation defines a function,
only that the original equation is satisfiable.

Exercise 5.21 Prove that any function g satisfying the original equation
is equal to £. That is, use encapsulate to constrain g to satisfy (equal
(g x) (if (zp x) 0 (+ 1 (g (g (- x 1)))))). What witness can you
use to show at least one such g exists? Once you have introduced this
constrained g, prove (equal (g x) (f x)).

Exercise 5.22 Repeat what you have learned from our toy reflexive func-
tion £ to admit the linear time £ind-next-step. Call the function linear-
-find-next-step. Define linear-find-path appropriately.

Exercise 5.23 Prove that linear-find-path is correct. Hint: Can you
prove that it is equal to find-path? If so, the formal proof of the linear
time algorithm exploits 100% of the work done for the “toy” problem.
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The following exercise, due to Matt Wilding, is for advanced users. Our
solution to Exercise 5.23 marked nodes already seen by adding them to the
mark table list. A node is considered marked if it is a member of this list.
While our algorithm can be thought of as modeling a linear-time algorithm,
our definition of 1inear-find-path does not execute in linear time because
the mark table is searched to determine if a node is marked.

Exercise 5.24 Use single-threaded objects (see stobj) to implement an
algorithm for find-path in ACL2 that executes in linear time. Prove that
your implementation is “equivalent” to linear-find-path. (Hint: The
single-threaded object used in Wilding’s solution is given below.

(defstobj st
(g :type (array list (100000)) :initially nil)
(marks :type (array (integer O 1) (100000)) :initially 0)
(stack :type (satisfies true-listp))
(status :type (integer O 1) :initially 0))

The new algorithm takes and returns this single-threaded object, which en-
codes the graph, the mark table, the stack, and the success/failure answer.)

It is tempting to think that reflexive functions arise only in academic
settings. This is not true. Consider the termination of a garbage collector,
or any program that explores and marks a global state and depends on that
marking for its termination. How can you reason about such a program
except to tie together its effect and its termination? That is what reflexive
functions do and this section shows a method for dealing with them in
ACL2.

5.13 Less Elementary Further Work

This chapter is not about graph theory. It is about how to formalize and
prove things in ACL2. Indeed, one reason we chose such a naive algorithm
is so that the chapter is accessible to anyone interested in this book.

But graph theory is an extremely important and well developed subject.
An excellent ACL2 project would be to formalize and prove correct some
of the classic algorithms of graph theory.

Here are a few pointers. We do not make these Ezercises simply because
we have not provided solutions.

Formalize and prove the correctness of Dijkstra’s shortest path algo-
rithm [25].

The Bellman-Ford algorithm [1, 35] is more general than Dijkstra’s be-
cause edge weights can be negative. Formalize and prove the correctness of
the Bellman-Ford algorithm.

Savitch’s Theorem [97] establishes that reachability can be done in log?n
space, where n is the number of nodes. The algorithm used is similar to



Moore 71

our find-path, but instead of looking at the neighbors of a node it looks
at the “midpoint” between nodes. Formalize the algorithm and prove it
correct.

Aside from the correctness of the algorithms, users are often interested
in their performance. Dijkstra’s algorithm has complexity O(n?), and the
Bellman-Ford algorithm has complexity O(e x n), where e is the number
of edges. Formalize and prove such results. You might start by formalizing
the performance of our find-path. Just as we have used recursive func-
tions to characterize the answers produced by an algorithm, it is possible to
use recursive functions to characterize other aspects of the algorithm, such
as the number of comparisons it makes, the number of conses created (as
opposed to the length of the answer), or some other measure of the perfor-
mance. McCarthy [private communication] called these derived functions
in the 1960’s.

Any modern book on computational complexity or algorithms contains
a wealth of examples of interesting graph algorithms. Two good references
are [84, 22].

5.14 General Lessons

We now return to the particular problem solved here and two general lessons
we can draw from it.

The first lesson is the importance of the proper choice of problem.
We could have attacked a published algorithm or, at least, the linear
find-path. We chose a far simpler algorithm. But look at all the work
involved! However, in this simple setting we got to explore fundamental
representational issues and discover the importance of certain concepts and
techniques in this formal setting. Furthermore, with these issues behind us
it is relatively easy to contemplate incremental elaborations, such as the
introduction of the linear find-path.

Many newcomers to formality make the mistake of assuming that re-
sults or algorithms they take for granted will be easy to prove. They fail
to appreciate how much informal knowledge they are using. They often do
not understand the trade-offs between alternatives ways to formalize that
knowledge. They have not yet internalized the formal patterns correspond-
ing to intuitive leaps in the subject area. In short, newcomers to formality
often forget that they must explore formality itself before trying to apply
it.

The discussion of the linear find-path provides a succinct example.
A major issue with that definition is its reflexive character, an issue that
arises explicitly only by virtue of our using a formal principle of definition.
Arguing the termination of that function is technically subtle since its re-
cursive equation is not known to define a function until termination has
been proved and the termination depends on the value computed by the
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function. This issue was easily explored with our toy reflexive function f
in the exercises. The lessons of that toy carry over directly to the linear
find-path, but would have been far harder to explore in that relatively
complicated function.

So the first lesson is: Choose your problems carefully. Resist the temp-
tation to elaborate early! Do not be afraid to start with a ridiculously
simple “toy problem” that you think you understand perfectly. Develop a
sense of what constitutes a useful “toy” and then trust your intuition that
understanding the “toy” will make your actual problem easier to solve. This
point is illustrated dramatically in [77].

The other general lesson is the importance of learning how to turn con-
vincing informal arguments into formal ones. One aspect of this is correctly
anticipating where a given formalization will lead.

To state the theorem we had to define graphp, nodep, path-from-to,
and find-path. Only the last two are necessary to state the Main property.
Now recall the original sketch of the proof.

Informal Proof Sketch: It is fairly obvious from the definition
of find-path that it returns a path from a to b unless it signals
failure. So the problem is to show that find-path does not
signal failure. Now given a path p from a to b, we can obtain
a simple path, p’, from a to b. Furthermore, p’ is a member
of the set, S, of all simple paths from a to b, showing that S is
non-empty. But find-path signals failure only if S is empty. O

To formalize this we had to define simple-pathp, simplify-path, and
find-all-simple-paths. The first is pretty obviously necessary because
the sketch mentions “simple path.” The second is only implicit in the
sketch, at the mention of “p’”. The third is perhaps the hardest to see
in the sketch: it corresponds to S, the set of “all simple paths.” That
our find-all-simple-paths returns the list of all simple paths is our
Observation-2. In the “naive set theory” in which we are often taught
to express informal proofs, this concept is not defined algorithmically. The
termination of our function implies the finiteness of the “set” constructed.

As this discussion suggests, formalizing an informally given proof re-
quires careful attention to what is being said. Short sentences can appar-
ently lead to large “detours.” But they are not detours. They are often the
essence of the proof. The function find-all-simple-paths is far more
useful and general than find-path and if our proof had one key idea in
it, it is to shift our attention from finding one path to finding them all.
Of course, this implies collections of paths and the concomitant ability to
reason about them.

Such subtle shifts in attention happen all the time in informal proofs.
By noting them, you can save yourself a lot of grief. Many times we have
seen users rail at the theorem prover’s inability to discover an “obvious”
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proof when, in fact, the user has utterly failed to formalize the key notions
in the proof he or she had in mind.

For example, one might overlook the observation that the existence of
an arbitrary path implies the existence of a simple path. That is, one might
introduce simple-pathp but never introduce simplify-path.

Our informal proof says nothing about how one obtains a simple path
from an arbitrary one (which is to say, it does not give a proof of existence).
But on page 55, we finally explain that simplify-pathiteratively uses chop
to remove an initial segment from a path. But chop is itself an iterative
(recursive) process. Hence, we should expect that each inductively proved
theorem about simplify-path will require an analogous inductively proved
theorem about chop. This compositionality cuts both ways: it “doubles”
the number of lemmas we have to prove, but it “halves” the difficulty of
each lemma. Reducing the difficulty is clearly beneficial, so you must learn
to anticipate it so you can manage the increase in the number of lemmas.

On page 58 we said “a will be generated by a call further along in
the cdr of ¢ and will survive in the answer produced by subsequent con-
catenations.” This is a clear indication that we will need to prove that
(append a b) contains all the elements of a and all the elements of b, i.e.,
our member-append. Some anticipation of the likely lemma development
makes it much easier to follow The Method.

In discussing Crux-cdr on page 64, we said “This is a pretty obvious
property of find-all-next-steps because the set of paths found for (cdr
c) is a subset of that found for ¢, when c is non-empty.” This sentence
foreshadowed two formal developments.

¢ The explicit identification of subsetp-member-member
(implies (and (subsetp a b)
(member e a))

(member e b))

for our hint in Crux-cdr. This shifts our attention from a member
question to a subsetp question.

¢ The articulation of the relevant fundamental and obvious property of
find-all-next-steps.

(defthm subsetp-find-all-next-steps
(implies (subsetp c d)
(subsetp
(find-all-next-steps c stack b g)
(find-all-next-steps d stack b g))))



74 An Exercise in Graph Theory

By reading or listening carefully, you can often see the seeds of a formal
proof in an informal one. You should strive to develop this skill. It makes
it easier for you to fill in the gaps in an informal proof. In addition, it gives
you a more realistic appraisal of the length of the journey, which allows you
to manage it more comfortably and successfully.
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Abstract

This chapter presents a modular, top-down proof methodology for the ef-
fective use of ACL2. This methodology is intended both to ease the proof
development process and to assist in proof presentation. An application is
presented: aformalization and proof of the Fundamental Theorem of Calcu-
lus. An unusual characteristic of this application is the use of non-standard
analysis, which however is not a prerequisite either for this chapter or for
the utility of the proof methodology presented herein.

Introduction

ACL2 users sometimes lose their way in the middle of substantial proof
development efforts. Moreover, once the proof is complete, it can be quite
difficult to comprehend the overall structure. Such comprehension is impor-
tant for presenting the proof to others, and is also useful for modifying the
proof, either in order to clean it up or in order to prove a related theorem.

This chapter suggests a solution to development and comprehension
problems by introducing a simple modular proof development methodol-
ogy, which we have used to develop a proof of the Fundamental Theorem
of Calculus (FTOC). This case study also illustrates how an outline tool
exploits the resulting proof structure by presenting a top-down view of the
ACL2 proof input.

The proof of the FTOC uses a modification of ACL2, developed by
Ruben Gamboa [36] to support reasoning about the real numbers using non-
standard analysis. However, non-standard analysis is neither necessary for
the modular proof methodology nor a prerequisite for reading this chapter.
Furthermore, the exercises are designed for standard ACL2.

IThe work described here was performed while the author was at EDS, Inc.
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We are aware of an earlier formalization and mechanically-checked proof
of the FTOC, performed by John Harrison in his doctoral dissertation [47].
The present mechanized proof may be the first employing non-standard
analysis.

The first section below presents this modular proof methodology. The
second section shows how this methodology has been applied to prove the
Fundamental Theorem of Calculus. We conclude with some observations.
Exercises appear below in several places.

6.1 A Modular Proof Methodology

The modular, top-down methodology presented below reflects common
proof development practice in the mathematical community. This method-
ology assists both in proof development and in proof presentation, as ex-
plained in the two subsections below. See also Chapter 5 for a more prim-
itive approach to structuring proofs, using a macro top-down.

A makefile provided in the supporting material automates proof replay
as well as outline creation.?

6.1.1 Proof Development

Many Nqthm and ACL2 users have experienced the following phenomenon.
One desires to prove a certain lemma, but requires a lemma in support of
that proof, which then leads to another lemma to be proved in support of
that one, and so on. At some point the effort seems misguided, but by then
the evolving proof structure is far from clear and it is difficult to decide how
to back up. Even if a decision is made to back up to a particular lemma,
is it clear which lemmas already proved may be discarded?

Even if the above process is successful for awhile, it can ultimately be
problematic in a frustrating way. Suppose one attempts to prove some
goal theorem, and from the failed proof attempt one identifies rewrite rules
that appear to be helpful, say, L1 and L2. Suppose further that additional
rewrite rules are proved on the way to proving L1 and L2. When one again
attempts the original goal theorem, those additional rules can send its proof
attempt in a new direction and prevent L1 and L2 from being used.

Below we develop a top-down methodology that has the following prop-
erties.

¢ The methodology facilitates organization.

¢ The methodology can eliminate proof replay problems.

2We thank Bishop Brock for providing an earlier makefile that we extended for our
purposes.
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Introduction: A Typical High-Level Proof Outline
Here is an outline describing many proofs, both mechanically checked ones
and others.

1. Goal
To prove theorem THM.

2. Main Reduction
It should suffice to prove lemmas L1, L2, ... .

3. Support
Include results from at least one “library” book, 1ib.

4. Proof Hacking
Prove additional lemmas as needed in order to derive THM.

The outline above may be reflected in the following structure of a top-
level book, which (at least initially) can use skip-proofs as shown in order
to defer the proofs of the main lemmas.

; 8. Support
(include-book "1lib")

; 2. Main Reduction
(skip-proofs (defthm L1 ...))
(skip-proofs (defthm L2 ...))
; 4. Proof Hacking
<Miscellaneous lemmas>
; 1. Goal
(defthm THM ...)

A common approach to completing this ACL2 book includes the re-
moval of “skip-proofs” by supplying necessary sub-lemmas (and occa-
sionally, definitions) in front of these lemmas. In our modular methodology
we instead place the proofs of those lemmas in subsidiary books, using
encapsulate in the parent book as follows. Notice that each such sub-
book has the same name as the lemma it is intended to prove.

(include-book "1lib")
(encapsulate ()
(local (include-book "L1i"))
(defthm L1 ...))
(encapsulate ()
(local (include-book "L2"))
(defthm L2 ...))
; Miscellaneous lemmas (for the “proof hacking”) go here.
(defthm THM ...)
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Each sub-book initially contains the corresponding skip-proofs form
shown earlier above, preceded by all include-book forms needed for def-
initions of function symbols used in that form. If the proof of THM re-
quires a change in the statement of, say, L1, ACL2 will refuse to accept the
include-book of "L1" unless the statement of L1 in that book agrees with
the one in the encapsulate form above, so that ACL2 can recognize the
latter L1 as redundant. In such a circumstance one of course changes the
sub-book L1, but can probably leave sub-book L2 unchanged.

Lemma and Library Books

The proposed proof methodology relies on notions of lemma book and library
book. A lemma book is an ACL2 book whose last event is a theorem that
has the same name as the name of the book. We call this last event the goal
theorem of the book. (The outline tool described in Section 6.1.2 exploits
this naming convention.) For example, in the book skeleton presented just
above, books L1 and L2 are lemma books provided their last events are
defthm events named, respectively, L1 and L2. A library book is simply any
ACL2 book other than a lemma book. Such books typically contain either
lemmas of general utility or definitions (or occasionally, both).

Using the Methodology

Our top-down approach suggests a focus on developing reasonably short
lemma books. The trick to keeping their lengths under control is first
to identify the main lemmas in support of the book’s goal theorem, then
pushing their proofs into subsidiary lemma sub-books, especially when sup-
porting sub-lemmas may be required. Each main lemma is handled as il-
lustrated above with sub-books L1 and L2: an encapsulate event contains
first, a local include-book of the corresponding lemma sub-book, and
second, the main lemma.

An important aspect of this approach is that the way in which a lemma,is
proved in such a sub-book will not affect the certification of the parent book.
That is, the use of local around the include-book of a lemma sub-book
allows the sub-book to be changed, other than changing its goal theorem,
without affecting the certification of the parent book. This modularity
can prevent replay problems often encountered when using less structured
approaches to mechanically-assisted proof.

Although our focus is on lemma books, there is still a role for library
books. During the course of developing a book, it will often seem most
convenient to prove some of the simpler lemmas without going through the
effort to create lemma books for them. It can be useful from time to time
to browse through one’s current collection of books and, after backing up
the whole set of them in case the process becomes awkward, to pull out the
most general of these lemmas and put them into one or more library books.
For each lemma book that has had at least one such lemma removed, at
least one include-book event will be necessary in order to account for the
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removed lemmas. Of course, the resulting collection of books might not be
accepted by ACL2 because of the rearrangement, but often one can find
a way to make appropriate modifications. (At any rate, this process of
moving lemmas to library books is optional.) The resulting library books
can then be used to advantage during the rest of the development effort.

There are of course reasonable variations of this methodology. One
variation is to include a subsidiary book at the top level, rather than lo-
cally to an encapsulate. For example, a comment in book riemann-sum-
-approximates-integral-1.1lisp explains that its lemmas car-common-
-refinement and car-last-common-refinement are needed in a parent
book. Hence, that parent book includes the former book at the top level,
not locally to an encapsulate. Perhaps a better approach would have been
to move these two lemmas into a lemma book, but the modular methodol-
ogy accommodates such variation. Specifically, the tool we now describe is
based simply on the notions of lemma books and library books.

6.1.2 Proof Presentation

We describe here an outline tool that assists in proof presentation by cre-
ating a top-down outline of the proof. This tool is available on the Web
pages for this book, [67].

The outline tool takes a parameter that specifies the maximum depth
displayed in the outline. Each entry in the outline gives the following
summary of one lemma book:

¢ the lemma proved in the book, i.e., the last defthm in the book;
¢ the lemma books included (via include-book) in the book; and
¢ the library books included (via include-book) in the book.

Each lemma book generates a sub-entry, but only to the specified depth
limit. Library books do not generate entries.

For example, the Appendix at the end of this chapter shows the depth-3
outline that was generated mechanically from the books for the Fundamen-
tal Theorem of Calculus. The first entry is, as always, labeled Main; it corre-
sponds to the top-level lemma book, fundamental-theorem-of-calculus.
The outline tool generates an entry for each lemma book included within
that top-level book: entry Main.1 for lemma book split-integral-by-
-subintervals, and entry Main.2 for lemma book ftoc-lemma. These
each generate entries as well, but those entries generate no further entries
because of the depth limit of 3.

One exception to this format is the case of a book B included in more
than one parent book. After the entry for B is printed, subsequent entries
for B will be abbreviated as shown in the following example from an outline
of depth at least 5.
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Main.1.1.2.1. riemann-sum-approximates-integral-1.
<See Main.1.1.1 for details.>

6.2 Case Study:
The Fundamental Theorem of Calculus

We assume that the reader has seen the Fundamental Theorem of Calculus
(FTOC) but has perhaps forgotten it. Hence, below we give an informal
review of that theorem, from which we build its formalization. We then
give a high-level description of our mechanized proof.

Before all that, we discuss briefly an unusual aspect of this effort: the
use of non-standard analysis, which introduces a notion of infinitesimal
numbers as described below. In spite of this twist, this chapter assumes no
prior familiarity with non-standard analysis and brings it only minimally
into the discussion. Our primary goal is to illustrate the modular proof
methodology described above. Our secondary goal is to give an overview
of our formalization and mechanized proof of the FTOC.

6.2.1 A Very Short Introduction to Non-Standard Analysis and
Its Acl2-Based Mechanization

This case study uses non-standard analysis together with a corresponding
modification ACL2(r) of ACL2 implemented by Ruben Gamboa [36]. Non-
standard analysis was introduced by Abraham Robinson in about 1960 (see
[92]) in order to make rigorous Leibniz’s approach to calculus from the 17"
century. Its main idea is to extend the real number line by adding non-zero
infinitesimals, numbers that are less in absolute value than every positive
real number. Thus, the real numbers are embedded in a larger number
system that contains these infinitesimals. See also the freshman calculus
book [62] for a development along such lines. A different way of looking
at non-standard analysis is given by Nelson [81, 82], where there is still
one number line embedded into another, but this time the larger one is
considered to be the real line and the smaller one is considered to be the
set of standard real numbers, which includes all definable real numbers (e.g.,
3 and 7).

Nelson’s view guided Gamboa’s development of ACL2(r). There, the
predicate realp is a recognizer for points on the larger number line, while
standard-numberp is true of only the standard real numbers. In ACL2(r)
there is a constant (i-large-integer) to be interpreted as an integer
greater than every standard integer.®> Thus its reciprocal is a non-zero

3By the comment on definability at the end of the preceding paragraph,
i-large-integer is not definable in the real number field.
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Figure 6.1: Area under the curve y = f(z)

infinitesimal, i.e., a non-zero realp that is smaller in absolute value than
every positive real standard-numberp.

Chapter 18 in this book gives the basics of non-standard analysis in
an ACL2 setting. More extensive background may be found in Gamboa’s
doctoral dissertation [36] and also in [37]. Here we attempt to keep the dis-
cussion reasonably self-contained, introducing concepts from non-standard

analysis only as needed. The full proof script can of course be found in the
Web pages for this book [67].

6.2.2 Brief Informal Review of the FTOC

This section provides a quick review of the FTOC, which is often charac-
terized by saying “the derivative of the integral of a function is the function
itself.” We refer implicitly to ideas presented here when discussing the
formalization and proof that follow.

Consider real numbers a and b with a < b, together with a corresponding
partition P, i.e., a finite increasing sequence of numbers starting with a
and ending with b. The mesh of P is defined to be the maximum difference
between two successive numbers in P. Figure 6.1 shows rectangles formed
by connecting successive numbers in P to form the bases and using a curve
y = f(z) to form the heights.

These rectangles can be used to approximate the area under this curve
between a and b. The definite integral of f from a to b is approximated
by the Riemann sum of f over this partition, obtained by adding up the
areas of all these rectangles. These Riemann sums provide arbitrarily good
approximations to the definite integral, by using partitions of arbitrarily
small mesh.
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If we imagine moving b a little bit to one side, then the area changes by
an amount roughly equal to the height of the curve at b times the change
in b. This observation is made precise in calculus, using the following idea.
Given a function f(z) on the real numbers, define I(z) to be the definite
integral from a fixed value a to z. Let I'(z) be the derivative of I(z),
that is, the rate of change of I(z) with respect to . In this chapter we
consider the following form of the FTOC: I'(b) = f(b). Informally, the rate
of change at b of the area accumulated from a under the curve y = f(z) is

f(b)-

Exercise 6.1 Define a function (partitionp p) in ACL2, which is true
ezactly when p is a non-empty, strictly increasing sequence of rational num-
bers. Test your function.

6.2.3 Formalizing the Fundamental Theorem of Calculus

The approach outlined above is formalized in the following theorem, which
we have proved using ACL2(r). It reflects the discussion above: the deriva-
tive of the definite integral is the value of the function.

(implies (and (realp a) (realp x))
(equal (integral-rcfn-prime a x)
(rcfn x)))

In order to understand this theorem, we need to understand the func-
tions in it. The function rcfn is constrained to be a real-valued continuous
function on the reals, using the encapsulate event on page 304. The func-
tion integral-rcfn-prime is intended to formalize the notion, described
informally above, of the derivative of the integral integral-rcfn (defined
below) of rcfn. The following expression represents the rate of change of
the integral over the interval from x to (+ x eps); thus, eps is the change
in x.

(/ (- (integral-rcfn a (+ x eps))
(integral-rcfn a x))
eps)

The derivative of the integral is then obtained by choosing an infinitesimal
value of eps. But that so-called difference quotient is then merely infinitely
close to the actual derivative; that is, it differs from the derivative by an
infinitesimal. In order to obtain equality, we can use the standard-part
function, which produces the unique real number that is infinitely close to
its argument. Here then is the definition of the derivative of the integral.

(defun-std integral-rcfn-prime (a x)
(if (and (realp a) (realp x))
(let ((eps (/ (i-large-integer))))
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(standard-part
(/ (- (integral-rcfn a (+ x eps))
(integral-rcfn a x))
eps)))
0)) ; default

The reader may notice the use of defun-std rather than defun in this
definition. The corresponding axiom equates (integral-rcfn-prime a
x) with the definition body, under the hypotheses that the arguments a
and x are standard. Further discussion of defun-std is beyond the scope
of this paper; see Chapter 18 and see [36, 37].

To be fair, the usual definition of the derivative in non-standard analysis
requires the result to be independent of the change in x; see for example
[62]. This property is guaranteed by the following theorem.

(defthm integral-rcfn-prime-exists
(implies (and (realp eps)
(not (equal eps 0))
(i-small eps) ; eps is infinitesimal
(realp a) (standard-numberp a)
(realp x) (standard-numberp x))
(equal (standard-part
(/ (- (integral-rcfn a (+ x eps))
(integral-rcfn a x))
eps))
(integral-rcfn-prime a x)))
:hints ...)

The function integral-rcfn represents the definite integral of rcfn
between its two arguments. For standard reals a and b, its definition uses a
specific partition P into a non-standard number of equal-sized subintervals,
given by (make-partition a b (i-large-integer)),to form a Riemann
sum (riemann-rcfn P). Standard-part is applied to this sum in order
to obtain a standard real number.

(defun-std integral-rcfn (a b)
(cond ((or (not (realp a)) (not (realp b)))
0) ; default
((< ab)
(standard-part
(riemann-rcfn
(make-partition a b (i-large-integer)))))
((< b a) ; then reverse the sign as well as a and b
(- (standard-part
(riemann-rcfn
(make-partition b a (i-large-integer))))))
(t 0)))
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The following exercises elaborate on our FTOC formalization. They are
to be done using ACL2 (although ACL2(r) should also work).

Exercise 6.2 Define a function (make-partition a b n) which, for ra-
tional numbers a and b and positive integer n, splits the interval from a
to b into n equal-sized subintervals by returning an appropriate sequence of
numbers from a to b. Test your function, for example as follows.

ACL2 !>(make-partition 3 7 8)
(37/249/25 11/2 6 13/2 7)

Exercise 6.3 Define a function (deltas p), which returns the ordered list
of successive intervals represented by p as in the following example.

ACL2 !>(deltas ’(12 13 15 24))
1209)

Exercise 6.4 Define the function (mesh p), the mesh of partition p as
introduced informally in Section 6.2.2.

Create a book partition-defuns containing solutions to the preceding
exercises, to use (via include-book) in the remaining exercises. Use the
modular methodology where appropriate. The first two exercises below
have a similar flavor, so if the first seems difficult, then it will be instructive
to try the second after studying the solution to the first.

Exercise 6.5 Prove the following theorem.

(defthm partitionp-make-partition
(implies (and (rationalp a)
(rationalp b)
(< a b)
(not (zp n)))
(partitionp (make-partition a b n))))

Exercise 6.6 Prove the following theorem.

(defthm mesh-make-partition
(implies (and (rationalp a) (rationalp b) (< a b)
(integerp n) (< 0 n))
(equal (mesh (make-partition a b n))

(/ (- ba)n))))

Exercise 6.7 Prove the following theorem with the hints shown.

(defthm mesh-append
(implies (and (partitionp p1)
(partitionp p2)
(equal (car (last pl)) (car p2)))
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(equal (mesh (append pl (cdr p2)))
(max (mesh p1l) (mesh p2))))

:hints (("Goal" :do-not-induct t
:do-not ’(eliminate-destructors))))

Note. We have seen ACL2 prove this theorem automatically without the
:hints in about 7 minutes on a 1999-fast Sparc (an E10000). But with the
appropriate lemmas, the proof can take less than a second.

Exercise 6.8 Define the dot product of two lists so that the following holds.
(dotprod (list al a2 ... an) (list bl b2 ... bn))

(+ (* a1 bl) (* a2 b2) ... (* an bn))

Nezxt, declare function (rcfn x) using defstub. Then define the pointwise
application of rcfn to a list, so that the following holds.

(map-rcfn (list al a2 ... an))

(1ist (rcfn al) (rcfn a2) ... (rcfn an)).

The immediately preceding exercise allows us to define the Riemann
sum as described informally in Section 6.2.2. Each rectangle’s height is
determined by the endpoint at the right of the corresponding subinterval.*

(defun riemann-rcfn (p)
(dotprod (deltas p) (map-rcfn (cdr p))))

6.2.4 Proving the Fundamental Theorem of Calculus

Our hope is that the outline in the Appendix, at the end of this chapter,
provides a contribution to the exposition below, thus justifying our claim
that the outline tool is useful for proof presentation.

Recall that our formalization of the FTOC says that (integral-rcfn-
-prime a x) is equal to (rcfn x) for real a and x. The main struc-
ture of the proof consists of two parts. First, recall the definition of
integral-rcfn-prime given in Section 6.2.3 in terms of a particular in-
finitesimal, eps.

(standard-part (/ (- (integral-rcfn a (+ x eps))
(integral-rcfn a x))
eps))

4One typically defines the Riemann sum independently of the choices of points in the
subintervals. Moreover, one considers all partitions, not just the partition returned by
make-partition. Lemma riemann-sum-approximates-integral, shown as Main.1.1 in
the Appendix, captures the essence of the latter issue. We have not proved results that
deal with the former issue; this problem would make a nice exercise.
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a X x+eps

Figure 6.2: Area from a to b under y = rcfn(z), split in two

Figure 6.2 suggests that the difference above is equal to the definite integral
from x to x+eps. The first main part of the proof is a corresponding lemma,
which reduces the form displayed above to the following.

(standard-part (/ (integral-rcfn x (+ x eps))
eps))

The second part of the proof is to show that this new form is equal to (rcfn
x).

These two main steps correspond to the two lemmas just under the
FTOC in the outline produced by our outline tool. In the Appendix those
lemmas are shown respectively as split-integral-by-subintervals (la-
beled Main.1) and ftoc-lemma (labeled Main.2). Actually, the first of
these lemmas expresses the decomposition in terms of a sum rather than
a difference; the difference version is proved directly in the top-level book,
since it is a simple consequence of the sum version. We discuss the proofs
of these two lemmas below.

Lemma ftoc-lemma actually assumes that x is standard, and in fact we
initially derive a version of the FTOC subject to that restriction. However,
the so-called transfer principle of non-standard analysis, in particular as
implemented by event defthm-std in ACL2(r), allows this restriction to be
removed. Further discussion of the transfer principle is beyond the scope
of this chapter but may be found in Chapter 18; see also [36, 37].

Overview of Proof of Split-integral-by-subintervals

Lemma split-integral-by-subintervals is labeled Main.1 in the out-
line appearing in the Appendix. It has the following statement, which can
be viewed as a formalization of Figure 6.2.
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(implies (and (realp a) (realp b) (realp c))
(equal (integral-rcfn a c)
(+ (integral-rcfn a b)
(integral-rcfn b c))))

Each of the two integrals added together above is the standard part of
the total area of a corresponding set of rectangles, much as suggested in
Figure 6.2. The right-hand side of the equality above is hence infinitely close
to the total area of all these rectangles, which is a Riemann sum for the
interval from a to c. Thus, a main subtask is to prove the following lemma,
which is labeled Main.1.1 in the outline. It says that every Riemann sum
over a partition of infinitesimal mesh is infinitely close (i-close) to the
exact integral, i.e., their difference is infinitesimal.

(implies (and (partitionp p)
(equal a (car p)) (equal b (car (last p)))
(< a b)
(standard-numberp a) (standard-numberp b)
(i-small (mesh p))) ; the mesh is infinitesimal
(i-close (riemann-rcfn p) (integral-rcfn a b)))

We are now ready to sketch the proof of split-integral-by-subin-
tervals. Its conclusion is equal to the following, by definition of integral-
-rcfn and for two particular terms representing partitions, which we ab-
breviate here as p; and ps.

(equal (integral-rcfn a c)
(+ (standard-part (riemann-rcfn p;))
(standard-part (riemann-rcfn p;))))

LemmaMain.1.2 from the Appendix reduces the term above to the follow-
ing.

(i-close (integral-rcfn a c)
(+ (riemann-rcfn p;) (riemann-rcfn p>)))

If we can write the sum above as an appropriate single application of
riemann-rcfn, then (by symmetry of i-close) the application of Lemma
Main.1.1 should be able to complete the proof.

The following theorem serves that purpose. It appears in the lemma
book split-integral-by-subintervals. It may have been desirable to
push its proof into a lemma sub-book instead; at least, that way it would
have shown up in the outline. However, its proof is fully automatic, so it
was natural not to open up a sub-book for it.

(defthm split-riemann-rcfn-by-subintervals
(implies
(and (partitionp p1)
(partitionp p2)
(equal (car (last pl)) (car p2)))
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(equal (+ (riemann-rcfn p1)
(riemann-rcfn p2))
(riemann-rcfn (append pl (cdr p2))))))

Overview of Proof of Ftoc-lemma
Lemma ftoc-lemma is shown in the Appendix as Main.2. Its conclusion is
as follows.

(equal (standard-part
(/ (integral-rcfn x (+ x eps)) eps))
(rcfn x))

This equality can be rewritten to the following expression, using basic non-
standard reasoning.

(i-close (/ (integral-rcfn x (+ x eps)) eps)
(rcfn x))

Lemma Main.2.2 in the Appendix reduces this problem to finding two
values that are both i-close to (/ (integral-rcfn x (+ x eps)) eps)
such that (rcfn x) is between them. Natural candidates for these values
are the minimum and maximum values of rcfn on the interval from x
to (+ x eps), provided respectively by the application of functions min-x
and max-x to these interval endpoints. This observation is captured in the
conclusion of Lemma Main.2.1 in the outline.

(between (/ (integral-rcfn a b) (- b a))
(rcfn (min-x a b))
(rcfn (max-x a b))).

Of course, many details are omitted here, e.g., how non-standard anal-
ysis is used to define functions such as max-x and min-x. (See Chapter 18.)
Nevertheless, the reader can see the structure of the proof of ftoc-lemma
by looking at the outline in the Appendix, or by looking at an outline for
depth greater than 3 in the supporting materials (see [67]).

6.3 Conclusion

I found it surprisingly pleasant to carry out the proof of the Fundamental
Theorem of Calculus using the top-down, modular methodology presented
here. It was very satisfying, when putting aside the unfinished proof for
the day, to know that I had a self-contained collection of ACL2 books from
which I could easily identify the remaining proof obligations. Especially
comforting was the knowledge that the completion of those proof obligations
would not interfere with the replayability of the completed parts of the
proof.
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Proof construction using ACL2 is a combination of high-level strategy
and low-level tactics, a point stressed (for Nqthm and Pc-Nqthm) using
an extensive example in the tutorial [60]. The top-down nature of the
methodology presented here supports the user’s development of a high-
level strategy. The modularity inherent in the methodology supports the
carrying out of lower-level tactics without interfering with the higher-level
structure (strategy) of the proof.
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Appendix: The Depth-3 Outline for FTOC

Some whitespace created by the outline tool has been manually modified
for display purposes.

Main. fundamental-theorem-of-calculus.
(IMPLIES (AND (REALP A) (REALP X))
(EQUAL (INTEGRAL-RCFN-PRIME A X) (RCFN X)))
using lemmas:
("split-integral-by-subintervals" "ftoc-lemma')
and library books:
("integral-rcfn" "
"riemann-lemmas

integral-rcfn-lemmas"

nsa-lemmas

" "make-partition" "

riemann-defuns")

Main.1. split-integral-by-subintervals.
(IMPLIES (AND (REALP A) (REALP B) (REALP C))
(EQUAL (INTEGRAL-RCFN A C)

(+ (INTEGRAL-RCFN A B)
(INTEGRAL-RCFN B C))))
using lemmas:
("riemann-sum-approximates-integral"
"integral-rcfn-equal-if-i-close")
and library books:
("integral-rcfn-lemmas
"riemann-lemmas" "riemann-defuns")

integral-rcfn"

nsa-lemmas
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Main.1.1. riemann-sum-approximates-integral.
(IMPLIES (AND (PARTITIONP P)
(EQUAL A (CAR P)) (EQUAL B (CAR (LAST P)))
(< A B)
(STANDARD-NUMBERP A) (STANDARD-NUMBERP B)
(I-SMALL (MESH P)))
(I-CLOSE (RIEMANN-RCFN P) (INTEGRAL-RCFN A B)))
using lemmas (NOT shown just below: depth limit reached):
("riemann-sum-approximates-integral-1"
"riemann-sum-approximates-integral-2")
and library books:
("integral-rcfn" "riemann-defuns")

Main.1.2. integral-rcfn-equal-if-i-close.
(IMPLIES (AND (REALP A) (STANDARD-NUMBERP A)
(REALP B) (STANDARD-NUMBERP B)
(< A B)
(REALP Y) (REALP Z))
(EQUAL (EQUAL (INTEGRAL-RCFN A B)
(+ (STANDARD-PART Y)
(STANDARD-PART Z)))
(I-CLOSE (INTEGRAL-RCFN A B) (+ Y Z))))
using lemmas (NOT shown just below: depth limit reached):
("standard-part-equal-if-i-close")
and library books:
("integral-rcfn-lemmas" "riemann-lemmas" "integral-rcfn"
"riemann-defuns")

Main.2. ftoc-lemma.
(IMPLIES (AND (REALP EPS) (NOT (EQUAL EPS 0))
(I-SMALL EPS)
(REALP X) (STANDARD-NUMBERP X))
(EQUAL (STANDARD-PART
(/ (INTEGRAL-RCFN X (+ X EPS)) EPS))
(RCFN X)))
using lemmas:

("integral-rcfn-quotient-between-non-classical"
"between-i-close-implies-i-close")

and library books:

("min-x-and-max-x-lemmas" "../nsa/realp" "defaxioms"
"integral-rcfn" "max-and-min-attained" "nsa-lemmas"
"integral-rcfn-lemmas" "riemann-lemmas"
"make-partition" "riemann-defuns")
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Main.2.1. integral-rcfn-quotient-between-non-classical.
(IMPLIES (AND (STANDARD-NUMBERP A) (REALP A)
(STANDARD-NUMBERP B) (REALP B)
(< A B))
(BETWEEN (/ (INTEGRAL-RCFN A B) (- B A4))
(RCFN (MIN-X A B))
(RCFN (MAX-X A B))))
using lemmas (NOT shown just below: depth limit reached):
("riemann-rcfn-between" "between-limited-implies-limited"
"standard-part-preserves-between" "rcfn-standard-part"
"i-limited-rcfn")
and library books:
("../nsa/realp" "defaxioms" "integral-rcfn"
"max-and-min-attained" "nsa-lemmas"

" "riemann-lemmas"

"integral-rcfn-lemmas
"make-partition" "riemann-defuns")

Main.2.2. between-i-close-implies-i-close.
(IMPLIES (AND (REALP Z) (REALP X) (REALP Y) (REALP R)
(BETWEEN Z X Y)
(I-CLOSE X R) (I-CLOSE Y R))
(I-CLOSE Z R))
using library books:
("../nsa/realp" "defaxioms" "../arithmetic/top-with-meta"
"nsa-lemmas")
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Abstract

Temporal logic model-checking has received substantial academic interest
and has enjoyed wide industrial acceptance. Temporal logics are used to
describe the behavior (over time) of systems which continuously interact
with their environment. Model-checking algorithms are used to decide if a
finite-state system satisfies a temporal logic formula. Many temporal log-
ics, e.g., CTL, LTL, and CTL* can be translated into the Mu-Calculus.
In addition, the algorithm that decides the Mu-Calculus is used for sym-
bolic (BDD-based) model-checking, a technique that has greatly extended
the applicability of model-checking. In this case study we define a model-
checker for the Mu-Calculus in ACL2 and show how to translate CTL into
the Mu-Calculus.

In the process of defining the Mu-Calculus, we develop (ACL2) books
on set theory, fixpoint theory, and relation theory. The development of
these books is given as a sequence of exercises. These exercises make use
of varied ACL2 features; therefore, the first few sections may be of interest
to readers who want more practice in proving theorems in ACL2.

Introduction

Machine-checked proofs are increasingly being used to cope with the com-
plexity of current hardware and software designs: such designs are too
complicated to be checked by hand and machine-checked proofs are a reli-
able way to ensure correctness. Reactive systems are systems with nonter-
minating or concurrent behavior. Such systems are especially difficult to
design and verify. Temporal logic was proposed as a formalism for speci-
fying the correctness of reactive systems in [87]. Algorithms that decide if
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a finite-state system satisfies its specification are known as model-checking
algorithms [20, 27, 89]. Model-checking has been successfully applied to au-
tomatically verify many reactive systems and is now being used by hardware
companies as part of their verification process. In this chapter, we develop
a model-checker for the propositional Mu-Calculus [64, 30, 32, 31, 29, 85]—
a calculus that subsumes the temporal logics CTL, LTL, and CTL*—in
ACL2.

This chapter is intended as a bridge between the companion book,
Computer-Aided Reasoning: An Approach [58], and the other case studies.
There are several self-contained sections in which the reader is presented
with exercises whose solutions lead to books on set theory, fixpoint theory,
and relation theory. We expect that the exercises in these sections are at
the right level of difficulty for readers who have read the companion book.
These exercises make use of diverse, less elementary features of ACL2 such
as congruence-based reasoning, refinements, packages, the use of macros,
guard verification, encapsulation, mutual recursion, and functional instan-
tiation. We also discuss compositional reasoning; specifically we show how
to reason about efficient implementations of functions by using rewrite rules
that transform the efficient functions into other functions that are easier to
reason about. Therefore, we expect—at least the first part of—this chapter
to be of general interest.

If you are not interested in developing the required set theoretic results,
but are interested in formalizing the Mu-Calculus in ACL2, then, instead
of solving the exercises on your own, download the appropriate books from
the supporting material for this chapter.

This chapter is organized as follows: the next three sections develop
the set theory, fixpoint theory, and relation theory discussed above. In the
three sections after that, we present the notion of a model, the syntax and
semantics of the Mu-Calculus, and proofs that the fixpoint operators of the
Mu-Calculus actually compute fixpoints. A section on the temporal logic
CTL and its relation to the Mu-Calculus follows. We conclude with some
directions for further exploration.

Conventions on Exercises

Whenever we introduce a function or ask you to define one, admit it and
add and verify guards; this is an implicit exercise. Many exercises consist
solely of a term or an event; interpret this as a command to prove that
the term is a theorem or to admit the event. The supporting material
includes a macro that you may find useful for dealing with guards. The file
solutions/defung-intro.txt describes the macro and contains exercises.



Manolios 95

7.1 Set Theory

In this section, we develop some set theory. We represent sets as lists and
define an equivalence relation on lists that corresponds to set equality. It
turns out that we do not have to develop a “general” theory of sets; a
theory of flat sets, i.e., sets whose elements are compared by equal, will
do. For example, in our theory of sets, ’ (1 2) is set equal to ’ (2 1), but
> ((1 2)) is not set equal to > ((2 1)).

We develop some of the set theory in the package SETS (see defpkg) and
the rest in the package FAST-SETS, in subsections labeled by the package
names. When using packages, we define constants that contain all of the
symbols to be imported into the package. We start by guessing which
symbols will be useful. For example, we import len because we need it to
define the cardinality of a set and we import the symbols x and x-equiv;
otherwise, when using defcong, x-equiv prints as ACL2: :x-equiv, which
strains the eye. As we develop the book, we notice that we forgot a few
symbols and add them.!

7.1.1 SETS

Here is how we define the package SETS.

(defconst *export-symbols*
(union-eq *acl2-exports*
(union-eq
’(len ... *export-symbolsk)
*common-lisp-symbols-from-main-lisp-package*)))

(defconst *sets-symbols* (union-eq *export-symbols* ... ))

(defpkg "SETS" *sets-symbols%)

We use the simplest definitions that we can think of so that it is easy
to prove theorems. Later, we define functions that are more efficient and
prove the rewrite rules that allow us to rewrite the efficient functions into
the simpler ones. In this way, once rewritten, all the theorem proving is
about the simple functions, but the execution uses the efficient versions.

The definitions of in (set membership), =< (subset), and == (set equal-
ity) follow.

(defun in (a X)
(cond ((endp X) nil)
((equal a (car X)) t)
(t (in a (cdr X)))))

!Due to some technical issues (see package-reincarnation-import-restrictions),
this unfortunately means that we have to start a new ACL2 session.
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(defun =< (X Y)
(cond ((endp X) t)
(t (and (in (car X) Y)
(=< (cdr X) Y)))))

(defun == (X Y)
(and (=< X Y)
(=< Y X)))

Notice that == is an equivalence relation: it is reflexive, symmetric, and
transitive. The macro defequiv can be used to show that a relation is
an equivalence relation. Use :transi to print out the translation of the
defequiv form in the exercise below before you do it.

Exercise 7.1 (defequiv ==

We make heavy use of congruence-based reasoning and will therefore dis-
cuss the topic briefly. For a full explanation consult the companion book
[68] and the documentation on equivalence, defequiv, and congruence.
Congruence-based reasoning can be seen as an extension of the substitu-
tion of equals for equals, where arbitrary equivalence relations can be used
instead of equality. We motivate the need for congruence-based reasoning
with an example using the equivalence relation ==.

Consider the function set-union which computes the union of two sets.
This function is defined below and is equivalent to append. We might want
to prove

(implies (== X Z)
(equal (set-union X Y) (set-union Z Y)))

so that ACL2 can replace z by z in (set-union z y), if it can establish
(== z 2). Letting z be (1 1) and 2z be (1), it is easy to see that this is
not a theorem. However, the following is a theorem.

(implies (== X Z)
== (set-union X Y) (set-union Z Y)))

If stored as a congruence rule (see congruence and rule-classes), ACL2
can use this theorem to substitute z for (a set equal) z in (set-union
z y), in a context where it is enough to preserve ==. More generally, a
theorem of the form:

(implies (eql X Z)
(eq2 (foo ... X ...)
(foo ... Z ...)))

where eql and eq2 are known equivalence relations can be made a con-
gruence rule. Such a rule allows us to replace z by z in (foo ... z ...)
if x and z are eql-equal and we are in a context where it is enough to
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preserve eq2. This should make it clear why congruence-based reasoning is
a generalization of the substitution of equals for equals.

The macro defcong can be used to prove congruence rules. Use : transi
to print out the translation of the defcong forms in the exercise below
before you do it.

Exercise 7.2

~

. (defcong == equal (in a X) 2)
2. (defcong == equal (=< X Y) 1)
3. (defcong == equal (=< X Y) 2)
4. (defcong == == (cons a X) 2)

We now give the definition of set-union.
(defun set-union (X Y)
(if (endp X)
Y
(cons (car X) (set—union (cdr X) Y))))

Exercise 7.3

~

. (equal (in a (set-union X Y)) (or (in a X) (in a Y)))
(=< X (set-union Y X))

(== (set-union X Y) (set-union Y X))

(equal (== (set-union X Y) Y) (=< X Y))

(defcong == == (set-union X Y) 1)

S S o

(equal (=< (set-union Y Z) X) (and (=< Y X) (=< Z X)))
The definition of intersect, a function which computes the intersection
of two sets, follows.

(defun intersect (X Y)
(cond ((endp X) nil)
((in (car X) Y)
(cons (car X) (intersect (cdr X) Y)))
(t (intersect (cdr X) Y))))

Exercise 7.4
1. (equal (in a (intersect X Y)) (and (in a X) (in a Y)))

2. (== (intersect X Y) (intersect Y X))
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3. (implies (=< X Y) (== (intersect X Y) X))

4. (implies (or (=< Y X) (=< Z X))
(=< (intersect Y Z) X))

The definition of minus, a function which computes the set difference
of two sets, follows.

(defun minus (X Y)
(cond ((endp X) nil)
((in (car X) Y)
(minus (cdr X) Y))
(t (cons (car X) (minus (cdr X) Y)))))

Exercise 7.5
1. (implies (=< X Y) (equal (minus X Y) nil))

2. (implies (=< X Y) (=< (minus X Z) Y))

The functions set-complement, remove-dups, cardinality, and s<
(strict subset) are defined below.

(defun set-complement (X U) (minus U X))

(defun remove-dups (X)
(cond ((endp X) nil)
((in (car X) (cdr X))
(remove-dups (cdr X)))
(t (cons (car X)
(remove-dups (cdr X))))))

(defun cardinality (X) (len (remove-dups X)))

(defun s< (X Y) (and (=< X Y) (not (=< Y X))))

Exercise 7.6 Define perm, a function of two arguments that returns t
if its arguments are permutations and nil otherwise. Prove (defequiv

perm) and (defrefinement perm ==). (Perm is defined in the companion
book [58].)

Exercise 7.7
(implies (s< X Y)
(< (len (remove-dups X)) (len (remove-dups Y))))
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7.1.2 FAST-SETS

Although the definitions of the basic set operations defined above are good
for reasoning about sets, some are not appropriate for execution. For exam-
ple, set-union is not tail-recursive?, hence, even if compiled, we can easily
get stack overflows. In this section, we define functions that are more appro-
priate for execution and prove rewrite rules that transform the new, efficient
versions to the old, simpler versions in the appropriate context (specifically,
when it is enough to preserve ==). This approach is compositional, i.e., it
allows us to decompose proof obligations of a system into proof obligations
of the components of the system. Compositional reasoning is routinely used
by ACL2 experts and is essential to the success of large verification efforts.

The functions we define below have the same names as their analogues,
but are in the package FAST-SETS. FAST-SETS imports symbols from SETS,
e.g., == (we expect this to be clear from the context, but one can consult the
supporting material for the package definition, if required). The definition
of set-union, in the package FAST-SETS, follows.

(defun set-union (X Y)
(cond ((endp X) Y)
((in (car X) Y)
(set-union (cdr X) Y))
(t (set-union (cdr X) (cons (car X) Y)))))

Exercise 7.8 (== (set-union X Y) (sets::set-union X Y))

Recall that the above rule allows ACL2 to replace occurrences of set-
-union by sets::set-union in a context where it is enough to preserve

The definition of intersect follows. Note that its auxiliary function is
tail recursive.

(defun intersect-aux (X Y Z)
(cond ((endp X) Z)
((in (car X) Y)
(intersect-aux (cdr X) Y (cons (car X) Z)))
(t (intersect-aux (cdr X) Y Z))))

(defun intersect (X Y) (intersect-aux X Y nil))

Exercise 7.9 (== (intersect X Y) (sets::intersect X Y))

Exercise 7.10 Define minus, a tail-recursive version of sets::minus,
and prove (== (minus X Y) (sets::minus X Y)).

2See the companion book [58] for a discussion of tail recursion and for example proofs.
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Alternate definitions of remove-dups and cardinality are given below.

(defun remove-dups (X) (set-union X nil))

(defun cardinality (X) (len (remove-dups X)))

Exercise 7.11 (equal (cardinality X) (sets::cardinality X))

7.2 Fixpoint Theory

In this section, we develop a book in the package SETS on the theory of
fixpoints. We do this in a very general setting, by using encapsulation to
reason about a constrained function, f, of one argument. Later, we show
that certain functions compute fixpoints by using functional instantiation.
An advantage of this approach is that we can ignore irrelevant issues, e.g.,
in a later section we show that certain functions compute fixpoints; these
functions have many arguments, but £ has only one.

We say that z is a fizpoint of f iff f(z) = z. If f is a monotonic function
on the powerset of a set, then by the following version of the Tarski-Knaster
theorem [105], it has a least and greatest fixpoint, denoted by uf and vf,
respectively.

Theorem 7.1 Let f : 2° — 25 such thata Cb =  f(a) C f(b).
Then

1 pf N{b:6C S A f(b) Cb} = Usconf*(0), and
2. vf = U{bbgs A bgf(b)} = ﬂaEOnfa(S):

where 2° is the powerset of S, f* is the a-fold composition (iteration) of
f, and On is the class of ordinals.

We say that z is a pre-fizpoint of f iff z C f(z); = is a post-fizpoint
iff f(z) C z. The Tarski-Knaster theorem tells us that ujf is below all
post-fixpoints and that v f is above all pre-fixpoints.

We can replace On by the set of ordinals of cardinality at most |S|;
since we are only interested in finite sets, this gives us an algorithm for
computing least and greatest fixpoints. Notice that by the monotonicity of
fra<p = f20)C fB0) A f5(S) C f*(S). Therefore, we can
compute pf by applying f to () until we reach a fixpoint; similarly, we can
compute vf by applying f to S until we reach a fixpoint.

We start by constraining functions £ and S so that £ is monotonic and
when f is applied to a subset of S, it returns a subset of S. Since functions
defined in ACL2 are total, we cannot say that f is a function whose domain
is the powerset of S. We could add hypotheses stating that all arguments to
f are of the right type to the theorems that constrain f, but this generality
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is not needed and will make it slightly more cumbersome to prove theorems
about f. The issue of what to do when a function is applied outside its
intended domain is one that comes up quite a bit in ACL2. The definitions
of the constrained functions follow.

(encapsulate
(£ X) t)

(s O %))
(local (defun f(X) (declare (ignore X)) nil))
(local (defun S() nil))
(defthm f-is-monotonic

(implies (=< X Y)

(=< (£ X) (£ V))))

(defthm S-is-top

(=< (£ X) (set-union X (S))))).

We now define applyf, a function that applies £ a given number of
times.

(defun applyf (X n)
(if (zp n)
X
(if (== X (£ X))
X
(applyf (£ X) (1- n)))))

From the Tarski-Knaster theorem, we expect that 1fpf and gfpf, de-
fined below, are the least and greatest fixpoints, respectively.

(defabbrev 1fpf () (applyf nil (cardinality (S))))

(defabbrev gfpf () (applyf (S) (cardinality (S))))

Now all that is left is to prove the Tarski-Knaster theorem, which is
given as the following two exercises.

Exercise 7.12 Prove that 1fpf is the least fizpoint:
1. (== (£ (1fpf)) (1Lfpf))
2. (implies (=< (f X) X) (=< (1fpf) X))
Exercise 7.13 Prove that gfpf is the greatest fixpoint:
1. (== (£ (gfpf)) (gfpf))

2. (implies (and (=< X (S)) (=< X (£ X)))
(=< X (gfp£)))



102 Mu-Calculus Model-Checking

7.3 Relation Theory

In this section we develop a book, in the package RELATIONS, on the theory
of relations. We represent relations as alists which map an element to the
set of elements it is related to. A recognizer for relations is the following.

(defun relationp (r)
(cond ((atom r) (eq r nil))
(t (and (consp (car r))
(true-listp (cdar r))
(relationp (cdr r))))))

The definition of image, a tail-recursive function that computes the
image of a set under a relation, follows.

(defun value-of (x alist) (cdr (assoc-equal x alist)))

(defun image-aux (X r tmp)
(if (endp X)
tmp
(image-aux (cdr X) r
(set-union (value-of (car X) r) tmp))))
(defun image (X r) (image-aux X r nil))

Exercise 7.14 Define range, a function that determines the range of a
relation.

Exercise 7.15 Define inverse so that it is tail recursive and computes
the inverse of a relation.

The following function checks if the range of its first argument (a rela-
tion) is a subset of its second argument.

(defun rel-range-subset (r X)
(cond ((endp r) t)
(t (and (=< (cdar r) X)
(rel-range-subset (cdr r) X)))))

Exercise 7.16
1. (implies (rel-range-subset r X) (=< (image Y r) X))

2. (implies (and (rel-range-subset r X) (=< X Y))

(rel-range-subset r Y))
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7.4 Models

In this section we introduce the notion of a model. A model, sometimes
called a Kripke structure or a transition system, is a four-tuple consisting
of a set of states, a transition relation, a set of atomic propositions, and a
labeling relation. The transition relation relates a pair of states if the second
state can be reached from the first in a single step. The atomic propositions
can be thought of as Boolean variables that are either true or false at a state.
The labeling relation relates states to the atomic propositions true at those
states. A program can be thought of as a model: there is a state for every
combination of legal assignments to the program’s variables—which can be
recovered from the labeling of the state—and the transition relation relates
a pair of states if, in one step, the program can transition from the first
state to the second. There are some technical details to consider, e.g.,
a program can have variables of varying types, but atomic propositions
are Boolean, hence, program variables are represented by a set of atomic
propositions (this set can be infinite if the domain of the variable is infinite).
We restrict our attention to finite models because we want to check them
algorithmically.

We define the notion of a model in ACL2. The functions defined in this
section, as well as the next two sections, are in the package MODEL-CHECK.
An ACL2 model is a seven-tuple because it is useful to precompute the
inverse relations of the transition relation and the labeling relation as well
as the cardinality of the set of states. The inverse transition relation relates
a pair of states if, in one step, the first state can be reached from the second.
The inverse labeling relation relates atomic propositions to the states at
which they hold. A function that creates a model is defined below.

(defun make-model (s r ap 1)
(list s r ap 1 (inverse r) (inverse 1) (cardinality s)))

Exercise 7.17 Define modelp, a recognizer for models. Define the acces-
sor functions: states, relation, atomic-props, s-labeling, inverse-
-relation, a-labeling, and size to access the: states, transition rela-
tion, atomic propositions, (state) labeling relation, inverse transition rela-
tion, (atomic proposition) labeling relation, and cardinality of the states,
respectively.

7.5 Mu-Calculus Syntax

We are now ready to look at the Mu-Calculus. Informally, a formula of
the Mu-Calculus is either an atomic proposition, a variable, a Boolean
combination of formulae, EXf, where f is a formula, or uY f or vY f, where
fis aformula and Y is a variable (as we will see when we discuss semantics,
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(defun mu-symbolp (s)
(and (symbolp s)
(not (in s ’(+ & MU NU true false)))))

(defun basic-mu-calc-formulap (f ap v)
(cond ((symbolp f)
(or (in f ’ (true false))
(and (mu-symbolp f)
(or (in f ap) (in £ v)))))
((equal (len f) 2)
(and (in (first f) ’(~ EX))
(basic-mu-calc-formulap (second f) ap v)))
((equal (len f) 3)
(let ((first (first £))
(second (second f))
(third (third £)))

(or (and (in second ’(& +))
(basic-mu-calc-formulap first ap v)
(basic-mu-calc-formulap third ap v))

(and (or (in first ’(MU NU)))
(mu-symbolp second)
(not (in second ap))
(basic-mu-calc-formulap
third ap (cons second v))))))))

Figure 7.1: The Syntax of the Mu-Calculus

f and Y define the function whose fixpoint is computed). Usually there is
a further restriction that f be monotone in Y; we do not require this. We
will return to the issue of monotonicity in the next section.

In Figure 7.1, we define the syntax of the Mu-Calculus (ap and v cor-
respond to the set of atomic propositions and the set of variables, respec-
tively). Mu-symbolp is used because we do not want to decide the meaning
of formulae such as ’ (mu + £).

Exercise 7.18 Define translate-f, a function that allows us to write
formulae in an extended language, by translating its input into the Mu-
Calculus. The extended syntax contains AX (° (AX £) is an abbreviation
for *(~ (EX (~ £)))) and the infiz operators | (which abbreviates +), =>
and -> (both denote implication), and =, <=>, and <=> (all of which denote
equality).

Exercise 7.19 (Mu-calc-sentencep f ap) recognizes sentences (formu-
lae with no free variables) in the extended syntaz; define it.
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7.6 Mu-Calculus Semantics

The semantics of a Mu-Calculus formula is given with respect to a model
and a valuation assigning a subset of the states to variables. The semantics
of an atomic proposition is the set of states that satisfy the proposition.
The semantics of a variable is its value under the valuation. Conjunctions,
disjunctions, and negations correspond to intersections, unions, and com-
plements, respectively. EXf is true at a state if the state has some successor
that satisfies f. Finally, u’s and v’s correspond to least and greatest fix-
points, respectively. Note that the semantics of a sentence (a formula with
no free variables) does not depend on the initial valuation. The formal def-
inition is given in Figure 7.2; some auxiliary functions and abbreviations
used in the figure follow.

(defabbrev semantics-EX (m f val)
(image (mu-semantics m (second f) val)
(inverse-relation m)))

(defabbrev semantics-NOT (m f val)
(set-complement (mu-semantics m (second f) val)
(states m)))

(defabbrev semantics-AND (m f val)
(intersect (mu-semantics m (first f) val)
(mu-semantics m (third f) val)))

(defabbrev semantics-0OR (m f val)
(set-union (mu-semantics m (first f) val)
(mu-semantics m (third f) val)))

(defabbrev semantics-fix (m f val s)
(compute-fix-point
m (third f) (put-assoc-equal (second f) s val)
(second f) (size m)))

(defabbrev semantics-MU (m f val)
(semantics-fix m f val nil))

(defabbrev semantics-NU (m f val)
(semantics-fix m f val (states m)))

Now, we are ready to define the main function:

(defun semantics (m f)
(if (mu-calc-sentencep f (atomic-props m))
(mu-semantics m (translate-f f) nil)
"not a valid mu-calculus formula"))
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(mutual-recursion

(defun mu-semantics (m f val)
(cond ((eq f ’true) (states m))

((eq £ ’false) nil)

((mu-symbolp f)

(cond ((in f (atomic-props m))
(value-of f (a-labeling m)))
(t (value-of f val))))

((equal (len f) 2)

(cond ((equal (first f) ’EX)
(semantics-EX m f val))
((equal (first f) ’~)
(semantics-NOT m f val))))

((equal (len f) 3)

(cond ((equal (second f) ’&)
(semantics-AND m f val))
((equal (second f) ’+)
(semantics-OR m f val))
((equal (first f) ’MU)
(semantics-MU m f val))
((equal (first f) ’NU)
(semantics-NUm f val))))))

(defun compute-fix-point (m f val y n)
(if (zp n)
(value-of y val)
(let ((x (value-of y val))
(new-x (mu-semantics m f val)))
(if (== x new-x)
X
(compute-fix-point
m f (put-assoc-equal y new-x val) y (- n 1))))))
; note that the valuation is updated

Figure 7.2: The Semantics of the Mu-Calculus
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Semantics returns the set of states in m satisfying f, if £ is a valid Mu-
Calculus formula, otherwise, it returns an error string.

How would you write a Mu-Calculus formula that holds exactly in those
states where it is possible to reach a p-state (i.e., a state labeled by the
atomic proposition p)? The idea is to start with p-states, then add states
that can reach a p-state in one step, two steps, and so on. When you are
adding states, this corresponds to a least fixpoint computation. A solution
isuY(p V EXY);it may help to think about “unrolling” the fixpoint.

How would you write a Mu-Calculus formula that holds exactly in those
states where every reachable state is a p-state? The idea is to start with
p-states, then remove states that can reach a non p-state in one step, two
steps, and so on. When you are removing states, this corresponds to a
greatest fixpoint computation. A solution is vY (p A —EX-Y); as before
it may help to think about unrolling the fixpoint. Similar exercises follow
so that you can gain some experience with the Mu-Calculus.

Exercise 7.20 For each case below, define a Mu-Calculus formula that
holds exactly in states that satisfy the description. A path is a sequence
of states such that adjacent states are related by the transition relation. A
fullpath is a mazimal path, i.e., a path that cannot be extended.

1. There is a fullpath whose every state is a p-state.
2. Along every fullpath, it is possible to reach a p-state.

3. There is a fullpath with an infinite number of p-states.

The model-checking algorithm we presented is global, meaning that it
returns the set of states satisfying a Mu-Calculus formula. Another ap-
proach is to use a local model-checking algorithm. The difference is that
the local algorithm is also given as input a state and checks whether that
particular state satisfies the formula; in some cases this can be done without
exploring the entire structure, as is required with the global approach.

The model-checking algorithm we presented is extensional, meaning that
it represents both the model and the sets of states it computes explicitly.
If any of these structures gets too big—since a model is exponential in the
size of the program text, state explosion is common—resource constraints
will make the problem practically unsolvable. Symbolic model-checking
[74, 16, 86] is a technique that has greatly extended the applicability of
model-checking. The idea is to use compact representations of the model
and of sets of states. This is done by using BDDs? (binary decision dia-
grams), which on many examples have been shown to represent states and

3BDDs can be thought of as deterministic finite state automata (see any book covering
Automata Theory, e.g., [50]). A Boolean function, f, of n variables can be thought of
as a set of n-length strings over the alphabet {0,1}. We start by ordering the variables;
in this way an n-length string over {0,1} corresponds to an assignment of values to the
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models very compactly [14]. Symbolic model-checking algorithms, even
for temporal logics such as CTL whose expressive power compared with
the Mu-Calculus is quite limited, are based on the algorithm we presented
(except that BDDs are used to represent sets of states and models).

Now that we have written down the semantics of the Mu-Calculus in
ACL2, we can decide to stop and declare success, because we have an
executable model-checker. In many cases this is an appropriate response,
because deciding if you wrote what you meant is not a formal question.
However, in our case, we expect that MU formulae are least fixpoints (if
the formulae are monotonic in the variable of the MU and certain “type”
conditions hold), and similarly NU formulae are greatest fixpoints. We will
check this. We start by defining what it means to be a fixpoint.

(defun fixpointp (m f val x s)
== (mu-semantics m f (put-assoc-equal x s val)) s))

(defun post-fixpointp (m f val x s)
(=< (mu-semantics m f (put-assoc-equal x s val)) s))

(defun pre-fixpointp (m f val x s)
(=< s (mu-semantics m f (put-assoc-equal x s val))))

Read the rest of the exercises in this section before trying to solve any
of them.

Exercise 7.21 Use encapsulation to constrain the functions sem-mon-f,
good-model, good-val, and good-var so that sem-mon-f is monotone in
good-var, good-model is a “reasonable” model, good-val is a “reason-
able” valuation, and good-var is a “reasonable” variable.

We prove the fixpoint theorems by functionally instantiating the main
theorems in the supporting book fixpoints. (See lemma-instance; an
example of functional instantiation can be found in the companion book
[58].)

Exercise 7.22 Prove that MU formulae are least fizpoints and that NU for-
mulae are greatest fizpoints. As a hint, we include the statement of one of
the four required theorems.

variables. We can represent f by an automaton whose language is the set of strings that
make f true. We can now use the results of automata theory, e.g., deterministic automata
can be minimized in O(nlogn) time (the reason why nondeterministic automata are
not used is that minimizing them is a PSPACE-complete problem), hence, we have a
canonical representation of Boolean functions. Automata that correspond to Boolean
functions have a simpler structure than general automata (e.g., they do not have cycles);
BDDs are a data structure that takes advantage of this structure. Sets of states as
well as transition relations can be thought of as Boolean functions, so they too can be
represented using BDDs. Finally, note that the order of the variables can make a big
(exponential) difference in the size of the BDD corresponding to a Boolean function.
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(defmu semmu-is-a-fixpoint
(fixpointp (good-model) (sem-mon-f) (good-val) (good-var)
(mu-semantics
(good-model)
(1ist ’mu (good-var) (sem-mon-f))
(good-val)))
sets::1fix-is-a-fixpoint)

Exercise 7.23 The hint in the previous example is a macro call. This
saves us from having to type the appropriate functional instantiation several
times. Define the macro. Qur solution is of the following form.

(defmacro defmu (name thm fn-inst &rest args)
‘(defthm ,name ,thm

:hints
(("goal"
:use (:functional-instance

,fn-inst
(sets::S (lambda() (states (good-model))))
(sets::f (lambda(y) (mu-semantics ... )))
(sets::applyf
(lambda(y n) (compute-fix-point ... )))
(sets::cardinality cardinality)))

,@args)))

You will notice that reasoning about mutually recursive functions (which
is required for the exercises above) can be tricky, e.g., even admitting the
mutually recursive functions and verifying their guards (as mentioned in
the introduction, this is an implicit exercise for every function we intro-
duce) can be a challenge. Read the documentation for mutual-recursion
and package-reincarnation-import-restrictions. There are several
approaches to dealing with mutually recursive functions in ACL2. One is
to remove the mutual recursion by defining a recursive function that has
an extra argument which is used as a flag to indicate which of the func-
tions in the nest to execute. Another approach is to identify a sufficiently
powerful induction scheme for the functions, add it as an induction rule
(see induction) so that this induction is suggested where appropriate, and
prove theorems by simultaneous induction, i.e., prove theorems that are
about all the functions in the mutual recursion nest. We suggest that you
try both approaches.

7.7 Temporal Logic

Temporal logics can be classified as either linear-time or branching-time
(see [28]). In linear-time logics the semantics of a program is the set of its
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possible executions, whereas in branching-time, the semantics of a program
is its computation tree; therefore, branching time logics can distinguish
between programs that linear-time logics consider identical. A branching
time logic of interest is CTL: many model-checkers are written for it because
of algorithmic considerations. We present the syntax and semantics of CTL.
It turns out that CTL, as well as the propositional linear time logic LTL,
and the branching time logic CTL* can be translated to the Mu-Calculus.
The syntax of CTL is defined inductively by the following rules:

1. p, where p is an atomic proposition, and
2. =f,f Vg, where f is a CTL formula, and

3. EXf,E(fUg),E—~(fUg), where f and g are CTL formulae.

Although we presented the syntax of C'TL, it turns out to be just as easy
to present the semantics of what is essentially CTL*. The semantics are
given with respect to a fullpath, i.e., an infinite path through the model.
If z is a fullpath, then by z; we denote the i** element of z and by z?
we denote the suffix (z;,...). Henceforth, we assume that the transition
relation of models is left total, i.e., every state has a successor. Note that
CTL formulae are state formulae, i.e., formulae whose semantics depends
only on the first state of the fullpath. M,z = f means that fullpath z of
model M satisfies formula f.

1. M,z = p iff z¢ is labeled with p;

2. M,z |=~f iff not M,z = f;
MzE=fvgif Mz |=for M,z =g;

3. M,z = Ef iff there is a fullpath y = (zo,...) in M s.t. M,y E f;
M,z =Xf iff M,z! = f; and
M,z |= fUg iff there exists i € N s.t. M,z = g and for all
j<i, Mz7 = f.

The first two items above correspond to Boolean formulae built out of
atomic propositions. Ef is true at a state if there exists a fullpath from the
state that satisfies f. A fullpath satisfies Xf if in one step (next time), the
fullpath satisfies f. A fullpath satisfies fUg if g holds at some point on the
fullpath and f holds until then.

The following abbreviations are useful:

Af = —E-f, Fg = trueUg, Gf = —-F-f

Af is true at a state if every fullpath from the state satisfies f. A
fullpath satisfies Fg if eventually g holds on the path. A fullpath satisfies
Gf if f holds everywhere on the path.
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Exercise 7.24 Translate the following state formulae into Mu-Calculus
formulae (the penultimate formula is not a CTL formula, but is a CTL*
formula which you can think of as saying “there exists a path such that
infinitely often p”): EFp, AFp, AGp, EGp, EGFp, and EGEFp.

Exercise 7.25 Define a translator that translates CTL formulae (where
the abbreviations above, as well as true and false are allowed) into the Mu-
Calculus.

7.8 Conclusions

We gave a formal introduction to model-checking via the Mu-Calculus, but
only scratched the surface. We conclude by listing some of the many inter-
esting directions one can explore from here. One can define a programming
language so that models can be described in a more convenient way. One
can make the algorithm symbolic, by using BDDs instead of our explicit
representation. One can define the semantics of a temporal logic (e.g.,
CTL") in ACL2 and prove the correctness of the translation from the tem-
poral logic to the Mu-Calculus. One can use monotonicity arguments and
memoization to make the model-checking algorithms faster. Finally, one
can verify that the optimizations suggested above preserve the semantics
of the Mu-Calculus.



