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Abstract When operational semantics is used as the basis for mechanized
verification of machine code programs it is often necessary for the theorem
prover to determine whether one expression denoting a machine address is
unequal to another. For example, this problem arises when trying to deter-
mine whether a read at the address given by expression a is affected by an
earlier write at the address given by b. If it can be determined that a and b
are definitely unequal, the write does not affect the read. Such address ex-
pressions are typically composed of “machine arithmetic function symbols”
such as +, *, mod, ash, logand, logxor, etc., as well as numeric constants and
values read from other addresses. In this paper we present an abstract inter-
preter for machine address expressions that attempts to produce a bounded
natural number interval guaranteed to contain the value of the expression.
The interpreter has been proved correct by the ACL2 theorem prover and is
one of several key technologies used to do fast symbolic execution of machine
code programs with respect to a formal operational semantics. We discuss
the interpreter, what has been proved about it by ACL2, and how it is used
in symbolic reasoning about machine code.

1 Preface

One might ask why a paper on the ACL2 project is included in the volume
marking the 20th and 25th anniversaries of the European ProCoS project.
ProCoS was in part inspired by the successful effort at Computational Logic,
Inc. (CLI), first published in 1989, to verify a system “stack,” from a gate-
level description of a microprocessor, through an assembler, linker, loader,
two compilers, and an operating system, to several applications. All were
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2 Computing Address Bounds

verified using the Nqthm [5] theorem prover and their correctness results
were designed to compose so that each level relieved the preconditions of
the level below. The result was a mechanically checked theorem of the form:
under certain very specific preconditions on the resources available and the
inputs, the application programs (when compiled, linked, and loaded) run
correctly on the hardware. The only unverified assumptions were the ones at
the bottom: the fabrication of the gate-level description was faithful to the
design and the physical gates behave as logically specified [1].

But the CLI stack inspired more than ProCoS. It was one of several Nqthm
projects in the late 1980s and early 1990s involving models of commercial in-
terest. See for example the work on the C String Library as compiled by gcc

for the Motorola 68020 [6]. These projects stressed Nqthm in ways we had not
seen before: its capacity, efficiency, and convenience as a practical functional
programming language. Thus was born, in 1989, ACL2: A Computational
Logic for Applicative Common Lisp [7, 13, 12, 11] ACL2 was a reimplemen-
tation of Nqthm in an applicative subset of Common Lisp [19]. But while the
logic of Nqthm was a “homegrown” dialect of pure Lisp, the logic of ACL2 is
applicative Common Lisp, a fast, efficient, widely supported ANSI standard
programming language.

ACL2 has since been used in many industrial projects and is in use reg-
ularly at several companies involved with microprocessor design. For a good
illustration of how ACL2 can be used in industry, see [18].

2 Introduction

Operational semantics has long been used to formalize and mechanically ver-
ify properties of machine code programs. Examples of the Edinburgh Pure
Lisp Theorem Prover, Nqthm and ACL2 being used to prove functional cor-
rectness of code under formal operational semantics may be found in numer-
ous publications [2, 1, 6, 21, 16, 17, 20, 10].

In such applications, terms in the logic are used to represent machine
states, transition functions define the effects of individual instructions, these
instruction-specific transition functions are then wrapped up into a “big
switch” single-step function that applies the transition function dictated by
the opcode of the next instruction, and finally the single-step function is
wrapped up into a recursive iterated step function for giving semantics to
whole programs. Typically the program being analyzed is stored in the state,
either encoded numerically in memory or symbolically in some “execute only”
state component. Theorems are then posed, typically, as implications assert-
ing that if the initial state has some property then the “final” state produced
by the iterated step function has some related property. These theorems are
typically proved by induction but the “heavy lifting” in the proof is done by
a rewriting strategy that explores the various paths through the program and
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composes and simplifies the individual state transitions. The rewriting strat-
egy is just deductive implementation of symbolic evaluation which we some-
times also call code walking. The basic idea of symbolic evaluation is to start
with a symbolic state expression containing a concrete program counter and
program code but containing variables in some state components (e.g., mem-
ory locations holding program data). Hypotheses typically constrain these
variables. To symbolically step that state: retrieve the instruction at the pro-
gram counter, instantiate the transition function with that instruction, sim-
plify the resulting state (rearranging expressions representing the contents
of various registers and memory locations, testing them, and producing an
IF-expression with new states with known program counters), and repeat on
all the new states until some condition is satisfied.1

We sometimes refer to these proofs as code proofs because they can estab-
lish properties of explicit machine code.

Fundamental to this approach to semantics are the terms denoting reads
and writes to the memory of a state because every transition requires manip-
ulating the memory. In this work we focus on a byte addressed memory and
use these terms for read and write:

R(a, n, st): returns the natural number obtained by reading n bytes starting
at address a in the memory of state st
!R(a, n, v, st): returns the new state obtained by writing n bytes of natural
number v into the memory of st starting at address a

We call a an address and n an extent. R and !R use the Little Endian con-
vention to represent natural numbers as sequences of bytes. If an integer is
supplied for v above, its twos complement representation – a natural number
– is used. For example, !R writes the least significant byte of the binary rep-
resentation of v into address a and writes the more significant bytes into the
higher addresses.

R and !R enjoy certain properties that are crucial to code proofs. One such
property is:

a, n, b,m ∈ Z ∧ (a+ n ≤ b) → R(a, n, !R(b,m, v, st)) = R(a, n, st).

Such a theorem is called a read-over-write theorem because it tells us about
the results of reading after writing. This particular read-over-write theorem

1 The process just described is just ordinary mathematical simplification of the iterated
step function applied to the initial state. A special case of symbolic evaluation is “symbolic
simulation” or “bit blasting” by which we mean a process whereby objects from a given
finite set are represented using nested structures whose leaves are Boolean constants and
variables. The process computes related objects from definitions or other equations using

Boolean decision methods typically based on binary decision diagrams (BDDs) or Boolean
satisfiability procedures (SAT). ACL2 supports symbolic simulation, e.g., see the ACL2
online documentation topic GL, but in this paper we are concerned with straightforward
simplification.
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says the write can be ignored if the read fetches bytes in memory addresses
below those written. There are other theorems to deal with overlapping reads
and writes and reads above writes. There are analogous write-over-write the-
orems for simplifying state expressions. All are crucial to code proofs.2

But what is of concern here is how, in a theorem proving context, we
establish such inequalities as (a + n ≤ b) when a, n, and b are given by
terms produced by symbolic evaluation of machine code. Such hypotheses
litter the read-over-write and write-over-write conditional rewrite rules that
are heavily used in code proofs. These rules are typically tried many more
times than they are successfully applied: given an arbitrary read-over-write
expression one must try to establish the hypotheses of each rule to determine
whether the read is below, overlapping, or above the write. Furthermore, in
typical code proofs, thousands of read-over-write expressions are encountered.
Finally, the expressions a and b can become very large.

To put some numbers on the adjectives “heavily used,” “large,” etc., con-
sider the largest symbolic state encountered while symbolically exploring a
machine code implementation of the DES algorithm. The state in question
represents the end of one path through the 5,280 instructions in the decryp-
tion loop. The normalized state expression contains 2,158,895 function calls,
including 58 calls of !R to distinct locations and 459,848 calls of R. (Repeated
writes to the same location are eliminated by the rewriting process.) That
state expression also contains 1,698,987 calls of arithmetic/logical functions
such as addition, subtraction, multiplication, modulo, and bitwise logical AND,
exclusive OR, shift, etc. The largest value expression written is given by a term
involving 147,233 function applications, 31,361 of which are calls of R and the
rest are calls of arithmetic/logical functions. Values written often become in-
dices into arrays and thus become part of address expressions.

We found it impractical to use ACL2’s conventional arithmetic library to
answer the address comparison questions that arise while building up such
large state expressions. But ACL2 allows the user to extend the rewriter with
special-purpose symbolic manipulation programs if those programs — which
are written in the ACL2 programming language — are first proved correct by
ACL2. So we developed special-purpose programs to answer such questions as
“is (a+ n ≤ b) true?” or more generally, “how do the values of expressions a
and b compare?” The core technology is an Abstract Interpreter over Natural
Number Intervals called Ainni, which takes a term and the context in which
it occurs and tries to compute a bounded natural number interval containing
all possible values of the term in that context. Ainni is purely syntactic — it
just walks through the term bounding every subterm— and can be thought of
as a verified type-inference mechanism where the types are intervals. Ainni
was then used to develop a variety of metafunctions for manipulating the

2 Typical machine state models involve many other state components, their “accessor” and
“updater” function symbols, and their analogues to “read-over-write” theorems, etc. But
we ignore them in this paper since we are focused on address resolution.



Computing Address Bounds 5

gigantic expressions produced by the symbolic evaluation of machine code
sequences containing thousands of instructions.

In section 3 we give some practical information about ACL2 as well as
explain ACL2 notation which we often use in place of conventional notation
because our techniques involve metafunctions which manipulate the internal
ACL2 representation of terms. In section 4 we discuss that representation
and metafunctions. In section 5 we introduce ACL2’s pre-existing notion of
“bounder” functions and a library of elementary bounders. In section 6 we
describe the key idea: Ainni, our abstract interpreter for machine arithmetic
expressions that attempts to produce a bounded interval containing the value
of the expression. Also in this section we show the correctness results for
Ainni. These results have been proved by ACL2 and are necessary if Ainni
is to be used in verified metafunctions. In section 7 we illustrate calls of Ainni
and the interpretation of its results. In section 8 we exhibit a metafunction
that uses Ainni to simplify a certain kind of MOD expression. This section
shows how a metafunction assembles the results of Ainni into a provably
correct answer. In section 9 we briefly describe other applications of Ainni,
including the motivating one for simplifying read-over-write expressions. In
section 10 we briefly mention related work. Finally we summarize in section
11 and acknowledge the help of colleagues in section 12.

3 A Little Background on ACL2

In this section we present a little practical background on ACL2, its doc-
umentation and user-developed libraries. Then we sketch the syntax of the
ACL2 logic and reveal a bit about the implementation of the ACL2 theorem
prover in Lisp. We also reveal a bit about the semantics.

ACL2 was initially developed by Robert S. Boyer and the author starting in
1989. However, since the early 1990s it has been extensively further developed,
documented, maintained, and distributed by Matt Kaufmann and the author.
It is available for free in source code form from the ACL2 home page [14].

When we refer to “:DOC x” we mean the documentation topic x in the
online ACL2 documentation, which may be found by visiting the ACL2 home
page, clicking on The User’s Manuals, then clicking on ACL2+Books Manual
and typing x into the “Jump to” box.

In ACL2 parlance, a “book” is a file of definitions and theorems that can be
loaded (see :DOC include-book) into an ACL2 session to extend the current
theory. The actions of the ACL2 rewriter (and other parts of the prover)
are influenced by previously proved theorems. Books are often developed
with some particular problem domain and proof strategy in mind and when
included in a session configure the prover to implement that strategy.

In this paper we refer to several books in the ACL2 Community Book

Repository. The repository is developed and maintained by the ACL2 user
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community. The top of the directory structure may be viewed by visit-
ing GitHub at https://github.com/acl2/acl2. A particular file may be
found by clicking your way down the directory hierarchy. For example,
to find books/projects/stateman/stateman22.lisp start on the GitHub
page above and click on books, then projects, etc.

ACL2 is the name of a programming language, a first order logic, a theorem
prover, and a program/proof development environment. The ACL2 program-
ming language is an extension of the applicative subset of Common Lisp [19].
The logic includes an axiomatization of that language consistent with Com-
mon Lisp. The theorem prover and environment are implemented (largely)
in the ACL2 programming language.

In ACL2, the term R(a, n, st) is written (R a n st). ACL2 is case insen-
sitive so this could also be written (r a n st) or (R A N ST). In this paper
we write variable symbols in lowercase italics. We tend to use case, both cap-
italization and uppercase, merely for emphasis. If our use of case and italics
is confusing just ignore them!

Internal to the ACL2 theorem prover, the term (R a n st) is represented
by the Lisp list that prints as (R A N ST), i.e., a list of length 4 whose car

or first element is the Lisp symbol R, and whose cdr or remaining elements
are given by the list (A N ST). Consing the symbol R onto the list (A N ST)

produces the list (R A N ST). In Lisp we could create this list by evaluating
(cons ’R ’(A N ST)), or (cons ’R (list ’A ’N ’ST)) or (list ’R ’A

’N ’ST). These three examples illustrate the most common idioms used to
create terms when programming the theorem prover.

This brings us to the single quote mark and Lisp evaluation. The Lisp
convention is that a single quote mark followed by a Lisp expression α is
read as though the user had typed (QUOTE α). Thus, ’(R A N ST) is read
as (QUOTE (R A N ST)).

QUOTE is a “special symbol” in the semantics of Lisp. The result of evaluat-
ing (QUOTE α) is α. This discussion of internal representation and the special
meaning of QUOTE and the single quote mark are relevant to our discussion
of metafunctions in the next section.

But to foreshadow that discussion, it happens that if α is the Lisp rep-
resentation of an ACL2 term then ’α is the Lisp representation of another
ACL2 term, that second term in fact denotes a constant in the ACL2 logic,
and there is an ACL2 function, say E , called an “evaluator,” that when ap-
plied to that constant and an appropriate association list (“alist”) will return
the same thing as the value of α. For example, since (R a n st) is an ACL2
term, then so is ’(R A N ST), the latter term denotes a constant in the ACL2
logic, and

(E ’(R A N ST) (list (cons ’A a) (cons ’N n) (cons ’ST st)))
=
(R a n st)

is a theorem of ACL2.
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In Lisp, certain constants, in particular symbols T and NIL, numbers, char-
acter objects, and strings, evaluate to themselves. Thus, when writing Lisp it
is not necessary to quote these constants. But constants appearing in ACL2
terms, even T, NIL, and numbers, are always quoted. This is achieved with-
out inconveniencing the user by translating user type-in into ACL2’s internal
form. Thus, the term we write as (R 4520 8 st) is represented inside the
theorem prover as (R ’4520 ’8 ST) which we could display as (R (QUOTE

4520) (QUOTE 8) ST). The user could in fact input the term in any of these
ways. All three expressions produce exactly the same internal form. And be-
cause ACL2 is Lisp, it happens that all three are not only ACL2 terms but
Lisp expressions and they produce the same results when evaluated by Lisp.

Some other ACL2 function symbols used in this paper are shown in Figure
1. In Lisp, a test or predicate is said to be “false” if its value is NIL and is
said to be “true” otherwise. The symbols force and hide of Figure 1 are
trivial identity functions used to communicate pragmatic information to the
ACL2 prover. See :DOC force and hide.

ACL2 term name conventional notation
(if x y z) if-then-else x ? y : z

(implies p q) logical implication p → q

(and p q) logical conjunction p ∧ q

(or p q) logical disjunction p ∨ q

(not p) logical negation ¬p
(equal x y) equality x = y

(integerp x) “is-integer” x ∈ Z

(natp x) “is-natural” x ∈ N

(< x y) less than x < y

(<= x y) less than or equal x ≤ y

(+ x y) addition x+ y

(- x y) subtraction x− y

(* x y) multiplication x× y

(ifix x) “coerce-to-integer” if x is an integer, x; else 0
(expt x y) exponentiation xy

(mod x y) modulus x mod y

(ash x y) shift ⌊x× 2y⌋
(logand x y) bitwise and x&y

(logior x y) bitwise inclusive or x|y
(logxor x y) bitwise exclusive or x^y

(force x) x

(hide x) x

(R a n st) read n bytes from addr a

(!R a n v st) write n bytes of v to addr a

Fig. 1 Some ACL2 Function Symbols

In the internal representation of ACL2 terms, all function symbols take
a fixed number of arguments. “Functions” that allow varying numbers of
arguments are handled as Lisp macros that expand during the previously
mentioned translation phase. For example, the internal form of (+ i j k) is
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actually (binary-+ i (binary-+ j k)). The symbol + is a macro that ex-
pands into a term that uses the function symbol binary-+. Of the “function
symbols” shown in Figure 1 the symbols +, *, logand, logior, and logxor are
actually macros that expand into right-associated calls of function symbols
that take exactly two arguments. The “functions symbols” and and or are
macros that expand into nests of IF expressions. But in this paper we ignore
such details and will pretend that they are all function symbols, not macros;
when discussing term processing functions we will act like these symbols have
exactly two arguments. We mention this detail only to reassure readers fa-
miliar with ACL2 that our metafunctions do not mistake macros for function
symbols.

ACL2 is untyped and all ACL2 functions are total; thus, ACL2 expres-
sions mean something no matter what well-formed arguments are supplied;
however we will always use them conventionally and their completions are
unimportant here. For example, ACL2’s universe includes the rationals but
not the irrationals. Thus, (expt 2 1/2) is a well-formed ACL2 term, it is
indeed equivalent to a certain constant, but that constant is not

√
2. But this

does not matter here because no term involved in this work applies expt to
a non-integer.

4 Metafunctions

ACL2 “metafunctions” are ordinary ACL2 functions that operate on the in-
ternal representation of ACL2 terms. Correctness is stated in terms of “eval-
uators.” Once ACL2 has proved a metafunction correct, the metafunction
may be used by the theorem prover directly on the internal representation of
terms [4]. Metafunctions have been part of ACL2 since its beginning; indeed,
they were first introduced and described in 1979 [3] as part of the prover that
became Nqthm [5].

An “evaluator” is a function that interprets an object as a term, with re-
spect to some assignment giving meaning to variable symbols. Lisp’s eval

would be a wonderful evaluator if it were admissible in ACL2’s first order logic
of total recursive functions, but it is not. Fortunately, it suffices for ACL2’s
purposes to admit evaluators for a finite number of already-introduced func-
tion symbols and the ACL2 system provides a macro, defevaluator, that
makes this easy. See :DOC defevaluator.

More technically, let σ be a set of ACL2 function symbols. An ACL2
evaluator function over σ is a function ev of two arguments, x, treated as
the internal representation of a term, and alist, treated as an association
list mapping variable symbols to values. The value, v, of (ev x alist) is
constrained to have certain properties including: If x is a symbol other than
NIL, v is the value assigned x by alist. If x is ’c, v is c. If x is of the
form (g x1 . . . xn), where g ∈ σ, then v is (g (ev x1 alist) . . . (ev xn
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alist)). Additional constraints include that ev be able to interpret LAMBDA-
applications and that on x of the form (g x1 . . . xn) where g /∈ σ, ev is a
function of the (ev xi alist).

Henceforth, we will assume that E is an ACL2 evaluator function over all
of the functions mentioned in this paper (except E itself!)3.

Thus,

(E ’(!R ’4000 ’8 (LOGAND X Y) ST)

(LIST (CONS ’X x)
(CONS ’Y y)
(CONS ’ST st)))

=
(!R ’4000 ’8 (LOGAND x y) st)
=
(!R 4000 8 (LOGAND x y) st).

A metafunction is an ordinary list processing function in ACL2 with the
property that it takes the internal representation of a term and returns the
internal representation of an equivalent term. To be precise, a metafunction
must be proved to operate correctly on “pseudo terms.” Pseudo terms are
term-like list structures that do not necessarily obey all the internal invariants
on ACL2’s term representation. Before the output of a metafunction is used
to replace its input, the output is checked to satisfy all the internal invariants,
unless the user has also proved that the function preserves them [15].

The general form of the theorem establishing that fn is a verified meta-
function is:

(implies (and (pseudo-termp x)
(alistp alist))

(equiv (E x alist)
(E (fn x mfc state) alist)))

where E is any evaluator. The variable name mfc stands for metafunction

context and state is the state of the ACL2 system, which together give fn
access to contextual and heuristic data.

If this theorem has been proved by ACL2, then the ACL2 rewriter is
logically permitted to replace any term x by the result computed by calling
fn on x provided the returned object represents a term. This argument is
presented in detail in :DOC meta.

Furthermore, by convention, if the metafunction returns an answer of the
form ’(IF test new x) when applied to x, the rewriter uses new as the
simplified version of x provided it can backchain and establish test. Thus,
fn can check some hypotheses syntactically and leave others to be relieved

3 The actual name of this evaluator is stateman-eval, “stateman” being the name of
the “State Management” book that motivated this work. We simply find stateman-eval

inconveniently long for use in a paper.



10 Computing Address Bounds

by the rewriter. This design means that the user does not have to prove
that the metafunction properly interprets the data found in mfc and state.
It also means that the ACL2 implementors do not have to formalize that
data but instead merely provide functions for accessing certain parts of it.
However, when those functions are used properly in a metafunction and the
metafunction accurately “exports” what was learned as a conjunct included in
test, it is generally easy for ACL2 to backchain and prove test: it is generally
proved by the trusted internal routines of ACL2 for interpreting the data in
mfc and state.

Since ACL2’s implementation language is ACL2, programming metafunc-
tions is just like programming theorem proving utilities, except that we gen-
erally use ACL2 to prove that our programs are correct. For example, suppose
we wanted a utility for conservatively determining that an expression x al-
ways returns a natural number. Here is such a function.4 It is not actually
necessary for the user to define this particular function. ACL2 has much more
sophisticated built-in ways to recognize expressions that return naturals. But
this function is a good warm-up.

(defun syntactic-natp (x)
(cond

((atom x) nil)

((eq (car x) ’QUOTE)

(natp (nth 1 x)))
((member (car x) ’(+ * LOGAND LOGIOR LOGXOR ASH MOD))

(and (syntactic-natp (nth 1 x))
(syntactic-natp (nth 2 x))))

((eq (car x) ’HIDE)

(syntactic-natp (nth 1 x)))
((eq (car x) ’R) t)

(t nil)))

Here we use atom to recognize variable symbols, (car x) to fetch the top-
level function symbol (or the QUOTE mark) of the non-atomic term x, (nth 1

x) to fetch the constant inside a QUOTEd expression, and (nth i x) to fetch
the ith argument of function application x.

ACL2 can prove that if (syntactic-natp term) is true, then (natp (E
term alist)).

(implies (syntactic-natp term) ; {syntactic-natp correct}
(natp (E term alist)))

We might then use syntactic-natp in the definition of some metafunc-
tion. For example, suppose we wished to write a metafunction that rec-
ognized terms of the form (natp x) and replaced them by T when x is a
syntactic-natp expression. Here is that metafunction:

4 As indicated above, a correct definition will use BINARY-+ instead of +, BINARY-* instead
of *, etc.
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(defun meta-natp (x)
(cond ((and (not (atom x))

(eq (car x) ’NATP)

(syntactic-natp (nth 1 x)))
’(QUOTE T))

(t x)))

ACL2 can prove:

(implies (pseudo-termp x) ; {meta-natp correct}
(equal (E x alist)

(E (meta-natp x) alist)))

Given this theorem, ACL2 would be justified in applying meta-natp to ev-
ery expression it ever encountered and replacing the expression by the result.
That would be needlessly inefficient since meta-natp only changes some NATP
expressions. The user-interface to ACL2 requires the user to provide prag-
matic information identifying likely targets expressions, in this case, calls of
NATP.

5 Bounders

The key to resolving such questions as (a + n ≤ b) by syntactic analysis
is to be able to compute a bounded interval containing all possible values
of a term. In this paper we assume all intervals are closed, bounded, and
over the naturals (i.e., integer intervals with non-negative lower bound). We
denote intervals over the naturals by [lo, hi], where both lo and hi are natural
numbers and lo ≤ hi.

Imagine that x and y lie within certain bounded closed intervals over the
naturals. Then it is easy to compute an interval containing their sum by
appealing to the following theorem:

(x ∈ [lox, hix] ∧ y ∈ [loy, hiy]) → (x+ y) ∈ [lox + loy, hix + hiy]

It is easy to imagine a function that takes a term, like (+ x y) in ACL2,
and computes an interval containing its value, provided it can recursively
compute such intervals for x and y. The question is: given intervals containing
the arguments of a function f , can we compute an interval containing the
value of f on those arguments?

In ACL2, an n-ary function g is a bounder for an n-ary function f if,
for closed bounded intervals int1, int2, . . ., intn over the natural numbers,
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when xi ∈ inti, for all 1 ≤ i ≤ n, then g(int1, . . . , intn) is an interval and
f(x1, . . . , xn) ∈ g(int1, . . . , intn).

5

The file books/tau/bounders/elementary-bounders.lisp, in the ACL2
Community Books repository, developed by the author, defines and verifies
bounders for +, *, -, FLOOR, MOD, LOGAND, LOGNOT, LOGIOR, LOGXOR, EXPT, ASH
and a few other functions.

For example, here is a version of the bounder for LOGAND that is correct
provided the two intervals intx and inty are closed bounded intervals over the
naturals. This function is less general than that in the elementary-bounders
Community Book, which deals with the various kinds of ACL2 intervals,
including the cases where the bounds are negative integers. But the simple
function below illustrates the basic ideas in all of our bounders.

(defun natp-tau-bounder-logand (intx inty)
(let ((lox (tau-interval-lo intx))

(hix (tau-interval-hi intx))
(loy (tau-interval-lo inty))
(hiy (tau-interval-hi inty)))

(cond

((worth-computingp lox hix loy hiy)
(make-natural-interval

(find-minimal-logand lox hix loy hiy)
(find-maximal-logand lox hix loy hiy)))

(t

(make-natural-interval 0 (min hix hiy))))))

Here the functions tau-interval-lo and tau-interval-hi extract the
lower and upper bounds of an interval, and make-natural-interval con-
structs a closed ACL2 interval over the naturals when given appropriate
lower and upper bounds. We discuss the “Tau System” of ACL2 in the next
section.

The naive analytic bound on (logand x y) is [0, min(hix, hiy)]: the min-
imum possible value is 0 because x and y may not have any bits in common.
The maximum possible value is the smaller of the upper limits of x and y,
since logand just turns some bits off. For example, if x ∈ [1032, 1039] and
y ∈ [520, 527], then this naive approach tells us that (logand x y) ∈ [0, 527].

But this naive approach can grossly overestimate the bounding interval.
In fact, (logand x y) ∈ [8, 15], for any x and y bounded as assumed above,
as can be confirmed by simply trying every combination of x and y in the
two intervals and loganding them together. If the two input intervals are suf-
ficiently small this empirical approach is practical and often produces much
tighter results. The functions worth-computingp, find-minimal-logand,
and find-maximal-logand implement this empirical approach to interval

5 ACL2 is actually a little more relaxed: it does not require that every argument of f be
confined to an interval. ACL2 furthermore allows both open and closed intervals, possibly
unbounded at either end, over not just the integers but also the rationals.
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analysis. Worth-computingp deems it worth trying if the number of combi-
nations is less than 220. ACL2 can do that many logand operations in about
0.004371 seconds on a MacBook Pro laptop with a 2.6 GHz Intel Core i7
processor.

6 Ainni: Abstract Interpreter over Natural Number

Intervals

The “easy to imagine” function mentioned above, that takes a term and tries
to compute an interval containing its value, is formalized in our function
Ainni. Ainni is an abstract interpreter over natural number intervals. It
uses the bounders in the elementary bounders book, and a few more, compute
intervals.

To suggest how Ainni is defined we exhibit a simpler function aii below.
For the full definition of Ainni see the ACL2 Community Book books/-

projects/stateman/stateman22.lisp.
Suppose we have k function symbols, op1, . . ., opk, of arities n1, . . . , nk, and

suppose we have a bounder function for each, bounder-op1, . . ., bounder-opk,
respectively. Suppose x is a term over the opi. Then here is a sketch of aii,
an abstract interpreter that attempts to compute an interval containing the
value of x. If it fails to find an interval it returns nil. We show the definition
below and then paraphrase each case shown.

(defun aii (x)
(cond

((atom x) nil)

((eq (car x) ’QUOTE)

(cond ((natp (nth 1 x))
(make-nat-interval (nth 1 x) (nth 1 x)))
(t nil)))

. . .
((eq (car x) ’opi)
(let ((int1 (aii (nth 1 x)))

. . .
(intni (aii (nth ni x))))

(cond

((and int1 . . . intni)

(bounder-op1 int1 . . . intni)

(t nil)))))

. . .
((eq (car x) ’R)

(cond ((and (not (atom (nth 2 x)))
(eq (car (nth 2 x)) ’QUOTE)
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(natp (nth 1 (nth 2 x))))
(make-nat-interval

0

(- (expt 2 (* 8 (nth 1 (nth 2 x)))) 1)))

(t nil)))

(t nil)))

If x is a variable symbol, aii fails and returns nil. If x is a natural number
constant, ’k, it returns the interval [k, k]. If x is an application of one of the
known opi, aii recursively computes an interval for the ni arguments and,
provided it succeeds on each, it calls the bounder for opi to compute the
interval for the call. If x is an application of R, aii asks whether the extent is
a natural number constant, ’k, and if so returns [0,28k − 1]. Otherwise, aii
fails and returns nil.

Of course, the definition could be made more efficient by “failing early,”
e.g., not trying to compute an interval for the second argument if it failed to
find one for the first. Furthermore, some terms can be bounded even if some
of their arguments cannot be, e.g., (logand x 31) ∈ [0, 31] regardless of x’s
value. But aii is offered only as a suggestive model of our more sophisticated
Ainni.

A more basic question arises when looking at the definition of aii: What
about intervals for variables? The function above just fails if it encounters a
variable. Ainni on the other hand takes another argument, called ctx, which
provides contextual information, gleaned from the hypotheses governing the
occurrence of the term x. For our purposes here, think of ctx as a map
from Boolean terms to truth values. For example, the assumption that ((R
a 8 st) < 16) would be coded in ctx as a pair associating the term (<

(R a 8 st) 16) with true.6 Ainni uses its ctx argument to determine the
arithmetic bounds on variable values. In our application, the only “variables”
encountered are actually reads from memory, i.e., expressions of the form (R

a n st). If the extent of the read is a natural number constant then (R a
’k st) ∈ [0, 28k− 1]. However, Ainni uses the ctx argument to try to narrow
that interval by looking for assumptions on the bounds of (R a ’k st).

Ainni takes three inputs: the term x to bound, a list of hypotheses, hyps,
assumed so far, and ctx. It returns three values. These values are formally
written as shown below and have the following interpretations:

• (mv-nth 0 (Ainni x hyps ctx)): the 0th returned value of (Ainni x
hyps ctx). Informally this result is called the “output flag.” When the
output flag is non-nil (“true”) it means Ainni successfully computed
an interval for x; when the output flag is nil, Ainni could not find a
suitable interval, e.g., perhaps the input term x is not in the set of terms
recognized by Ainni. When the output flag is nil, the other two results
are nil (and irrelevant).

6 What we are calling ctx here is actually ACL2’s “type-alist,” and it pairs arbitrary terms
with “types” gleaned from the governing hypotheses.
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• (mv-nth 1 (Ainni x hyps ctx)): the 1st returned value of (Ainni x
hyps ctx). Informally this result is called the “list of output hypotheses”
and each element is called an “output hypothesis.” When the output flag
is non-nil, the list of output hypotheses is a list of terms that Ainni is
relying on for the correctness of its answer. The output hypotheses include
all of the elements of the input hypotheses hyps plus any hypotheses that
Ainni extracted from ctx that contributed to its answer.

• (mv-nth 2 (Ainni x hyps ctx)): the 2nd returned value of (Ainni x
hyps ctx). Informally this result is called the “output interval.” When
the output flag is non-nil, the output interval is a bounded natural num-
ber interval and the value of x (under the evaluator E with any variable
assignment alist) lies within the output interval, provided the value of
each output hypothesis is true (under the same evaluator E with the same
variable assignment alist).

Four important theorems about Ainni have been proved with ACL2. The
first says that when given a pseudo term x and a list of pseudo terms hyps
the output hypotheses are all pseudo terms.

(implies ; {Ainni 1}
(and (pseudo-termp x)

(pseudo-term-listp hyps))
(pseudo-term-listp

(mv-nth 1 (Ainni x hyps ctx))))

The second theorem establishes that when Ainni’s output flag is non-nil
its output interval is indeed a bounded interval over the naturals.

(implies ; {Ainni 2}
(and (pseudo-termp x)

(mv-nth 0 (Ainni x hyps ctx)))
(and (tau-intervalp

(mv-nth 2 (Ainni x hyps ctx)))
(equal (tau-interval-dom

(mv-nth 2 (Ainni x hyps ctx)))
’INTEGERP)

(tau-interval-lo

(mv-nth 2 (Ainni x hyps ctx)))
(tau-interval-hi

(mv-nth 2 (Ainni x hyps ctx)))
(<= 0 (tau-interval-lo

(mv-nth 2 (Ainni x hyps ctx))))))

The first conjunct in the conclusion states that the output interval is an
interval; the next conjunct states that the domain of the interval is INTEGERP.
The next two conjuncts state that the lower and upper bounds of the output
interval are non-nil, which (because of the first two conjuncts) means they
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are both integers, the lower bound is weakly below the upper one, and the
interval is closed.7

The third theorem establishes that for pseudo term x such that Ainni’s
output flag is non-nil and all of the output hypotheses are true (i.e., the
evaluator E evaluates the conjunction of those terms to non-nil), then the
value (under E) of x is contained in the output interval.

(implies ; {Ainni 3}
(and (pseudo-termp x)

(mv-nth 0 (Ainni x hyps ctx))
(E (conjoin (mv-nth 1 (Ainni x hyps ctx)))

alist))
(in-tau-intervalp (E x alist)

(mv-nth 2 (Ainni x hyps ctx))))

The fourth theorem establishes that Ainni actually preserves the internal
invariants on ACL2 terms, i.e., that if the input term and the elements in
the input hypotheses each satisfy ACL2’s internal invariant then the output
hypotheses satisfy that invariant. The constant *stateman-arities* is an
alist pairing each of the function symbols known to E with its arity.

(implies ; {Ainni 4}
(and (termp x w)

(term-listp hyps w)
(arities-okp *stateman-arities* w))

(term-listp

(mv-nth 1 (Ainni x hyps ctx))
w))

This last theorem allows ACL2 to avoid checking that the output hypotheses
satisfy the internal invariants on terms. Instead, ACL2 just has to check that
each of the function symbols listed in *stateman-alist* has the given arity
in ACL2’s then-current logical theory.

Ainni is closely related to the Tau System in ACL2. See :DOC tau-system.
Tau is a user extensible abstract interpreter over sets of monadic predicates
describing the types of values returned by an expression. It includes contain-
ment in constant intervals as a “type.” ACL2 users think of the Tau System
as a quick, incomplete “type checker” for the untyped language of ACL2. By
design, the Tau System answers yes/no questions: is this formula trivial by
type-like reasoning?

Ainni is designed to answer quantitative questions: What are the minimal
and maximal values of this expression? Ainni exploits some of the same
theorems (in the elementary bounders book) used to extend Tau. But by

7 By definition of tau-intervalp, any interval with INTEGERP domain has integers for its
bounds unless there is no bound (i.e., a “bound” of nil) in some direction. Furthermore,
all bounded integer intervals are, by convention, closed. That is, if the domain is INTEGERP
then instead of, say, [0,8) we use [0,7].
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defining Ainni in the logic and verifying it, we make it possible to use interval
reasoning during rewriting.

7 Some Examples

Consider this expression:

(+ 2000 (* 8 (LOGAND 31 (R 1000 8 st)))).

This is the formal expression of a fairly typical machine address encountered
in symbolic code evaluation. It corresponds to the compiled version of an
array element reference, where the base address of the array is 2000, the
array consists of quadword (8-byte) elements, and the index is formed by
taking the bottom 5 bits of the quadword at address 1000. The prevalence
of constants in the expression is also quite common when exploring code
recovered from an actual machine image: the locations of data are fixed or at
computed offsets from fixed addresses like the initial stack pointer.

What can Ainni tell us about this expression? We answer that by evalu-
ating

(Ainni ’(+ 2000 (* 8 (LOGAND 31 (R 1000 8 st)))) nil nil)

Ainni will return three values. Its output flag will be T, the list of output hy-
potheses will be nil, and the output interval will be the ACL2 data structure
that represents the integer interval [2000, 2248].8

The derivation of the output interval is as follows: (R 1000 8 st) is known
to be in [0,264 − 1], but the LOGAND is in [0,31]. Thus, the product with 8 is
in the interval [0,248], so the sum with 2000 is in [2000, 2248].

Now imagine ctx contains the assumption that (R 1000 8 st) is below 16
and reconsider

(Ainni ’(+ 2000 (* 8 (LOGAND 31 (R 1000 8 st)))) nil ctx).

This time the output flag will be T, there will be one output hypothe-
sis, namely (<= (R 1000 8 st) 15), and the output interval will be [2000,
2120]. The third correctness theorem for Ainni assures us that (+ 2000 (*

8 (LOGAND 31 (R 1000 8 st)))) lies in [2000, 2120] provided (<= (R 1000

8 st) 15) is true.
Finally, to demonstrate Ainni’s speed compared to ACL2’s more powerful

arithmetic, consider the expression

(LOGIOR (ASH (MOD (R 1000 4 ST) 2) 0)

(ASH (MOD (R 1004 4 ST) 2) 1)

8 As noted earlier, the actual input to Ainni should be in ACL2’s internal form, so, for
example, the “+” should be binary-+ and the numbers should be quoted. The data structure
representing the output interval is (INTEGERP (NIL . 2000) . (NIL . 2248)), indicating
an integer domain, bounded above and below by 2000 and 2248 respectively. The NILs
indicate that ≤ rather than < is used to check whether a number is in bounds.
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(ASH (MOD (R 1008 4 ST) 2) 2)

. . .
(ASH (MOD (R 1052 4 ST) 2) 13)

(ASH (MOD (R 1056 4 ST) 2) 14)

(ASH (MOD (R 1060 4 ST) 2) 15)).

The value of this expression lies in the interval [0, 216 − 1] regardless of the
values of the R-expressions. Any programmer would realize the expression is
bounded above by 216: each MOD is just a single bit, and the expression shifts
those bits into positions 0–15. Using similar “forward” reasoning from the
expression, Ainni computes the interval [0, 216 − 1] in 0.012 seconds on a
MacBook Pro laptop with a 2.6 GHz Intel Core i7 processor running ACL2
in CCL.

On the other hand, proving the expression is so bounded can feel harder!
Indeed, it takes the same laptop about 1306 seconds to use the standard ACL2
arithmetic library from the Community Books (books/arithmetic-5/top)
to prove that the expression above is less than 216. The library splits the goal
into 216 cases.

Of course, ACL2’s arithmetic library is much more powerful than Ainni.
The library is essentially a collection of theorems about arithmetic/logical
functions which informs the ACL2 rewriter and its integrated linear arith-
metic decision procedure. Those systems can be made to prove anything that
is provable about ACL2 arithmetic, whereas Ainni is much more limited. But
we embarked on the development of Ainni because we saw the importance
of a verified tool to look at typical machine arithmetic expressions and do
what every programmer can do: bound it by interval reasoning. In addition,
Ainni is fast.

The expression above is small compared to expressions encountered when
doing code analysis, especially of long sequences of machine instructions.
The expression above has 63 function calls in it (when the LOGIOR macro is
expanded into a right-associated nest of calls of BINARY-LOGIOR) of which
16 are calls to R and the rest are calls to logical functions. By contrast,
the largest arithmetic/logical expression encountered in the disassembly of
a machine code implementation of the DES algorithm is a term involving
147,233 function applications, 31,361 of which are calls of R and the rest
are calls of arithmetic/logical functions. Ainni can bound that very large
expression in about 0.01 seconds. It is completely impractical to use the
standard arithmetic library to confirm the correctness of that answer (other
than by relying on the verified correctness of Ainni).

But another major advantage of Ainni, aside from being very fast and
quite capable on huge expressions, is that it discovers bounds whereas the
rest of ACL2 (e.g., the Tau System) is oriented toward proving things. That
is, ACL2 is generally used to answer specific Boolean questions, e.g., “Does
this value fit in 16-bits” whereas Ainni gives it the capability of answering
quantitative questions such as “How big is this?” These advantages mean
Ainni can effectively be used in simplification.
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8 Using Ainni in a Metafunction

Because Ainni has been proved correct by ACL2, it can be used in meta-
functions which are in turn used by the rewriter. Thus, one need not choose
between Ainni and a conventional rewrite-driven arithmetic book; one can
have both.

Here is a very simple metafunction that shows how we use Ainni. The
following function simplifies (MOD x ’k) expressions, where k is some natural
constant, using the fact that (MOD x ’k)= x, if x is an integer less than k.

(defun mod-constant-simplifier (term mfc state)
(declare (ignore state))
(cond

((and (not (atom term))

(eq (car term) ’MOD)

(not (atom (nth 2 term)))

(eq (car (nth 2 term)) ’QUOTE))

(let ((x (nth 1 term))

(k (nth 1 (nth 2 term)))

(ctx (mfc-type-alist mfc)))
(cond

((and (natp k)
(syntactic-natp x))

(mv-let

(flg hyps int)
(Ainni x nil ctx)
(cond

((and flg
(< (tau-interval-hi int) k))

(list ’IF (conjoin hyps) x term))

(t term))))

(t term))))

(t term)))

This function checks that term is a call of MOD and that the second argument is
a quoted constant. If so, it binds x to the first argument of the MOD and k to the
constant. It also extracts the type-alist from the metafunction context mfc
and binds the variable ctx to that. Then it checks that k is a natural number
and x is a syntactic natural. If so, it calls Ainni and if Ainni reports success
and thm upper bound of the resulting interval is below k, it creates and
returns an IF. The test of the IF is the conjunction of the output hypotheses,
the true branch is x, and the false branch is term.

The correctness of this metafunction follows from the correctness of syn-
tactic-natp and Ainni and the previously mentioned fact about (MOD x
’k). Once verified and installed as a metafunction for MOD, mod-constant--
simplifier is run on every MOD expression and, when it returns something
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different from its input, the theorem prover backchains to establish the truth
of the tested output hypotheses and if so replaces the target term with x.

For example, once mod-constant-simplifier is verified as a metafunc-
tion for MOD, the expression:

(MOD (LOGIOR (ASH (MOD (R 1000 4 ST) 2) 0)

(ASH (MOD (R 1004 4 ST) 2) 1)

(ASH (MOD (R 1008 4 ST) 2) 2)

. . .
(ASH (MOD (R 1052 4 ST) 2) 13)

(ASH (MOD (R 1056 4 ST) 2) 14)

(ASH (MOD (R 1060 4 ST) 2) 15))

(EXPT 2 24))

immediately simplifies to the LOGIOR expression.

9 Other Uses of Ainni

While Ainni was developed for answering questions about machine addresses
it is generally useful for answering quantitative questions about formal ma-
chine arithmetic as illustrated in the previous section.

Another very helpful use of Ainni is in a metafunction to simplify (< x
y). Triggered by the less than operator, <, the metafunction uses Ainni on
x and y and if Ainni succeeds the metafunction can use quick checks on
the endpoints to often reduce the (< x y) to T or to NIL. The comparable
reduction by the native rewriter and its linear arithmetic procedure involves
duplication of effort, essentially trying to rewrite both the inequality and its
negation since only Boolean questions can be asked of them.

The motivating applications for Ainni were metafunctions to handle read-
over-write and write-over-write expressions. Consider a read-over-write. Typ-
ically, the write expression is a deep nest of !R expressions. The metafunction
uses Ainni on the read address and extent to compute the interval containing
the region to be read. Then with that interval in hand it searches down the
nest of writes comparing the read interval to the write intervals (using Ainni

on each write address and extent). Quick checks on the resulting intervals
can determine when the regions are disjoint – without having to reanalyze
the addresses to determine whether the read is “above” or “below” the write.

Thus, Ainni allows the read-over-write metafunction to be much more
efficient than rewrite rules because the read address and each write address
is analyzed just once. This illustrates a major advantage of being able to
answer a quantitative question rather than just a Boolean one.

ACL2 permits memoization and that has proven helpful in avoiding re-
peated calls to Ainni on the write addresses. However, we found that it was
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best to memoize the read-over-write metafunction itself rather than the in-
dividual calls of Ainni inside it.9

The details of the metafunctions using Ainni may be found by looking at
the heavily commented proof script in the ACL2 Community Book books/-

projects/stateman/stateman22.lisp.

10 Related Work

Simplification and abstract interpretation are so ubiquitous it is beyond the
scope of this paper to offer much background on them. Basically every mech-
anized prover has libraries or tactics or built-in routines to simplify formulas
using various standard heuristics to control inference; see “auto” in Coq and
HOL and the built-in notion of “simplification” in PVS. The name “abstract
interpretation” was introduced by the Cousots in 1977 [8] and is basically the
generalization of an operational semantics or interpreter to deal with conser-
vative approximations of the actual data (e.g., intervals instead of numbers).
Type checking is an example of abstract interpretation.

The work most closely resembling that reported here is probably the Astrée
static analyzer [9]. Astrée aims at proving the absence of run time errors in
programs written in C. It is based on abstract interpretation and uses interval
analysis to approximate numeric data values.

However, Astrée is a standalone static analyzer whose input is a C pro-
gram, whereas Ainni is a user-defined and mechanically verified extension of
the ACL2 simplifier. While both are relying on abstract interpretation, Astrée
interprets C programs (including its arithmetic/logical expression language)
while Ainni only interprets arithmetic/logical expressions in the ACL2 logic.
The program control and data manipulation done by Astrée is, in our case,
done by the ACL2 system, specifically its simplifier applied to the formal
operational semantics and the object code. So there are really two different
abstract interpreters involved in our code proofs, one over the program text
(done by the simplifier) and one over the semantics of arithmetic/logical ex-
pressions (done by Ainni), and in Astrée they are combined. One presumes
that Astrée contains an abstract interpreter for arithmetic/logical expressions
that produces interval bounds on those expressions.

Finally, Ainni is available as a mechanically verified extension of the ACL2
simplifier and is hence of use in any theorem proving setting requiring reason-

9 One could memoize the ACL2 rewriter itself and hope to speed up the rewrite-rule
approach. However this has been unsuccessful because the ACL2 rewriter takes so many
arguments to record the context, the objective of the rewrite, equivalence relations to be
maintained, histories used to avoid infinite backchaining and looping, stacks to track the
lemmas used for reporting purposes, counters to measure or limit the work done, etc. All
these extra arguments mean that identical calls to rewrite virtually never occur and so
memoization costs more time than it saves. Ainni and its callers use far fewer arguments
and memoization is effective on them.
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ing about the bounds of arithmetic/logical expressions. Furthermore, Ainni
has been mechanically verified to be correct by ACL2.

11 Conclusion

We have described an ACL2 function, Ainni, for answering the quantitative
question “what are the minimal and maximal magnitude of the value of this
expression?” The function is an abstract interpreter for machine arithmetic
expressions composed of arithmetic/logical operators and interprets them
over bounded closed natural number intervals. Ainni can be thought of as a
type inference procedure where the types are intervals.

Ainni has been verified with ACL2 to be correct and can therefore partic-
ipate in formal proofs. The vehicles for that participation are metafunctions
designed to simplify machine arithmetic expressions.

Ainni has allowed ACL2 to do symbolic exploration of sequences of re-
alistic machine code containing thousands of instructions, whose end states
contain millions of function applications. This was not possible using other
techniques we have tried with ACL2.

The success of Ainni has raised important new questions: how can the
rest of ACL2 be made to cope with the expressions now being produced?
This is a welcome — and very typical — step along the evolutionary path
ACL2 has followed. A solution to one scaling problem introduces new scaling
challenges.
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