
Technical Report 84 October, 1992

Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703

(512) 322-9951

This work was supported in part at Computational Logic,
Inc., by the National Computer Security Center (Contract
MDA904-92-C-5167). The views and conclusions
contained in this document are those of the author and
should not be interpreted as representing the official
policies, either expressed or implied, of Computational
Logic, Inc., the National Computer Security Center, or the
U.S. Government.

Introduction to the OBDD Algorithm
for the ATP Community

J Strother Moore

Abstract

We describe in terms familiar to the automated reasoning community the graph-based algorithm for
deciding propositional equivalence published by R.E. Bryant in 1986. Such algorithm, based on ordered
binary decision diagrams or OBDDs, are among the fastest known ways to decide whether two
propositional expressions are equivalent and are generally hundreds or thousands of times faster on such
problems than most automatic theorem proving systems. An OBDD is a normalized IF (‘‘if-then-else’’)
expression in which the tests down any branch are ascending in some previously chosen fixed order. Such
IF expressions represent a canonical form for propositional expressions. Three coding tricks make it
extremely efficient to manipulate canonical IF expressions. The first is that two canonicalized expressions
can be rapidly combined to form the canonicalized form of their disjunction (conjunction, exclusive-or, etc)
by exploiting the fact that the tests are ordered. The second is that every distinct canonical IF expression
should be assigned a unique integer index to enable fast recognition of identical forms. The third trick is
that the operation in which one combines canonicalized subterms term should be ‘‘memo-ized’’ or cached
so that if the same operation is required in the future its result can be looked up rather than recomputed.

1

1. Preface

This paper explains briefly the algorithm published by Bryant in [4]. Since 1986, so-called ‘‘OBDD’’
algorithms have been remarkably successfull at handling propositional equivalence problems arising in the
context of digital hardware design. But despite the fact that they are often thousands of times faster than
traditional tautology checkers in automated reasoning systems, the OBDD literature seems to have been
largely ignored by our community. This is at first hard to understand. The IFIP benchmark files containing
challenging propositional equivalence problems and used world-wide are ignored by the automated
reasoning community because many of our systems ‘‘go to lunch’’ when presented with them. We ignore
these challenges and their known solutions at our peril: we lose the opportunity to improve our own
systems and we make ourselves irrelevant to the hardware verification community, a community with
which we ought to have many links.

My personal reason for ignoring the OBDD literature was that its terminology was unfamiliar. Having
finally understood some of it, I would like to take this opportunity to explain it to my friends. Before
proceeding I would like to make it clear that I am not here advocating OBDDs as the end-all of
propositional tautology checking. For example, recent improvements of the Davis-Putnam procedure by
Stickel [10] and by Zhang [11] show promise. In addition, propositional decision procedures are
notoriously sensitive to apparently minor restatements of the input problem, so it is unclear that OBDDs
will be of use in our more general settings. Even if they are, much work must be done to integrate any
decision procedure into our systems and, as illustrated in [2] sometimes less efficient procedures can
produce better overall performance because it is cheaper to invoke them from the general setting. But,
having said all this, it should be added that OBDDs can be very effective at deciding propositional
equivalence problems. Furthermore, they are very easy to implement in a formula-manipulation system.
This paper should therefore be taken as a tutorial introduction to them and as a suggestion that, after
suitable experimentation, our systems might benefit from using OBDD techniques when appropriate.

Research into OBDDs is very active and there has been much progress since Bryant’s seminal paper in
1986. But I limit this tutorial to the algorithm in that paper because I believe once the basic idea is grasped
the improvements are easily guessed or understood in our community. More importantly to me, I would
like to encourage the generalization of the technique so that general-purpose theorem provers can be
improved.

In closing this preface I would like to urge readers to read the original Bryant paper, [4], as well as [3] in
which Brace, Rudell and Bryant present, quite clearly, the if-then-else perspective and the ‘‘coding tricks’’
described here. In addition, Bryant has recently written an excellent survey of current OBDD techniques
and applications, [5].

2. Logical Basis

I base my description on the Nqthm (i.e., Boyer-Moore) logic because it is familiar to me. For readers
unfamiliar to it, I offer the following remarks. Consider propositional calculus with function symbols and
equality. Let there be two distinct individuals, denoted by the constant symbols T and F. Thus,

Axiom. T ≠ F

Let IF be a three-place function symbol satisfying the following two axioms:

Axiom. X ≠ F → (IF X Y Z) = Y

Axiom. X = F → (IF X Y Z) = Z

2

No harm arises by restricting one’s attention to the situation in which T and F are the only individuals and
the IF axioms are:

Axiom. (IF T Y Z) = Y

Axiom. (IF F Y Z) = Z

Equivalently, one can imagine that every formula shown below has some implicit hypotheses restricting
each variable to be Boolean, i.e., either T or F. We call the first argument to IF the test and the other two
arguments the true and false branches, respectively.

There are four important theorem (schemas) about IF. The first is that IF distributes over all function
symbols:

Theorem. IF Distribution
(fn A1 ... (IF X Y Z) ... An)
=
(IF X

(fn A1 ... Y ... An)
(fn A1 ... Z ... An))

The second is known as the ‘‘reduction’’ schema and just says that once X has been tested along a branch,
its value is known.

Meta-Theorem. Reduction
Consider (IF x α β), where x is a Boolean-valued term. All occurrences
of x in α may be replaced by T and all occurrences in β may be replaced by F.

The third result is just known as the ‘‘IF-X-Y-Y theorem:’’

Theorem IF-X-Y-Y
(IF X Y Y) = Y.

The fourth result is ‘‘IF-X-T-F.’’

Theorem IF-X-T-F
(IF X T F) = X.

All four of these results are proved by considering the cases: is the test of the IF equal to T or F?

With IF we can define the usual propositional connectives as function symbols:

Definitions.
(NOT P) = (IF P F T)

(AND P Q) = (IF P (IF Q T F) F)

(OR P Q) = (IF P T (IF Q T F))

(XOR P Q) = (IF P (IF Q F T) (IF Q T F))

(IFF P Q) = (IF P (IF Q T F) (IF Q F T))

The challenge is to write an algorithm to decide every question of the form (IFF x y), where x and y are
Boolean expressions. A Boolean expression for the present purposes can be defined as a Boolean valued
variable symbol, the constants T and F, or the application of one of the propositional functions above to the
appropriate number of Boolean expressions.

3

3. IF-Normal Form

The way such challenges are attacked in Nqthm is both illustrative and takes us most of the way to OBDD
solution: Expand the IFF term into ‘‘IF-normal form’’ and then see if it is T.

We define IF-normal form as follows. T and F are in IF-normal form. The only other terms in
IF-normal form are expressions of the form (IF x y z) where

• x contains no IFs, and is neither T nor F;

• x does not occur in y or z,

• y and z are not identical, and

• y and z are in IF-normal form.

Thus, the Boolean-valued variable symbol X is not in IF-normal form, but the equivalent (IF X T F) is
in IF-normal form. (IF (IF A B C) X Y) is not in IF-normal form but the equivalent (IF A (IF
B X Y) (IF C X Y)) is.

Any Boolean valued term can be normalized, i.e., reduced to an equivalent IF-normal form, by distributing
IFs so as to remove all IFs from tests, replacing each terminal variable symbol, x, by the equivalent (IF
x T F) (a transformation justified by IF-X-T-F), and exhaustively applying reduction, IF-X-Y-Y, and
the axioms defining (IF T ...) and (IF F ...). Normalization may increase the size of an
expression exponentially since IF distribution duplicates expressions.

An example normalization is shown below.

(IF (IF A C B) (IF A B T) T)
= [by IF distribution]
(IF A

(IF C (IF A B T) T)
(IF B (IF A B T) T))

= [by reduction on A]
(IF A

(IF C (IF T B T) T)
(IF B (IF F B T) T))

= [by IF axioms]
(IF A (IF C B T) (IF B T T))
= [by IF-X-Y-Y]
(IF A (IF C B T) T)
= [by IF-X-T-F]
(IF A (IF C (IF B T F) T) T)

Normalization can be used as a tautology checker. To determine if a Boolean expression as defined above
is a propositional tautology merely expand all the propositional function symbols into IF terms and
normalize the result. If the normal form is T the expression is a tautology; otherwise it is not. When the
normal form is not T, a counterexample can be read off any branch concluding with F. This obvious
theorem relating tautologies and normalization was proved by Nqthm in 1976 [1].

IF-normal forms are not canonical: an expression may have multiple non-identical but equivalent normal
forms. For example, (IF A (IF B F T) (IF B T F)) and (IF B (IF A F T) (IF A T
F)) are both in IF-normal form and are equivalent. Both of these terms are equivalent to (XOR A B)
and (XOR B A).

To define a canonical form we must adopt some order in which the variable symbols are to be tested. For
the moment we will fix the order to be simply alphabetic, though in practice one chooses the ordering to
suit the problem.

4

A term is in IF-canonical form precisely if it is in IF-normal form and the sequence of variables tested
down each branch is ascending in the order. Thus (IF A (IF B F T) (IF B T F)) is in
IF-canonical form. (IF B (IF A F T) (IF A T F)) is not, because B is tested before A.

By replacing x by the equivalent (IF var x x) and reducing on var in the two occurrences of x we can
‘‘lift’’ any variable, var, to the top of a term and eliminate all other occurrences of it. By lifting the
‘‘smallest’’ variable in x and then recursively doing that to the two branches, we obtain an IF-expression
whose ‘‘natural’’ normalization is canonical. This inefficient algorithm is noted only to prove that there
exists a canonical form for every x.

That this form is indeed canonical is analogous to the theorem that there is only one ordered permutation of
a given list of numbers.

In the terminology of the hardware verification community, a canonical IF expression is an ‘‘ordered
binary decision diagram’’ or ‘‘OBDD.’’

A common illustration in the OBDD literature is to consider the ‘‘binary decision diagram’’ corresponding
to a nest of XORs. Let us consider (XOR (XOR A C) B).

(IF A

(IF B

(IF C T F)

(IF C F T))

(IF B

(IF C F T)

(IF C T F)))

A

B B

C C

0 1

0

00

0 0

1 1

11

1

Figure 1: A Canonical IF and Its OBDD

In Figure 1 we show the IF-canonical form of this expression and the corresponding OBDD. The left-most
C node in the OBDD means ‘‘if C is 1 (i.e., T) return 1; otherwise return 0 (i.e., F).’’ We write this (IF C
T F). The right-most C node is (IF C F T). The left-most B node is thus (IF B (IF C F T)
(IF C T F)), etc.

(IFF be1 be2) is a tautology iff the canonical form of be1 is identical to that of be2. This is all there is,
logically speaking, to the OBDD algorithm. The trick is how to compute the two canonical forms
efficiently.

5

4. Efficiency Considerations

We are interested in canonicalizing Boolean expressions as defined above. For example, we want a
program to map (XOR (XOR A C) B) into the IF-tree shown above. The basic canonicalization
algorithm simply descends recursively through the expression, canonicalizing the arguments to an
operation and then merging the results to form the answer. Three simple programming tricks make it
extremely efficient. Roughly speaking they are the ideas in ‘‘merge sort,’’ ‘‘hash cons,’’ and ‘‘memo-
izing’’ or ‘‘caching.’’

Suppose you are canonicalizing (op x y), where op is some Boolean function such as AND or XOR, and
you have recursively canonicalized x and y. Thus, x and y are both canonical IF trees. If either is a
constant, the answer is T, F, the other tree, or the negation of the other tree, depending on the particular op.
For example, if x is T then, if op is OR the result is T, if op is AND the result is y, and if op is XOR the result
is the negation of y, i.e., globally swapping T for F and vice versa in y. On the other hand, if neither is a
constant then both x and y are IF-terms. This is where the ‘‘merge sort’’ trick is used. Let x be (IF vx
tx fx) and let y be (IF vy ty fy). We are trying to form the canonical form of (op x y). There are
only three cases to consider: vx and vy are the same variable symbol, vx occurs before vy in the ordering, or
vy occurs before vx in the ordering. If vx is vy then

(op x y) = (IF vx (op tx ty) (op fx fy))

by IF distribution and reduction. Thus, we recursively perform op on the respective branches of the two
IFs and, provided the results are not identical to each other, make them the branches of an IF that tests tx.
We know this is in canonical form: it is clearly in normal form and vx is not tested in either result because it
is not tested in any of the four argument branches.

The more interesting case occurs when vx and vy are distinct. Say vx is earlier in the ordering than vy.
Then

(op x y) = (IF vx (op tx y) (op fx y)).

That is, we canonicalize op applied to tx and y and we canonicalize op applied to fx and y and then we
combine them in an IF that tests vx. This is valid by IF-distribution. At first sight though it may not
appear to be canonical. How do we know that vx does not occur in y and hence require a reduction when
we lift vx out? The reason is the ordering: vx is ‘‘smaller’’ than vy and vy is smaller than any other
variable in y. Thus, we do not have to search y for vx. The symmetric case is, well, symmetric.

The example below illustrates this ‘‘merging.’’ Let [t1] be (XOR (XOR A C) B) and let us adopt the
alphabetic ordering on variables. Replacing the arguments, (XOR A C) and B, by their canonicalizations
transforms [t1] to [t2], as shown below. We write the XOR in lower case to signify that we do not actually
create the term [t2] but use it as a logical stepping stone that is equivalent to our final answer.

(xor (IF A (IF C F T) (IF C T F)) [t2]
(IF B T F)).

Since neither argument is a constant or variable, we compare the two variable symbols in their tests. That
is, we compare A to B and see that A comes first in the alphabetic ordering. Therefore, we lift A and
transform [t2] to [t3]:

(IF A [t3]
(xor (IF C F T) (IF B T F))
(xor (IF C T F) (IF B T F))).

Because of the ordering and the canonicalization of the arguments we know that A occurs nowhere else and
hence do not have to be alert for the possibility of reducing on A even though it now governs all remaining
subterms. We continue to ripple the xor down the two canonicalized arguments. Since B comes before C
in the ordering the next logical stepping stone is

6

(IF A [t3]
(IF B (xor (IF C F T) T) (xor (IF C F T) F))
(xor (IF C T F) (IF B T F))).

Observe that both of the first two xors above have a constant argument. Furthermore, (XOR p T) is the
negation of p and (xor p F) is p. Thus [t3] is

(IF A [t4]
(IF B (IF C T F) (IF C F T))
(xor (IF C T F) (IF B T F))).

Similar transformations canonicalize the remaining xor and we are left with

(IF A [t4]
(IF B (IF C T F) (IF C F T))
(IF B (IF C F T) (IF C T F))).

All other operations being constant, the canonicalization algorithm just scans linearly down the two IF
trees obtained by recursively canonicalizing the arguments. Note also that it does not matter what
operation we are performing except on the ‘‘base cases.’’ (That is, the xor above could have been and
until we got down to the constant arguments.)

This nice state of affairs is thwarted somewhat by the requirement that we apply IF-X-Y-Y. That is,
whenever the canonicalizer creates an IF expression, say (IF vx tb fb), it must compare the two
branches, tb and fb, and collapse the IF if they are identical. A naive implementation of the IF-X-Y-Y
check would require time proportional to the size of branches. Furthermore, the check is very common; in
the simple example above seven IF expressions are created. We can speed up this identity check—which
after all is the fundamental operation on canonical forms—by the ‘‘hash cons’’ idea. Hash consing,
introduced for theorem-proving purposes by Peter Deutsch in [7], is the idea of representing each distinct
term by a unique concrete object, so that syntactic identity can be checked in constant time by checking for
pointer identity. Hashing is used when (the representations of) new terms are ‘‘consed up.’’

Our implementation of this idea is as follows. In the representation of each IF expression we include an
integer, called the unique id. The integer, say k, associated with an IF, say (IF x y z), is unique to the
triple <x,y,z>. In our implementation, we represent (IF x y z) by the Lisp s-expression ’(k x y .
z). The uniqueness is obtained by hashing. That is, when we wish to represent (IF x y z) we first
compute a ‘‘hash index,’’ i, from x, y, and z. Since x is a variable symbol in our ordering it is easy to map
it to an integer; y and z are canonicalized IFs and so each has a unique id. The hash index i is thus
essentially computed from three integers. The hash index is not necessarily unique to the triple <x,y,z>.
Instead, it merely gives the location in an array at which we find an association list that maps all previously
seen triples to their unique ids. By searching this list we can either find the unique id, k, and the concrete
object used to represent (IF x y z), ’(k x y . z), or we can determine that this term has not yet been
created. In the latter case, we invent a unique k by incrementing a global counter and then assign it to the
triple by storing ’(k x y . z) in the association list in the hash array.

Given unique ids, it is possible to implement the IF-X-Y-Y test by asking whether the canonicalized IFs
in the two branches have the same unique id (comparing with Common Lisp’s = function). At first sight
the overhead of associated with unique ids may seem excessive but unique ids are crucial to the algorithm’s
efficiency because they prevent the direct comparison of exponentially growing expressions.

The final coding trick is to ‘‘memo-ize’’ the operation of merging canonical IFs. Even though the ‘‘merge
sort’’ and ‘‘hash cons’’ tricks make the merge operation fairly efficient, typical combinatoric problems will
repeatedly merge the same two canonical IFs. To see why this happens, suppose we are creating the
canonical form of (op (IF v tx fx) y). To distribute the IF we form (op tx y) and (op fx y).
But if tx and fx share some substructure, say sx, then we may have to canonicalize (op sx y) twice.

7

‘‘Memo-izing’’ a function, introduced in a general setting by Donald Michie in [8, 9], is just the idea of
remembering the arguments to and results produced by past applications of the function and looking up the
answer (when possible) before recomputing it. For example, suppose we are canonicalizing (XOR (XOR
A C) B) and we have canonicalized the two arguments (i.e., we are at [t2] in the example above. Each of
the two canonicalized arguments has a unique id, say k1 and k2. The algorithm described so far would lift A
out, producing [t3]. Instead, we first ask if we have every canonicalized XOR, k1, and k2 before. If so, we
return the already computed and stored answer. If not, we lift A and compute the answer, as above, but
then store it in association with XOR, k1, and k2. This is in fact the same idea as the ‘‘hash-cons’’ idea,
generalized to merging instead of just the construction of an individual IF. The same hash array can be
used. ‘‘Memo-izing,’’ which is also just another form of caching, was proposed for theorem-proving
applications by Donald Michie.

The OBDD algorithm as described in [4] is canonicalization implemented with ‘‘merge sort,’’ ‘‘hash cons’’
and ‘‘memo-izing.’’

5. A Few Experiments

In 1990 the IFIP WG 10.2/WG 10.5 International Workshop on Applied Formal Methods for Correct VLSI
Design was held in Houthalen, Belgium [6]. At the workshop, many OBDD algorithms were compared.
To facilitate this comparison, the participants agreed in advance on a set of benchmark problems. A set of
files was prepared. Each file essentially presents two propositionally equivalent expressions of some
combinational logic circuit in an easy to parse lisp-like notation. Often the ‘‘same’’ circuit is presented in a
graduated series of word sizes. These files have become popularly known in the OBDD community as the
‘‘IFIP Boolean Equivalence benchmarks.’’ The files were distributed to all participants before the
workshop and continue to be passed around by ftp for testing purposes. I know of no central site
responsible for maintaining or distributing the benchmarks but have received explicit permission from the
conference organizers to distribute the copy obtained by Computational Logic, Inc. Therefore, readers
interested in the IFIP benchmarks should contact me (moore@cli.com).

Below we reproduce the simplest file, add1.be, simply to illustrate the syntactic form of these
benchmarks. The file contains two Boolean expressions, labeled BE1 and BE2. BE1 involves nine input
variables, CARRYIN, A[1]-A[4] and B[1]-B[4]. It then defines forty-two internal variables as
Boolean expressions in terms of the nine inputs and previously defined internal variables. For example,
N18 is defined to be (NOT (OR (AND N9 (NOT N3)) (AND (NOT N9) N3))). Next it defines
five output variables, O[1]-O[4] and COUT. The definition of BE2 is analogous and has the same inputs
and outputs. The problem implicit in this file is to show that the corresponding outputs are equivalent.

@BE1
@invar
(CARRYIN A[1] A[2] A[3] A[4] B[1] B[2] B[3] B[4])
@sub
N3 = (A[1])
N4 = (A[3])
N5 = (A[2])
N6 = (A[4])
N7 = (not CARRYIN)
N8 = (B[3])
N9 = (B[1])
N10 = (B[2])
N11 = (B[4])
N17 = (OR (AND (NOT N3)))
N31 = (OR (AND (NOT N4)))
N29 = (OR (AND (NOT N5)))
N19 = (OR (AND (NOT N7)) (AND (NOT N7)))
N43 = (OR (AND (NOT N6)))

8

N20 = (OR (AND (NOT N19)))
N18 = (NOT (OR (AND N9 (NOT N3)) (AND (NOT N9) N3)))
N28 = (NOT (OR (AND N10 (NOT N5)) (AND (NOT N10) N5)))
N32 = (NOT (OR (AND N8 (NOT N4)) (AND (NOT N8) N4)))
N16 = (OR (AND (NOT N18)))
N24 = (OR (AND (NOT N28)))
N22 = (OR (AND (NOT N16)))
N42 = (NOT (OR (AND N11 (NOT N6)) (AND (NOT N11) N6)))
N38 = (OR (AND (NOT N42)))
N27 = (OR (AND (NOT N24)))
N21 = (NOT (OR (AND N20 N16) (AND (NOT N20) (NOT N16))))
N23 = (OR (AND (NOT N16) (NOT N3)) (AND (NOT N22) (NOT N19)))
N25 = (OR (AND (NOT N23)))
N26 = (NOT (OR (AND N25 (NOT N24)) (AND (NOT N25) N24)))
N13 = (OR (AND (NOT N26)))
N30 = (OR (AND (NOT N32)))
N33 = (OR (AND (NOT N27) (NOT N23)) (AND (NOT N29) (NOT N24)))
N36 = (OR (AND (NOT N30)))
N15 = (OR (AND (NOT N21)))
N34 = (OR (AND (NOT N33)))
N41 = (OR (AND (NOT N38)))
N37 = (OR (AND (NOT N30) (NOT N4)) (AND (NOT N36) (NOT N33)))
N39 = (OR (AND (NOT N37)))
N40 = (NOT (OR (AND N39 (NOT N38)) (AND (NOT N39) N38)))
N12 = (OR (AND (NOT N40)))
N35 = (NOT (OR (AND N34 N30) (AND (NOT N34) (NOT N30))))
N14 = (OR (AND (NOT N35)))
N44 = (OR (AND (NOT N41) (NOT N37)) (AND (NOT N43) (NOT N38)))

@out
O[1] = (N15)
O[2] = (N13)
O[3] = (N14)
O[4] = (N12)
COUT = (N44)
@end

@BE2
@invar
(CARRYIN A[1] B[1] A[2] B[2] A[3] B[3] A[4] B[4])

@sub
COUT1 =
(OR (AND CARRYIN B[1]) (AND CARRYIN A[1]) (AND B[1] A[1]))
COUT2 =
(OR (AND COUT1 B[2]) (AND COUT1 A[2]) (AND B[2] A[2]))
COUT3 =
(OR (AND COUT2 B[3]) (AND COUT2 A[3]) (AND B[3] A[3]))

@out
O[1] = (EXOR A[1] B[1] CARRYIN)
O[2] = (EXOR A[2] B[2] COUT1)
O[3] = (EXOR A[3] B[3] COUT2)
O[4] = (EXOR A[4] B[4] COUT3)
COUT =
(OR (AND COUT3 B[4]) (AND COUT3 A[4]) (AND B[4] A[4]))

@end

The implementation of the OBDD algorithm described in this paper has been coded in the applicative
language Acl2 (‘‘A Computational Logic for an Applicative Core Language’’), an applicative subset of
Common Lisp being developed at Computational Logic, Inc. My OBDD source code is available upon
request to the author (email: moore@cli.com). I have tested it on many of the IFIP Boolean Equivalence
benchmark files.

Just to give the reader a feel for the contribution of the three tricks to overall performance, I here consider
the performance of various algorithms on a series of three files: add2.be, add3.be and add4.be, each

9

of which contains two alternative definitions of binary addition for successively larger bit-vectors. The
first problem involves 13 Boolean variables, the second 21 and the third 29.

The best I could get with an algorithm based on normalization (as opposed to canonicalization) was 54.85
seconds to do add2.be. (Times here are all on a Sun Sparc 2, but that is actually irrelevant since we are
not comparing our results to those of others.) This essentially reflects the time it takes to consider 213

cases. Tackling the larger add3.be required over 5000 seconds, which illustrates the exponential growth
involved in case analysis. The still larger add4.be was essentially impossible to do by normalization.

A canonicalizer coded with the ‘‘merge sort’’ trick but neither of the other two, required 6.67 seconds on
the add2.be problem. When ‘‘hash-cons’’ was added, the time dropped to 0.27 seconds, but add3.be
required almost a minute and add4.be required about an hour. When ‘‘memo-ization’’ was added, the
time on add2.be climbed to .57 seconds but the time on the larger examples dropped considerably, to
1.68 seconds and 4.07 seconds, respectively. Note the dramatic savings due to ‘‘memo-ization.’’ This is
indicative of the frequency with which the same propositional problem arises over and over again in these
benchmarks.

Our implementation has been tested on other Boolean equivalence benchmark files (including the
expensive mul08.be which it completes in 144.95 seconds) and the times above are indicative of its
performance. It should be noted that normalization is simply impractical in the medium to large examples;
the normalization algorithm eventually exhausts the available space.

In Figure 2 we compare the performance of several algorithms on the IFIP benchmarks. The column
labeled ‘‘norm’’ shows the times for each benchmark file done by our IF normalization procedure. When
the column contains *** it means the procedure was aborted before it completed. The next four columns
are taken from the indicated pages of [6]. However, the experiments reported in [6] were conducted on a
Sun Microsystems 3/60 and while our tests were conducted on a Sparc2. In our experience, the Sparc2 is
roughly 4 times faster than the 3/60. Therefore, the times taken from [6] were quartered for Figure 2 so
they would be roughly comparable to our experiments. The right-most column, labeled ‘‘can,’’ shows the
times for our applicative OBDD algorithm.

Our times are almost an order of magnitude worse than the best OBDD implementations, a situation largely
explained by the generality of our setting, the fact that we are running (essentially) a 1986 version of the
OBDD algorithm, the fact that our code is written in a high-level language, and the fact that our code is
entirely applicative. It would be, I believe, straightforward to verify the correctness of our implementation
formally and mechanically.

But we are here not trying to compete with other implementations; we are merely trying to impress upon
the automated reasoning community the power of canonicalization for this sort of problem. That power is
best illustrated by the slow degradation of performance as the problem size grows. In addition, we would
be well-advised to consider the remarkable performance improvements obtained by ‘‘hash cons’’ and
‘‘memo-ization,’’ especially as measured on relatively large problems.

10

Fischer Minato Madre Simonis
&Bryant &Ishiura &LeProvost

&Yajima

norm pg pg pg pg can
103 111 120 128

add1 0.33 0.07 0.10 0.05 0.04 0.15
add2 54.85 0.23 0.20 0.17 0.39 0.62
add3 5334.53 0.41 0.32 0.22 3.65 1.70
add4 *** 0.73 0.52 0.42 2.65 3.92
addsub *** 0.38 0.52 0.15 1.27 1.47
mul03 0.13 0.01 0.05 0.05 0.02 0.05
mul04 2.20 0.07 0.10 0.10 0.10 0.23
mul05 40.97 0.66 0.25 0.35 0.43 1.05
mul06 *** 2.28 0.70 1.52 1.70 4.78
mul07 *** 8.86 2.37 6.27 6.85 25.78
mul08 *** 33.61 9.02 27.60 21.92 151.18
rip02 0.01 0.02 0.07 0.02 0.01 0.02
rip04 0.12 0.04 0.07 0.05 0.01 0.07
rip06 2.73 0.06 0.07 0.07 0.03 0.13
rip08 105.98 0.08 0.12 0.07 0.04 0.25
transp 0.01 0.01 0.07 0.02 0.01 0.02
ztwaalf1 0.23 0.07 0.10 0.05 0.04 0.08
ztwaalf2 0.28 0.07 0.05 0.05 0.03 0.08

Figure 2: Performance Comparisons (see text)

11

References

1. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.

2. R. S. Boyer and J S. Moore. Integrating Decision Procedures into Heuristic Theorem Provers: A Case
Study with Linear Arithmetic. In Machine Intelligence 11, Oxford University Press, 1988. Also available
through Computational Logic, Inc., Suite 290, 1717 West Sixth Street, Austin, TX 78703..

3. K.S. Brace and R.L. Rudell and R.E. Bryant. Efficient Implementation of a BDD Package. 27th
ACM/IEEE Design Automation Conference, 1990, pp. 40-45.

4. R.E. Bryant. "Graph-Based Algorithms for Boolean Function Manipulation". IEEE Transactions on
Computers C-35, 8 (August 1986), 677--691.

5. R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams. Tech. Rept.
CMU-CS-92-160, School of Computer Science, Carnegie Mellon University, July, 1992.

6. L.J.M. Claesen (Ed.) Formal VLSI Correctness Verification, VLSI Design Methods - II. North-Holland,
1990.

7. L.P. Deutsch. An Interactive Program Verifier. Tech. Rept. CSL-73-1, Xerox Palo Alto Research
Center, May, 1973.

8. D. Michie. Memo functions: a language feature with rote learning properties. Tech. Rept. MIP-R-29,
Department of Artificial Intelligence, University of Edinburgh, Scotland, 1967.

9. D. Michie. "‘Memo’ functions and machine learning". Nature 218 (1968), 19-22.

10. J. Slaney and M. Fujita and M. Stickel. "Automated Reasoning and Exhaustive Search: Quasigroup
Existence Problems". Computer Mathematics and Applications (1993?). (to appear).

11. H. Zhang. "Sato: A Decision Procedure for Propositional Logic". Association for Automated
Reasoning Newsletter , 22 (March 1993), 1-3.

i

Table of Contents

1. Preface . 1
2. Logical Basis . 1
3. IF-Normal Form . 3
4. Efficiency Considerations . 5
5. A Few Experiments . 7

ii

List of Figures

Figure 1: A Canonical IF and Its OBDD 4
Figure 2: Performance Comparisons (see text 10
)

