
4 Mechanized Formal Reasoning about Programs andComputing MachinesRobert S. BoyerUniversity of Texas at AustinJ Strother MooreComputational Logic, Inc., Austin, TexasThe design of a new processor often requires the invention and use of a newmachine-level programming language, especially when the processor is meant to serve somespecial purpose. It is possible to specify formally the semantics of such a pro-gramming language so that one obtains a simulator for the new language from theformal semantics. Furthermore, it is possible to con�gure some mechanical theoremprovers so that they can be used directly to reason about the behavior of programsin the new language, permitting the expeditious formal modeling of the new de-sign as well as experimentation with and mechanically checked proofs about newprograms. We here study a very simple machine-level language to illustrate howsuch modeling, experimentation, and reasoning may be done using the ACL2 auto-mated reasoning system. Of particular importance is how we control the reasoningsystem so that it can deal with the complexity of the machine being modeled. Themethodology we describe has been used on industrial problems and has been shownto scale to the complexity of state-of-the-art processors.4.1 Historical BackgroundWhy write about how to formalize the semantics of a simple programming language?The answer is that it is a skill necessary to the application of formal reasoning toolsto industrial microprocessor design. We advocate, in fact, the use of an operationalsemantics expressed in a computational logic, e.g., one supporting execution. We doso for two reasons: such a semantics is usually accessible to the engineers involvedand is unusually e�ective in enabling mechanized proof. The last two decades ofour research can be seen as an e�ort to demonstrate the latter claim.In the late-1970's we were concerned with proving the correctness of a programwritten in the machine code for the Bendix BDX930 computer [10]. At the timewe wrote:To capture the semantics of the instruction set, we encoded in our logica recursive function that describes the state changes induced by eachBDX930 instruction. Thirty pages are required to describe the top level

2 Chapter 4driver and the state changes induced by each instruction (in terms of cer-tain still unde�ned bit-level functions such as the 8-bit signed additionfunction). We encountered di�culty getting the mechanical theorem-prover to process such a large de�nition. However, the system wasimproved and the function was eventually admitted. We still anticipategreat di�culty proving anything about the function because of its largesize.The formal system we used in the Bendix 930 work was the early version ofNqthm [2, 4]. The \large size" of our BDX930 speci�cation drove much of our workon Nqthm's implementation and how to use a formal logic to specify a von Neumanncomputing machine. By the mid-1980's, Nqthm was able to handle an RTL-leveldescription of a \home-grown" microprocessor, the FM8501, a speci�cation of itsmachine code, and the proof that the RTL description implemented the machinecode [11]. Later, the FM8502 was produced, a 32-bit wide version of the 16-bitwide FM8501. By the late 1980's, Nqthm hadbeen used to verify the \CLI Stack," which provided the FM8502 with a linkingassembler and a compiler for a simple high-level language [1]. The stack also pro-vided a simple operating system kernel for a machine similar to the FM8502. Thestack work was carried out by the two authors, our colleague Matt Kaufmann, andour students Bill Bevier, Warren Hunt, and Bill Young.However, as late as 1990, the CLI stack was still only a theoretical exercise be-cause the FM8502 could not be practically fabricated from its RTL-level description.This changed in 1991, when Bishop Brock and Warren Hunt produced a veri�ed mi-croprocessor, the FM9001 [12]. They formalized the Netlist Description Language(NDL) of LSI Logic, Inc., in the Nqthm logic and then used that formal languageto describe a microprocessor similar to the FM8502. After the correspondence ofthe NDL description and the machine code speci�cation was proved, the NDL de-scription was sent to LSI Logic, Inc., and a chip was fabricated. The rest of thestack was ported to the FM9001 by re-targeting and re-verifying the link assembler,a process that was almost entirely automatic [19]. In addition, our student MattWilding implemented some applications programs on the FM9001 (using the linkassembler) and proved them correct [23].Finally, in 1991, our student Yuan Yu used Nqthm to formalize 80% of the usermode instruction set of a commercial microprocessor, the Motorola MC68020 [25, 5]and then used the formal model to verify many binary machine code programsproduced by commercial compilers from source code in such high-level languages

Mechanized Formal Reasoning about Programs and Computing Machines 3as Ada, Lisp and C. For example, Yu veri�ed the MC68020 binary code producedby the \gcc" compiler for 21 of the 22 C programs in the Berkeley string library.Mechanized formal reasoning is now being used in an experimental fashion insupport of industrial microprocessor design. Such projects are carried out in col-laborations between the industrial design team and the developers of the formalreasoning systems.The PVS system [21] was used to specify about half of the instructions on theAAMP5, an avionics processor developed by Rockwell-Collins, and the microcodeof about a dozen instructions was veri�ed against the formal speci�cation [17].The ACL2 system [13, 14, 9]|a successor of Nqthm|was used to specify Mo-torola's Complex Arithmetic Processor (CAP) and many theorems were provedabout it, including the correctness of an abstraction that eliminates the pipelineand the correctness of several microcode programs involved in digital signal pro-cessing (DSP) [9]. In addition, ACL2 has been used to verify the microcode forboth oating-point division [20] and square root [22] on the AMD5K86, the �rstPentium-class microprocessor produced by Advanced Micro Devices, Inc.Common to these projects is the formalization of a machine-code-like program-ming language and the con�guration of a mechanized reasoning system so thatit can be used directly in the construction of proofs about programs in that lan-guage. The development of reasoning tools for standard languages such as VHDLwill undoubtedly remove some of the necessity of \rolling your own" formal seman-tics. The Brock-Hunt NDL formalization for FM9001, for example, can be reusedto verify other hardware designs [18]. But as long as microprocessors supportnew, special-purpose machine languages|i.e., as long as designers produce special-purpose microprocessors such as the now-old fashioned BDX930, or the brand newAAMP5 and CAP|formal mechanical veri�cation will require the formalization ofnew machine-level languages and the construction, one way or another, of mechan-ical aids to reasoning.We hope that this formalization will someday be done by the engineers on theproject. This is not a farfetched notion. After all, it is the engineers on the projectwho are routinely \rolling their own" languages; they simply do not so often writedown the semantics precisely. One great bene�t of doing so is that it increases theclarity and precision of the communication between team members when discussingchanges to the evolving design. We believe that an operational semantics, where onede�nes the e�ect of each instruction, is often quite similar to the informal notionsthe team members would otherwise employ to think about their language. A formaloperational semantics can immediately provide another great bene�t to the designteam: an execution or simulation capability for the new language. Therefore, we

4 Chapter 4think it is both feasible and desirable for a design team to \roll their own" formalsemantics.But special-purpose processors|especially those in which mechanically checkedproofs are seen as desirable|often have arcane and complex instruction sets, forotherwise a standard commercial chip would have been used. For example, the CAPhas six independent memories, four multiplier-accumulators, over 250 programmer-visible registers, and allows instructions which simultaneously modify well over 100registers. The microcode has a 64-bit instruction word that decodes to a 317-bitcontrol word internally. In is not unusual in typical CAP DSP application programsto encounter instructions that simultaneously modify several dozen registers. In-deed, it is that very complexity that encourages the design team to seek reassurancein mechanically checked arguments.Once the formal semantics is written down, it is often desirable to have mechani-cal aid to support formal reasoning. A wonderful and obvious solution would be toconstruct a special-purpose GUI integrated into the team's CAD tools and whichuses a theorem prover \behind the scenes." Unfortunately, such systems take agreat deal of time to develop but are needed before the language/machine is com-pletely designed. Hence it is often expedient to de�ne the semantics in a formal logicin the �rst place and then use an existing theorem proving tool directly. The directuse of a general-purpose theorem prover driven by the evolving formal semantics ofthe machine is in conict with the \wonderful and obvious" solution in which theformal machinery is hidden from the user. But until mechanical theorem proversare smarter or the pace slows down so that applications- and language-speci�c toolscan be built, we believe this is the most cost-e�ective scenario.That it is possible to so use a mechanical theorem prover has now been demon-strated repeatedly in the projects cited above. We cite especially the case study ofthe CAP described in [9]. Such demonstrations are eloquent testimony to the ad-vances in automated reasoning since the late '70s. But we are left with a problem:somebody on the teammust be prepared to formalize an evolving complex languageand con�gure an existing theorem prover to make it relatively straightforward toreason about the new programs being written. There is no doubt, today, that theperson must be intimately familiar with the theorem prover, but we hope that willchange. We believe tools can be built to make the process easier. But in the mean-time, it is important to explain how it is done. The formalization of such complexlanguages is di�cult to do. It is even more di�cult to learn how to do formalizationby studying the industrial examples cited above. Hence this exposition.We describe and then formalize the semantics of a simple language and then givepractical advice for how to prove theorems about programs written in the language.

Mechanized Formal Reasoning about Programs and Computing Machines 5The approach we describe is essentially that used in the Nqthm and ACL2 projectsdescribed above. Furthermore, the Nqthm and ACL2 users above were taughtthis method of formalization via examples very similar to this one, primarily inour graduate class, Recursion and Induction, at the University of Texas at Austin.That this technique scales up to languages that are many orders of magnitudemore complicated than this one is demonstrated by [5, 9]. Therefore, simplicityhere should be looked upon as a virtue.We will use ACL2 as the formal system in which the semantics is expressed andthe proof advice is given. ACL2 is merely an axiomatization of an applicativesubset of Common Lisp. The reader familiar with some Lisp will have no troubleunderstanding our formalization. For readers unfamiliar with Lisp we informallyparaphrase each important formula. We believe that the value of this approach isindependent of ACL2 or any particular formalism. Therefore, we urge readers whouse other systems to read on.To obtain ACL2 by ftp, �rst connect to ftp.cli.com by anonymous login. Then `cd'to /pub/acl2/v1-8, `get README' and follow the directions therein. Alternatively,one may obtain ACL2 via theWorldWide Web with the URL http://www.cli.com/-software/acl2/index.html. The ACL2 system includes extensive hyper-linked on-line documentationavailable via ACL2 documentation commands, HTML browsers,Emacs Info, and in hardcopy form. See [13]. Contact the authors to obtain the �leof ACL2 de�nitions and theorems described here.4.2 A Simple Machine-Level Language4.2.1 StatesThe state of our machine will be represented by a 5-tuple. We de�ne the functionstatep to recognize lists of length 5,(defun statep (x)(and (true-listp x)(equal (len x) 5))) .This de�nition actually introduces an axiom de�ning a new function, statep, ofone argument, x. The function returns t (true) if x is a \true list" (a binary treewhose right-most branch terminates in nil) and its length is 5. Otherwise statepreturns nil. In Lisp notation, the application of the function symbol statep toits single argument, x, is written (statep x) as opposed to the more traditionalstatep(x) notation.

6 Chapter 4Our states will consist of a program counter, pc; a control stack of suspendedprogram counters, stk; the data memory, mem; a ag, halt, indicating whether themachine is halted; and an \execute only" program memory, code. Our machinedoes not have a separate \register �le;" instead we use low memory addresses asthough they named registers.In Common Lisp we de�ne the �ve \accessors" as follows.(defun pc (s) (nth 0 s)) ; pc(s) = nth(0,s)(defun stk (s) (nth 1 s)) ; stk(s) = nth(1,s)(defun mem (s) (nth 2 s)) ; mem(s) = nth(2,s)(defun halt (s) (nth 3 s)) ; halt(s) = nth(3,s)(defun code (s) (nth 4 s)) ; code(s) = nth(4,s)For example, the �rst defun de�nes the function pc to take one argument, s andto return the 0th element of s. Remarks after semicolons are comments.We could write (list x1 x2 x3 x4 x5) to denote a state whose componentsare the �ve objects x1, ..., x5. But such positional notation can be di�cult todecipher. We prefer the notation (st :pc x1 :stk x2 :mem x3 :halt x4 :codex5) simply because it reminds us of what each component represents. The order ofthe key/value pairs is unimportant.New states are often obtained from old ones by \changing" only a few componentsand leaving the others unchanged. We introduce notation so that, for example,(modify s :pc x1 :halt x2) is the state whose components are the same as thoseof s except that the pc is x1 and the halt ag is x2. That is, the modify expressionabove denotes (list x1 (stk s) (mem s) x2 (code s)). We omit the de�nitionof modify.4.2.2 Memory, Code, and Program CountersThe machine we have in mind provides a �nite (but arbitrarily sized) memory. Weenumerate the memory locations from 0; each location contains an arbitrary object.Hence a memory can be represented by a �nite list of the objects it contains. Torefer to the contents of location n in memory mem we use (nth n mem). To changethe contents of location n to v we use (put n v mem). The function put is a simplerecursively de�ned list processing function.(defun put (n v mem)(if (zp n)(cons v (cdr mem))(cons (car mem) (put (- n 1) v (cdr mem)))))Roughly speaking, to put v at position n in mem, put it at the front if n is 0 andotherwise put it into position n-1 in (cdr mem) (the list containing all but the �rst

Mechanized Formal Reasoning about Programs and Computing Machines 7element of mem) and then add (car mem) (the �rst element of mem) onto the front.For example, to put 77 at position 2 in '(0 1 2 3 4) we use (put 2 77 '(0 1 23 4)) , which is equal to '(0 1 77 3 4).What does put do if n is negative or not an integer? The answer is that it actsas though n were 0. How? (Zp n) is de�ned to be true if n not a positive integer.What if n � (len mem)? In this case we \cdr o� the end" of mem. But cdr is atotal function that returns nil if its argument is not a list. Hence, put essentially\coerces" mem to be long enough by extending it with nils. This allows manytheorems about put to be stated accurately without having to have hypothesesabout n and mem. The simplicity of both the de�nition of put and theorems aboutit is one of the strengths of both Nqthm and ACL2.In our machine, the \program memory," code, will be represented by an associ-ation list in which each program name is paired with the list of instructions in it.Thus, for example, a program memory containing three programs, named times,expt and main, will be represented by the list'((times ins0;0 ins0;1 ... ins0;k0)(expt ins1;0 ins1;1 ... ins1;k1)(main ins2;0 ins2;1 ... ins2;k2)) .Given the name of a program, name and a program memory, code, (cdr (assocname code)) returns the associated list of instructions.Individual instructions will be lists. Abstractly every instruction will have anopcode and two arguments, a and b.(defun opcode (ins) (nth 0 ins))(defun a (ins) (nth 1 ins))(defun b (ins) (nth 2 ins))Because nth, like put, extends its list argument with nils, we can write instructionsin three formats: (op), (op a), and (op a b) and omitted arguments default tonil.For example, the constant(times (movi 2 0) ; 0 mem[2] 0(jumpz 0 5) ; 1 if mem[0]=0, go to 5(add 2 1) ; 2 mem[2] mem[1] + mem[2](subi 0 1) ; 3 mem[0] mem[0] - 1(jump 1) ; 4 go to 1(ret))) ; 5 return to callerde�nes one program in our language. The constant is a list of seven elements.The �rst, times, is the name of the program and the other six elements are the

8 Chapter 4instructions. For example, the �rst instruction is (movi 2 0), which has an opcodeof movi, an a argument of 2 and a b argument of 0; the last instruction is (ret),which has an opcode of ret and a and b arguments of nil. A typical code memorywill contain many such lists, one for each program in the machine. We will usetimes repeatedly and we de�ne the function times-program to be the constantfunction which returns the above constant. That is,(defun times-program ()'(times (movi 2 0) ... (ret)))and so (times-program) is equal to the constant above. We discuss the programlater.Returning now to the formalization of our machine, the program counter, pc,will be a pair, (name . i), indicating that the \current instruction" is the ithinstruction in the program named name. Thus, to fetch an instruction we use(defun fetch (pc code)(nth (cdr pc)(cdr (assoc (car pc) code)))) ,and so the current instruction of a state is(defun current-instruction (s)(fetch (pc s) (code s))) .To construct the program counter for the �rst instruction in the program namedname we use (cons name 0). To increment a program counter by one we use thefunction(defun pc+1 (pc)(cons (car pc) (+ 1 (cdr pc)))) .Thus, if pc is '(times . 3) then (pc+1 pc) is '(times . 4).4.2.3 Instructions SemanticsWe can now begin the main task, namely the speci�cation of the individual instruc-tions on our machine. We will de�ne only as many instructions as it takes to writea couple of simple programs.It will be our convention to de�ne a function, called the semantic function, foreach instruction. The function will have the same name as the opcode of theinstruction. The function will take one more argument than the instruction doesand that extra argument shall be the machine's state.

Mechanized Formal Reasoning about Programs and Computing Machines 9Consider the move instruction, which has two arguments, the target address andthe source address, and is written as the list constant (move a b). Here is thesemantic function for the move operation,(defun move (a b s)(modify s:pc (pc+1 (pc s)):mem (put a (nth b (mem s)) (mem s)))) .The function modi�es s in two places. The pc is incremented by one and thecontents of location b is deposited into location a.Contrast this with the semantics of the \move immediate" instruction, movi,(defun movi (a b s)(modify s:pc (pc+1 (pc s)):mem (put a b (mem s)))) ,which deposits b, not its contents, into location a.We provide two arithmetic instructions.(defun add (a b s)(modify s:pc (pc+1 (pc s)):mem (put a(+ (nth a (mem s))(nth b (mem s)))(mem s))))Add adds the contents of the two locations and deposits the sum in the �rst location.(defun subi (a b s)(modify s:pc (pc+1 (pc s)):mem (put a(- (nth a (mem s)) b)(mem s))))Subi subtracts the second argument, not its contents, from the contents of the �rstand deposits the di�erence in the �rst.To branch unconditionally within the current program we provide(defun jump (a s)(modify s :pc (cons (car (pc s)) a))) .

10 Chapter 4Here, the argument a is the location within the current program to which controlis to be transferred. Observe that we stay within the current program since we donot change the name component of the pc.To branch conditionally within the current program we provide(defun jumpz (a b s)(modify s:pc (if (zp (nth a (mem s)))(cons (car (pc s)) b)(pc+1 (pc s))))) .That is, if the contents of a is 01, jump to location b in the current program; elseincrement the pc by 1.To call a subroutine we provide(defun call (a s)(modify s:pc (cons a 0):stk (cons (pc+1 (pc s)) (stk s)))) .Call modi�es the stack by incrementing the current pc by 1|to create the desiredreturn program counter|and then pushing it onto the stack of suspended programcounters. The pc is set to the �rst instruction in the program named a.Finally, to return from a subroutine call (or to halt) we provide(defun ret (s)(if (endp (stk s))(modify s :halt t)(modify s:pc (car (stk s)):stk (cdr (stk s))))) .Observe that if the stack is empty when ret is executed, the halt ag is set.Otherwise, the stack is popped and the top-most return program counter from itbecomes the new pc.4.2.4 The Fetch-Execute CycleTo tie the semantic functions to their instructions we de�ne the function executewhich takes an instruction ins and a state s and executes the (semantic functionfor) ins on s.1We �nd it convenient actually to test (zp a), which is true if a is not a positive integer.

Mechanized Formal Reasoning about Programs and Computing Machines 11(defun execute (ins s)(let ((op (opcode ins))(a (a ins))(b (b ins)))(case op(move (move a b s))(movi (movi a b s))(add (add a b s))(subi (subi a b s))(jumpz (jumpz a b s))(jump (jump a s))(call (call a s))(ret (ret s))(otherwise s))))This syntax may be read \In the following, let op, a and b be the correspondingparts of the instruction ins. If op is 'move the result is (move a b s), if op is'movi, the result ..., otherwise the result is s." Observe that if an unrecognizedinstruction is executed it is a no-op.The machine's fetch-execute operation or \single stepper" is(defun step (s)(if (halt s)s(execute (current-instruction s) s))) .That is, if the halt ag is set, we return s and otherwise we execute the currentinstruction on s.We can step the state s n times with(defun sm (s n)(if (zp n)s(sm (step s) (- n 1)))) .The name sm stands for \small machine" and represents the formal model of themachine's fetch-execute cycle.4.3 A Simulation CapabilityRecall(defun times-program ()'(times (movi 2 0) ; 0 mem[2] 0

12 Chapter 4(jumpz 0 5) ; 1 if mem[0]=0, go to 5(add 2 1) ; 2 mem[2] mem[1] + mem[2](subi 0 1) ; 3 mem[0] mem[0] - 1(jump 1) ; 4 go to 1(ret)))) ; 5 return to caller.Informally, the speci�cation of this program is that it multiplies the contents ofmemory location 0 times that of location 1 and leaves the result in location 2. Theprogram uses the method of successive addition of location 1 into location 2, whichis initially cleared. The comments explain further. Note that the program loopsthrough pcs 1{4, decrementing location 0.We can use the de�nition of sm to run this program. That is, by virtue ofhaving de�ned the semantics of our machine in a programming language, we get asimulation capability \for free." Below we de�ne a constant,(defun demo-state ()(st :pc '(times . 0):stk nil:mem '(7 11 3 4 5):halt nil:code (list (times-program)))) ,which is a state poised to multiply 7 times 11. Note �rst the code memory; itcontains exactly one program, namely that for times. The pc points to the �rstinstruction in times. The stack is empty, so the ret instruction in times will haltthe machine. The memory has �ve locations, with 7 and 11 in the �rst two and 3,4, and 5 in the remaining three. The halt ag is o�.How many steps does it take to run this program on this data? One tick executesthe initialization at pc 0 and gets us to the top of the loop at pc 1. The loop takesfour ticks and is executed 7 times, leaving us at the top of the loop with location 0set to 0. One more tick executes the jumpz which transfers control out of the loopto the ret. One more tick executes the ret and halts the machine. Thus, it takes1 + (7� 4) + 2 = 31 ticks to execute the program here.What is the �nal state? Obviously, the pc will point to the ret, the stack will(still) be empty, the halt ag will be set and the code will be unchanged. Whatabout the memory? Location 0 will have been counted down to 0. Location 1 willbe unchanged at 11. Location 2 will have accumulated 7� 11 = 77. And locations4 and 5 are untouched. We can actually prove that this is the �nal state, simply byevaluating (sm (demo-state) 31) and looking at the answer. This can be statedas a theorem,

Mechanized Formal Reasoning about Programs and Computing Machines 13(defthm demo-theorem(equal (sm (demo-state) 31)(st :pc '(times . 5):stk nil:mem '(0 11 77 4 5):halt t:code (list (times-program))))) .This theorem is trivial to prove by evaluation. That is, (sm (demo-state) 31), ifexecuted in any Common Lisp containing ACL2 and the de�nitions shown above,will create the state shown on the right-hand side of the equation above.4.4 A Speci�cation of the ProgramIntuitively, times multiplies the contents of memory locations 0 and 1, clears loca-tion 0, and writes the product into location 2. If a state is poised to execute a callof times and we step it exactly enough to execute through the return statement forthat call, then the e�ect on memory is as just described and the program counteris incremented by one. This can be said much more precisely as follows. Let s0be a state whose memory contains at least three locations (in general we wish tomake sure all the memory references in the program are legal). Let i and j be thecontents of the �rst two locations and suppose that i and j are natural numbers.Suppose that the current instruction in s0 is a call of times, where times is de�nedas in times-program. Finally, suppose the halt ag is o�, so the state is runnable.Then if we run sm on s0 for a certain number of ticks, namely (times-clock i),de�ned below, the result is the state obtained more simply by incrementing theprogram counter of s0 by one, writing a 0 into memory location 0, and writing theproduct of i and j, (* i j), into memory location 2.A formal rendering of this speci�cation of times is shown below.(defthm times-correct(implies (and (statep s0)(< 2 (len (mem s0)))(equal i (nth 0 (mem s0)))(equal j (nth 1 (mem s0)))(natp i)(natp j)(equal (current-instruction s0) '(call times))(equal (assoc 'times (code s0)) (times-program))(not (halt s0)))(equal (sm s0 (times-clock i))

14 Chapter 4(modify s0:pc (pc+1 (pc s0)):mem (put 0 0(put 2 (* i j) (mem s0)))))))The expression (times-clock i) is supposed to measure how many clock ticksit takes to execute times to multiply i times j. We call times-clock the clockfunction for the program times. Recall that in demo-theorem the time taken torun times on the 7� 11 problem was 1+ (7� 4)+2 = 31. In that example the runwas started at the top of the times program itself, at pc (times . 0). In our moregeneral speci�cation, the run starts at a call of times, thus adding one instructionto the count. Therefore, (times-clock i) is equal to (+ 2 (+ (* i 4) 2)).Note that our speci�cation of times not only describes its functional behaviorcompletely (i.e., every e�ect on the state) but also characterizes the number of clockticks it takes. It is often easier to prove such strong theorems than to prove weakerones. Indeed, the clock plays a crucial role in our proof strategy.In what follows, we will show how to prove times-correct and other such theo-rems. Of particular importance is the system decomposition problem: how can weverify complex programs by verifying their component subroutines? Furthermore,we are not so much interested in proving theorems as in proving them mechani-cally without building any special purpose reasoning system for that task (beyonda theorem prover already presumed to exist).4.5 How to Prove the Program CorrectTo prove times correct we do symbolic computation, using induction to get aroundthe loop. That is the obvious thing to do; the question is how do we carry it outformally and mechanically within the logic?4.5.1 The ACL2 Proof StyleACL2, like Nqthm, employs two main proof techniques, induction and rule-drivensimpli�cation. For Nqthm, these techniques are discussed thoroughly in [2]; ACL2'stechniques are quite similar and are described in the ACL2 documentation [13].The system inducts only when its other heuristics do not apply. To choose aninduction, the system inspects the recursive de�nitions of the functions involved inthe conjecture and selects an induction designed to \unwind" one or more of thosefunctions. We discuss induction further when we describe a particular use of itbelow.

Mechanized Formal Reasoning about Programs and Computing Machines 15Of more concern here is rule-driven simpli�cation. ACL2's rewriter attemptsto simplify formulas by rewriting them using axioms, de�nitions, and previouslyproved theorems as rewrite rules. When the rewriter is called, it is given a listof \assumptions," terms which are assumed true. When the rewriter descendsthrough (if test a b), it adds test to the assumptions while rewriting a and (nottest) while rewriting b. Heuristics control the \expansion" of recursive functionde�nitions; the basic idea is to expand a function call into its body provided thesimpli�ed body is \simpler" or the simpli�ed arguments to all recursive calls alreadyoccur elsewhere in the problem. Axioms and theorems are transformed into rewriterules by relatively simple syntactic rules. A theorem of the form (implies (andh1:::hn) (equal lhs rhs)), once proved, is interpreted as the rule \replace eachinstance of lhs by the corresponding instance of rhs, provided the correspondinginstances of the hypotheses, hi, can be rewritten to true." The rewriter appliesrewrite rules to a term from the inside out. Thus, the term (f a1 ... ak) is �rstrewritten to (f a01 ... a0k) by rewriting each argument, ai, to a0i, and then ruleswhose left-hand sides match (f a01 ... a0k) are tried.To simplify a formula, (implies (and h1:::hn) concl), we regard the formula asa clause, f(not h1) ::: (not hn) conclg and rewrite each literal, in turn, assumingthe other literals false.The user of ACL2 must be cognizant of the interpretation of a formula as arule when each theorem is stated. In a sense, the job of the user is to \program"the simpli�er so that it carries out an appropriate simpli�cation strategy for theproblem domain at hand.4.5.2 Formal Symbolic ComputationFormal symbolic computation is nothing more than using the symbolic de�nition ofthe machine and certain axioms and lemmas to simplify an expression like (sm s0(times-clock i)) to a symbolic state. A key to our approach is to use the clockas a means of driving the expansion of sm.For example, since (times-clock i) is equal to (+ 2 (+ (* i 4) 2)), (sm s0(times-clock i)) is (sm s0 (+ 2 (+ (* i 4) 2))), by substitution of equalsfor equals. Now we can appeal twice to the easily proved lemma(defthm sm-+(implies (and (natp i) (natp j))(equal (sm s (+ i j))(sm (sm s i) j))))to reduce the \big" computation to three smaller ones (sm (sm (sm s0 2) (* i4)) 2). The representation of the clock expression allows the user to tell the system

16 Chapter 4how to decompose the computation into its \natural" paths, in this case a 2-stepprelude, followed by a (* i 4)-step inductive loop, and �nishing with a 2-steppostlude.However, there is a problem with this: in the presence of the heavy-duty arith-metic rules necessary to carry out proofs about practical programs, the \natu-ral" clock expression (+ 2 (+ (* i 4) 2)) is liable to be rewritten to some alge-braically equivalent but pragmatically useless form like (* 4 (+ i 1)). For thatreason we use special clock arithmetic operators when we write clock expressions.For example, the actual de�nition of times-clock is(defun times-clock (i)(cplus 2 (cplus (ctimes i 4) 2))) ,where cplus is simply + (on the naturals) and ctimes is simply * (on the naturals)but the theorem prover is not generally allowed to use those facts. Nor is thetheorem prover \aware" that cplus and ctimes enjoy the algebraic properties ofassociativity, commutativity, etc. The theorem sm-+ shown above is actually provedwith cplus in place of +.Having taken the user's \hint" that we should see the computation as a com-position of three smaller executions, (sm (sm (sm s0 2) (ctimes i 4)) 2), wefocus|as always|on the innermost expression. By simplifying from the inside outwe are, in this case, doing a \forward execution" of the program.It is easy to arrange for (sm s0 2) to simplify very quickly to (step (step s0))using(defthm sm-opener(and (equal (sm s 0) s)(implies (natp i)(equal (sm s (+ 1 i))(sm (step s) i))))) .We do not allow step to enter the problem any other way. Thus, we step onlywhen we have the clock's permission (and thus the user's permission) to do so.Now the naive expansion of the step function produces a catastrophic case ex-plosion because step (actually, its sub-function execute) does a case split basedon all possible instructions. Therefore, another key to our approach is to expanda step expression only when the current instruction of the state is known. We dothis in ACL2 with the lemma(defthm step-opener(and (implies (halt s) (equal (step s) s))

Mechanized Formal Reasoning about Programs and Computing Machines 17(implies (consp (current-instruction s))(equal (step s)(if (halt s)s(execute (current-instruction s) s)))))) .This is merely the de�nition of step, but after proving it we \disable" the de�ni-tion so that ACL2 cannot use it. The hypothesis of the second conjunct above isirrelevant; (step s) is equal to the if-expression even without it. But by provingthis weaker theorem we arrange for ACL2 to expand step only when it can provethat the current-instruction is a consp. This is only a \hack" but it works.Now what do we know about the current instruction in s0, the term we wantto step �rst in (step (step s0))? We know exactly what it is: (call times).So step-opener applies and rewrites (step s0) �rst to (call 'times s0) (usingthe fact that we know the halt ag is o� in s0 and the de�nition of execute), andthence to(modify s0:pc '(times . 0):stk (cons (pc+1 (pc s0)) (stk s0))) .Call this state s1.Now we wish to simplify (step s1). All we can use is step-opener. Do weknow the current instruction? Yes! The pc in s1 is (times . 0), so the cur-rent instruction is the �rst one in times and we know the code for times! Thecurrent instruction of s1 is (movi 2 0). Technically this deduction is trivial, butin practice, when program counters and code memory are large, it requires thatthe theorem prover e�ciently execute such ground expressions as (fetch '(times. 0) (list (times-program))).Applying step-opener and simplifying produces(modify s1:pc '(times . 1):mem (put 2 0 (mem s1))) ,which, in terms of s0, is(modify s0:pc '(times . 1):stk (cons (pc+1 (pc s0)) (stk s0)):mem (put 2 0 (mem s0))) .Call this state s2.

18 Chapter 4Recall now how we got here. We simpli�ed (sm s0 (times-clock i)) to (sm(sm (sm s0 2) (ctimes i 4)) 2) and now we have simpli�ed the (sm s0 2) tos2 above. We would now like to step s2 (ctimes i 4) times, but how many isthat?So far, all of the lemmas cited are program-independent: they need be provedonly once for the given machine and cause the theorem prover to do symboliccomputation driven by the clock expression. But now we need a program-dependentlemma, namely one that tells us what the loop in times is doing. We discuss itbelow.But �rst, suppose we had a lemma that explained the loop, e.g., that says \(sms (ctimes i 4)) changes memory so that location 0 is 0 and location 2 containsthe sum of its old value and the product of the �rst two memory locations." Thenwe are virtually done because our s2, above, has a 0 in location 2 and so by thelemma, (sm s2 (ctimes i 4)), which we will call state s3, is simply s2 with a 0in location 0 and the desired product in location 2. Then we conclude the proofby computing (sm s3 2). This symbolically executes the jumpz at the top of theloop and the ret, since location 0 is now 0. The ret pops the stack back into thepc and we are left with a state in which the pc is (pc+1 (pc s0)), the memoryhas a 0 in 0 and the product in 2, and all other components are unchanged. Thatcompletes the proof of times-correct, but we assumed we had a crucial lemmaabout the behavior of the loop.4.5.3 Loop InvariantsSo we now turn to the crucial lemma describing what happens when the pc is(times . 1) and the clock is (ctimes i 4), i.e., (ctimes (nth 0 (mem s)) 4).The lemmawe prove is generally easy for the user to \invent" and always follows thesame general pattern. Because of the clock decomposition, the situation is perfectfor induction because the pc points to the top of a loop, the loop decrements location0 once each time around, the loop takes 4 instructions to traverse once, and theclock is precisely 4 times the initial value of location 0. Here is the lemma we prove.(defthm times-correct-lemma(implies (and (statep s)(< 2 (len (mem s)))(equal i (nth 0 (mem s)))(natp i)(equal (pc s) '(times . 1))(equal (assoc 'times (code s)) (times-program))(not (halt s)))(equal (sm s (ctimes i 4))

Mechanized Formal Reasoning about Programs and Computing Machines 19(modify s :mem (times-fn-mem s)))))The lemma tells us what the loop does to memory. It addresses itself to a completelygeneral entrance to the loop with just enough time on the clock to �nish the loop.We can paraphrase, from the top, as follows. Let s be a state with at least twolocations. Suppose location 0, which we call i, contains a natural. Suppose thepc points to the top of the loop in our times program and the state is not halted.Then executing the state (ctimes i 4) times modi�es the memory as describedby (times-fn-mem s). We de�ne that function below.Before we de�ne times-fn-mem we draw attention to a subtle aspect of thestatement of times-correct-lemma. The left-hand side of the conclusion, whichis the target pattern when the lemma is used as a rewrite rule, is (sm s (ctimesi 4)) whereas it could have been equivalently stated as (sm s (ctimes (nth 0(mem s)) 4)). The preferred statement contains two variables, s and i, whereasthe equivalent alternative contains only s. Practically speaking (at least for ACL2)the preferred statement is more general because it allows the rule to �re on (sm s0(ctimes (nth 0 (mem s)) 4)) provided the contents of location 0 in s0 is equalto that of location 0 in s. This is the most common triggering expression, infact, because s0 is generally derived from s by initializing certain locations (e.g.,location 2). The equivalent alternative formulation does not unify with the commontriggering expression and hence would not be used.It only remains to say what times-fn-mem is. Roughly speaking, it is a recursivefunction that, in e�ect, performs the same series of writes to memory that executingthe loop does.(defun times-fn-mem (s)(let ((m0 (nth 0 (mem s)))(m1 (nth 1 (mem s)))(m2 (nth 2 (mem s))))(if (zp m0)(mem s)(times-fn-mem(modify s:mem(put 0 (+ m0 -1)(put 2 (+ m1 m2) (mem s))))))))Note that the function operates on a state, s, and returns a modi�ed version of thememory of s. The modi�cation is obtained by repeatedly decrementing memorylocation 0 and adding the contents of location 1 into 2 until location 0 is 0 (or nota natural). The function terminates because the contents of location 0 decreases.

20 Chapter 4Many of the basic ideas we have presented here for describing computation math-ematically, including the idea of \derived functions" such as times-fn-mem, wereinspired by techniques �rst developed by John McCarthy [15, 16] and his students.The recursion in times-fn-mem suggests an induction on s: the base case iswhen location 0 contains a 0 and the induction step assumes the theorem for s'and proves the theorem for s, when location 0 is non-0 and the s' is obtainedfrom s by decrementing location 0 and incrementing location 2 by the contentsof location 1. Proving times-correct-lemma by this suggested induction is com-pletely straightforward, given the previously described arrangements for symboliccomputation.2Of course one reason times-correct-lemma is easy to prove is because of whatit does not say. It does not tell us that the loop computes the product of locations0 and 1. It tells us that it modi�es memory as described by times-fn-mem. Weprove as a separate lemma that a product is produced.(defthm times-fn-mem-is-times(implies (and (< 2 (len (mem s)))(equal m0 (nth 0 (mem s)))(equal m1 (nth 1 (mem s)))(equal m2 (nth 2 (mem s)))(natp m0)(natp m1)(natp m2))(equal (times-fn-mem s)(put 0 0(put 2 (+ m2 (* m0 m1)) (mem s))))))This lemma says that the sequence of writes done by times-fn-mem is just the sameas writing 0 into location 0 and writing (+ m2 (* m0 m1)) into location 2, wherem0, m1 and m2 are the contents of locations 0, 1 and 2 respectively. This lemma isthe mathematical crux of the entire proof: iterated addition is multiplication. Butnote that the theorem makes no mention of sm or of the semantics of instructions.The introduction of times-fn-mem is thus another key element in the methodol-ogy. Roughly put, one should introduce the recursive function that does the samesequence of state modi�cations as the program and then break the proof into twoparts. In part one, e.g., times-correct-lemma, prove that the program has theclaimed operational behavior. In part two, e.g., times-fn-mem-is-times, provethat the operational behavior satis�es the desired speci�cation. The �rst part is2In order to do the proof with the suggested induction, �rst eliminate the use of i by substitut-ing (nth 0 (mem s)) for i. Otherwise, one must slightly modify the induction to accommodatei.

Mechanized Formal Reasoning about Programs and Computing Machines 21complicated only by the size of the machine and the program; since this compli-cation is often considerable, it is convenient to deal with it in isolation from thespeci�cation. The second part is complicated only by the di�erence between theoperational behavior and the speci�cation; since this di�erence can be great, it isconvenient to deal with it in isolation from the machine.4.5.4 Memory Expression ManagementThe discussion above omits one last class of \generic" problems that must be faced,having to do with the normalization of such memory expressions as (put 0 x (put2 y mem)). That expression naturally arises if the put to location 2 is done �rstand then the put to location 0 is done. That is what happens in times. Notethat we might have done them in the other order (put 2 y (put 0 x mem)) andproduced the very same memory. It is not uncommon for the program to do theputs in one order and for the speci�cation to do them in another. Furthermore,one needs to be able to fetch the contents of a memory location from a modi�edmemory, e.g., to realize that (nth 1 (put 0 x mem)) is (nth 1 mem).If the memory locations are always small numbers, as in this example, the proofcan be done by expanding put so that both put-nests above become (list* x(cadr mem) y (cdddr mem)). But if memory locations are large or symbolic thisis not practical. We use the following rules to normalize memory expressions.The following rule resolves memory references.(defthm nth-put(implies (and (natp i)(natp j))(equal (nth i (put j val mem))(cond ((equal i j) val)(t (nth i mem))))))To eliminate unnecessary puts we use(defthm put-put-0(implies (and (natp i)(< i (len mem))(equal (nth i mem) val))(equal (put i val mem) mem))) .The next rule eliminates redundant puts.(defthm put-put-1(equal (put i val2 (put i val1 mem))(put i val2 mem)))

22 Chapter 4The following rule, when properly used, orders nests of puts so that the addressesare listed lexicographically, e.g., so that (put 0 x (put 2 y mem)) is preferredover the other ordering.(defthm put-put-2(implies (and (natp i)(natp j)(not (equal i j)))(equal (put i vali (put j valj mem))(put j valj (put i vali mem)))))In ACL2 we control this rule by implementing a veri�ed metafunction, cf. [3], whichrecognizes and rewrites expressions that are out of order.Finally, we must be able to determine the length of the memory after doing awrite.(defthm len-put(implies (and (natp i)(< i (len mem)))(equal (len (put i val mem)) (len mem))))4.5.5 System Decomposition, RevisitedSuppose we have a program, say expt, that uses our times program and we wishto prove expt correct. We here discuss how the form of times-correct permits itto be used within the scheme just sketched. Recall the just proved(defthm times-correct(implies (and (statep s0)(< 2 (len (mem s0)))(equal i (nth 0 (mem s0)))(equal j (nth 1 (mem s0)))(natp i)(natp j)(equal (current-instruction s0) '(call times))(equal (assoc 'times (code s0)) (times-program))(not (halt s0)))(equal (sm s0 (times-clock i))(modify s0:pc (pc+1 (pc s0)):mem (put 0 0(put 2 (* i j) (mem s0))))))) .Imagine we are proving a conjecture about expt. The program contains a (calltimes) instruction, say at pc (expt . 5). The hypotheses of the conjecture will

Mechanized Formal Reasoning about Programs and Computing Machines 23presumably contain the assumption that times is de�ned as by our times-program(or else expt is calling a di�erent times). The hypotheses will include analogousassumptions about the de�nitions of all other subroutines used. The user is pre-sumed to have structured the clock expression in the new conjecture so that whenthe (call times) instruction is hit in the symbolic computation, the clock willbe (times-clock i) (for whatever i is in location 0 of the memory). Thus, dur-ing the symbolic computation for the proof of the expt conjecture the term (sm s(times-clock i)) will arise. In the next section we illustrate an expt that usestimes as a subroutine; there we will also illustrate the proper construction of asuperior clock expression.The above times-correct theorem is a candidate for use; indeed, it will likely bethe only rewrite rule we have telling us about how to expand sm for (times-clocki) steps. We will have to relieve the hypotheses but this will generally be straight-forward if times is being applied to two naturals. Note that times-correct doesnot require that times be the only program in the code memory; it would beunusable if it did. If the hypotheses can be relieved, the lemma replaces (sm s(times-clock i)) by(modify s:pc '(expt . 6):mem (put 0 0(put 2 (* i j) (mem s))))Note in particular that the pc is incremented to (expt . 6), memory location 0 iscleared, and memory location 2 is assigned the product. The code for times is notentered or considered.Times-correct essentially extends the abstract machine so that (call times)is a new primitive instruction (that takes (times-clock i) ticks). The above de-scribedmethodology for constructing proofs uses times-correct exactly as needed.Furthermore, if a mistake has been made so that, for example, the clock expressionfor the call is not (times-clock i) or the preconditions for times are not satis�ed,the symbolic computation stops at (call times) because no other rules apply.4.5.6 Summary of the MethodologyOur methodology can be summarized as follows. We de�ne the semantics of thenew machine operationally. Then we prove the symbolic computation theoremsand the memory expression management theorems. We also provide rules for theprimitive data types on the machine, e.g., arithmetic, bit vectors, etc. All of thiswork is done more or less as the machine is being formalized and is independent ofapplications programs.

24 Chapter 4When an applications program is introduced, we specify it in the style described.We de�ne its clock function so as to make explicit the natural decomposition of thecomputation. We de�ne the recursive function that does the same series of writesto memory. We then prove two lemmas about the program (assuming it has exactlyone loop). In the �rst, we prove that the execution of the loop in the program doesthe same thing as the recursive function. In the second, we prove that the recursivefunction satis�es the general speci�cation. These two lemmas allow us to provethat the program meets its speci�cation.4.6 Another ExampleWe conclude with a concrete example, discussed very briey. We de�ne a suitableexpt and prove that it exponentiates, following exactly the methodology outlinedfor times. The program is given by(defun expt-program nil'(expt (move 3 0) ; 0 mem[3] mem[0] (save args)(move 4 1) ; 1 mem[4] mem[1](movi 1 1) ; 2 mem[1] 1 (initialize ans)(jumpz 4 9) ; 3 if mem[4]=0, go to 9(move 0 3) ; 4 mem[0] mem[3] (prepare for times)(call times) ; 5 mem[2] mem[0] * mem[1](move 1 2) ; 6 mem[1] mem[2](subi 4 1) ; 7 mem[4] mem[4]-1(jump 3) ; 8 go to 3(ret))) ; 9 return.The theorem we wish to prove about expt is shown below. Note that we requirethe memory to have at least �ve locations to insure that all the writes are legal.We also require the code memory to contain our de�nitions of both expt and oftimes, but we do not say which is �rst or whether others are present.(defthm expt-correct(implies (and (statep s0)(< 4 (len (mem s0)))(equal i (nth 0 (mem s0)))(equal j (nth 1 (mem s0)))(natp i)(natp j)(equal (current-instruction s0) '(call expt))(equal (assoc 'expt (code s0)) (expt-program))(equal (assoc 'times (code s0)) (times-program))

Mechanized Formal Reasoning about Programs and Computing Machines 25(not (halt s0)))(equal (sm s0 (expt-clock i j))(modify s0:pc (pc+1 (pc s0)):mem(if (zp j)(put 1 (expt i j)(put 3 i(put 4 0 (mem s0))))(put 0 0(put 1 (expt i j)(put 2 (expt i j)(put 3 i(put 4 0 (mem s0)))))))))))This formula is more complicated than that for times because expt is a morecomplicated program, not because the complexity of times is \spilling over."The clock function for expt is(defun expt-clock (i j)(cplus 4(cplus (ctimes j (cplus 2 (cplus (times-clock i) 3)))2))) .Four instructions are used to get from (call expt) to the loop at pc 3. Thenthe loop is traversed j times, where j is the initial value of location 1. On eachtraversal, two instructions are used to get to (call times), then (times-clocki) instructions are used to execute that (as previously established), and then threemore instructions are used to get back to the top of the loop. Upon �nishing theloop, two instructions are used to get past the ret.The derived function, the recursive description of the loop (pcs 3{8), is de�nedas(defun expt-fn-mem (s)(let ((m1 (nth 1 (mem s)))(m3 (nth 3 (mem s)))(m4 (nth 4 (mem s))))(if (zp m4)(mem s)(expt-fn-mem(modify s:mem(put 0 0(put 1 (* m3 m1)

26 Chapter 4(put 2 (* m3 m1)(put 4 (- m4 1) (mem s)))))))))) .The �rst lemma we must prove is that the loop computes the derived function,expt-fn-mem.(defthm expt-correct-lemma(implies (and (statep s)(< 4 (len (mem s)))(equal m3 (nth 3 (mem s)))(equal m4 (nth 4 (mem s)))(natp (nth 1 (mem s)))(natp m3)(natp m4)(equal (pc s) '(expt . 3))(equal (assoc 'expt (code s)) (expt-program))(equal (assoc 'times (code s)) (times-program))(not (halt s)))(equal (sm s(ctimes m4(cplus 2 (cplus (times-clock m3) 3))))(modify s :mem (expt-fn-mem s)))))The second lemma is that expt-fn-mem computes the exponential function (andputs the result and several others into certain memory locations).(defthm expt-fn-mem-is-expt(implies (and (< 4 (len (mem s)))(equal m1 (nth 1 (mem s)))(equal m3 (nth 3 (mem s)))(equal m4 (nth 4 (mem s)))(natp m1)(natp m3)(natp m4))(equal (expt-fn-mem s)(if (zp m4)(mem s)(put 0 0(put 1 (* m1 (expt m3 m4))(put 2 (* m1 (expt m3 m4))(put 4 0 (mem s)))))))))The two lemmas are su�cient, together with the symbolic computation and mem-ory expression management lemmas, to allow ACL2 to prove that expt is correct.

Mechanized Formal Reasoning about Programs and Computing Machines 274.7 Extensions and AdviceOur small machine illustrates a few elementary modeling techniques including staterepresentation, the fetch-execute cycle, timing and termination, and several classesof instruction including data movement, arithmetic, branching, and subroutine calland return. Of course, practical languages and machines contain far more complex-ity.The most obvious omission from our machine is any restriction on its resources.Fabricated machines have limits on all physical resources, e.g., word size, stack size,data memory size, and program memory size. We generally include these limits ascomponents in the state and generalize the handling of the halt ag so that itcan be used to hold an \error message." We then de�ne the semantic functions sothat when the resource limits are violated the halt ag is set appropriately, e.g.,to a pair containing the program counter and an error string such as "arithmeticoverflow" or "stack overflow".Other complicating aspects of practical machines include interrupts, io, andpipelining, to name a few. Such features can be accommodated within the generalscheme described here. The statement and proof of program properties on suchmachines is more di�cult than shown here. But because practical machines arecomplex, this di�culty is not an artifact of formalization and must be faced if oneis to derive con�dence in code from the proofs. The techniques used to manage thiscomplexity in the theorem prover are similar to those illustrated here | the nor-malization of symbolic states, expansion of complicated functions only under strictcontrols, the provision of rules that work or fail quickly. Examples of these tech-niques are described in some of our larger-scale projects, such as [19, 24, 25, 6, 7, 8].We o�er three pieces of general advice. First, start small. Most successfulprojects have started with a \toy" version of the machine and re�ned the basicapproach. For example, start with 5 instructions and add the other 195 later. Toadd new features, such as interrupts or a pipeline, return to the \toy" and integratesimpli�ed versions of the new feature there. The bene�t of having a \toy" versionof the model is that one can experiment with new features relatively quickly; oftenseveral approaches might be tried and abandoned before a suitable one is foundand then elaborated to full complexity. When experimenting with \toys" keep inmind that the proof techniques being used must not depend on the small scale.Second, consider the introduction of intermediate levels of abstractions. The\right" model might be a hierarchy of abstract machines rather than a single ab-stract machine. For example, one might produce a �nite resource model and anin�nite resource model of the abstract machine, or a pipelined model and a simpler

28 Chapter 4sequential model. The two levels of abstraction are then proved equivalent undercertain conditions and this allows some program proofs to be carried out in a sim-pler setting. Often designers hold several di�erent views of the machine. Thesedi�erent abstractions may not be recognized or given names by the design teambut are extremely helpful when identi�ed. The machine's programmers may createa new abstract machine via programming conventions (e.g., \we treat register 3 asa stack"); identifying these conventions and formalizing the appropriate abstractmachine makes proofs simpler.Finally, think carefully about how the theorem prover will use the de�nitions andrules you provide it. Recall for example our discussion of the di�erence between (sms (ctimes (nth 0 (mem s)) 4)) and (sm s (ctimes i 4)). It was not luck orbrilliance that led us to state our rules the way we did; it was careful thought abouthow the rules would be used.4.8 ConclusionState-of-the-art microprocessors and the machine languages they provide can beformally modeled operationally. This operational semantics provides a simulationcapability for the new machine or language, provided it is done in a computationallogic, such as ACL2, which provides execution. In addition, it is possible to con-�gure a mechanical theorem prover, such as Nqthm or ACL2, to use the semanticse�ectively in carrying out proofs of programs written in the new language.We have explained how we do this in a very simple setting and can assure thereader that it scales up.The reason one might want to do this is simple: it is the most expedient wayto track an evolving machine design and verify programs written in the evolvingprogramming language.4.9 AcknowledgmentsThe techniques described here evolved over many years. We are therefore indebtedto our students and colleagues, especially those who experimented with these tech-niques and helped re�ne and demonstrate them: Bill Bevier, Bishop Brock, ArtFlatau, Warren Hunt, David Goldschlag, Matt Kaufmann, Ken Kunen, DavidRussino�, Natarajan Shankar, Sakthikumar Subramanian, Carolyn Talcott, MattWilding, Bill Young, and Yuan Yu. Most of these techniques were �rst developedwith the Nqthm theorem prover. Nqthm was supported primarily with grants and

Mechanized Formal Reasoning about Programs and Computing Machines 29contracts from the National Science Foundation and the O�ce of Naval Research.The formalization and proof methodology was transferred from Nqthm to the ACL2theorem prover, as shown here. It has been carried out on a grand scale with thatsystem by Bishop Brock in his CAP work.The ACL2 theorem prover was supported in part at Computational Logic, Inc.,by the Defense Advanced Research Projects Agency, ARPA Order 7406, and theO�ce of Naval Research, Contract N00014-94-C-0193. The views and conclusionscontained in this document are those of the authors and should not be interpretedas representing the o�cial policies, either expressed or implied, of ComputationalLogic, Inc., the Defense Advanced Research Projects Agency, the O�ce of NavalResearch, or the U.S. Government.References[1] W. R. Bevier, W. A. Hunt, J S. Moore, and W. D. Young. Special Issue on System Veri�cation.Journal of Automated Reasoning, 5(4):409{530, December, 1989.[2] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.[3] R. S. Boyer and J S. Moore. Metafunctions: Proving Them Correct and Using Them E�-ciently as New Proof Procedures. In R. S. Boyer and J S. Moore, editors, The CorrectnessProblem in Computer Science, pp. 103{184, Academic Press, London, 1981.[4] R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, New York,1988. The most recent release of the Nqthm prover, Nqthm-1992, may be found at eitherftp://ftp.cli.com/pub/nqthm/nqthm-1992/nqthm-1992.tar.Z or ftp://ftp.cs.utexas.edu/pub-/boyer/nqthm-1992.tar.Z.[5] R. S. Boyer and Y. Yu. Automated Proofs of Object Code for a Widely Used Microprocessor.JACM, 43(1):166{192, January 1996. http://www.cs.utexas.edu/users/boyer/mc-rev3.ps.Z.[6] B. Brock. The CAP 94 Speci�cation , CAP Technical Report 8, Computational Logic, Inc.,1717 W. 6th, Austin, TX 78703, July, 1995.[7] B. Brock. Formal Analysis of the CAP Instruction Pipeline, CAP Technical Report 10,Computational Logic, Inc., 1717 W. 6th, Austin, TX 78703, June, 1996.[8] B. Brock. Formal Veri�cation of CAP Applications, CAP Technical Report 15, Computa-tional Logic, Inc., 1717 W. 6th, Austin, TX 78703, June, 1996.[9] B. Brock, M. Kaufmann, and J S. Moore. ACL2 Theorems about Commercial Micropro-cessors. In M. Srivas and A. Camilleri, editors, Formal Methods in Computer-Aided Design(FMCAD'96), Springer-Verlag (to appear). November 1996.[10] J. Goldberg, W. Kautz, P.M. Melliar-Smith, M. Green, K. Levitt, R. Schwartz, and C. We-instock. Development and Analysis of the Software Implemented Fault-Tolerance (SIFT)Computer. Technical Report NASA Contractor Report 172146, National Aeronautics andSpace Administration, Langley Research Center, Hampton, Va. 23665, 1984.[11] W. A. Hunt. FM8501: A Veri�ed Microprocessor. Phd thesis, University of Texas at Austin,December 1985. Lecture Notes in Computer Science 795, Springer-Verlag, 1994.[12] W. A. Hunt and B. Brock. A Formal HDL and Its Use in the FM9001 Veri�cation. Proceed-ings of the Royal Society, Series A, Vol. 339, 1992.

30 Chapter 4[13] M. Kaufmann and J S. Moore. ACL2: A Computational Logic for Applicative CommonLisp, The User's Manual (Version 1.8). ftp://ftp.cli.com/pub/acl2/v1-8/acl2-sources/doc-/HTML/acl2-doc.html, 1995.[14] M. Kaufmann and J S. Moore. ACL2: An Industrial Strength Version of Nqthm. In Pro-ceedings of the Eleventh Annual Conference on Computer Assurance (COMPASS-96), pages23{34. IEEE Computer Society Press, June 1996.[15] J. McCarthy. Towards a Mathematical Science of Computation. Proceedings of IFIPCongress, North-Holland, pages 21{28, 1962. http://www-formal.stanford.edu/jmc/towards-.html.[16] J. McCarthy. A Basis for a Mathematical Theory of Computation. In Computer Program-ming and Formal Systems, P. Bra�ort and D. Hershberg, eds., North-Holland PublishingCompany, 1963. http://www-formal.stanford.edu/jmc/basis.html.[17] S. P. Miller and M. Srivas. Formal Veri�cation of the AAMP5 Microprocessor: A Case Studyin the Industrial Use of Formal Methods. In WIFT '95: Workshop on Industrial-StrengthFormal Speci�cation Techniques, pages 2{16, Boca Raton, FL, 1995. IEEECS.[18] J S. Moore. Mechanically Veri�ed Hardware Implementing an 8-Bit Parallel IO ByzantineAgreement Processor. Technical Report NASA CR-189588, NASA, 1992.[19] J S. Moore. Piton: A Mechanically Veri�ed Assembly-Level Language. Automated Reason-ing Series, Kluwer Academic Publishers, 1996.[20] J S. Moore, T. Lynch, and M. Kaufmann. A Mechanically Checked Proof of the Correctnessof the AMD5K86 Floating Point Division Algorithm. Submitted, 1996. http://devil.ece.-utexas.edu:80/�lynch/divide/divide.html.[21] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Veri�cation System. In D. Kapur,editor, 11th International Conference on Automated Deduction (CADE), pages 748{752. Lec-ture Notes in Arti�cial Intelligence, Vol. 607, Springer-Verlag, June 1992.[22] D. Russino�. A Mechanically Checked Proof of the Correctness of the AMD K5 Floating-Point Square Root Algorithm. 1106 W. 9th St., Austin, TX 78703, July 1996.[23] M. Wilding. Machine-Checked Real-Time System Veri�cation. PhD thesis, University ofTexas, 1996. ftp://ftp.cs.utexas.edu/pub/boyer/wilding-diss.ps.gz.[24] W. D. Young. A Veri�ed Code-Generator for a Subset of Gypsy. PhD thesis, University ofTexas, 1988.[25] Y. Yu. Automated Proofs of Object Code For a Widely Used Microprocessor. PhD thesis,University of Texas at Austin, 1992. Lecture Notes in Computer Science, Springer-Verlag (toappear). ftp://ftp.cs.utexas.edu/pub/techreports/tr93-09.ps.Z.

