Industrial Proofs with ACL2

Matt Kaufmann® and J Strother Moore?

! Advanced Micro Devices, Inc., 5900 East Ben White Blvd., Austin, TX 78741,
matt.kaufmann@amd.com
2 Department of Computer Sciences, University of Texas at Austin,
Taylor Hall 2.124, Austin, Texas 78712,
moore@cs.utexas.edu

1 Abstract

Today it is impractical to prove — formally and mechanically — the correctness
of entire computing systems of commercial interest. There are many reasons for
this, both technical and economic. Mechanized theorem proving is nevertheless
relevant in commercial hardware and software production. But practical consid-
erations require that we focus our attention on problems that are both technically
feasible within the time limits available and of interest to system designers. In
this note we describe a few such industrial problems addressed with ACL2. We
conclude with a brief description of what ACL2 is and how it is used.

Keywords: ACL2, hardware verification, software verification, formal verifica-
tion, theorem proving, automated reasoning.

2 Applications

“ACL2” is the name of a functional programming language (based on Common
Lisp), a first-order mathematical logic, and a mechanical theorem prover. The
theorem prover is used to prove theorems in the logic — theorems about functions
defined in the programming language.

“ACL2” stands for A Computational Logic for Applicative Common Lisp.

ACL2, which is sometimes called an “industrial strength version of the Boyer-
Moore system,” is the product of Kaufmann and Moore, with many early design
contributions by Boyer. The ACL2 theorem prover is interactive in the sense that
the user is responsible for the strategy used in proofs. But it is automatic in the
sense that once started on a problem, it proceeds without human assistance.
In the hands of an experienced user, the theorem prover can produce proofs of
complicated theorems.

It has been used for a variety of important formal methods projects of in-
dustrial and commercial interest, including:

— verification that the register-transfer level description of the AMD Athlon”™™
processor’s elementary floating point arithmetic circuitry implements the



IEEE floating point standard [11, 12]; similar work has been done for com-
ponents of the AMD K5 processor [10], the IBM Power 4 [13], and the AMD
Opteron™ processor.?

— verification that a microarchitectural model of a Motorola digital signal pro-
cessor (DSP) implements a given microcode engine [1] and verification that
specific microcode extracted from the ROM implements certain DSP algo-
rithms [2];

— verification that microcode for the Rockwell Collins AAMP7 implements a
given security policy having to do with process separation [3];

— verification that the JVM bytecode produced by the Sun compiler javac
on certain simple Java classes implements the claimed functionality [9] and
the verification of properties of importance to the Sun bytecode verifier as
described in JSR-139 for J2ME JVMs [7];

— verification of the soundness and completeness of a Lisp implementation of
a BDD package that has achieved runtime speeds of about 60% those of
the CUDD package (however, unlike CUDD, the verified package does not
support dynamic variable reordering and is thus more limited in scope) [15];

— verification of the soundness of a Lisp program that checks the proofs pro-
duced by the Ivy theorem prover from Argonne National Labs; Ivy proofs
may thus be generated by unverified code but confirmed to be proofs by a
verified Lisp function [8].

Other applications are described in [4] and in the papers distributed as part
of the periodic ACL2 workshops, the proceedings of which may be found via the
Workshops link on the ACL2 home page [6]. All papers in the ACL2 Workshop
series are available online and each is accompanied by supporting material that
allows you to reproduce the results in the paper with ACL2. Thus, the Work-
shops constitute a large body of examples illustrating how different users attack
different kinds of problems. We recommend browsing the Workshop papers for
work that seems similar to the work you might be doing with ACL2.

As these examples demonstrate, it is possible to construct mechanically
checked proofs of properties of great interest in industrial hardware and software
designers. The properties proved are typically not complete characterizations of
the correctness of the systems studied. For example, the proofs about the AMD
microprocessors — the AMD K5 processor, the AMD Athlon processor, and the
AMD Opteron processor — just deal with the IEEE compliance of certain float-
ing point operations modeled at the register transfer level. The microprocessors
contain many unverified components and the verified ones could fail due to vio-
lations of their input conditions.

Nevertheless, these theorems were proved for good reason: the designers were
concerned about their designs. Aspects of these designs are quite subtle or com-
plicated and formal specification and mechanized proof offer the most complete
way to relieve the concerns that something critical to correct functionality had
been overlooked in the designs.

! AMD, the AMD logo, AMD Athlon, AMD Opteron, and combinations thereof, are
trademarks of Advanced Micro Devices, Inc.



In addition to being interesting, these theorems are hard to prove. That is
a relative judgment of course. Compared to longstanding open problems, these
theorems are all trivial. But by many measures each of these proofs is much more
complicated than any proof ever encountered by most readers. For example, the
IEEE compliance proof for the floating point division microcode for the AMD
K5 processor (in 1995) required the formal statement and proof of approximately
1,200 lemmas. Subsequent AMD floating-point proofs are harder to measure be-
cause they build on libraries of lemmas that have been accumulating since 1995.
The correspondence result between the Motorola DSP microarchitecture and its
microcode engine involved intermediate formulas that, when printed, consumed
25 megabytes (approximately 5000 pages of densely packed text) per formula.
And the proof involved hundreds of such formulas. The correctness argument
for one particular DSP microcode program required an extremely subtle gener-
alization that took many days for the author to craft. The formal model of the
Connected Limited Device Configuration (CLDC) JVM and bytecode verifier is
almost 700 pages of densely packed text. The proof that a simple Java class,
which spawns an unbounded number of threads, produces a monotonic increase
in the value of a certain shared counter produces about 19,000 subgoals and
requires about 84 megabytes to print.

In these senses, the theorems in which we are interested are little (but hard)
theorems about big systems, or put another way, they are valuable and non-
trivial theorems about parts of very complicated systems.

3 About ACL2

The ACL2 programming language is essentially the side-effect free (or “func-
tional”) part of ANSI Standard Common Lisp [14]. Here is the definition of a
function sum that sums the integers from n down to 0. The function might be
defined in ACL2:

(defun sum (n)
(if (zp n)
0
(+n (sum (- n 1)))))

Thus, for example (sum 6) is6 + 5 + 4 + 3 + 2 + 1 +0 or 21.
The ACL2 theorem prover can prove that (sum n) is equal to

nx (n+1)
2

when n is a natural number. In ACL2, this theorem is written this way:

(implies (natp n)
(equal (sum n)

(*n (+ n 1) 1/2)))



This theorem can be proved, using the axioms of propositional calculus, equality,
arithmetic, and the recursive definition of sum.

The ACL2 theorem prover is a computer program that takes formulas like
that one above as input and tries to find mathematical proofs. It uses rewriting,
decision procedures, mathematical induction and many other proof techniques
to prove theorems in a first-order mathematical theory of recursively defined
functions and inductively constructed objects [5].

The ACL2 theorem prover can prove the formula above about (sum n), com-
pletely automatically by induction on n, provided the user first instructs ACL2
to load the standard arithmetic lemma library.

The logic in which ACL2 theorems are stated is undecidable: no algorithm
can be written that will determine whether or not a given formula is a theorem.
ACL2’s theorem prover is sound but incomplete: if it says “yes” the formula is
a theorem; if it says “no” (or runs “forever”) the formula may or may not be a
theorem.

The theorem prover frequently needs help finding proofs. This help is pro-
vided by the user, in the form of key lemmas to prove first. As noted above, to
prove the AMD K5 processor’s floating-point division operation compliant with
the TEEE standard, we needed to prove about 1,200 lemmas. Those lemmas
formed the basis of a floating point arithmetic lemma library.

Many such lemma collections — called books in ACL2 parlance — are dis-
tributed with ACL2. Multiple books can be included into a single session to
configure ACL2’s database. Books are available for many different mathemat-
ical domains, including various parts of arithemtic (integer, rational, floating
point), finite set theory, vectors, lists, etc.

The ACL2 home page [6] contains the ACL2 sources, images for many dif-
ferent platforms, installation instructions, books developed by the ACL2 users
around the world, and documentation and papers about ACL2. ACL2 is dis-
tributed without fee under the terms of the GNU General Public License.

To learn to use ACL2 we recommend that you first read “A Gentle Intro-
duction to ACL2 Programming” http://www.cs.utexas.edu/users/moore/publi-
cations/gentle-intro-to-acl2-programming.html, and then “ACL2 Programming
Exercises 1”7 otherwise known as “Getting Started with ACL2,” http://www.cs-
.utexas.edu/users/moore/publications/acl2-programming-exercises1.html. If you
are still interested in ACL2, we recommend learning a bit about the theo-
rem prover, by reading and doing the exercises in “How to Prove Theorems
Formally,” http://www.cs.utexas.edu/users/moore/publications/how-to-prove--
thms/index.html. If you’re still interested, buy [5] and do the exercises in it.
It is not necessary to purchase [5] from Kluwer, which controls the hardback
copyrights but not the paperback rights. For instructions for purchasing a spiral-
bound paperback version of [5] (approximately at cost plus postage), see http://-
www.cs.utexas.edu/users/moore/publications/acl2-books/car/index.html. The so-
lutions to all the exercises mentioned above are on the web.



Finally, the ACL2 community has a very active email help list to which all
new users should subscribe. Many volunteers from this list answer questions and
novices, especially, are encouraged to post questions. See the Useful Addresses
link on the ACL2 home page.

References

1. B. Brock and W. A. Hunt, Jr. Formal analysis of the motorola CAP DSP. In
Industrial-Strength Formal Methods. Springer-Verlag, 1999.

2. B. Brock and J S. Moore. A mechanically checked proof of a comparator sort al-

gorithm, 1999. http://wuw.cs.utexas.edu/users/moore/publications/csort/-

main.ps.gz.

David Greve and M. Wilding. A separation kernel formal security policy, 2003.

4. M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Press, Boston, MA.; 2000.

5. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, Boston, MA., 2000.

6. M. Kaufmann and J S. Moore. The ACL2 home page. In http://www.cs.-
utexas.edu/users/moore/acl2/. Dept. of Computer Sciences, University of Texas
at Austin, 2004.

7. H. Liu and J S. Moore. Executable JVM model for analytical reasoning: A study.
In Workshop on Interpreters, Virtual Machines and Emulators 2003 (IVME ’03),
San Diego, CA, June 2003. ACM SIGPLAN.

8. W. McCune and O. Shumsky. Ivy: A preprocessor and proof checker for first-
order logic. In M. Kaufmann, P. Manolios, and J S. Moore, editors, Computer-
Aided Reasoning: ACL2 Case Studies, pages 265-282, Boston, MA., 2000. Kluwer
Academic Press.

9. J S. Moore. Proving theorems about Java and the JVM with ACL2. In M. Broy
and M. Pizka, editors, Models, Algebras and Logic of Engineering Software, pages
227-290. IOS Press, Amsterdam, 2003. http://www.cs.utexas.edu/users/moore/-
publications/marktoberdorf-03.

10. J S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the
correctness of the kernel of the AMD5K86 floating point division algorithm. IEEE
Transactions on Computers, 47(9):913-926, September 1998.

11. D. Russinoff. A mechanically checked proof of IEEE compliance of a register-
transfer-level specification of the AMD-K7 floating-point multiplication, division,
and square root instructions. London Mathematical Society Journal of Compu-
tation and Mathematics, 1:148-200, December 1998. http://www.onr.com/user/-
russ/david/k7-div-sqrt.html.

12. D. M. Russinoff and A. Flatau. R#tl verification: A floating-point multiplier. In
M. Kaufmann, P. Manolios, and J S. Moore, editors, Computer-Aided Reasoning:
ACL2 Case Studies, pages 201-232, Boston, MA., 2000. Kluwer Academic Press.

13. J. Sawada. Formal verification of divide and square root algorithms using series cal-
culation. In Proceedings of the ACL2 Workshop, 2002. http://www.cs.utexas.-
edu/users/moore/acl2/workshop-2002, Grenoble, April 2002.

14. G. L. Steele, Jr. Common Lisp The Language, Second Edition. Digital Press, 30
North Avenue, Burlington, MA. 01803, 1990.

15. R. Sumners. Correctness proof of a BDD manager in the context of satisfiabil-
ity checking. In Proceedings of ACL2 Workshop 2000. Department of Computer

w



Sciences, Technical Report TR-00-29, November 2000. http://www.cs.utexas.-
edu/users/moore/acl2/workshop-2000/final/sumners2/paper.ps.



