
Industrial Proofs with ACL2Matt Kaufmann1 and J Strother Moore21 Advan
ed Mi
ro Devi
es, In
., 5900 East Ben White Blvd., Austin, TX 78741,matt.kaufmann�amd.
om2 Department of Computer S
ien
es, University of Texas at Austin,Taylor Hall 2.124, Austin, Texas 78712,moore�
s.utexas.edu1 Abstra
tToday it is impra
ti
al to prove { formally and me
hani
ally { the 
orre
tnessof entire 
omputing systems of 
ommer
ial interest. There are many reasons forthis, both te
hni
al and e
onomi
. Me
hanized theorem proving is neverthelessrelevant in 
ommer
ial hardware and software produ
tion. But pra
ti
al 
onsid-erations require that we fo
us our attention on problems that are both te
hni
allyfeasible within the time limits available and of interest to system designers. Inthis note we des
ribe a few su
h industrial problems addressed with ACL2. We
on
lude with a brief des
ription of what ACL2 is and how it is used.Keywords: ACL2, hardware veri�
ation, software veri�
ation, formal veri�
a-tion, theorem proving, automated reasoning.2 Appli
ations\ACL2" is the name of a fun
tional programming language (based on CommonLisp), a �rst-order mathemati
al logi
, and a me
hani
al theorem prover. Thetheorem prover is used to prove theorems in the logi
 { theorems about fun
tionsde�ned in the programming language.\ACL2" stands for A Computational Logi
 for Appli
ative Common Lisp.ACL2, whi
h is sometimes 
alled an \industrial strength version of the Boyer-Moore system," is the produ
t of Kaufmann and Moore, with many early design
ontributions by Boyer. The ACL2 theorem prover is intera
tive in the sense thatthe user is responsible for the strategy used in proofs. But it is automati
 in thesense that on
e started on a problem, it pro
eeds without human assistan
e.In the hands of an experien
ed user, the theorem prover 
an produ
e proofs of
ompli
ated theorems.It has been used for a variety of important formal methods proje
ts of in-dustrial and 
ommer
ial interest, in
luding:{ veri�
ation that the register-transfer level des
ription of the AMD AthlonTMpro
essor's elementary 
oating point arithmeti
 
ir
uitry implements the



IEEE 
oating point standard [11, 12℄; similar work has been done for 
om-ponents of the AMD K5 pro
essor [10℄, the IBM Power 4 [13℄, and the AMDOpteronTM pro
essor.1{ veri�
ation that a mi
roar
hite
tural model of a Motorola digital signal pro-
essor (DSP) implements a given mi
ro
ode engine [1℄ and veri�
ation thatspe
i�
 mi
ro
ode extra
ted from the ROM implements 
ertain DSP algo-rithms [2℄;{ veri�
ation that mi
ro
ode for the Ro
kwell Collins AAMP7 implements agiven se
urity poli
y having to do with pro
ess separation [3℄;{ veri�
ation that the JVM byte
ode produ
ed by the Sun 
ompiler java
on 
ertain simple Java 
lasses implements the 
laimed fun
tionality [9℄ andthe veri�
ation of properties of importan
e to the Sun byte
ode veri�er asdes
ribed in JSR-139 for J2ME JVMs [7℄;{ veri�
ation of the soundness and 
ompleteness of a Lisp implementation ofa BDD pa
kage that has a
hieved runtime speeds of about 60% those ofthe CUDD pa
kage (however, unlike CUDD, the veri�ed pa
kage does notsupport dynami
 variable reordering and is thus more limited in s
ope) [15℄;{ veri�
ation of the soundness of a Lisp program that 
he
ks the proofs pro-du
ed by the Ivy theorem prover from Argonne National Labs; Ivy proofsmay thus be generated by unveri�ed 
ode but 
on�rmed to be proofs by averi�ed Lisp fun
tion [8℄.Other appli
ations are des
ribed in [4℄ and in the papers distributed as partof the periodi
 ACL2 workshops, the pro
eedings of whi
h may be found via theWorkshops link on the ACL2 home page [6℄. All papers in the ACL2 Workshopseries are available online and ea
h is a

ompanied by supporting material thatallows you to reprodu
e the results in the paper with ACL2. Thus, the Work-shops 
onstitute a large body of examples illustrating how di�erent users atta
kdi�erent kinds of problems. We re
ommend browsing the Workshop papers forwork that seems similar to the work you might be doing with ACL2.As these examples demonstrate, it is possible to 
onstru
t me
hani
ally
he
ked proofs of properties of great interest in industrial hardware and softwaredesigners. The properties proved are typi
ally not 
omplete 
hara
terizations ofthe 
orre
tness of the systems studied. For example, the proofs about the AMDmi
ropro
essors { the AMD K5 pro
essor, the AMD Athlon pro
essor, and theAMD Opteron pro
essor { just deal with the IEEE 
omplian
e of 
ertain 
oat-ing point operations modeled at the register transfer level. The mi
ropro
essors
ontain many unveri�ed 
omponents and the veri�ed ones 
ould fail due to vio-lations of their input 
onditions.Nevertheless, these theorems were proved for good reason: the designers were
on
erned about their designs. Aspe
ts of these designs are quite subtle or 
om-pli
ated and formal spe
i�
ation and me
hanized proof o�er the most 
ompleteway to relieve the 
on
erns that something 
riti
al to 
orre
t fun
tionality hadbeen overlooked in the designs.1 AMD, the AMD logo, AMD Athlon, AMD Opteron, and 
ombinations thereof, aretrademarks of Advan
ed Mi
ro Devi
es, In
.



In addition to being interesting, these theorems are hard to prove. That isa relative judgment of 
ourse. Compared to longstanding open problems, thesetheorems are all trivial. But by many measures ea
h of these proofs is mu
h more
ompli
ated than any proof ever en
ountered by most readers. For example, theIEEE 
omplian
e proof for the 
oating point division mi
ro
ode for the AMDK5 pro
essor (in 1995) required the formal statement and proof of approximately1,200 lemmas. Subsequent AMD 
oating-point proofs are harder to measure be-
ause they build on libraries of lemmas that have been a

umulating sin
e 1995.The 
orresponden
e result between the Motorola DSP mi
roar
hite
ture and itsmi
ro
ode engine involved intermediate formulas that, when printed, 
onsumed25 megabytes (approximately 5000 pages of densely pa
ked text) per formula.And the proof involved hundreds of su
h formulas. The 
orre
tness argumentfor one parti
ular DSP mi
ro
ode program required an extremely subtle gener-alization that took many days for the author to 
raft. The formal model of theConne
ted Limited Devi
e Con�guration (CLDC) JVM and byte
ode veri�er isalmost 700 pages of densely pa
ked text. The proof that a simple Java 
lass,whi
h spawns an unbounded number of threads, produ
es a monotoni
 in
reasein the value of a 
ertain shared 
ounter produ
es about 19,000 subgoals andrequires about 84 megabytes to print.In these senses, the theorems in whi
h we are interested are little (but hard)theorems about big systems, or put another way, they are valuable and non-trivial theorems about parts of very 
ompli
ated systems.3 About ACL2The ACL2 programming language is essentially the side-e�e
t free (or \fun
-tional") part of ANSI Standard Common Lisp [14℄. Here is the de�nition of afun
tion sum that sums the integers from n down to 0. The fun
tion might bede�ned in ACL2:(defun sum (n)(if (zp n)0(+ n (sum (- n 1)))))Thus, for example (sum 6) is 6 + 5 + 4 + 3 + 2 + 1 +0 or 21.The ACL2 theorem prover 
an prove that (sum n) is equal ton� (n+ 1)2when n is a natural number. In ACL2, this theorem is written this way:(implies (natp n)(equal (sum n)(* n (+ n 1) 1/2)))



This theorem 
an be proved, using the axioms of propositional 
al
ulus, equality,arithmeti
, and the re
ursive de�nition of sum.The ACL2 theorem prover is a 
omputer program that takes formulas likethat one above as input and tries to �nd mathemati
al proofs. It uses rewriting,de
ision pro
edures, mathemati
al indu
tion and many other proof te
hniquesto prove theorems in a �rst-order mathemati
al theory of re
ursively de�nedfun
tions and indu
tively 
onstru
ted obje
ts [5℄.The ACL2 theorem prover 
an prove the formula above about (sum n), 
om-pletely automati
ally by indu
tion on n, provided the user �rst instru
ts ACL2to load the standard arithmeti
 lemma library.The logi
 in whi
h ACL2 theorems are stated is unde
idable: no algorithm
an be written that will determine whether or not a given formula is a theorem.ACL2's theorem prover is sound but in
omplete: if it says \yes" the formula isa theorem; if it says \no" (or runs \forever") the formula may or may not be atheorem.The theorem prover frequently needs help �nding proofs. This help is pro-vided by the user, in the form of key lemmas to prove �rst. As noted above, toprove the AMD K5 pro
essor's 
oating-point division operation 
ompliant withthe IEEE standard, we needed to prove about 1,200 lemmas. Those lemmasformed the basis of a 
oating point arithmeti
 lemma library.Many su
h lemma 
olle
tions { 
alled books in ACL2 parlan
e { are dis-tributed with ACL2. Multiple books 
an be in
luded into a single session to
on�gure ACL2's database. Books are available for many di�erent mathemat-i
al domains, in
luding various parts of arithemti
 (integer, rational, 
oatingpoint), �nite set theory, ve
tors, lists, et
.The ACL2 home page [6℄ 
ontains the ACL2 sour
es, images for many dif-ferent platforms, installation instru
tions, books developed by the ACL2 usersaround the world, and do
umentation and papers about ACL2. ACL2 is dis-tributed without fee under the terms of the GNU General Publi
 Li
ense.To learn to use ACL2 we re
ommend that you �rst read \A Gentle Intro-du
tion to ACL2 Programming" http://www.
s.utexas.edu/users/moore/publi-
ations/gentle-intro-to-a
l2-programming.html, and then \ACL2 ProgrammingExer
ises 1" otherwise known as \Getting Started with ACL2," http://www.
s-.utexas.edu/users/moore/publi
ations/a
l2-programming-exer
ises1.html. If youare still interested in ACL2, we re
ommend learning a bit about the theo-rem prover, by reading and doing the exer
ises in \How to Prove TheoremsFormally," http://www.
s.utexas.edu/users/moore/publi
ations/how-to-prove--thms/index.html. If you're still interested, buy [5℄ and do the exer
ises in it.It is not ne
essary to pur
hase [5℄ from Kluwer, whi
h 
ontrols the hardba
k
opyrights but not the paperba
k rights. For instru
tions for pur
hasing a spiral-bound paperba
k version of [5℄ (approximately at 
ost plus postage), see http://-www.
s.utexas.edu/users/moore/publi
ations/a
l2-books/
ar/index.html.The so-lutions to all the exer
ises mentioned above are on the web.



Finally, the ACL2 
ommunity has a very a
tive email help list to whi
h allnew users should subs
ribe. Many volunteers from this list answer questions andnovi
es, espe
ially, are en
ouraged to post questions. See the Useful Addresseslink on the ACL2 home page.Referen
es1. B. Bro
k and W. A. Hunt, Jr. Formal analysis of the motorola CAP DSP. InIndustrial-Strength Formal Methods. Springer-Verlag, 1999.2. B. Bro
k and J S. Moore. A me
hani
ally 
he
ked proof of a 
omparator sort al-gorithm, 1999. http://www.
s.utexas.edu/users/moore/publi
ations/
sort/-main.ps.gz.3. David Greve and M. Wilding. A separation kernel formal se
urity poli
y, 2003.4. M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reasoning:ACL2 Case Studies. Kluwer A
ademi
 Press, Boston, MA., 2000.5. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: AnApproa
h. Kluwer A
ademi
 Press, Boston, MA., 2000.6. M. Kaufmann and J S. Moore. The ACL2 home page. In http://www.
s.-utexas.edu/users/moore/a
l2/. Dept. of Computer S
ien
es, University of Texasat Austin, 2004.7. H. Liu and J S. Moore. Exe
utable JVM model for analyti
al reasoning: A study.In Workshop on Interpreters, Virtual Ma
hines and Emulators 2003 (IVME '03),San Diego, CA, June 2003. ACM SIGPLAN.8. W. M
Cune and O. Shumsky. Ivy: A prepro
essor and proof 
he
ker for �rst-order logi
. In M. Kaufmann, P. Manolios, and J S. Moore, editors, Computer-Aided Reasoning: ACL2 Case Studies, pages 265{282, Boston, MA., 2000. KluwerA
ademi
 Press.9. J S. Moore. Proving theorems about Java and the JVM with ACL2. In M. Broyand M. Pizka, editors, Models, Algebras and Logi
 of Engineering Software, pages227{290. IOS Press, Amsterdam, 2003. http://www.
s.utexas.edu/users/moore/-publi
ations/marktoberdorf-03.10. J S. Moore, T. Lyn
h, and M. Kaufmann. A me
hani
ally 
he
ked proof of the
orre
tness of the kernel of the AMD5K86 
oating point division algorithm. IEEETransa
tions on Computers, 47(9):913{926, September 1998.11. D. Russino�. A me
hani
ally 
he
ked proof of IEEE 
omplian
e of a register-transfer-level spe
i�
ation of the AMD-K7 
oating-point multipli
ation, division,and square root instru
tions. London Mathemati
al So
iety Journal of Compu-tation and Mathemati
s, 1:148{200, De
ember 1998. http://www.onr.
om/user/-russ/david/k7-div-sqrt.html.12. D. M. Russino� and A. Flatau. Rtl veri�
ation: A 
oating-point multiplier. InM. Kaufmann, P. Manolios, and J S. Moore, editors, Computer-Aided Reasoning:ACL2 Case Studies, pages 201{232, Boston, MA., 2000. Kluwer A
ademi
 Press.13. J. Sawada. Formal veri�
ation of divide and square root algorithms using series 
al-
ulation. In Pro
eedings of the ACL2 Workshop, 2002. http://www.
s.utexas.-edu/users/moore/a
l2/workshop-2002, Grenoble, April 2002.14. G. L. Steele, Jr. Common Lisp The Language, Se
ond Edition. Digital Press, 30North Avenue, Burlington, MA. 01803, 1990.15. R. Sumners. Corre
tness proof of a BDD manager in the 
ontext of satis�abil-ity 
he
king. In Pro
eedings of ACL2 Workshop 2000. Department of Computer



S
ien
es, Te
hni
al Report TR-00-29, November 2000. http://www.
s.utexas.-edu/users/moore/a
l2/workshop-2000/final/sumners2/paper.ps.


