
Design Goals for ACL2Matt Kaufmann and J Strother MooreTechnical Report 101 August, 1994
Computational Logic, Inc.1717 West Sixth Street, Suite 290Austin, Texas 78703-4776TEL: +1 512 322 9951FAX: +1 512 322 0656EMAIL: kaufmann@cli.com and moore@cli.com

This work was supported in part at Computational Logic, Inc., by the DefenseAdvanced Research Projects Agency, ARPA Order 7406. The views and con-clusions contained in this document are those of the author(s) and should notbe interpreted as representing the o�cial policies, either expressed or implied,of Computational Logic, Inc., the Defense Advanced Research Projects Agencyor the U.S. Government.

Design Goals for ACL2CLI Technical Report #101 1AbstractACL2 is a theorem proving system under development at Computational Logic,Inc., by the authors of the Boyer-Moore system, Nqthm, and its interactive en-hancement, Pc-Nqthm, based on our perceptions of some of the inadequacies ofNqthm when used in large-scale veri�cation projects. Foremost among those in-adequacies is the fact that Nqthm's logic is an ine�cient programming language.We now recognize that the e�ciency of the logic as a programming language isof great importance because the models of microprocessors, operating systems,and languages typically constructed in veri�cation projects must be executedto corroborate them against the realities they model. Simulation of such largescale systems stresses the logic in ways not imagined when Nqthm was designed.In addition, Nqthm does not adequately support certain proof techniques, nordoes it encourage the reuse of previously developed libraries or the collaborationof semi-autonomous workers on di�erent parts of a veri�cation project. Finally,Nqthm is implemented in an informally speci�ed programming language (Com-mon Lisp) and hence is not subject to mechanical veri�cation. ACL2 is ourresponse to these perceived inadequacies. While the logic of Nqthm is basedon pure Lisp, the logic of ACL2 is based on the applicative subset of CommonLisp. By adding to the applicative subset of Common Lisp a single-threadednotion of state, fast applicative arrays and property lists, and e�ciently im-plemented multiple values, an e�cient and practical applicative programminglanguage is produced. By axiomatizing the primitives and introducing appro-priate rules of inference and extension principles, that language can be turnedinto a logic. A premise of the ACL2 Project is that the Nqthm proof heuristicsallow the mechanization of the discovery of proofs in the ACL2 logic with thesame degree of success that Nqthm has for its logic. The ACL2 system maybe viewed as an extended re-implementation of Nqthm for extended applicativeCommon Lisp. ACL2 is written using the logic it supports. It provides all ofNqthm's proof techniques (except those for V&C$), as well as several that Nqthmdoes not provide, including forward chaining and congruence-based rewriting.An incremental data base extension facility, based on hierarchically structured\books" and several scoping mechanisms, is provided to address the problemsof reusability and collaborative proof e�orts. We discuss the inadequacies ofNqthm motivating the design of ACL2; we briey describe the ACL2 logic, the-orem prover, interface, implementation, and some applications; and we discusssome of our concerns and misgivings about the current design. Because ACL2is not yet ready for public distribution, we make no claims as to its superiorityto Nqthm or other theorem proving systems.1 DisclaimerACL2 is being developed by Robert S. Boyer, Matt Kaufmann, and J StrotherMoore, at Computational Logic, Inc. (CLI). It is the intention of the authors

2and CLI to release ACL2 for public use, without fee, when its reliability anddocumentation are up to our standards. Those levels have not yet been reached.To our colleagues who wish to try out ACL2 for themselves, we apologize andask for their continued patience. Visitors to CLI are welcome to use it, but wedo not want preliminary versions oating around the net.If geographical exploration is taken as a metaphor for theorem proving re-search, then the present paper should be read merely as a scouting report ofwhere we are headed and why. It should not be taken as a recommendationthat anyone follow our trail, much less as an advertisement to buy parcels ofthe land we have surveyed.Because of his role in the ongoing development of ACL2, it would have beenentirely appropriate for Boyer to be a co-author of this paper. He declined forfear of seeming hypocritical after his recent exhortations to the ATP communitynot to publish papers about theorem proving systems unavailable for publicscrutiny. We support his position when the paper in question claims that thedescribed system has been found empirically to be superior to existing systems.We make no such claims about ACL2 in this paper.2 Mathematical Modeling of Digital SystemsThe mathematics of computation was identi�ed in the 1930's by the collectivework of Church, Kleene and Turing. They established that recursive functionscan be used to model digital computation. By operating within a logical frame-work, deductions about computational models can be carried out formally. Bymechanizing the formal logic, one can assist the human user in the proof dis-covery process as well as eliminate logical errors from conjectures and proofs.Following the way mathematics is generally used in engineering, system ver-i�cation proceeds in three steps. First, a formal model of the desired digitalsystem is constructed. Second, the model is corroborated, usually by execut-ing it on concrete test data, to con�rm that it exhibits the desired behavior onsome �nite set of tests. Often these �rst two steps are iterated until the model isdeemed a suitably accurate speci�cation of the requirements. Finally, theoremsare proved about the model to establish some of the interesting properties of themodeled system. Since the state space of models of digital systems is often ex-ceedingly large or even in�nite (in the case of some higher-level speci�cations),proof is often the only practical means of con�rming properties of a model.In our work, we use a logic based on recursive functions. In the �rst step,above, we exploit the fact that recursive functions can model any computation.In the second we exploit the fact that recursive functions can be executed. In thethird we exploit the fact that recursive functions can be embedded in a logicalframework so as to provide formal (and hence machine-checkable) notions ofdeduction and proof.Our models usually take the form of abstract machines de�ned as recursive

Design Goals for ACL2CLI Technical Report #101 3functions in the formal logic. Generally speaking, these functions take two in-puts: a \state" and some \signals" that impinge upon the machine over \time."Such an abstract machine returns the �nal state of the machine after processingall of the signals. It does this by \stepping" through a sequence of states, eachsuccessive state being obtained by applying the machine's \step function" tothe current state and the signal (if any) that arrives at that \time."Such machines are commonly used as formalizations of programming lan-guages. However, they have also been used to model other aspects of the digitalsystems problem, including hardware description languages, operating systems,concurrent programs, physical systems interacting with digital ones, and re-quirements modeling.3 Nqthm: The Prototype of ACL2To de�ne abstract machines formally and reason about them, one must have amathematical logic that provides inductively constructed objects such as num-bers, sequences, and trees, and principles of recursive de�nition and inductiveproof. The \Nqthm" system, developed by Boyer and Moore, provides such alogic and a mechanized theorem prover for it [8, 11]. Nqthm is widely used inthe formal modeling of digital systems. Nqthm is well known for its robustnessand the extensive body of veri�cation work done with it.However, for the past �ve years the two authors and Robert S. Boyer havebeen developing a new logic and theorem prover, called \ACL2." ACL2 hasadopted (and often attempted to improve) almost all of the ideas behind Nqthm.ACL2 was designed to correct the aws uncovered by two decades of use ofNqthm. Those aws primarily concern the scale of the projects to be undertakenwith the system.Because Nqthm is the prototype of ACL2, we begin our discussion of ACL2by briey reviewing Nqthm and some of its applications and aws.3.1 The Nqthm SystemThe Nqthm logic is a �rst order, quanti�er-free logic resembling pure Lisp. Thelogic provides for the schematic introduction of new inductively de�ned datatypes, mathematical induction on the ordinals up to �0, the de�nition of totalrecursive functions, and the witnessed constraint of new function symbols cou-pled with a derived rule of functional instantiation giving the logic some of thefeatures of a higher-order logic. In addition, the logic provides an axiomatiza-tion of a nonconstructive function, V&C$, which is an interpreter for the logicand allows the introduction of any partial recursive function. See [11, 6] fordetails.The mechanization of the Nqthm logic is a system of Common Lisp programsallowing the user to de�ne functions in the logic, execute them on concrete

4data, and state and prove theorems about such functions. The user interfaceto Nqthm is the Common Lisp read-eval-print loop: Common Lisp forms aretyped to de�ne functions in the logic, invoke the theorem prover, etc. A specialenvironment is provided in which forms in the logic may be executed. TheNqthm theorem prover uses a variety of proof techniques, e.g., simpli�cationand induction. These techniques are sensitive to rules in a data base. Hundredsof heuristics orchestrate the application these rules. An interactive proof checkerfor Nqthm, called \Pc-Nqthm" has also been developed [20, 21].Important to Nqthm's success has been the fact that when a new user-supplied theorem is proved, rules are derived from it and stored in its database; these rules change the way the system behaves. By stating an appro-priate collection of lemmas the user can e�ectively program Nqthm to provetheorems in a given domain. A well chosen sequence of lemmas can lead Nqthmto the proofs of very deep theorems. Target theorems can often be changedand \re-proved" automatically because proof scripts tend to describe powerfuland general-purpose rules for manipulating the concepts rather than particularproofs. That is, the user programs Nqthm to deal with the concepts and ex-pects Nqthm to �ll in the gaps between application-speci�c lemmas describingthe proof at a high level. This makes it easy to \maintain" an evolving sys-tem of de�nitions and theorems if the system was initially veri�ed with Nqthm.That, in turn, has allowed Nqthm to accumulate a vast quantity of benchmarktheorems.The latest version of Nqthm, named \Nqthm-1992," was released in 1994.A companion \Pc-Nqthm-1992" was also released. To obtain Nqthm-1992, con-nect to Internet site ftp.cli.com by anonymous ftp, giving your email addressas the password, `get' the �le /pub/nqthm/nqthm-1992/README, and follow theinstructions therein. (Analogous instruction apply to Pc-Nqthm-1992.) Nqthmis documented in two books [8, 11], and Pc-Nqthm is documented in [20, 21, 22].Both systems and many of their applications are briey described in [7]. A de-tailed tutorial introduction to Nqthm and Pc-Nqthm may be found in [24]. Therecent Nqthm-1992 release includes 1.3 megabytes of updated documentationconsisting of new versions of the �ve most important chapters in [11]. In addi-tion, the releases include more than 17 megabytes of example input for Nqthmand Pc-Nqthm, including most of the important benchmarks listed below.3.2 Some of Nqthm's ApplicationsSpace does not allow even a brief but exhaustive summary of theorems provedwith Nqthm; we therefore only describe a few. The theorems alluded to belowwere selected to illustrate the expressivity, exibility, and power of Nqthm todeal with digital systems and the related mathematics. Why do we dwell onNqthm's successes when we are here interested in its aws? The relative weak-ness of Nqthm's quanti�er-free, �rst order logic could be regarded as a aw to becorrected but we cite these examples to establish the fact that the expressivity

Design Goals for ACL2CLI Technical Report #101 5of the logic is not a serious bottleneck.� Mathematics for Computation Among the well-known Nqthm bench-marks are Gauss' law of quadratic reciprocity [31] and G�odel's incom-pleteness theorem for Shoen�eld's �rst order logic extended with Cohen'saxioms for hereditarily �nite set theory, Z2, [34]. The �rst illustratesNqthm's use in deep reasoning about integers, perhaps the most com-monly used mathematical construct in computing. The second illustratesNqthm's use in modeling other formal systems, a capability that has oftenbeen exploited to use Nqthm to do proofs \in" other computational log-ics: Nqthm has proved the soundness and completeness of a propositionalcalculus decision procedure [8], the Turing completeness of pure Lisp [10],the Church-Rosser theorem for lambda calculus [33], and the soundnessof the proof rules of Misra and Chandy's Unity logic [14, 16].� System Veri�cation Perhaps most representative of digital systems ver-i�cation is the now classic example, the \CLI short stack," which com-bines both hardware and software veri�cation. The short stack consists ofa chain of abstract machines starting with a microprocessor (the FM8502)described at the gate-level and ending with an operational semantics fora simple high-level programming language (Micro-Gypsy). Between eachpair of machines in this chain is an Nqthm function implementing thehigher machine on the lower one. At the highest level the implementingfunction is a \(cross-)compiler;" as one descends the implementing func-tion is called an \assembler," a \linker" and eventually a \downloader."Nqthm has done the proofs necessary to establish that each higher-levelmachine is correctly implemented on the next lower-level machine. Be-cause of the constructive nature of the Nqthm logic, the statement of eachsuch theorem involves the de�nition of a \clock function" which calculatesthe number of low-level steps necessary to carry out a given number ofhigh-level steps. Nqthm has also done the proofs necessary to \glue" theseresults together. Thus, assuming the soundness of the Nqthm theoremprover and the correctness of our models, it is known with mathemati-cal certainty that the results of any given Micro-Gypsy program on anygiven data can be computed by running the microprocessor on the resultof compiling, assembling, linking, and downloading the initial high-levelprogram and data. Furthermore, the clock functions can be composedso that it is possible to say how many microcycles are necessary to do agiven high-level computation. This work consumed several man years andis described in [4].� Hardware Veri�cation and System Maintenance Since the publi-cation of the short stack work, CLI has designed, veri�ed, and fabricatedanother microprocessor, called the FM9001 [19]. This involved formaliz-ing the NDL hardware description language [13] of LSI Logic Inc., and

6 verifying that a certain collection of NDL hardware modules implementeda formally described machine language. In what we regard as a signi�cantdemonstration of Nqthm's ability to support the maintenance of veri�edsystems, the CLI short stack was ported to the FM9001 in less than oneman-week by retargetting the assembler and linker from the FM8502 tothe FM9001 and then (re-)verifying them. We say \(re-)verifying" becausethe theorems proved had not actually been proved before but were merelyanalogous to those proved in the FM8502 work. This required relativelyminor modi�cation of the proof scripts developed for the FM8502 andrelied upon Nqthm's theorem prover to �ll in the gaps.� Software A substantial subset of the MC68020, a widely used micropro-cessor built by Motorola, has been formalized within Nqthm. Roughly80% of the user available instructions were formalized. (Most of the re-maining instructions have unde�ned e�ects on the machine state.) Alleighteen MC68020 addressing modes were formalized. Using this formaldescription of the machine it is possible to analyze formally the behaviorof given MC68020 object code programs. Consider, for example, the Cprogramisqrt(int i){ int j;j = (i / 2);while ((i / j) < j)j = (j + (i / j)) / 2;return (j);}which computes the integer square root of a given nonnegative integer. Bycompiling this program with the Gnu C compiler, gcc -O, one may obtainMC68020 object code. One can then state and prove the theorem thatif a suitably con�gured MC68020 is executed a certain number of stepsstarting from an invocation of the isqrt object code on suitable input,i, the result left in D0 is the greatest integer whose square is less than orequal to i. In addition, one can prove that execution proceeds withouterror and that the �nal machine state is suitable for continued execution(e.g., A6, used by LINK, is unchanged).The correctness of MC68020 object code programs for binary search,Hoare's Quick Sort, and some other well known algorithms have beenmechanically checked with Nqthm. The object code for these exampleswas generated using the Gnu C, the Verdix Ada, and the AKCL CommonLisp compilers. Perhaps most importantly, 21 of the 22 programs in theBerkeley Unix C string library were mechanically veri�ed. See [12, 39].

Design Goals for ACL2CLI Technical Report #101 7In related work by Yuan Yu at DEC's Systems Research Center in PaloAlto, California, Nqthm is being used to specify part of the DEC Alphaarchitecture.� Fault Tolerance A model of asynchronous communication was developedin Nqthm and used to prove the reliability of the biphase mark commu-nications protocol [27]. The model transduces the waveform written byone processor into that read by an independently-clocked processor, as afunction of the phases and rates of the two clocks and the communicationsdelay. The correcntess of a gate-level design of a device implementing thebiphase mark protocol has been proved [32]. The correctness of a gate-leveldesign of a device implementing an 8-bit parallel io Byzantine agreementprocessor has been proved [26]. In addition, it was proved that the algo-rithm implemented by the Byzantine agreement processor correctly solvesthe \oral messages" problem [5]. Finally, the correctness of the interactiveconvergence clock synchronization algorithm was proved [38].� Scheduling, Concurrency, and Distributed Computing Nqthm hasbeen used to prove that an operating system implemented in machine codeon a uniprocessor correctly provides multitasking and task isolation andcommunication [3]. An Nqthm formalization of Misra and Chandy's Unitylanguage [14] is described in [16, 17] along with the proofs of several Unityprograms. An Nqthm-checked proof that an earliest-deadline-�rst (EDF)scheduler is optimal is proved in [37]. The �nal theorem is the classictheorem about EDF schedulers.3.3 The Role of ExecutabilityThe executability of Nqthm's logic played a signi�cant role in the developmentand use of the computational models described above. We reconsider brieyseveral of the applications.3.3.1 The CLI Short StackConsider the Piton task in the CLI short stack project [4]. The task was to de-sign an assembly-level language for the FM8502 suitable as the target languagefor high-level language compilers, implement the language via an assembler andlinker, and verify the correctness of the implementation mechanically. A stack-based abstract machine was chosen as the model for the resulting language,which was named \Piton." The model was formalized in Nqthm as an inter-preter. In the present context this formal model may be best thought of as a60 page system of Lisp de�nitions.Having formalized the language semantics, the Piton interpreter was usedto run several Piton programs on test data. The purpose of this exercise wastwo-fold. By hand-compiling some high level language programs and testing

8them we found that some useful features had been omitted from the originalPiton prototype. In addition, we discovered bugs in the formal model, i.e.,oversights or other errors in the formal de�nitions that caused the model todescribe a di�erent language than the one intended. Such testing eventually ledus to conclude that Piton was speci�ed as intended and required.The next phase was to implement Piton on FM8502 by de�ning an assemblerand linker. This required about 30 pages of Lisp. We then tested the imple-mentation by using it to run the previously generated Piton programs, both onthe Piton model and the FM8502 model (which, recall, was another system ofexecutable Nqthm de�nitions). In some cases we ran Piton programs for thou-sands of FM8502 steps. We found several gross bugs in the implementation thisway.Eventually, such testing convinced us the implementation was \probablycorrect" and we were prepared to invest the e�ort in proving it. (In fact, theimplementation was not correct but the bugs were hard to �nd, such as errorsarising only if \maliciously chosen" systems of names or labels were used.) For-mulating the correctness theorem required de�ning various mapping functionsbetween the high level Piton state and the low level FM8502 state. Again,testing was done to verify the correspondence claimed between the states. Test-ing was also done to check that the statement of the main theorem held forparticular Piton programs and test data.The proof involved breaking the implementation down into steps and de�ningseveral machines intermediate between Piton and FM8502, such as a symbolicFM8502 with a program space separate from its data space. The design of thesemachines, the mapping functions between them, and the formal statements ofthe lemmas relating them were all supported by additional testing.3.3.2 FM9001The FM9001 project required the formalization of a model of digital circuits.The model is based on the NDL language of LSI Logic, Inc., and is essentiallya formalization of a commercial NDL simulator with which one of the FM9001designers was very familiar. The Nqthm model is a recursive function nameddual-eval| so named because it computes either the output lines of the circuitor the �nal states of the various state-holding devices within it. Dual-eval takesamong its inputs a \netlist," an Nqthm constant describing a tree of hardwaremodules and their interconnections via named input/output lines. The leafnodes of these trees are primitive logical gates.Dual-eval can be thought of as a logic simulator (without, however, thegraphic and debugging facilities of commercial simulators). It is about 50 pagesof Lisp code. Running dual-eval on a concrete netlist and data involves sim-ulating in the proper sequence the input/output behavior of every logical gatein the design and is a computationally intensive activity.The implementation of FM9001 was a concrete netlist. It was proved cor-

Design Goals for ACL2CLI Technical Report #101 9rect in the sense that its dual-eval semantics was shown to correspond ap-propriately to the formal model of the FM9001 as a machine code interpreter.Dual-eval was executed on the FM9001 netlist to help debug the netlist, themapping functions, and the statement of the correctness theorem.But extensive testing played a more important role later in the project, afterthe FM9001 had been fabricated by LSI Logic, Inc., from the veri�ed netlist.Upon delivery of the fabricated devices, CLI tested them for conformance to thedesign. One reason post-fabrication testing is important is to check the relia-bility of the unveri�ed layout tools involved in the lower levels of the hardwaredesign process. Another motivation of such testing is to check for productionaws such as malfunctioning gates caused, perhaps, by material imperfections.The FM9001 was tested against its dual-eval model (rather than the higherlevel machine code model) because the dual-eval model contained output pinsdesigned explicitly for testing | outputs that were not part of the machine codemodel.Note that the post-fabrication testing of veri�ed devices changes the roleof model execution. Heretofore execution was merely an e�cient way to avoid\premature" proof attempts. An instantaneous proof oracle would obviate theneed for the kind of model execution done in the Piton project because that kindof execution was done merely in answer to a purely mathematical question: \isthis conjecture always true?" or, equivalently, \do these two mathematical ex-pressions give the same answers?" But the post-fabrication testing of a veri�eddevice is not a purely mathematical question. On the one hand one has a phys-ical object. On the other one has a mathematical expression. The question iswhether the behavior of the object is accurately predicted by the mathemat-ical expression. The behavior of the object can only be manifested by givingit concrete data and observing its concrete output. Thus, one is forced to giveconcrete data to the mathematical expression and derive its concrete output.That is, one must compute with the formal model and compare the results withthose produced physically. Execution of the mathematical model is inherentin post-fabrication testing. Often, at least for devices for which veri�cation isneeded, the required computations are so large and the test cases so numerousthat we expect the e�ciency with which the model can be executed becomes animportant issue.3.3.3 The MC68020We conclude this discussion of executability by considering the programmerlevel model of the Motorola MC68020. The model is about 80 pages of Lispand was written using the MC68020 programmer's manual [29] as the primarysource. While the MC68020 can be regarded as a formal artifact in as much as,ideally, its behavior is exactly as speci�ed by its gate-level design, that designwas unavailable to the author of the Nqthm model. In e�ect, the Nqthm modelwas \reverse engineered" from the artifact.

10 It was necessary therefore to corroborate the model. To do so, CLI testedit against an MC68020 chip in the form of a Sun 3 workstation. Over 30,000test vectors were executed both in the Nqthm model of the MC68020 and on anactual chip [2]. Again, the importance of the executability of the Nqthm modelis obvious.This might be considered a sorry state of a�airs given the fact that thecircuit design of the MC68020 can be regarded as a mathematical object (asFM9001's netlist was) and its correspondence to the machine code model istherefore subject to formal proof. But this state of a�airs is common and thereasons go beyond the mere technical. Even after it becomes practical to verifysuch large designs, a variety of economic, legal, and other obstacles stand in theway of the publication or distribution of the \proprietary mathematical models"of commercial products by their manufacturers. The eventual promulgation offormal standards (e.g., for VHDL or Ada) can mitigate this problem for someproducts. But after veri�cation has becomes more practical and cost-e�ective,we speculate that there will be commercial trade in \reverse engineered" for-mal models and those models will have been corroborated against the modeledproducts exactly as though those products had no other mathematical models.3.4 Some of Nqthm's FlawsDespite our success with Nqthm we are aware of many shortcomings. Most ofthese shortcomings relate to the scale of the project to be undertaken. WhenNqthm was designed (primarily in the 1970's) the most impressive theoremproved by it was the uniqueness of prime factorizations, which required about100 lines to state starting from Peano's axioms. By 1985, Nqthm was beingused to prove theorems requiring 1,000 lines to state (G�odel's theorem and thecorrectness of the FM8501 microprocessor [18]). By 1990 it was being used toprove theorems requiring almost 8,000 lines to state (FM9001). This is almosttwo orders of magnitude larger than the \inspirational" theorems of Nqthm'sdesign stage.Below we list those aws of Nqthm that we believed could and should be�xed by a new design.1� Prototyping Formal Models Admitting functions to the logic requirestheorem proving. But users prefer to prototype their formal models �rst,testing them on concrete data until convinced that the model is accurateenough to warrant the investment in proof.� Execution Speed Testing a formal model on concrete data presupposesthe logic is executable, i.e., that the value of a variable-free term or formula1Of course, the most troubling \aw" of Nqthm is the weakness and slowness of its theoremprover. If the theorem prover would instantly recognize any Nqthm formula that was a theoremand recognize no non-theorems, the other aws would cause little trouble!

Design Goals for ACL2CLI Technical Report #101 11can be computed. Nqthm's logic is executable (unless unde�ned functionsymbols are present). But Nqthm's logic executes less e�ciently than wewould like. This must be understood in the context of the large models andnumerous test cases discussed above. Perhaps the main reason Nqthm'slogic executes slowly is the need for runtime type checking. Another isthe presence of user-de�ned shells and other abstract objects (e.g., (TRUE)and (FALSE)) in the logic for which no corresponding data types exist inthe underlying execution engine. If some Common Lisp conses must beset aside for the representation of the logic's shells, then those consesare not available for the representation of their natural counterparts inthe logic. The result is that the implementations of all of the logic'sconstructors and accessors are complicated by runtime type checking andthe provision for various \escape" mechanisms. Furthermore, because ofthese complications, calls to the logic's accessor functions are compiledinto procedure calls rather than handled more e�ciently in-line.� Useful Proof Techniques There are many useful proof techniques notsupported by Nqthm. Consider for example the notion of \quotient struc-ture." Traditionally this notion refers to a set-theoretic construction inwhich a new structure is formed from the equivalence classes of an existingstructure, for a particular equivalence relation. A typical use of such struc-tures in our work is the partitioning of the set of states of some formalizedmachine into equivalence classes by a projection that ignores hidden re-sources. In suitable circumstances | formally described by a congruencerule | one can regard two nonidentical states as equivalent vis-a-vis thebehavior of some higher level machine. The �rst-order, non-set-theoreticsetting of Nqthm makes this sort of construction inconvenient for us. Theidentity relation (Nqthm's EQUAL) is the only equivalence relation withwhich Nqthm's heuristics will do replacement or substitution during sim-pli�cation. To get Nqthm to replace a term by a nonidentical but suitablyequivalent term is quite awkward, requiring one to arrange for all of thecorresponding congruence and transitivity rules to be explicitly used bythe simpli�er during backchaining. Other proof techniques that Nqthmusers have from time to time requested include forward chaining, the useof alternative de�nitions of a concept, and \forcing" a hypothesis to betrue in back chaining by assuming its truth temporarily and bringing thefull resources of the system to bear on it later, when the proof is otherwisecomplete.� User Control of the Theorem Prover Nqthm is guided in its searchfor a proof by the enabled rules of its data base. Few \local" scopingmechanisms are available to the Nqthm user. The user must thus manip-ulate the global state of the data base in a sequential way to con�gure itfor each theorem. This at structure produces complicated proof scriptsthat are highly dependent upon an implicit notion of the current status of

12 all rules. It also complicates the task of combining two independently de-veloped proof scripts. Furthermore, many heuristics are beyond the user'scontrol and arcane tricks are sometimes necessary to provoke the desiredbehavior. Finally, the hints available to the Nqthm user for directing thesystem's search explicitly are quite limited.� The Command Language Nqthm's command language is CommonLisp. A strength of the arrangement is that Lisp is a powerful commandlanguage; by the suitable de�nition of Common Lisp macros users can tai-lor their command environments to their tastes. But typical commandsconsist of a mix of Common Lisp and Nqthm terms and formulas. Thiscan be quite confusing, especially when dealing with function symbolssuch as CAR and APPEND which are de�ned slightly di�erently in the twolanguages. Furthermore, because the con�guration of the host Lisp is notpart of Nqthm, proof scripts developed by one user are not always readableby another.� State Saving, Reusability, and Collaboration Nqthm allows the userto save the data base into a �le, called a \library" �le, and thus start a sub-sequent session in the same state. Nqthm libraries for many domains havebeen developed, e.g., natural numbers, list processing, MC68020 objectcode programs. But it is not possible to combine two libraries becauseeach is a complete snapshot of the Common Lisp image. Nevertheless,such combination is exactly what one would want to do if one needed anumber theoretic result while constructing the proof of an MC68020 pro-gram. This makes it quite di�cult to build on the work of others or one'sown past work, except by having Nqthm reprocess the old script. Thisraises the cost of veri�cation by encouraging the repeated redevelopmentof foundational work and tends to linearize the development of a veri-�ed system into a monolithic project by a single person who has completeknowledge of the state. Because of the growing size of veri�cation projects,we believe that veri�cation systems should encourage the collaborative ef-forts of many people working semi-autonomously on di�erent parts of thesystem.� Practicing What We Preach It has always struck us as hypocriticalthat we would, on the one hand, advocate the use of formally de�nedprogramming languages and machine-checked formal proof as a meansof assuring correctness while, on the other hand, programming our ownsystem, Nqthm, in an informally speci�ed language and relying entirelyon informal arguments that we had done our job correctly. Would it notbe more convincing if we programmed the system in a formal languageand could, at least, state its correctness? Should we not aspire somedayto prove the correctness of the system and to somehow check that proofmechanically?

Design Goals for ACL2CLI Technical Report #101 134 ACL2ACL2 is an extended, reimplemented analogue of Nqthm that supports an ex-tension of the applicative subset of Common Lisp as its logic. \ACL2" standsfor \A Computational Logic for an Applicative Core Language." By \core lan-guage" we mean a formalism that can be used | as Nqthm was | to modelmany di�erent computing systems. Common Lisp is such a language. By for-malizing a logic around applicative Common Lisp we can take advantage of theexceptionally good optimizing compilers for Common Lisp to get, in many cases,execution speeds comparable to C. Two guiding tenets of the ACL2 projecthave been to conform to all compliant Common Lisp implementations and toadd nothing to the logic that violates the understanding that the user's inputcan be submitted directly to a Common Lisp compiler and then executed (in anenvironment where suitable ACL2-speci�c macros and functions are de�ned).The de�nition of Common Lisp used in our work has been [35, 36]. Wecomment on the draft proposed ANSI standard for Common Lisp [30] in theconclusion.Just as Nqthm is more than a veri�cation tool for pure Lisp | in particular,it has been used as a modeling tool for a wide variety of digital systems |ACL2 is intended to be more than a veri�cation tool for Common Lisp. Itscurrent applications range from hardware veri�cation to models of high levelprogramming languages such as Ada.4.1 LogicThe ACL2 logic is a �rst-order, quanti�er-free logic of recursive functions pro-viding mathematical induction on the ordinals up to �0 and two extension prin-ciples: one for recursive de�nition and one for constrained introduction of newfunction symbols, here called encapsulation.The syntax of ACL2 is that of Common Lisp. Formally, an ACL2 termis either a variable symbol, a quoted constant, or the application of an n-aryfunction symbol or lambda expression, f , to n terms, written (f t1:::tn). Thisformal syntax is extended by a facility for de�ning constants and macros. Wediscuss macros later.The rules of inference are those of Nqthm, namely propositional calculus withequality together with instantiation and mathematical induction up to �0. Twoextension principles, recursive de�nition and encapsulation, are also provided.The following primitive data types are axiomatized.� ACL2 Numbers. The numbers consist of the rationals and complexnumbers with rational components. Examples are -5, 22/7, and #c(3 5).� Character Objects. ACL2 supports Common Lisp's \standard charac-ters" including #\A, #\a, #\, and #\Newline, as well as three of CommonLisp's \nonstandard characters," #\Page, #\Tab and #\Rubout.

14 � Strings. ACL2 supports strings of standard characters, e.g., "ArithmeticOverflow".� Symbols. ACL2 supports Common Lisp's symbols. In general, symbolsare objects consisting of two parts, a package and a name. The symbolEXEC in the package "MC68020" is written MC68020::EXEC. One packageis always selected as \current" and its name need not be written. Thus, if"MC68020" is the current package, the symbol above may be more simplywritten as EXEC. Packages may \import" symbols from other packages(although in ACL2 all importation must be done at the time a package isde�ned). If MC68020::EXEC is imported into the "STRING-LIB" packagethen STRING-LIB::EXEC is in fact the same as MC68020::EXEC.� Lists. ACL2 supports arbitrary ordered pairs of ACL2 objects, e.g., (XMC68020::X ("Hello." (1 . 22/7))).It is our intention that all of the Common Lisp functions on the above datatypes are axiomatized or de�ned as functions or macros in ACL2. By \CommonLisp functions" here we mean the programs speci�ed in [35] or [36] that are (i)applicative, (ii) not dependent on state, implicit parameters, or data types otherthan those in ACL2, and (iii) completely speci�ed, unambiguously, in a host-independent manner. Approximately 150 such symbols are axiomatized.Common Lisp functions are partial; they are not de�ned for all possibleinputs. Consider for example the primitive function car. Page 411 of [36] saysthat the argument to car \must be" a cons or nil. On page 6 we learn \Inplaces where it is stated that \so-and-so `must' or `must not' or `may not' be thecase, then it `is an error' if the stated requirement is not met." On page 5 welearn that `it is an error' means that \No valid Common Lisp program shouldcause this situation to occur" but that \If this situation occurs, the e�ects andresults are completely unde�ned" and \No Common Lisp implementation isrequired to detect such an error."This raises some problems with the direct embedding of applicative CommonLisp into a logic. The situation is far worse than merely not knowing the valueof (car 7). We do not know that the value is an object in the logic: (car 7)might be �, for example. Worse still, we do not know that car is a function:the form (equal (car 7) (car 7)), which is an instance of the axiom (equalx x), might evaluate to nil in some Common Lisps because the �rst (car 7)might return t and the second might return nil. The \story" relating ourlogic to Common Lisp is complicated and we explain it after completing thedescription of the logic.In support of the \story" we formalize in ACL2 the notion of \guards." EachACL2 function symbol has a guard, which is a term that speci�es the domainof the function. The guard of car is (or (consp x) (equal x nil)). Appli-cations of a function outside its guarded domain produce unspeci�ed results.We have identi�ed a guard for each of the Common Lisp primitives in ACL2

Design Goals for ACL2CLI Technical Report #101 15and made sure that our axioms do not constrain the primitives outside of theirguarded domains.To applicative Common Lisp we add four important new features.� We add a notion of \state," containing, among other things, the �le systemand input/output \channels" to �les. Syntactic checks in the languageinsure that the state is single-threaded, thus giving rise to a well-de�nednotion of the \current state."� We add fast applicative arrays. These are implemented, behind the scenes,with Common Lisp arrays in a manner that always returns values in accor-dance with our axioms and operates e�ciently provided certain program-ming disciplines are followed (namely, they are used in a single-threadedway so that only the most recently updated version of an array is used).� We add fast applicative property lists in a manner similar to that forarrays.� We add new multiply-valued function call and return primitives that aresyntactically more restrictive than those of Common Lisp (requiring afunction always to return the same number of values and always to becalled in the appropriate manner) but which can admit a faster imple-mentation than Common Lisp's.Finally, ACL2 has two extension principles: de�nition and encapsulation.Both preserve the consistency of the extended logic. Indeed, the standard modelof numbers and lists can always be extended to include the newly introducedfunction symbols. (Inconsistency can thus be caused only if the user adds a newaxiom directly rather than via an extension principle.) The de�nitional principleinsures consistency by requiring a proof that each de�ned function terminates.This is done, as in Nqthm, by the identi�cation of some ordinal measure ofthe formals that decreases in recursion. In [8] we show (for Nqthm) that thisinsures that one and only one set-theoretic function satis�es the recursive de�-nition and that proof carries over to the ACL2 case, with appropriate treatmentof the nonuniqueness of the constrained functions used in the de�nition. Theencapsulation principle preserves consistency by requiring the exhibition of wit-ness functions that have the alleged properties.The form of a function de�nition is as in Common Lisp,(defun f (x1:::xn) (declare :::) body)ACL2 extends Common Lisp's declare so as to permit the speci�cation of aguard expression, (g x1:::xn), as well as to permit the optional speci�cation ofan ordinal measure and other \hints." If the required termination theorems canbe proved,

16Axiom.(g x1:::xn) ! (f x1:::xn) = bodyis added as a new axiom. Observe that the value of the function outside of itsguarded domain is unspeci�ed. Logically, our guards are just terms that appearas hypotheses in many axioms.Encapsulation allows the introduction of new function symbols satisfyingarbitrary constraints provided one can exhibit de�nitions of those symbols thatmake those constraints theorems. This allows for abstractions to be introducedconservatively. An encapsulation command takes the form of an arbitrary se-quence of commands, e.g., de�nitions and theorems, some of which are labeled\local." When an encapsulation command is veri�ed for admissibility, all ofthe subcommands are executed and each must be successful. But the e�ects ofthe command are obtained by executing only the non-local subcommands. Toconstrain a new function symbol f of one argument so that it always returnsa rational number, it su�ces to de�ne (f x) locally to be 22/7, say, and thento prove and \export" the theorem (rationalp (f x)). The local de�nitionof f is merely a witness to the consistency of the constraint. \Outside" theencapsulation, (f x) is known only to be rational.A derived rule of inference, called \functional instantiation," [6], gives ACL2some of the features of a higher order logic by allowing one to instantiate thefunction symbols of a previously proved theorem, replacing them with otherfunction symbols or lambda-expressions, provided one can prove that the re-placements satisfy the constraints on the old symbols. For example, any theoremproved about the rational f above could later be used to obtain the analogoustheorem about any rational function or expression.ACL2's logic is strictly weaker than Nqthm's because ACL2's logic does notcontain an analogue of Nqthm's nonconstructive V&C$. The logical tendrils ofV&C$ are pervasive and the heuristics for dealing with it are very complicated(and hence invite implementation errors). Whether it is a comment on theutility of V&C$ or (more likely) on the weakness of our heuristics for handlingit, it is a fact that Nqthm users avoid V&C$. Little substantial use of it appearsin Nqthm's benchmarks, and since the introduction of functional instantiation,some of those uses have been replaced by the use of constrained functions andfunctional instantiation, as illustrated in [15] where the two methods are usedto prove the termination of Knuth's generalized 91-function [25]. In any case,we decided not to burden ACL2 or its users with an analogue of V&C$. Weare optimistic that this does not seriously lessen the applicability of ACL2 topractical veri�cation problems.4.2 Metatheoretic ConsiderationsLisp and ACL2 exploit the fact that there is a straightforward mapping fromterms in the logic to the objects of the logic. For example, the term (f t1:::tn)

Design Goals for ACL2CLI Technical Report #101 17can be identi�ed with the list structure '(f t1:::tn). The latter is said to bethe quotation of the former. To make this possible we insist that if f is afunction symbol in the syntax, then 'f is a symbol object. The mapping is sostraightforward that one often forgets it and thinks of terms as being objects inthe logic, though this is technically a categorical mistake.One way this mapping is exploited is in the macro facility. Macros allowthe syntax of the logic to be extended. Macros are functions. If f is a macroand x1, ..., xn are arbitrary objects, then (f x1:::xn) may be used as a termand denotes the term (whose quotation is) obtained by applying f to the xi.For example, by the appropriate macro de�nition of case one might arrangefor (case x (1 "a") (2 "b") (otherwise "c")) to \macroexpand" to (if(equal x 1) "a" (if (equal x 2) "b" "c")). Thus, the syntactic denota-tion of an expression is determined by computation and the power of recursivefunctions can be used (for better or worse) to introduce essentially arbitrary no-tation. By introducing well-designed application-speci�c notation one can makespeci�cations more succinct and easy to grasp.Like Nqthm, the ACL2 theorem prover also exploits the identi�cation ofterms and objects. It is possible to de�ne \term transforming" functions (whichactually operate on the quotations of terms). If one then proves that such atransformer preserves semantic identity (i.e., that the object denoted by theinput term is the same as the object denoted by the output term), the trans-formation can be incorporated soundly into the simpli�cation routines of thetheorem prover. See [9].The link between terms and objects means that some system design and userinterface issues impact the choice of axioms. For example, execution e�ciencydictates that the quotation of a function symbol be an object in the logic thatcan be concretely and uniquely represented by that symbol. Thus, while theo-retical considerations permit one to encode the quotations of function symbolsas integers, e�ciency suggests including in the logic some suitable objects.Nowhere is the impact of the user interface on the choice of axioms moreapparent than in the provision of packages for symbol objects. Why are oursymbol objects complicated by the notion of a package component? Nqthm'ssymbols (the LITATOMs) were not so complicated. The answer is that we careless that the symbol objects of the logic have packages than we care that their\dequotations" as function symbols have packages. We want to make it easyto combine theories developed by di�erent users. Packages allow independentusers to create disjoint systems of function de�nitions. For example, each of twousers, Smith and Jones, can de�ne the function step. Provided the two userswork in di�erently named current packages, say "SMITH" and "JONES", theirtwo systems can be combined without logical conict and each can continueto reference his or her own step by that name while referencing the otherby pre�xing it with the appropriate package, e.g., JONES::step. But becausefunction symbols are identi�ed with the symbol objects, 'JONES::stepmust bea symbol object and the axioms must make explicit the package component of

18a symbol and the relationships between packages.4.3 Execution E�ciency, Guard Veri�cation and ColorsThe implicit guards of Common Lisp allow great e�ciency. The implementationof the function car may assume its actual is a cons or nil. By a suitablerepresentation of data, the implementation of car can simply fetch the contentsof the memory location at which the actual is stored. No type checks arenecessary. Similarly, append, whose guard requires that the �rst argument be alist ending in nil, can recur down the cdr of that argument until it encountersnil, without type checking. Of course, if car or append is applied to 7 theresults are unpredictable. There are implementations of Common Lisp, forexample, Gnu Common Lisp (which used to be called Austin Kyoto CommonLisp), in which the performance of the compiled code generated for arithmeticand list processing functions is comparable to hand-coded C arithmetic andpointer manipulation. Exceptional execution e�ciency on a wide variety ofplatforms, combined with clear applicative semantics when used properly, wasone of the great attractions of basing the ACL2 logic on Common Lisp.Because guards are explicit in ACL2, two choices are possible when consid-ering how to evaluate a function call. ACL2 could check at runtime that theactuals satisfy the guard or it could glibly execute the Common Lisp function,taking a chance that anything might happen if the guard were not actually sat-is�ed. Because we are in a logical setting, however, we could arrange also forACL2 to do the latter only if it had proved, from the context of the functioncall, that the guard must be true. For example, one might show that if theguard to a given de�ned function is true of the formals, then every guard thatwill be encountered in the execution of the body of that function will also besatis�ed. If one marked such functions then their safe evaluation would be fast:check the guard upon the �rst entry from an \unsafe" context and then executethe body with no checking (and no risk). If an entire system were so marked,the only runtime check would be of the initial inputs.We codify this marking scheme with what we call \colors." Colors, however,are also connected to another aspect of ACL2 function de�nition, namely theissue of prototyping and testing before admission to the logic.At any moment, every ACL2 function has one of four colors. The colorsand their signi�cance are described below. Colors are not part of the logic butmerely a feature of our implementation of it. Facilities are provided for changingthe color of a function. Functions of all colors can be compiled.� Red A function symbol has the color red if the symbol has been de�nedfor computational purposes but not admitted to the logic. When such afunction is de�ned, syntax checks are done (to insure that the de�nitionis in the ACL2 language) but no termination proof is done and no axiomis added. Thus, the logic remains consistent. Calls of the function can

Design Goals for ACL2CLI Technical Report #101 19be evaluated at the command level and thus tested. The function canbe freely rede�ned because no nontrivial results about it could have beenproved or entered into the data base. Finally, the guard of a red functionis ignored at runtime, so execution can cause Common Lisp errors butoptimal performance is obtained. Red functions are useful for prototypinga formal model for both behavior and performance before any proof burdenis incurred; red functions are also useful as utility functions (e.g., for usein macros or for data base query).� Pink Pink functions are like red ones except that the guards are checked atruntime. After prototyping a system of red de�nitions one might convertit to pink to con�rm that, on the given tests, the functions are beingused in accordance with their guards. Since pink functions can be freelyrede�ned (along with their guards), guards can be prototyped withoutproof burdens.� Blue A function symbol is blue if the symbol has been de�ned for compu-tational purposes and also admitted to the logic. To make a symbol blue,a termination proof must be done. Theorems can be proved about bluefunctions. Blue functions can be executed on concrete data, but guardsare checked at runtime. After a function has been prototyped in a \hot"color (red or pink), its conversion to blue at the cost of termination proofsadds an axiom and thus enables one to undertake proofs of correctnessand other properties.� Gold A function symbol is gold if the symbol has been de�ned computa-tionally and admitted to the logic (i.e., was blue) and, in addition, everysubfunction called in the body is gold and theorems have been proved es-tablishing that when the guard of the function is true the guards of everysubfunction are also true on their actuals. This is called \guard veri�ca-tion." When a gold function is called (from outside a gold function), itsguard is checked at runtime but then the body is executed without anyguard checking. Thus, gold functions run as fast as red ones but withno risk of runtime error (except, possibly, resource exhaustion). After ablue formal model has been proved correct, one could undertake to makeit gold by proving all of the guard conjectures. When that is done, themodel will run e�ciently.Because guards are arbitrary expressions, guard veri�cation is, in general,undecidable. But if guards are primitive type expressions on the formals, guardveri�cation is usually a trivial theorem proving problem and can be done byspecial syntactic means. Some work is this direction has already been done [1].Admissibility does not require guard veri�cation: termination of the recursioncan be proved without necessarily showing that all subfunctions are well-de�ned.Indeed, it is often necessary to admit a function to the logic in color blue, provetheorems about its value, and then convert it to gold.

204.4 The Story Relating the Logic to Common LispWe make the following claim about ACL2. Suppose f is a function symbolof one argument de�ned in some certi�ed book (as described below), that theguard of f is t, that f is gold, and that (equal (f x) t) is a theorem of ACL2proved in that book. Consider any Common Lisp compliant to [36] into whichthe ACL2 kernel has been loaded. Load the book into that Lisp. Let x be aCommon Lisp object that is also an ACL2 object (i.e., an ACL2 number, ACL2character object, an ACL2 string, a symbol in some ACL2 package, or the consof two ACL2 objects). Then the application in that Lisp of f to x returns t orelse causes a resource error (e.g., stack overow or memory exhaustion).Given the lack of details of the logic in this paper, it is impossible to arguethe truth of this claim here. Nor have we written down a rigorous argumentelsewhere at this point, though we can explain the idea here as follows. (f x)must evaluate to t (because of the soundness of the logic), and the computationwill at no step exercise a function symbol outside of its guarded domain (becausef is gold), where the logic and Common Lisp agree.This claim can be generalized considerably. The most useful generalizationintroduces the notion of a \gold formula" which is, roughly put, a formula inwhich the guards of all function symbols are true in the context in which theyoccur and claims, roughly, that any ACL2 instance of a gold theorem evaluatesto non-nil in any compliant Common Lisp.4.5 Theorem ProverThe ACL2 theorem prover is a reimplementation of the Nqthm theorem proverfor the ACL2 logic. Most of the proof techniques of Nqthm have been imple-mented in ACL2. Many have been extended signi�cantly.One of the driving forces behind our design of ACL2 is that its architec-ture should be open so users can con�gure it in di�erent ways. ACL2's prooftechniques are sensitive to a hierarchically structured data base of rules derivedinitially from previously certi�ed \books." Furthermore, an evolving \theory,"which is computationally determined by the user as a function of the currentdata base and goal, speci�es \views" of the data base. Books and theories arediscussed later.4.5.1 Proof TechniquesMost of the proof techniques are allowed to \force" hypotheses, by assumingthem true. The theorem prover is organized so that if the main goal is provedbut hypotheses are forced, the forced hypotheses are addressed in appropriatecontexts in a later \round" of proof. Typically, guards are forced when they arenot \obviously" true, since otherwise we cannot use the functions's de�nitions.This means that it is possible to submit simple (but false) conjectures about

Design Goals for ACL2CLI Technical Report #101 21ACL2 functions to the system and be informed, explicitly by the system, thatthe conjecture holds provided some previously unrelieved guard (or, \type")checking can be done.While guards are forced by default, the user may actually specify whichhypotheses are to be forced. By delaying the consideration of forced hypothesesACL2 can combine them to reduce the total proof e�ort. For example, while aparticular function call might be opened many times in di�erent contexts, thevalidity of its guard might be addressed just once in a suitably general context.Here now is a description of the ACL2 theorem prover. Readers familiarwith Nqthm will recognize that system's structure and techniques.The user's conjecture is translated via macro expansion into a formal termand converted to a set of clauses, each of which must be proved. The clauses areadded to a pool of goals and extracted one at a time for further considerationby a succession of proof techniques. If an extracted goal is proved, the size ofthe pool shrinks by one. When the pool is empty, the user's conjecture has beenproved. If a proof technique reduces the given goal to several subgoals, it putsthe subgoals into the pool. Otherwise, the proof technique passes the extractedgoal to the next proof technique.The proof techniques, in order of application are:� preprocessing: This process expands some propositional functions anduses IF-normalization, tautology checking, recognition of common cases,and equivalence closure. An ordered binary decision diagram (OBDD)algorithm has been coded for ACL2 [28] and we hope to integrate it intothe preprocessor.� simpli�cation: By far the most complicated proof technique, simpli-�cation combines primitive type checking, forward chaining, backwardchaining, forcing, congruence based rewriting under arbitrary equivalencerelations and their re�nements, generalized alternative recursive de�ni-tions, veri�ed conditional metatheoretic simpli�ers, tautology checking,congruence closure, and generalized linear arithmetic.Because of its importance we illustrate briey the role of equivalence re-lations here. The rewriter has a \goal equivalence relation" which speci-�es the required relation between its input term and its output. For ex-ample, at the top-level the rewriter maintains propositional equivalence,i.e., the rewritten term must be propositionally equivalent to the inputterm. As the rewriter descends through the structure of the term beingrewritten, it changes the goal equivalence relation according to congruencerules previously proved. Suppose for example that a member expressionis being rewritten, and that the data base contains the rule establish-ing that propositionally equivalent member expressions are produced whenset-equal lists are substituted into the second argument of member. Thenwhen rewriting the second argument of the target member expression the

22 system will allow itself to maintain set-equal. This means that a rulesuch as (set-equal (append a b) (append b a)) can be used as a re-placement rule to commute the arguments of append, even though appendis not in general commutative. The user can prove new relations to beequivalence relations and prove appropriate congruence rules. Thus, evenwhen nonunique concrete representations are used for abstract entities,the user can enjoy the simplicity of \substitution of equals for equals"at the expense of setting up the appropriate equivalence and congruencerules.� destructor elimination: This process trades \bad" terms for \good"ones by a \change of variables" technique driven from the data base. Forexample, under suitable conditions, (- i j) might be reduced to k byreplacing i everywhere by (+ k j).� cross-fertilization: Equivalence hypotheses are used and possibly dis-carded. Such hypotheses are used by replacing certain occurrences (de-pending on available congruence rules) of one side of the equivalence bythe other.� generalization: This process selects certain occurrences of terms involvedon both sides of equivalence relations or in the hypothesis and conclusionof the goal and then replaces them with new variable symbols. Restrictivehypotheses about the new variables may be added.� elimination of irrelevance: Irrelevant hypotheses are thrown out, basedon variable isolation and deduced type information.� mathematical induction: This process attempts to �nd an inductionscheme appropriate for the conjecture, based on the terms in the conjec-ture. The analysis involves the arbitrary well-founded relations used tojustify recursive functions, user supplied rules linking function symbols toadditional schemes, various techniques for merging and otherwise combin-ing schemes, and selection heuristics.4.5.2 The Data Base, Books, Rules and TheoriesA book is a �le of de�nitions and theorems and references to other books whosecontents are recursively included. ACL2's data base may be extended repeatedlyby the \inclusion" of books. \Views" of the data base are speci�ed by \theories,"as described below.The book mechanism is related to the encapsulation mechanism; a book canhide the details of its proofs (locally) while exporting powerful collections ofrules. That is, the contents of a book appears di�erent to its author than toits readers. All events are visible to the author, or more precisely, to the agent\certifying" the book, as discussed below. But to the reader, only \non-local"

Design Goals for ACL2CLI Technical Report #101 23events are visible. Thus, the author might include in a book many \intermedi-ate" theorems whose only purpose is to lead ACL2 to the proofs of the \main"theorems in the book. By marking the intermediate theorems as \local" theauthor can hide them from readers. Hiding is important in collaborative worksince the tactical choices made by one user are often counterproductive in thecontext of the tactical choices of another.Books can also de�ne packages and declare a given package \current" forthe purposes of the book, thus providing the namespace protection of packages.Books can also de�ne theories and theory manipulation functions, as discussedbelow. When two books are loaded together, syntactic checks are done to insuretheir logical compatibility.Books can be certi�ed, which involves processing them and their subbooksso as to determine that every de�nition and encapsulation is admissible andevery alleged theorem is provable. Certi�cation looks at every event in a book,both the local and the non-local ones. Certi�cates containing details of thecerti�cation, including the checksums of the relevant books, are generated bythe certi�cation process. When a book is later included in a session only itsnon-local events are seen and their proofs are not reconstructed but just as-sumed, provided the certi�cation data is consistent. Inconsistent certi�catescause informative warnings to the user. Attention to directory structures allowsbooks to be moved between directories on the host system without requiringrecerti�cation. The checksum computation is insensitive to comments in the�le so that certi�ed books can be documented or reformatted without requiringrecerti�cation. The certi�cation process provides a means of version controlthat is integrated into the proof system. This is particularly important if multi-ple users are developing a system. (Strictly speaking, logical soundness requiresthat only one ACL2 process have write permission for the duration of a proofon all of the books involved and that certi�cation of all books be performed bythat process at the beginning of the proof. Given the fundamental insecurityof most host �le systems, it was thought that checksums provide an acceptablelevel of assurance to detect accidental corruption by cooperative colleagues. Fi-nal formal assurance is obtained by a root-and-branch stand-alone certi�cationat the end of the project.)As with Nqthm, proved theorems generate rules that are added to the database. Unlike Nqthm, ACL2 does not require the syntactic form of a theoremto specify how it will be used as a rule. Instead, every rule generated from atheorem is derived from a \corollary" formula, optionally speci�ed by the user(and defaulting to the theorem itself), which is implied by the theorem andwhose syntax describes the rule.Including a book into an ACL2 session adds all the rules derived from thenon-local events in the book. Each rule in ACL2 has a unique name. A rule canbe used only if it is \enabled." Whenever ACL2 goes to the data base to obtaininformation an appropriate rule name is found, checked for being enabled, andtracked in a \tag tree," a structure that follows the evolving proof construction

24and records relevant information. Pervasive tracking and use of enabled rulenames provides the ACL2 user with much �ner grained control of ACL2 as wellas more information, if desired, about the evolving proof.To be \enabled" a name must be in the current theory, where a theory is alist of rule names. A theory thus gives a view of the data base in the sense thata rule is seen only if its name is in the current theory.Theories are just objects in the logic, namely lists. Since a theory is just alist of ACL2 objects, theories can be computed and manipulated by ACL2 func-tions. Utility functions for manipulating theories include functions for unioningtogether theories (enabling all the rules in each), taking the set di�erence of twotheories (disabling all the rules in the latter theory), and computing the currenttheory as of some previous proof. The user may de�ne theory manipulationfunctions. Daemons can be installed on names to insure that incompatible rulesdo not coexist within a derived theory. Books may provide alternative sets ofrules and make them conveniently available via theories and theory functionsprovided in the books. The author's advice about how rules are used in concertmay be codi�ed into daemons.4.5.3 Proof Trees and CommentaryThe ACL2 theorem prover prints a running commentary on its evolving proofattempt, explaining each transformation, the derivation of forced hypotheses,the use of hints, etc. In addition, if Emacs is available, ACL2 sketches theevolving proof tree as it goes, pruning branches that are proved. The proof treefacility is linked to the evolving commentary so that the commentary associatedwith any point in the tree can be conveniently obtained. This allows the user toignore ACL2's scrolling commentary (indeed, many users simply do not displaythat bu�er) and simply jump directly to the trouble spots (the \checkpoints"of [11] and of the tool described in [23]).4.5.4 DocumentationACL2 is documented via an online documentation facility that is part of ACL2.The ACL2 documentation is maintained in a hypertext-like structure whichmay be browsed via ACL2 documentation commands. In addition, it may bebrowsed via Emacs' Info mode and via Mosaic. Roughly .9 megabytes of on-line documentation is available about ACL2, including tutorials. Instructionalmaterials are being prepared as part of this documentation.The ACL2 user may wish to document his or her formal models and browsethat documentation with the facilities provided. ACL2 supports this use ofits documentation facilities. In particular, Common Lisp allows documentationstrings to be included in the de�nitions of constants, macros and functions andACL2 extends that to the commands that introduce other names, such as theo-rems and theories. ACL2 recognizes documentation strings that are formatted

Design Goals for ACL2CLI Technical Report #101 25in a certain way and links them into its browser. Facilities are provided to con-vert ACL2's graph into �les suitable for browsing with Info mode and Mosaic.Thus, when a book is included in a session | possibly introducing many newfunction symbols and rules | the author's documentation of those new namesalso becomes available.4.5.5 The User InterfaceACL2 presents itself to the user as a read-eval-print loop in which ACL2 formsare read and evaluated. Upon reection, this is a dizzying statement, because itimplies that the command to de�ne a function, for example, is an ACL2 form.We discuss this in the next section.We here focus on three interesting aspects of this interface. First, as withtraditional Common Lisp interfaces, the user may freely mix the de�nition offunctions with their evaluation, typing only Common Lisp. Indeed, the onlylanguage one must know to use ACL2 is ACL2 (applicative Common Lisp). We�nd this unity pleasing. Indeed, the aspects of ACL2 relating to logic and proofare transparent as long as one is merely prototyping and testing a red system.A window based interface could be engineered from this base with about thesame di�culty as one could be engineered for a traditional Common Lisp.Second, because the command language is ACL2, the user can de�ne macrosto tailor the command environment. Here are three illustrative command-levelmacros.� A macro form might automatically \disable" all the rules generated by atheorem embedded in the form.� A macro form might generate schematically a collection of theorems fromsome data structure provided in the form. Such a macro might implementsome specialized methodology for proving certain kinds of properties aboutthe object model.� A macro form might submit a given theorem for proof and compute au-tomatically a certain style hint known by the user to be necessary whentheorems of the given kind are proved.In Nqthm, such macros were de�ned in Common Lisp. But proof scriptsusing those macros were unreadable by unmodi�ed Nqthm images. In ACL2,such macros may be included in the proof scripts in which they are used (perhapsby the recursive inclusion of a customization book). Checks made when booksare loaded insure that the macros used by a collection of books are compatible.It is our intention that the provision of macros at the command level will giveACL2 an advantage over Nqthm when using the system as a \shell" in which toconstruct veri�cation environments for specialized domains precisely because itallows one to codify, formally, the methodology required.

26 Third, ACL2 can be used to query the data base. Sophisticated users ofNqthm frequently use this aspect of Nqthm, as to collect all the names de�nedsince a given name was introduced, etc. But in Nqthm the use of Common Lispcan potentially render the system unsound, as would happen if the user rede�nedthe Common Lisp function prove or destructively modi�ed the property listswhile inspecting them. But in ACL2, such utility functions can be de�nedwithout having to program in a new language and without risking damage tothe system, because of ACL2's applicative nature and the checks made by itsde�nitional principle. Indeed, users can de�ne useful utilities and exchangethem via books, without rendering the system unsound.4.6 Practicing What We PreachACL2 is coded in ACL2. That is, the ACL2 system is a collection of bookscontaining de�nitions of ACL2 functions. The type mechanism, the rewriter,the linear arithmetic procedure, the induction heuristic, the error checkers, theerror handlers, the mechanism for reading and processing books, the top-levelread-eval-print loop| all are ACL2 functions. To boot the system, the compiledcode is loaded into any Common Lisp and then the system reads and processesits own source �les, �rst in the color red and then gold. (At the moment, onlypart of the system, about a tenth of it, has been processed in gold. Amongour goals is to process the entire system in gold.) The system currently standsat 4.9 megabytes (or about 109,000 lines of code), making it one of the largestapplicative programs in the world.The discipline of using ACL2 as its own implementation language has had aremarkable impact on the language, the theorem prover, and the system supporttools. Simply expressing ACL2 in itself stretched the applicative language fromthe rather con�ning natural subset of Common Lisp to a practical applicativeprogramming language. Our concern for the e�ciency of our software droveus to make ACL2 e�cient. Array access and change are essentially constant-time operations, that operate at about half the speed of the array access andchange in C. Appropriately declared simple arithmetic expressions execute atC speeds. However, unlike other practical applicative languages, ACL2 includesan axiomatization and a mechanical theorem proving environment.The discipline of processing our source code with the de�nitional princi-ple has yielded important improvements to the heuristics originally taken fromNqthm. For example, one 700 line de�nition in our source code expanded un-der Nqthm's de�nition normalization routines to 25 megabytes of formal code.ACL2 does not normalize de�nitions, which on the one hand forces its theoremprover to do so but on the other allows context-sensitive normalization to re-duce the number of cases. Whether ACL2 can manage to prove things aboutde�nitions of practical size (e.g., its own source code) remains to be seen; butthe experiment has at least established that the heuristics of Nqthm could not.By \practicing what we preach" we have been forced to confront in ACL2

Design Goals for ACL2CLI Technical Report #101 27the same problems of scale, e.g., e�ciency, problem size, documentation, ver-sion control, distributed development, etc., that Nqthm users were beginning toconfront. Furthermore, solving these problems has been on our \critical path."Some of the other side-e�ects of our choice of ACL2 as implementation lan-guage are noted briey below.� Because it is written in that subset of applicative Common Lisp thatis host-independent, ACL2 is portable to any compliant Common Lispplatform.� The ACL2 state, and in particular the data base, is an ACL2 object thatmay be inspected by ACL2 functions and the user. It is possible to saveversions of the data base for later retrieval and otherwise take advantage ofthe \�rst class" nature of the data base. Theory manipulation functionsget the data base as an argument. Metafunctions could in principle besensitive to the data base.� Metafunctions can be coded more e�ciently.� It is possible for ACL2 to reason about its own behavior since its sourcecode is among the axioms. So far, only trivial use of this has been made,namely, to verify the guards of hundreds of ACL2 system functions. (Itshould be noted that until ACL2 constructs independently checked formalproof objects | the direction in which our tag tree mechanism is headed| a proof by ACL2 about its own source code has to be regarded withthe same skepticism one is inclined toward when someone says \I wouldnever lie to you.")� It is possible to state in ACL2 that the system is sound.� It is in principle possible to prove that ACL2 is sound. This is among ourlong-term goals.5 The Associativity of AppendIn this section we exhibit a Common Lisp de�nition of list concatenation andprove that it is associative. We avoid using the built-in function append becauseit is de�ned as a macro that takes two or more arguments.The function app below concatenates two lists. However, the �rst argumentmust be a true-listp, which is to say, it must end in nil. Note the declared:guard below. This allows the de�nition of app to terminate with a null check,which is more e�cient than the type check atom.(defun app (x y)(declare (xargs :guard (true-listp x)))

28(cond ((null x) y)(t (cons (car x) (app (cdr x) y)))))This function is associative provided its guard is satis�ed. Here is a state-ment of the theorem:(implies (and (true-listp a)(true-listp b))(equal (app (app a b) c) (app a (app b c)))).The proof of this theorem, constructed by the current version of ACL2 (Ver-sion 1.6), is shown below. The Common Lisp reader generally converts lowercase input to upper case (except in strings and in certain delimited symbols)and thus the formulas printed below are in upper case.Of special interest is the \forcing round." The main proof proceeds byan induction on A. The term (APP (APP A B) C) in the induction conclu-sion expands, using the de�nition of APP on the innermost APP term, to (APP(CONS (CAR A) (APP (CDR A) B)) C). This expansion is permitted becausethe guard for that term, (TRUE-LISTP A), is known to be true by hypothesis.But to expand the outermost APP in (APP (CONS (CAR A) (APP (CDR A) B))C) we must know that its �rst argument is a TRUE-LISTP and this is problem-atic because it involves an inductive argument about the innermost APP. Butthe proof proceeds by \forcing" this guard (in Subgoal *1/3' below). At thesuccessful conclusion of the main proof, ACL2 undertakes a \Forcing Round"to show, by induction, that under the given hypotheses the innermost APP termreturns a TRUE-LISTP.Name the formula above *1.Perhaps we can prove *1 by induction. Five induction schemes are suggestedby this conjecture. Subsumption reduces that number to four. Thesemerge into two derived induction schemes. However, one of these isflawed and so we are left with one viable candidate.We will induct according to a scheme suggested by (APP A B). If welet (:P A B C) denote *1 above then the induction scheme we'll useis(AND (IMPLIES (NOT (TRUE-LISTP A))(:P A B C))(IMPLIES (AND (TRUE-LISTP A)(NOT (NULL A))(:P (CDR A) B C))(:P A B C))(IMPLIES (AND (TRUE-LISTP A) (NULL A))(:P A B C))).This induction is justified by the same argument used to admit APP,namely, the measure (ACL2-COUNT A) is decreasing according to the relationE0-ORD-< (which is known to be well-founded on the domain recognizedby E0-ORDINALP). When applied to the goal at hand the above inductionscheme produces the following three nontautological subgoals.

Design Goals for ACL2CLI Technical Report #101 29Subgoal *1/3(IMPLIES (AND (TRUE-LISTP A)(NOT (NULL A))(EQUAL (APP (APP (CDR A) B) C)(APP (CDR A) (APP B C)))(TRUE-LISTP B))(EQUAL (APP (APP A B) C)(APP A (APP B C)))).By the simple :definition of NULL we reduce the conjecture toSubgoal *1/3'(IMPLIES (AND (TRUE-LISTP A)(NOT (EQUAL A NIL))(EQUAL (APP (APP (CDR A) B) C)(APP (CDR A) (APP B C)))(TRUE-LISTP B))(EQUAL (APP (APP A B) C)(APP A (APP B C)))).But forced simplification reduces this to T, using primitive type reasoning,the :rewrite rules CDR-CONS and CAR-CONS and the :definitions of TRUE-LISTP and APP (forced).Subgoal *1/2(IMPLIES (AND (TRUE-LISTP A)(NOT (NULL A))(NOT (TRUE-LISTP (CDR A)))(TRUE-LISTP B))(EQUAL (APP (APP A B) C)(APP A (APP B C)))).But we reduce the conjecture to T, by primitive type reasoning.Subgoal *1/1(IMPLIES (AND (TRUE-LISTP A)(NULL A)(TRUE-LISTP B))(EQUAL (APP (APP A B) C)(APP A (APP B C)))).By the simple :definition of NULL we reduce the conjecture toSubgoal *1/1'(IMPLIES (AND (TRUE-LISTP A)(NOT A)(TRUE-LISTP B))(EQUAL (APP (APP A B) C)(APP A (APP B C)))).But simplification reduces this to T, using primitive type reasoning,the :definition of APP and the :executable-counterparts of TRUE-LISTP,NOT and EQUAL.

30That completes the proof of *1.q.e.d. (given one forced hypothesis)Modulo the following forced goal, that completes the proof of the inputGoal. See :DOC forcing-round.[1]Goal, below, will focus on(TRUE-LISTP (APP (CDR A) B)),which was forced inSubgoal *1/3', above,by applying (:DEFINITION APP) to(APP (CONS (CAR A) (APP (CDR A) B)) C).We now undertake Forcing Round 1.[1]Goal(IMPLIES (AND (CONSP A)(TRUE-LISTP (CDR A))(TRUE-LISTP B))(TRUE-LISTP (APP (CDR A) B))).The destructor terms (CAR A) and (CDR A) can be eliminated by usingCAR-CDR-ELIM to replace A by (CONS A1 A2), generalizing (CAR A) toA1 and (CDR A) to A2. This produces the following goal.[1]Goal'(IMPLIES (AND (CONSP (CONS A1 A2))(TRUE-LISTP A2)(TRUE-LISTP B))(TRUE-LISTP (APP A2 B))).This simplifies, using primitive type reasoning, to[1]Goal''(IMPLIES (AND (TRUE-LISTP A2) (TRUE-LISTP B))(TRUE-LISTP (APP A2 B))).Name the formula above [1]*1.Perhaps we can prove [1]*1 by induction. Three induction schemes aresuggested by this conjecture. These merge into two derived inductionschemes. However, one of these is flawed and so we are left with oneviable candidate.We will induct according to a scheme suggested by (APP A2 B). If welet (:P A2 B) denote [1]*1 above then the induction scheme we'll useis(AND (IMPLIES (NOT (TRUE-LISTP A2))(:P A2 B))(IMPLIES (AND (TRUE-LISTP A2)(NOT (NULL A2))(:P (CDR A2) B))(:P A2 B))(IMPLIES (AND (TRUE-LISTP A2) (NULL A2))

Design Goals for ACL2CLI Technical Report #101 31(:P A2 B))).This induction is justified by the same argument used to admit APP,namely, the measure (ACL2-COUNT A2) is decreasing according to therelation E0-ORD-< (which is known to be well-founded on the domainrecognized by E0-ORDINALP). When applied to the goal at hand the aboveinduction scheme produces the following three nontautological subgoals.[1]Subgoal *1/3(IMPLIES (AND (TRUE-LISTP A2)(NOT (NULL A2))(TRUE-LISTP (APP (CDR A2) B))(TRUE-LISTP B))(TRUE-LISTP (APP A2 B))).By the simple :definition of NULL we reduce the conjecture to[1]Subgoal *1/3'(IMPLIES (AND (TRUE-LISTP A2)(NOT (EQUAL A2 NIL))(TRUE-LISTP (APP (CDR A2) B))(TRUE-LISTP B))(TRUE-LISTP (APP A2 B))).But simplification reduces this to T, using the :definitions of TRUE-LISTP and APP and primitive type reasoning.[1]Subgoal *1/2(IMPLIES (AND (TRUE-LISTP A2)(NOT (NULL A2))(NOT (TRUE-LISTP (CDR A2)))(TRUE-LISTP B))(TRUE-LISTP (APP A2 B))).But we reduce the conjecture to T, by primitive type reasoning.[1]Subgoal *1/1(IMPLIES (AND (TRUE-LISTP A2)(NULL A2)(TRUE-LISTP B))(TRUE-LISTP (APP A2 B))).By the simple :definition of NULL we reduce the conjecture to[1]Subgoal *1/1'(IMPLIES (AND (TRUE-LISTP A2)(NOT A2)(TRUE-LISTP B))(TRUE-LISTP (APP A2 B))).But simplification reduces this to T, using the :definition of APPand the :executable-counterparts of TRUE-LISTP, NOT and EQUAL.That completes the proof of [1]*1.Q.E.D.

32SummaryForm: (THM ...)Rules: ((:DEFINITION IMPLIES)(:REWRITE CDR-CONS)(:REWRITE CAR-CONS)(:ELIM CAR-CDR-ELIM)(:DEFINITION TRUE-LISTP)(:FAKE-RUNE-FOR-TYPE-SET NIL)(:DEFINITION NULL)(:DEFINITION NOT)(:EXECUTABLE-COUNTERPART TRUE-LISTP)(:EXECUTABLE-COUNTERPART NOT)(:EXECUTABLE-COUNTERPART EQUAL)(:DEFINITION APP))Warnings: NoneTime: 1.60 seconds (prove: 0.80, print: 0.43, proof tree: 0.28, other: 0.08)6 Applications of ACL2We list briey some of the ongoing applications of ACL2. Most of these projectsare still in the formalization stage and have not yet gotten to the most signi�cantproofs. However, this collection of ACL2 projects already includes over 1,500theorems proved, not counting those proofs performed during the admission ofthe blue and gold de�nitions in the systems described below.� The ACL2 system is being built in ACL2. The construction involvestermination proofs and guard veri�cation of ACL2 functions. The sourcecode now stands at 4.9 megabytes of ACL2.� The Nqthm package is being developed. Roughly speaking, this is a bookthat embeds the Nqthm logic into the ACL2 logic and causes ACL2'stheorem prover to emulate Nqthm's. With the exception of Nqthm'sV&C$ and its superiors, all primitive Nqthm functions are now de�nedwithin the "NQTHM" package and the relevant Nqthm axioms about themhave been proved as ACL2 theorems by ACL2. For example after ap-propriately de�ning such symbols as NQTHM::CAR, the formula (IMPLIES(NOT (LISTP X)) (EQUAL (CAR X) 0)) is an ACL2 theorem, providedit is read while in the current package "NQTHM". This is one of the ax-ioms of Nqthm. The Nqthm de�nitional principle and shell principlehave been implemented. A book of rules causing the ACL2 theoremprover to emulate the Nqthm theorem prover is being developed. It ishoped that with this book most of the 11 megabytes of Nqthm bench-marks will \replay" automatically in ACL2. This project is still underway but results so far are promising. We have processed roughly 75% ofthe �le /nqthm-1992/examples/basic/proveall.events, which includes

Design Goals for ACL2CLI Technical Report #101 33such theorems as the correctness of a simple optimizing expression com-piler, Euclid's theorem, and the soundness of a tautology checker. Weexpect the Acl2 emulation of Nqthm to result in an overall degradationof performance (compared to both Nqthm's proof engine and its execu-tion environment). However, the Nqthm package will provide a migrationpathway for Nqthm users to ACL2. Furthermore, the Nqthm package willprovide an important collection of benchmark theorems on which we cantune Acl2 performance.� Many low-level books are being developed with the expectation that theywill �nd widespread use. Among them are books for natural, integer,modulo, rational and complex arithmetic, groups, hardware speci�cations,and metatheoretic reasoning.� The Nqthm work related to the Motorola MC68020 is being recast intoACL2. In particular, an ACL2 de�nition of the object code interpreteris being developed from the Nqthm model and the Nqthm library usedin the program correctness proofs will be developed as an ACL2 book.Initially, our aim is to reproduce the Nqthm proofs with Acl2 | a goalthat could perhaps be achieved more easily via the Nqthm package. Butultimately we hope to tune to ACL2 model so that the simulation of objectcode programs is faster than via the Nqthm model or its emulation in theNqthm package.� The semantics of a subset of Ada is being coded in ACL2 in the form ofan Ada interpreter. Some simple Ada programs have been veri�ed withrespect to this semantics. A book of useful Ada rules is being developed.The intent of these and other \high-level" books about a given subjectformalism (in this case Ada) is to con�gure ACL2 so that the proofs aboutobjects in the subject formalism (here, Ada programs) are straightforwardwhen certain paradigms are followed.� A top-level speci�cation of a proprietary Motorola digital signal processing(DSP) microprocessor is being developed. When complete, the speci�ca-tion will be used to prove the correctness of some DSP algorithms and todevelop a high-level book about the processor. This work is analogous tothe Nqthm work on the MC68020 and the C string library.� The semantics of VHDL is being coded in ACL2 in the form of a VHDLinterpreter or simulator. When completed it will be, in principle, possibleto prove theorems about the behavior of VHDL systems. Because of thesize and complexity of VHDL, such proofs will be an interesting challengeto ACL2 and its users.

347 Conclusions and CriticismsThe ACL2 project is now �ve years old. The system has not been releasedbecause we are still �nding bugs in it and we are not happy yet with its doc-umentation. Within CLI, ACL2 is used more than Nqthm, although this isprobably more due to social reasons than technical ones (one hears more talkabout ACL2 than Nqthm around the co�ee pot). ACL2 now has about a dozenusers, all of whom have experience with Nqthm.We have many concerns about ACL2's viability.7.1 GuardsPerhaps the most pervasive concern is the feeling that guards are not yet ad-equately handled. Guard checking is slow because so many common cases arehandled by full-blown theorem proving rather than fast syntactic checkers. Moreproblematic is that guards complicate the statement of theorems. Nqthm's logicgets incredible mileage out of the notion that functions | especially arithmeticfunctions | default \unexpected" input to reasonable values so that many the-orems are stated without hypotheses. In ACL2 one must be careful to restrictevery variable appropriately so that the guards of all functions are satis�ed.(Macros can be written to supply restrictive hypotheses based on variable names,so the syntactic burden is not the issue.) For example, Common Lisp makes noguarantee that (+ i j) is (+ j i) unless both i and j are numbers. This meansnot only that theorems are more cumbersome to state but rules | especiallyrewrite rules and de�nitions | are more restrictive, cause more backchainingand fail to apply more often. A consideration is that sometimes rules fail toapply even though the hypotheses are true, because the system is too weak toestablish their truth without additional help.In the original version of ACL2 we made no special provisions for guardsand found that many rules, especially de�nitions, could not be applied underNqthm's heuristics because hypotheses (namely guards) could not be relievedat the time they were needed. This is illustrated by the proof above of theassociativity of APP: the hypothesis required induction to prove.Our �rst attempt to handle guards specially was suggested by Nqthm's han-dling of guard-like hypotheses in its linear arithmetic decision procedure, wherea new case split is introduced whenever the procedures \needs" a hypothesis itcannot establish. With ACL2 this generated proofs that were hard to follow be-cause of the numerous and apparently spontaneous case splits. While this mayseem like mere carping, the e�ect was quite deleterious on the user's ability to\debug" a proof attempt and guide the system to successful proofs.In addition, it is important to realize that most proof attempts fail becausethe goal conjecture is not a theorem. This happens (in Nqthm, in ACL2, and,we suspect, in most mechanized theorem proving systems used for similar tasks)because the user is still grappling with the modeling and formalization problems.

Design Goals for ACL2CLI Technical Report #101 35The guard-generated case splits, even those eventually dispatched successfully,merely delayed the user's discovery of the \real" reason the proof attempt failed.The introduction of \forcing rounds" was our second attempt to try to mit-igate the problem of guards. Unlike the approach in our �rst attempt, forcingrounds delay the consideration of the \type-like" guard conjectures until afterthe \gist" of the proof has been successfully done. Forcing rounds were regardedby the users as an improvement over the earlier scheme. But users still remem-ber fondly the Nqthm days when such details simply did not arise. Of course,guards allow execution e�ciency. Therefore, the trade-o� is whether the addedcomplexity in proofs is worth the speedup in the simulation speeds of large for-mal models. The results are not yet in because we have not completed suitablylarge scale experiments yet.When we are discouraged about the ability of the system to handle guards,we are sometimes tempted to change slightly the story relating ACL2 to Com-mon Lisp. Rather than maintain that ACL2 functions are unde�ned outsidetheir guarded domains we could de�ne them explicitly as is done in Nqthm'slogic. The result would be a particular implementation of a Common Lisp, whichwe sometimes refer to as \completed Common Lisp." In completed CommonLisp functions would coerce unexpected arguments to natural values. Thus, forexample, arithmetic functions would coerce non-numeric arguments to 0. Thiswould simplify many axioms and theorems. De�nitions could be used uncondi-tionally. Some unusual theorems would hold, e.g., (equal (car 7) nil), thatwould surprise some Common Lisp programmers. But the story relating thecompleted Common Lisp logic to Common Lisp would be the same as it is now:gold theorems are true in all compliant Common Lisps. We are reluctant to gothis route just now, choosing instead to proceed �rst by evaluating ACL2 onbig examples.Perhaps a natural question at this point is: \Why don't the Acl2 imple-mentors do away with this notion of guards and instead take a more standardapproach to the same issue, i.e., using some kind of decidable type checking?"Our most important reason: we have already decided to stay compliant with theCommon Lisp language, and we are not aware of any simple way of inventinga decidable type system that lets us do this in a reasonable fashion. Also, weare encouraged by the progress we have made in the handling of guards (specif-ically, in the success of the \forcing round" technique), and users have begunconsidering their use in speci�cations. If guards are found to be useful this way,they will enjoy a decided advantage over decidable type systems that we haveseen, because they are as expressive as the Common Lisp language itself: anypredicate may be used as a guard. Most decidable type systems do not evenallow types other than conjunctions of calls of unary predicates! At any rate,even if we ultimately feel that we must give up the present notion of guards,the \completed Common Lisp" idea discussed above provides a route for elim-inating much of the proof burden introduced by guards, without eliminatingthe connection to Common Lisp or the ability to use guards as a speci�cation

36device.7.2 Draft Proposed ANSI StandardWe are aware of one area in which ACL2 is at odds with the draft proposedANSI standard for Common Lisp [30] and that is in connection with the \gen-eralized Boolean" functions of the proposed standard. In ACL2, equal, forexample, is a Boolean valued function, meaning that it returns either nil ort. But in [30] equal is a \generalized Boolean" valued function, meaning thatit may return any non-nil value to indicate truth. Many functions that re-turn Booleans in traditional Lisp implementations return generalized Booleansin [30], including equal, <, symbolp, and subsetp. Apparently programs arenot to use such functions in contexts other than those in which their values aretested as propositions.As ACL2 now stands there are gold theorems that are not true of the lan-guage described in [30]. One example is (equal (equal nil nil) (equal nilnil)). In ACL2, both of the interior equal terms return t and so the theoremfollows from the axiom (equal x x). But in [30] the �rst (equal nil nil)might return t and the second might return 23 and the two are not equal. Thisformula violates the spirit of [30]: generalized Booleans are to be used only inpropositional tests. To conform to [30] we might introduce a new attribute offunction symbols, namely whether they have generalized Boolean values, andnarrow the class of gold formulas to exclude those where generalized Booleansare \misused."7.3 The Complexity of ACL2The proliferation of ACL2 rule classes may be a mistake. For example, the cur-rent ACL2 supports rewrite rules, linear rules, linear alias rules, well-foundedrelation rules, built-in clause rules, compound recognizer rules, destructor elimi-nation rules, generalization rules, meta rules, forward chaining rules, equivalencerules, re�nement rules, congruence rules, type-prescription rules, alternative def-inition rules, induction rules, and type-set inverter rules. This is an aspect ofACL2's open architecture: it is easy to program ACL2's theorem prover. Butit is easy to program it very ine�ciently. Moreover, the plethora of rule classescan be intimidating to new users (though we expect that improved, \layered"documentation may help in this regard).Programming disciplines (perhaps augmented by some additional heuristics)need to be developed so that users can create rule sets that are e�ective ande�cient. We may �nd the plethora of rule classes simply too complicated for thedevelopment of adequate disciplines and be forced to abandon some of these.More likely, we may develop disciplines that essentially recommend that only\experts" employ all but the few well-understood rule classes.

Design Goals for ACL2CLI Technical Report #101 37More generally, we are concerned about the intellectual complexity of theACL2 proof engine and environment. We �nd its applicative de�nition wonder-fully clear, but 4.9 megabytes of source code | even very clear source code | isdi�cult to keep in mind. An ACL2 image is about 30 megabytes. We estimatethat about 20 of that is devoted to the initial property list world which containsthe results of processing the 4.9 megabytes of ACL2 source code. For example,one of the de�nitional axioms of ACL2 is the formula that equates (prove termpspv hints wrld ctx state) to its body, i.e., the initial axioms include thede�nition of our heuristic theorem prover. Along these same lines, it is possibleto inspect the initial data base and see the de�nition of the rewriter with its16 formal parameters and its 30 mutually recursive entries. There is a lot ofcomplexity here.While soundness is, of course, an issue, it is not the main obstacle. Ulti-mately, soundness could be be insured, we hope, by having the system generateproof objects which are checked. Our concern is that if the system is too com-plex it will be impossible for us to coordinate its various parts so that theyoperate harmoniously, i.e., so that it discovers any proofs at all. It would bevery reassuring to us to see ACL2 reproduce the proofs in Nqthm's benchmark�les, simply as evidence that ACL2's abundance of proof techniques interoperateharmoniously \enough."7.4 PerformanceFinally, ACL2 feels sluggish. One must, of course, ask \Compared to what?"Since all of its users are former Nqthm users, the answer is that ACL2 feelssluggish compared to Nqthm.One possible explanation is that ACL2's performance is degraded by its ap-plicative implementation. We believe this conjecture is false. Experiments withisolated code fragments indicate that the applicative expression of Nqthm's al-gorithms generally execute as fast or faster than their Nqthm implementation.This is not surprising: Nqthm's coding style is heavily inuenced by its pre-vious expression in Interlisp where the performance trade-o�s between globalvariables, special variables, and local variables were di�erent than in CommonLisp. We expect that if we were to recode Nqthm applicatively it would speedup by perhaps as much as 10%.But ACL2 is not such a recoding of Nqthm: its logic is much more com-plicated and its heuristics are sometimes di�erent. The di�erences in the logicmake it di�cult even to present the two systems with the \same problem." Todo so one must embed the relevant fragment of one logic in the other and provethe rules necessary to cause one system to emulate the other. But even whenthat is done, the proofs generated for identical problems sometimes divergebecause of the heuristic di�erences in the two systems.These considerations make it very di�cult to produce a meaningful quanti-tative comparison of the two systems. Rather than pursue comparisons then it

38is our intention to try to speed up ACL2. We know that its applicative printingfunctions are quite slow compared to the Common Lisp primitives; speedingup these functions would make ACL2 feel faster. But the performance of thetheorem prover can also be improved, both by reconsidering some heuristics andby recoding some poor implementations of individual functions. This kind oftuning, of which Nqthm has had a great deal, comes only after a very large col-lection of benchmark theorems is available for test purposes. Therefore, we areinclined at this stage simply to use ACL2 (and to ignore, for the time being, ourqualms about its performance). The Nqthm package, which will make Nqthm'sbenchmark �les available to ACL2, is especially important for performance tun-ing, as it will allow us to compare various \tunings" of ACL2 on thousands oftheorems.References[1] R. L. Akers. Strong Static Type Checking for Functional Common Lisp.Ph.D. Thesis, University of Texas at Austin, 1993. Also available throughComputational Logic, Inc., Suite 290, 1717 West Sixth Street, Austin,TX 78703.[2] K. Albin. 68020 Model Validation Testing, CLI Note 280, August 1993.[3] W. R. Bevier. A Veri�ed Operating System Kernel. Ph.D. Thesis, Uni-versity of Texas at Austin, 1987. Also available through ComputationalLogic, Inc., Suite 290, 1717 West Sixth Street, Austin, TX 78703.[4] W. R. Bevier, W. A. Hunt, J S. Moore, and W.D. Young. Special Issueon System Veri�cation. Journal of Automated Reasoning, 5(4), 409{530,1989.[5] W. R. Bevier and W. D. Young. Machine Checked Proofs of the Design ofa Fault-Tolerant Circuit, Formal Aspects of Computing, Vol. 4, pp. 755{775, 1992. Also available as Technical Report 62, Computational Logic,Inc., Suite 290, 1717 West Sixth Street, Austin, TX 78703, August, 1990,and as NASA CR-182099, November, 1990.[6] R. S. Boyer, D. Goldschlag, M. Kaufmann, and J S. Moore. FunctionalInstantiation in First Order Logic. In Arti�cial Intelligence and Math-ematical Theory of Computation: Papers in Honor of John McCarthy,Academic Press, 1991, pp. 7-26.[7] Robert S. Boyer, Matt Kaufmann, and J Strother Moore. \The Boyer-Moore Theorem Prover and Its Interactive Enhancement." (Submitted.)[8] R. S. Boyer and J S. Moore. A Computational Logic, Academic Press:New York, 1979.

Design Goals for ACL2CLI Technical Report #101 39[9] R. S. Boyer and J S. Moore. Metafunctions: Proving Them Correctand Using Them E�ciently as New Proof Procedures. In R. S. Boyerand J S. Moore, editors, The Correctness Problem in Computer Science,Academic Press, 1981.[10] R. S. Boyer and J S. Moore. A Mechanical Proof of the Turing Com-pleteness of Pure Lisp. In W. W. Bledsoe and D. W. Loveland, editors,Automated Theorem Proving: After 25 Years, American MathematicalSociety, Providence, R.I., 1984, pp. 133-167.[11] R. S. Boyer and J S. Moore. A Computational Logic Handbook, AcademicPress: New York, 1988.[12] R. S. Boyer and Y. Yu, Automated Correctness Proofs of Machine CodePrograms for a Commercial Microprocessor. In D. Kapur, editor, Auto-mated Deduction { CADE-11, Lecture Notes in Computer Science 607,Springer-Verlag, 416{430, 1992.[13] B. C. Brock, W. A. Hunt, Jr. and W. D. Young. Introduction to a For-mally De�ned Hardware Description Language. In Theorem Provers inCircuit Designs, Number A10 in IFIP Transactions. North Holland, 1992.[14] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.Addison-Wesley: Massachusetts, 1988.[15] J. Cowles. Meeting a Challenge of Knuth. Internal Note 286, Computa-tional Logic, Inc., Austin, Texas, September, 1993.[16] D. M. Goldschlag. Mechanizing Unity. In M. Broy and C. B. Jones, edi-tors, Programming Concepts and Methods, North Holland, Amsterdam,1990.[17] D. M. Goldschlag. Mechanically Verifying Concurrent Programs withthe Boyer-Moore Prover. IEEE Transactions on Software Engineering,16, September, 1990.[18] W. A. Hunt, Jr. FM8501: A Veri�ed Microprocessor, Ph.D. Thesis, TheUniversity of Texas at Austin, December, 1985. Also available throughComputational Logic, Inc., as Technical Report ICSCA-CMP-47, Insti-tute for Computing Science and Computer Applications, University ofTexas at Austin, December, 1985.[19] W. A. Hunt, Jr. and B. Brock. A Formal HDL and its use in the FM9001Veri�cation. Proceedings of the Royal Society, 1992.[20] M. Kaufmann. A User's Manual for an Interactive Enhancement tothe Boyer-Moore Theorem Prover, Technical report 19, ComputationalLogic, Inc., May, 1988.

40[21] M. Kaufmann. Addition of Free Variables to an Interactive Enchance-ment of the Boyer-Moore Theorem Prover, Technical Report 42, Com-putational Logic, Inc., 1990.[22] M. Kaufmann. An extension of the Boyer-Moore theorem prover tosupport �rst-order quanti�cation. Journal of Automated Reasoning,9(3):355{372, December 1992.[23] M. Kaufmann. An Assistant for Reading Nqthm Proof Output. TechnicalReport 85, Computational Logic, Inc., November, 1992.[24] M. Kaufmann and P. Pecchiari. Interaction with the Boyer-Moore The-orem Prover: A Tutorial Study Using the Arithmetic-Geometric MeanTheorem, Technical Report 102, Computational Logic, Inc., 1994.[25] D. E. Knuth. Textbook examples of recursion. In V. Lifschitz, editor,Arti�cial Intelligence and Mathematical Theory of Computation: Papersin Honor of John McCarthy, Academic Press, San Diego, CA, 207{229,1991.[26] J S. Moore. Veri�ed Hardware Implementing an 8-Bit Parallel InOByzantine Agreement Processor. Technical Report 69, ComputationalLogic, Inc., Austin, Texas, August, 1991.[27] J S. Moore. A Formal Model of Asynchronous Communication and ItsUse in Mechanically Verifying a Biphase Mark Protocol, Formal Aspectsof Computing 6(1), 60{91, 1994.[28] J S. Moore. Introduction to the OBDD Algorithm for the ATP Commu-nity, Journal of Automated Reasoning 12, 33{45, 1994.[29] Motorola, Inc. MC68020 32-bit Microprocessor User's Manual. PrenticeHall, New Jersey, 1989.[30] K. M. Pitman et al. draft proposed American National Standard for Infor-mation Systems | Programming Language | Common Lisp; X3J13/93-102. Global Engineering Documents, Inc., 1994.[31] D. M. Russino�. A Mechanical Proof of Quadratic Reciprocity. Journalof Automated Reasoning, 8(1), 3{21, 1992.[32] D. M. Russino�. Speci�cation and Veri�cation of Gate-Level VHDLModels of Synchronous and Asynchronous Circuits. Technical Report99, Computational Logic, Inc., Austin, Texas, May, 1994.[33] N. Shankar. A Mechanical Proof of the Church-Rosser Theorem. JACM35(3), 475{522, 1988.

Design Goals for ACL2CLI Technical Report #101 41[34] N. Shankar.Metamathematics, Machines, and G�odel's Proof, CambridgeUniversity press, 1994.[35] G. L. Steele Jr. Common LISP: The Language, Digital Press: Bedford,MA, 1984.[36] G. L. Steele, Jr. Common Lisp The Language, Second Edition. DigitalPress, 30 North Avenue, Burlington, MA 01803, 1990.[37] M. Wilding. An optimal real-time scheduler based on a simple model ofcomputation. Internal Note 276, Computational Logic, Inc., July 1993.[38] W.D. Young. Verifying the Interactive Convergence Clock Synchroniza-tion Algorithm using the Boyer-Moore Theorem Prover. Contractor Re-port 189649, NASA, April 1992.[39] Y. Yu. Automated Proofs of Object Code for a Widely Used Micro-processor. Ph.D. Thesis, The University of Texas at Austin, 1992. Alsoavailable through Systems Research Center, Digital Equipment Corpo-ration, 130 Lytton Avenue, Palo Alto, California, 94301.

