
Automatically Computing Functional Instantiations

J Strother Moore
Department of Computer Sciences

Taylor Hall 2.124 C0500
University of Texas at Austin

1 University Station
Austin, TX 78712 USA

moore@cs.utexas.edu

ABSTRACT
Among the standard books distributed with ACL2 is the
consider-hint book in the hints subdirectory, which im-
plements a heuristic for computing functional instantiations.
The implementation of the hint involves four basic algo-
rithms: a second-order pattern matching algorithm that can
compute instantiations for constrained and defined functions
that call constrained functions, a process for generating vari-
ants of a term obtained by applying equations, a process for
extending second-order matching through definitions so that
when instantiating defined functions the algorithm can pick
up appropriate bindings for the constrained functions inside
the definitions, and an algorithm for sorting among likely
functional substitutions. The second-order matching algo-
rithm is an incomplete and slightly extended implementation
of the Huet-Lang algorithm. We describe the four basic al-
gorithms involved in guessing functional instantiations. We
briefly suggest further work required to make the utility ro-
bust and suggest a new feature that could be added to ACL2
if this utility were sufficiently robust. We hope that some
enterprising user or student will take up these challenges.

General Terms
theorem proving, program verification, mechanizing reason-
ing

Keywords
second order matching problem, definitional schemes, Huet-
Lang algorithm, equational matching

Categories and Subject Descriptors
F.4 [Mathematical Logic and Formal Languages]: Mis-
cellaneous; G.4 [Mathematical Software]

1. EXAMPLE
Consider the function filter-map-h. This function maps
over its argument, which it treats as a list of elements, it
identifies each element having property hp and it collects

the result of applying h to such elements. Here we imagine
that hp and h are constrained function symbols – function
symbols that are undefined but perhaps known to satisfy
some constraining axioms.

(DEFUN filter-map-h (x)
(IF (ENDP x)

NIL
(IF (hp (CAR x))

(CONS (h (CAR x))
(filter-map-h (CDR x)))

(filter-map-h (CDR x)))))

We might prove this theorem about filter-map-h

(defthm FILTER-MAP-H-APPEND
(EQUAL (filter-map-h (APPEND y z))

(APPEND (filter-map-h y)
(filter-map-h z)))

Here we think of hp, h, and filter-map-h as function-valued
variable symbols because they may be usefully instantiated
by functional substitutions.

Now consider this “concrete” function

(DEFUN BUMPER (U V W)
(IF (CONSP U)

(CONS (+ (* W (CAR U)) V)
(BUMPER (CDR U) V W))

NIL))

This function multiplies each element of u by w and adds v,
collecting the results. It is possible to “instantiate” filter-
map-h so that it is equal to BUMPER. To make this precise, it
is possible to prove

(EQUAL (BUMPER (APPEND A B) I J)
(APPEND (BUMPER A I J)

(BUMPER B I J)))

from filter-map-h-append by functional instantiation [3,
4], specifically with the functional substitution:

filter-map-h := (LAMBDA (X) (BUMPER X I J))



hp := (LAMBDA (X) T)
h := (LAMBDA (X) (+ (* J X) I))
y := A
z := B

This instantiation is computed automatically by the :con-

sider hint, which is implemented in the distributed ACL2
book consider-hint in the hints subdirectory. In par-
ticular, if the consider hint book has been included and
the command (add-consider-hint) executed, the follow-
ing succeeds:

(DEFTHM BUMPER-APPEND
(EQUAL (BUMPER (APPEND A B) I J)

(APPEND (BUMPER A I J)
(BUMPER B I J)))

:hints (("Goal" :consider FILTER-MAP-H-APPEND)))

This paper explains the basic algorithms used in the :con-

sider hint. They are

• the Huet-Lang second-order matching algorithm for
computing substitutions under which “second order”
terms are syntactically identical to first order ones

• a rewrite utility that implements certain simple equa-
tional identities like (endp x) = (not (consp x)).

• a “driver” that iteratively extends substitutions, by
diving into and matching bodies of defined generic
functions and their alleged concrete counterparts

• a scoring heuristic for selecting the “best” of many al-
ternative substitutions.

We leave it to the reader to imagine how all this is tied to-
gether to implement the :consider hint. The basic idea,
however, is that the user supplies the name of a (“second-
order”) theorem and (optionally) a pattern, a target term,
and/or an initial functional substitution to be extended.
When not supplied, the last three arguments to the :con-

sider hint default in specified ways. The target may be
specified in terms of the goal clause, whose exact form may
not be known when the hint is given. When the indicated
goal arises, the arguments are determined, the algorithm dis-
cussed here is used to select all of the highest scoring func-
tional substitutions, and an :or hint is generated to force
the system to consider each possibility with the prover. Each
branch of the :or contains a manufactured :use hint that
provides one of the highest scoring functional substitutions
computed. If any branch succeeds, the proof succeeds.1

We apologize to the reader for the absence of sufficient docu-
mentation on how to use the :consider hint. If you include
the book books/hints/consider-hint and type :doc con-

sideration you will see the beginnings of the documenta-
tion, which explains how to specify the theorem and optional
pattern, target, and substitution seed.
1The user wishing to see the actual functional substitutions
selected by a given application of a :consider hint should
execute (show-custom-keyword-hint-expansion t) before
the proof in question. This causes ACL2 to print the expan-
sion of all custom keyword hints, of which :consider hint
is one.

We do not describe the :consider hint in this paper. It
is implemented as a certified book in terms of “custom key-
word” hints and the :or hint, both of which are documented
in the online documentation. Because of this, the soundness
of the algorithms described here is not at issue: if they com-
pute incorrect instantiations, the :consider hint’s applica-
tion will cause the theorem prover to fail.

2. THE HUET-LANG ALGORITHM
2.1 Abstract Description
“Matching” is generally used to mean finding a substitution
on the variable symbols in a term so that the instance of that
term is another term. Unlike unification, matching gets to
instantiate only the variable symbols in one of the terms.

While second-order unification is undecidable, second-order
matching is NP-complete. Certain restricted cases of the
matching problem are solvable in polynomial time and other
restricted cases are still NP-complete [1]. Here, we are inter-
ested in the unrestricted case and implement the Huet-Lang
second-order matching algorithm [2].

First we establish some terminology. We sometimes call con-
strained function symbols functional variables and divide
them into two classes, simple constrained symbols like hp

and h which are introduced directly with encapsulate, and
defined constrained symbols like filter-map-h which were
introduced with defun but which use constrained symbols
hereditarily in their bodies.

A second order term is an ACL2 term in which some of
the function symbols are (simple or defined) constrained
function symbols. For the purposes of exposition, we will
sometimes write instantiable variable symbols, both func-
tional and first-order, in lower case typewriter font and unin-
stantiable variable symbols, axiomatized ACL2 primitives,
and defined (unconstrained) function symbols in upper case
typewriter font. We often call the latter function symbols
concrete symbols. By “uninstantiable variable symbols” we
mean first-order (“individual”) variable symbols occurring
in the target term and unavailable for instantiation by the
matching process. However, there is in fact no distinction
between x and X in ACL2 and the distinction we are making
typographically is implemented other ways.

Thus, hp and filter-map-h are constrained function sym-
bols and might be called functional variable symbols. CAR

and BUMPER are concrete function symbols. (F (G x) y) is
a (first-order and instantiable) term, (F (G X) Y) is a can-
didate target term, containing no instantiable symbols and
might sometimes be thought of like the ground term (F (G

(X) (Y))), and (f u v) is a second-order term.

Italics are used only for meta-variables; f generally denotes
some function symbol. We sometimes use F if we know the
denoted symbol is concrete.

In this section we assume our input terms do not contain
lambda expressions. The implementation will allow but
eliminate lambda expressions.

A substitution is a finite map from constrained function sym-
bols and individual variable symbols. Individual variable



symbols are mapped to first-order terms. Constrained func-
tion symbols of arity n are mapped to lambda expressions
of the form (LAMBDA (v1...vn) β) where β is a term whose
only free variable symbols are among the vi. Thus, { u :=
(G (X)); v := (Y) ; f := (LAMBDA (i j) (F i j)) } is a
substitution.

The result, t/σ = t′, of applying a substitution σ to a term
t is obtained as follows.

• If t is a variable symbol in the domain of σ, t′ is σ(t).

• If t = (f a1 . . . ak) where f is in the domain of σ,
then t′ is the beta reduction of (σ(f) a1/σ . . . an/σ)

• If t is a variable symbol not in the domain of σ, or t is
a constant, t′ is t.

• Otherwise, t is of the form (f a1 . . . ak) and t′ is
(f a1/σ . . . an/σ).

The beta reduction of ((LAMBDA (v1 . . . vn) β) α1 . . . αn)

is β/{v1 := α1; . . . vn := αn}. Thus, the beta reduction
of ((LAMBDA (i j) (F i j)) (G (X)) (Y)) is (F (G (X))

(Y)).

A matching challenge E is a finite set of ordered pairs, 〈ti, si〉
such that ti is a (possibly) second order term and si is a first
order ground term.2

If 〈ti, si〉 is a pair in a matching challenge, we call ti the
pattern and si the target.

It is convenient to write E/σ to denote the matching chal-
lenge obtained from another by applying σ to each of the
patterns in E.

The question raised by a matching challenge is whether there
exists a σ such that ti/σ is identical to si, for every i? That
is the second-order matching problem.

To determine whether it is possible to instantiate a second
order pattern term t to get a first order target term s, one
solves the matching challenge for {〈t, s〉}.

The Huet-Lang algorithm solves the second-order matching
problem [2]. In practice, the algorithm collects and returns
all possible substitutions. We describe it below without dis-
cussing how the substitutions are recovered, but that will
become obvious. The algorithm as described here is based
on five transformation rules that map matching challenges
to matching challenges. We say E ⇒ E′ if there is a trans-
formation that maps E to E′. We say E ⇒∗ E′ if there is a
finite sequence of Ei such that E ⇒ E1 ⇒ E2 . . .⇒ E′.

The Huet-Lang Theorem is that a suitable substitution ex-
ists for E if and only if E ⇒∗ φ, where φ is the empty set
and the five transformations are:

2In the literature, E is called a matching expression rather
than a matching challenge, but we follow the ACL2 con-
vention of using the word “expression” synonymously with
“term.”

• Identity:
{〈s, s〉} ∪ E ⇒ E.

• Binding:
{〈v, s〉} ∪ E ⇒ E/{v := s}, where v is an individual
variable symbol.

• Simplification:
{〈(F t1 . . . tn), (F s1 . . . sn)〉} ∪ E
⇒ {〈t1, s1〉, . . . 〈tn, sn〉} ∪ E.

• Projection:
E ⇒ E/{f := (LAMBDA (v1 . . . vn) vi)}, if one of the
elements of E is 〈(f t1 . . . tn), s〉 where f is a con-
strained function symbol.

• Imitation:

E ⇒ E/{f := (LAMBDA (v1 . . . vn)
(F (h1 v1 . . . vn)

. . .
(hm v1 . . . vn)))},

if E contains 〈(f t1 . . . tn), (F s1 . . . sm)〉 where f is
a constrained function symbol and the hi are new con-
strained function symbols.

Thus, the “goal” of the algorithm is to eliminate each of the
pairs from E by applying the rules. But one must consider
applying the rules in all possible ways and the rules are not
mutually exclusive.

The first three rules enable recursive descent through terms
with identical concrete function symbols, binding individual
variable symbols to first order terms when necessary. For
example, when two identical terms are paired, they match
and we can just drop the pair (Identity). When a first-order
variable symbol is paired with a first-order term, we get a
match by dropping the pair but substituting the term for the
variable symbol (Binding). When two terms with the same
concrete function symbol are paired, we can get a match by
dropping the pair and replacing it by pairs requiring us to
match corresponding arguments (Simplification).

The other two rules both concern the case of a pair in which
the pattern is the application of a constrained function sym-
bol f to some tj .

Projection implies that we must consider that this unknown
f simply returns one of its arguments and we must try all
of the possibilities. An effect of applying the substitution is
the beta reduction that gets rid of the lambda application
and replaces it by the corresponding actual, ti.

Imitation implies that if the target is a call of a (necessarily
concrete) function symbol F on some actuals sk, we could
arrange (f t1 . . . tn) to match it by letting the unknown
function symbol f just call F on some terms that we ar-
range to be those same actuals, constructed by new unknown
function symbols, hi, of the tj . Again, the beta reduction
implicit in applying a substitution followed by Simplication
will eliminate the lambda application in favor of matching
problems between the compositions of the hi on the tj versus
the sk.



It should be clear now how to accumulate the substitutions.
Given a path to φ through a sequence of transformations,
the substitution is just the set of substitution assignments
mentioned in the Binding, Projection, and Imitation trans-
formations along that path.

2.2 ACL2 Implementation
It is not difficult to implement this algorithm in ACL2. Be-
cause the sources are available in the standard distribution
of ACL2 books, we do not reproduce them here. The crux of
the algorithm is named hl-one-way-unify1 (the“hl”stands
for Huet-Lang, “one-way-unify” is ACL2’s algorithm for
pattern matching, binding only variable symbols from the
pattern, and the “1” is our convention indicating that this is
an auxiliary function to the top-level entry to the algorithm
which is named hl-one-way-unify). These functions are
found in the file books/hints/huet-lang-algorithm.lisp.
The top-level entry takes care of some initialization and,
mainly, a change from ACL2’s term representation discussed
later. For brevity, we refer to hl-one-way-unify1 here as
hl and ignore programming, representational, and top-level
entry details.

The function hl takes five arguments: the pattern, pat, the
first-order ground term, term, an integer, called hmax, used
to help us generate new names for the hi, a partial substi-
tution already accumulated, here called ρ and the ACL2
logical world wrld.3 By passing wrld to hl we give it access
to ACL2’s database, specifically so that it can distinguish
constrained from concrete function symbols.

A call of hl returns a list of pairs, (hmax′ . σ), where each
σ is a substitution extending ρ such that pat/σ is equal to
term and hmax′ is the largest index of any hi in σ. This
allows hl to generate new symbols as it extends σ. The most
obvious place this happens is when hl sweeps across succes-
sive argument positions, obtaining an hmax and σ suitable
for matching the one position and then extends them to
match the rest. We do not discuss hmax further.

When faithfully implemented, the Huet-Lang algorithm re-
turns the list of all substitutions σ (up to equivalent variants
on pat) such that pat/σ is identical to term. For heuristic
reasons, our hl is not complete; some substitutions may be
omitted. Furthermore, a σ returned by hl does not guar-
antee that pat/σ is syntactically identical to term but that
pat/σ is provably equal to term under just a few built-in
rewrite rules. We discuss these issues after describing the
basic idea of the algorithm.

The algorithm recursively descends through pat and term
extending ρ as it goes. If pat is a first-order variable symbol,
we determine if it is bound in ρ. If so, its binding we must be
term in order for matching to succeed. If pat is an unbound
variable symbol, we can extend ρ by binding pat to term.
In any case, hl returns either the empty list of substitutions
(indicating failure to match) or the singleton list containing
the winning substitution (ρ or its extension). The case when

3Our ρ is actually named bindings in the sources. There
is another argument, named restrictions, that allows us
to enforce various restrictions on how variable symbols are
bound. But that feature is not used at the moment and is
ignored here.

pat is a constant is similar but precludes the possibility of
binding pat, of course. From this description of the base
cases it should be obvious how to handle the case of matching
the applications of concrete function symbols. If the leading
symbols of pat and term are both concrete and different, the
match fails. If they are identical, hl successively matches
corresponding arguments of pat and term, extending each
of the substitutions produced by matching the preceding
arguments.

If pat is the application of a constrained function symbol f ,
we must first determine if f is bound in ρ. If so, it is bound
to a lambda expression, and we beta reduce the application
of that lambda expression to the argument terms in pat and
then recursively match that to term under ρ.

If pat is the application of an unbound constrained function
symbol f of arity n we must be prepared to do either Projec-
tion or both Projection and Imitation, depending on term.
For example, if term is a variable symbol or a quoted con-
stant, we can only do Projection: We generate n variations
of ρ, each of which binds f to one of the n projections onto
the arguments of f . Then we recursively attempt to match
pat to term under each of those extensions, collecting the
ones that succeed. On the other hand, if term is the appli-
cation of a concrete function symbol F , we must try both
Projection and Imitation. (The latter requires generating
some new hi and adjusting hmax as should be obvious.)

2.3 Incompleteness and Extensions
We lied above when we wrote “if term is a variable symbol
or quoted constant, we can only do Projection”. If term is
a quoted constant, e.g., ’(1 2 3) then we could actually do
either Projection or Imitation, by thinking of term as (cons
1 ’(2 3)). That is, the binding for f could be a projection
onto one of n arguments or could be a lambda expression
that calls cons and somehow matches new function symbols
on the actuals of pat to 1 and ’(2 3). The source of in-
completeness in our implementation is that we do not do
Imitation in this case.

Consider matching the pattern (g x) with the ground term
’(0 . 0). Our code gives two solutions to this problem, one
where x is the entire constant and g is the identity function,
and the other where x is irrelevant and g is the constant
function returning ’(0 . 0). But had we thought of ’(0 .

0) as (cons 0 0) there would be five solutions, including,
for example, one where x is 0 and g is (lambda (v1) (cons

v1 0)). These solutions exploiting the internal structure of
constants are missed by our code.

It is thus possible that we will find no solutions when in
fact there are solutions. Consider, for example, (IF (g x)

(g y) x) versus (IF ’(0 . 0) ’(1 . 0) ’0). Here, IF is
just a convenient, concrete 3-place symbol. We find no solu-
tions.4 But had we phrased the ground term as (IF (CONS

4We find two solutions to the first sub-problem, i.e., match-
ing (g x) with ’(0 . 0). One of those lets g be the con-
stant function returning ’(0 . 0), but that precludes us
from solving the second sub-problem, i.e., matching (g y)
with ’(1 . 0). Our other solution to the first sub-problem
lets g be the identity and let x be ’(0 . 0). That allows
us to solve the second sub-problem, but then we fail on the



0 0) (CONS 1 0) 0) we would find the solution
{g := (lambda (v1) (cons v1 0)), x := 0, y := 1}

Unlike the rest of ACL2, where ’(1 2 3), 3, ’ILOAD and
every other constant is just an abbreviation for a ground
term on constructors, hl treats constants as atomic objects.
We made this decision because ACL2 applications frequently
involve huge constants and the explosion of substitutions is
just too great.

We now turn to our claim that we find some substitutions
σ such that pat/σ is provably equal (but not necessarily
syntactically identical) to term. Because of the intended
application of hl, namely to identify instances of definitional
schemes (in the sense that filter-map-h is a definitional
scheme), we find it convenient to include a few special cases
for matching IF expressions.

Not only is the pattern (IF (g . . .) pat2 pat3), where g is
a constrained function symbol, matched with a term of the
form (IF t1 t2 t3) as the description above says, it is also
matched with (IF (NOT t1) t3 t2). Furthermore, if (g . . .)
can be matched with T, we just match pat2 to term and if
(g . . .) can be matched to NIL, we just match pat3 to term.

Thus, contrary to the description given, we can match the
pattern (IF (g x) 0 1) to (IF (F A) 1 0), for example,
by binding g to (lambda (v1) (NOT (F v1))) and x to A.

2.4 Representational Tricks
Our hl does not actually represent terms quite the same way
ACL2 does. It is convenient to change the representation of
terms for purposes of efficiency. Our implementation actu-
ally operates on an extended representation called pseudo-
terms which we illustrate below. We similarly extend the
notions of substitution and matching challenge. We leave
most of the details to the reader.

The hi created by Imitation can ultimately all be eliminated
by beta reduction. Since it can be expensive to create new
function symbols, our pseudo-terms allow the use of integers
as constrained function symbols. Thus, instead of generat-
ing hi we use simply i. Similarly, the lambda expressions
required by the transformations need not actually have for-
mal variable symbols, vi. In pseudo-terms, we use integers
for those too. For example, ((lambda (1 2) (1 2 1)) A

B) is a pseudo-term which beta reduces to the pseudo-term
(1 B A), which denotes the application of some constrained
function symbol (“h1”) to B and A. In fact, were we to bind
f to that lambda expression we would simply write (1 2 1)

because the flag in the binding “pair” tells us it is a lambda
expression, the arity is known by context, and the formals
are implicit.

Not all functional variable symbols are represented by inte-
gers. Only the hi introduced by the algorithm are so rep-
resented. The constrained functions of the original pattern
will be treated as functional variable symbols also. They re-
tain their normal symbolic names. Thus, a term like (x X),
where x is a defined constrained function symbol, is problem-
atic.5 X, as a function symbol, may be bound to a lambda

third because we need x to be 0, not ’(0 . 0).
5Recall, x and X are the same symbol; case is being used

expression and X, as a variable symbol, may be bound to a
term. To avoid this ambiguity, binding pairs in our substi-
tutions are really triples: (pat fnp . val), where pat is an
individual or functional variable symbol, fnp is non-nil if
pat is a functional variable symbol, and val is the binding.
Our fnp can take on two non-nil values, T and DONE. We
explain later.

When a term like (REV1 x a) occurs in a pattern, the x and
a are instantiable variable symbols. But if it occurs in a
target, i.e., if we would write it here as (REV1 X A), those
same symbols must be regarded as uninstantiable. However,
the location of the occurrence (pattern versus target) is an
inadequate indicator of the meaning of a variable symbol
because the symbol a in the pattern (REV1 x a) may be re-
placed by the target symbol X, producing the pattern (REV1

x X) in which the first x is to be understood as a variable
symbol and the second as a constant, when in fact x and
X cannot be distinguished. We must make the original tar-
get term a ground term by replacing its variable symbols by
constants. It might appear workable to convert the target
(REV1 X A) to (REV1 (X) (A)) but that assumes there are
no constrained function symbols X and A. Instead, we replace
the variable symbol v by (:CONSTANT v) in pseudo-terms.

Finally, we must be able to convert a pseudo-term back to
a term. The main subtlety concerns such pseudo-terms as
(lambda (x) (rev1 x (:constant x))) which we cannot
convert to (lambda (x) (rev1 x x))! So during conver-
sion we avoid capture and generate (lambda (x1) (rev1 x1

x)).

3. REWRITING TERMS
IN “ALL POSSIBLE WAYS”

Effective use of hl to match definitional schemes to concrete
definitions requires considering some simple transformations
of the concrete term since different authors use different def-
initional idioms, e.g., consp versus endp, etc.

We implement a simple rewrite engine that, used iteratively,
will rewrite a term in all possible ways under a given set of
unconditional rewrite rules. But, since we are searching for
a variant of term that hl-matches pat, we use hl matching
after each iteration of the simple engine.

3.1 The Simple Rewrite Engine
For example, applying the following ground rewrite rules
(here phrased as equalities but used left to right)

((EQUAL (G ’1) (G ’2)) ; rule-g1
(EQUAL (G ’2) (G ’3)) ; rule-g2
(EQUAL (F (G ’1)) (F ’1)) ; rule-f-g1
(EQUAL (F (G ’2)) (F ’2))) ; rule-f-g2

to the term (F (G ’1)), our simple rewrite engine produces
a list of four results:

((F (G ’2)) ; use rule-g1 on (g ’1)
(F ’2) ; use rule-g1 on (g ’1)

; and then rule-f-g2

here to indicate class.



(F (G ’1)) ; use no rules
(F ’1)) ; use rule-f-g1

Note that we never used rule-g2 and hence never produced
(F (G ’3)). That is because we would have had to apply
rule-g2 to the immediate output of rule-g1. Instead, our
simple rewrite engine ascends after applying rules to the
arguments and rewrites the resulting calls.6

However, if we apply the simple engine again to each of
the outputs above, we will rewrite (F (G ’2)) and obtain
the additional list ((F (G ’3)) (F (G ’2)) (F ’2)). Note
that this naive process will introduce duplications produced
by earlier iterations.

3.2 Iteration and Search
Because the rules may not converge, we impose an artificial
cutoff on the number of iterations. In our experiments, we
typically use just one round.

Furthermore, because we are actually searching for a version
of term that hl-matches pat, we do hl pattern matching on
every variant produced before we iterate with the simple
engine. We stop as soon as we find a match, producing a
list of functional substitutions.

Note that stopping when we find the first hl match is a
radical abandonment of completeness under the given rules.
It could well happen that hl would find“better”substitutions
if we allowed rewriting to proceed further.

3.3 The Rules
Since we are looking for instances of definitional schemes,
the rules we apply single out a particular function symbol,
namely that of the concrete function alleged to be an in-
stance of the scheme, e.g., BUMPER in our example. If F is
that function symbol (and assuming below that F is of arity
2), then the rules we apply are

((EQUAL (IF xi (F yi v2) (F zi v2)) ; 1
(F (IF xi yi zi) v2))

(EQUAL (IF x (F v1 v2) (F w1 w2)) ; 2
(F (IF x v1 w1) (IF x v2 w2)))

(EQUAL (IF xi (F v1 yi) (F v1 zi)) ; 3
(F v1 (IF xi yi zi)))

(EQUAL (IF x (F v1 v2) (F w1 w2)) ; 4
(F (IF x v1 w1) (IF x v2 w2)))

(EQUAL (IF (CONSP lst) ; 5
(IF test lst else1)
else2)

(IF (CONSP lst)
(IF (IF test lst ’NIL)

(IF test lst ’NIL)
else1)

else2))
(EQUAL (ENDP x) (NOT (CONSP x))) ; 6
(EQUAL (IF p out1 (IF q out2 out3)) ; 7

(IF (IF p ’T q) (IF p out1 out2) out3))
(:META FOLD-TO-ISOLATE)) ; 8

6Sweeping across the arguments produces a list of equiva-
lent terms for each argument position; we then construct all
possible combinations of those terms to obtain the“resulting
calls.”

Note that the number of rules depends on the arity of F .
Rules 1 and 3 combine two calls of F that differ only in a
single argument position. Rules 2 and 4 combine two calls
of F that differ (potentially) in each argument position. We
call these four rules “isolation” rules because they tend to
create isolated occurrences of the target function symbol.
The last rule, 8, is a metafunction that isolates more general
calls of F . These five rules are the only ones that depend
on F .

Rule 8 introduces a lambda application to isolate calls of the
target function symbol F in which different things are done
to the output of the two calls. For example, it will transform

(IF τ (φ (F α1 α2)) (ψ (F β1 β2)))

to

((LAMBDA (Z)
(IF τ (φ Z) (ψ Z)))

(F (IF τ α1 β1))
(IF τ α2 β2)))

with appropriate passing through the lambda of the variable
symbols used in the schemas denoted by Greek letters. The
simpler isolation rules will not handle this situation because
of the presence of φ and ψ.

The very peculiar rule 5 is present only to allow us to rec-
ognize MEMBER-EQUAL, for example, as an OR of some predi-
cate on successive tails. The complication is that MEMBER-

EQUAL is not an OR of the predicate it tests, because it tests
(EQUAL E (CAR LST)) but returns LST. This can be “fixed”
if MEMBER-EQUAL is rewritten so that the predicate it tests is
(IF (EQUAL E (CAR LST)) LST ’NIL).

Rule 6 just exposes the definition of ENDP.

Rule 7 implements another idiom: Sometimes authors com-
bine two nearly identical cases into one by testing an OR and
implement the finer-grained differences inside the handler.
Other times they treat each disjunct independently.

Clearly, these rules are ad hoc. They are communicated to
the simple rewrite engine as a list of explicit rules as shown,
but the list is built-in (computed with respect to F ). In the
current implementation the set of rules cannot be extended
by the user, but since the whole package is just a certified
book, the user wishing to experiment could change them in
the code.

4. DRIVING THROUGH DEFINITIONS
A naive attempt to use hl-matching to compute an instance
of the pattern (filter-map-h x) to map (BUMPER A I J)

would simply replace filter-map-h by a lambda expression
calling BUMPER. This would fail as a functional instantiation
because the constraints could not be proved unless the in-
stantiation also picks up appropriate bindings for hp and h

as used inside the definition of filter-map-h. Thus, to com-
pute helpful functional substitutions it is necessary to drive
through definitions of defined constrained function symbols



and try to match their bodies with the bodies of their pro-
posed concrete counterparts.

Recall from subsection 2.4 that our substitution “pairs” are
actually triples of the form (f flg . F) where a non-nil
flag, flg, indicates that f is a function variable symbol
rather than an individual variable symbol. Furthermore,
we cryptically indicated that the non-nil values used were
T and DONE. We now explain.

A substitution is said to be unfinished if there is some bind-
ing in it with a flag of T. When hl binds function symbols it
uses the flag DONE if the symbol denotes a simple constrained
function and uses the flag T if the symbol denotes a defined
constrained function.

The basic idea of driving through definitions is to pick an
unfinished binding of some defined constrained f bound to a
call of a concrete function symbol G and hl-match the body
of f against the body of G after replacing G’s formals by the
actuals used in the lambda expression to which f is bound.
This relatively straightforward description is complicated by
the problem of keeping ones variable symbols straight.

Suppose we wish to find a functional substitution for in-
stantiating pattern pat to yield concrete term term. Create
an initial list of substitutions by hl-matching pat and term
with iterated rewriting as described above. Call this list of
substitutions the pool. Our goal is to extend some of these
substitutions to pick up bindings for the subfunctions of un-
finished bound function symbol. We proceed as follows.

1. If there are no unfinished substitutions in the pool,
return the pool. Otherwise, let σ be one of the un-
finished substitutions and let f be an unfinished func-
tional variable symbol bound in it. By definition, f is a
defined constrained function symbol. Let the formals
used in the defun of f be (x1 . . .) and let the body
be β. Let the binding of f in σ be (lambda (v1 . . .)
τ). Let β′ be the result of renaming the xi with the
corresponding vi so that it is now as though f had
been defined in the first place with formals (v1 . . .)
and body β′.

2. Is τ a call of a defined function symbol? If not, delete
σ from the pool and start over at step 1.7 Otherwise
τ is (G a1 . . .), where G is a concrete defined function
symbol. Intuitively, the ai involve the vi, after all, (G
a1 . . .) is the body of a lambda with formals (v1 . . .).
However, there may be free variable symbols in the ai

and not every vi may be used. Let (u1 . . .) be the for-
mals of the defun of G and let γ be the body. Let γ′

be obtained from γ by replacing the ui by the corre-
sponding ai, effectively expanding the call of G in the
lambda binding of f and introducing vi into γ′.

3. Let ρ be a renaming variable substitution that renames
the vi to distinct new variable symbols that do not
occur bound in σ. Let wi be the new name of vi.

7This is an inadequacy of our implementation and shows
that we are focused on recursive definitional schemes and
not just compositional ones.

4. Let β′′ be β′/ρ. Let γ′′ be γ′/ρ. Roughly speaking,
β′′ is the body of f in which all the variable symbols
are free in σ and γ′′ is the expanded call of G on the
same variable symbols.

5. Set the flag for the binding of f in σ to DONE, obtaining
σ′.

6. Use hl with iterated rewriting on the pattern β′′ and
concrete term γ′′ extending σ′. Obtain some list of
extensions, Σ.

7. Remove from each substitution in Σ any binding of
any wi, obtaining Σ′.

8. Delete σ from the pool and add all the substitutions
in Σ′.

9. Repeat from step 1.

We clean up the resulting substitutions by eliminating all hi.
This is easy since they are all ultimately bound to lambda
expressions in the hl process (because the result of applying
the substitution to pat is a concrete term). We also throw
out duplicate substitutions. We also throw out duplicate
substitutions.

The description above is necessarily brief and ignores some
subtleties concerning free variable symbols in lambda ap-
plications. (Functional instantiations permit that, but the
internal form of substitutions in hl does not.) The interested
reader is urged to look at the code.

5. SCORING
The process above typically produces many functional sub-
stitutions. We next sort them according to a rather arbitrary
heuristic scoring mechanism. The scoring mechanism ex-
ploits an oft-used philosophy among ACL2 developers: make
the obvious easy. Completeness can be sacrificed as long as
the obvious avenues are explored.

So what are the “obvious” uses of functional instantiation?
The intuitions behind the scoring is as follows:

• Disfavor substitutions that do not bind all the func-
tional variable symbols.

• Disfavor substitutions that use identity (projection)
lambdas like (lambda (...x...) x). The thinking is
that if the user saw fit to provide a constrained func-
tion symbol in a definitional scheme it is odd not to
use it, though it is easy to construct useful models with
often-unused “hooks.”

• Disfavor substitutions that use lambdas that do not
use all their formals. Why did the user provide a for-
mal in the scheme if it is not used?

• Disfavor substitutions that use lambdas that unneces-
sarily use free vars, e.g., (lambda (x) (cons x A)) is
disfavored if (lambda (x) (cons x x)) would work.



For each of these criteria we compute a rational score be-
tween 0 and 1 indicating how well a given σ satisfies the
criteria. For example, a substitution that binds four of five
functional variable symbols scores 4/5. We then sum the
scores for each σ and choose the ones with the highest score.

To illustrate the necessity of some kind of scoring, consider
matching the pattern (h x) with the concrete term (CAR

(CDR A)). Below are the resulting functional substitutions
and the score assigned to each.

((7/2 . ((x . A)
(h . (LAMBDA (X) (CAR (CDR X))))))

(7/2 . ((x . (CDR A))
(h . (LAMBDA (X) (CAR X)))))

(3 . ((x . (CAR (CDR A)))
(h . (LAMBDA (X) X))))

(5/2 . ((h . (LAMBDA (X) (CAR (CDR A)))))))

Thus, according to the heuristics used here, the two “most
likely”choices for h are CADR and CAR. A less “likely”choice is
the identity function. A final choice is the constant function
that returns (CAR (CDR A)).

Of course, no syntactic scoring mechanism can solve the real
problem: for which of these functional substitutions can we
prove the (here unknown) constraints on h?

6. EXAMPLES
The hints subdirectory of the distributed books directory
contains two files of interest here. One is the book consider-

hint-tests, which contains many examples of the :con-

sider hint, and the other is huet-lang-tests, which shows
how to run specific matching problems and see the ranked
substitutions produced.

Consider the classic generic iterator over a list:

(DEFUN generic-list-iterator (x ans)
(COND ((ENDP x) ans)

(T (generic-list-iterator (CDR x)
(g (CAR x) ans)))))

where g is a constrained function symbol. This function is
a tail-recursive mapper that applies g to each element of x,
accumulating the answers in ans.

Here is a typical concrete function that uses an accumulator
to collect all the integers in x that are greater than or equal
to min.

(DEFUN GET-BIG-INTEGERS (X MIN A)
(COND ((CONSP X)

(COND ((AND (INTEGERP (CAR X))
(>= (CAR X) MIN))

(GET-BIG-INTEGERS (CDR X)
MIN
(CONS (CAR X) A)))

(T (GET-BIG-INTEGERS (CDR X) MIN A))))
(T A)))

The concrete function is an instance of the generic one. In
particular, this functional substitution works:

((g . (LAMBDA (X Y)
(IF (INTEGERP X)

(IF (< X MIN) Y (CONS X Y))
Y)))

(generic-list-iterator
. (LAMBDA (X ANS)

(GET-BIG-INTEGERS X MIN ANS)))
(ans . A)
(x . X))

The computation of this substitution critically requires iso-
lating the recursive calls of GET-BIG-INTEGERS by pushing
the ifs in. Note the “creative” choice of g Thus, if we have

(DEFTHM GENERIC-LIST-ITERATOR-APPEND
(EQUAL (generic-list-iterator (APPEND u v) a)

(generic-list-iterator v
(generic-list-iterator u a))))

then we can prove the following by instantiation

(thm
(EQUAL (GET-BIG-INTEGERS (APPEND X Y) MIN Z)

(GET-BIG-INTEGERS Y MIN
(GET-BIG-INTEGERS X MIN Z)))

:HINTS (("Goal"
:CONSIDER GENERIC-LIST-ITERATOR-APPEND)))

The theorem to be instantiated need not be second-order.
For example, suppose the associativity of append had been
proved as assoc-of-append with :rule-classes nil. Then
the following succeeds:

(THM (EQUAL (APPEND (APPEND A A) A)
(APPEND A (APPEND A A)))

:HINTS (("Goal" :CONSIDER ASSOC-OF-APPEND)))

This is because our function hl includes first-order matching
(with iterated rewriting) as a special case.

7. CONCLUSION
There is much work remaining to make this a truly useful
utility. Among the profitable avenues to explore are:

• Clean up the code in the both consider-hint and
huet-lang-algorithm. The code evolved over sev-
eral years of on-again-off-again work and there is“dead
code” and other warts that obscure what is happening
and make it harder to think about.

• Explore less explosive ways to consider “all possible
rewrites,” including modern matching algorithms that
consider equational theories.

• Investigate ways to produce fewer candidate substi-
tutions. Too often the system just grinds to a halt
because of the explosion of possibilities. Because the
user can“steer”the :consider hint by providing a seed
substitution it is better, in our opinion, to abort and
force the user to help than to run indefinitely. Since
ACL2 aims, often, to make the obvious easy, complete-
ness is not as important as insuring that the obvious
choices are considered.



• Investigate ways to take into account the actual con-
straints on the function symbols being instantiated.
This could actually lead to a reduction of the search
space.

Once this utility is sufficiently robust, one could try to recog-
nize when new concrete definitions are instances of known
definitional schemas and automatically provide the corre-
sponding lemmas about the concrete definitions.

Automatically instantiating existing“generic” lemmas would
often require also automatically introducing some auxiliary
concrete functions obtained by instantiating generic ones
used in the lemmas. (Recall filter-map-h and imagine
generic lemma about it that has a hypothesis, phrased in
terms of a generic recursive function, checking that at least
one element of x satisfies hp. The concrete counterpart of
that function may not yet be introduced by the user who de-
fined a concrete version of filter-map-h and stands ready
to inherit its lemmas.)

This new feature would circumvent the use of functional
instantiation in proofs (except to prove the lemmas) and
would off-load the inefficiencies of this utility to definition-
time processing. It would also provide a new way that ex-
perts could aid the novice: by capturing general definitional
schemas and their properties and automatically providing
rewrite rules.

However, as noted by a reviewer, the number of possible
instantiations and the difficulty of choosing a priori among
them may diminish the hope that one can produce an effec-
tive set of first-order lemmas from a generic one, unless the
generic set contains enough structure and perhaps pragmatic
advice to guide the selection of the relevant instantiations.

These critical improvements notwithstanding, we believe the
basic ideas illustrated in here are very promising. It is our
hope that by describing them as we have here some enter-
prising user or student will take up the challenge of extend-
ing this work.

8. ACKNOWLEDGEMENTS
As usual, I wish to thank the entire ACL2 community for
helping push this work along. But I especially want to thank
Warren Hunt for obtaining the funding that make it possible
for me to work on it, Warren and Bill Legato for consistently
pushing for features like this, and Matt Kaufmann who took
on the unenviable task making my books compatible with
the distribution. In addition, Matt provided valuable sug-
gestions during the design of the algorithms.

9. REFERENCES
[1] Kouichi Hirata, Keizo Yamada, and Masateru Harao.

Tractable and intractable second-order matching
problems. In In Proc. 5th Ann. Int. Computing and
Combinatorics Conference (COCOON’99), LNCS 1627,
pages 432–441. Springer, 1999.

[2] G. Huet and B. Lang. Proving and applying program
transformations expressed with second-order patterns.
Acta Informatica, 11:31–55, 1997.

[3] M. Kaufmann, P. Manolios, and J S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Press, Boston, MA., 2000.

[4] M. Kaufmann and J S. Moore. Structured theory
development for a mechanized logic. Journal of
Automated Reasoning, 26(2):161–203, 2001.


