A Mechanically Checked Proof of the
Correctness of the Boyer-Moore Fast
String Searching Algorithm

J Strother MOORE:!
and Matt MARTINEZ?

a Department of Computer Sciences, University of Texas at Austin, Texas, USA

Abstract. We describe a mechanically checked proof that the BoyersMdast
string searching algorithm is correct. This is done by esgireg both the fast algo-
rithm and the naive (obviously correct) algorithm as fumtsiin applicative Com-
mon Lisp and proving them equivalent with the ACL2 theorermvpr. The algo-
rithm verified differs from the original Boyer-Moore algtinm in one key way: the
original algorithm preprocessed the pattern into two ari@yd skipped forward by
the maximum of the skip distances recorded in those arrbgsalyorithm verified
uses one array that combines the two original arrays (andssvsize is the prod-
uct of that of the original arrays). The algorithm here slkapdeast as far as the
original Boyer-Moore algorithm and often skips furthertigh we do not prove
that mechanically. A key fact about the original algorittsithiat preprocessing can
be done in time linear in the length of the pattepyt|, and the size of the alpha-
bet, |«|. Our implementation of the preprocessing here is uncoecewith effi-
ciency and has complexityy| x |pat|2. Our mechanically checked proof includes
a proof that our preprocessing is correct. We briefly desaiproof (shown in de-
tail elsewhere) that an imperatively coded version of tise dgorithm implements
the algorithm verified here.

Keywords. ACL2, software verification, theorem proving

The Algorithm

The Boyer-Moore fast string algorithm[2] looks for the fiestact match of one string,
called thepattern in another, called théext.? Given a proposed alignment of the two
strings, the algorithm compares them character by chardetging at the right-hand
end of the pattern. Consider two corresponding charactersustigm the pattern at
indexj andv from the text at the corresponding indexf v = v, the algorithm backs
up, decrementing andi. If u # v, the algorithm has “discovered” a substring in the
text. This substring imlmost a terminal substring of the pattern startingjatexcept
the discovered string starts withinstead ofu. The next possible exact match of the

1Corresponding Author: Department of Computer Sciencegloladall 2.124 #C0500, The University of
Texas at Austin, 1 University Station, Austin, Texas 780233, U.S.A. E-mail: moore@cs.utexas.edu

2This sketch of the algorithm is taken largely verbatim frdme tnpublished notes distributed as part of
Moore’s Marktoberdorf Summer School, 2008, lectures.

pattern and the text is obtained by shifting the patterneaigpht to align the discovered
substring with its rightmost occurrence in the pattern.e@ithat there are only a finite
number of terminal substrings of the pattern and of charadtethe alphabet, one can
preprocess the pattern to determine the skip distanceesffigiduring the search itself.

In the original algorithm [2], the algorithm skips forwargl the maximum of two
distances, calledelta; anddeltas. The firstis the distance necessary to align the charac-
terv with its last occurrence in the pattern. The second is thamlie necessary to align
the matched terminal substring starting at 1 with its last occurrence in the pattern not
preceded by..

In the algorithm we study, we skip forward by the amount nsagsto align the
actual discovered substring followed by the terminal substring startingjat- 1). This
requires a 2-dimensional arraly,be used in our preprocessing. Given the last character
read from the texty, and the corresponding location in the patternat which it was
mismatched, we store the skip distancé[at j]. This number will always be larger than
the maximum oflelta; anddelta; and can be pre-computed by determining the location
in the pattern of the right-most occurrence of every striagtgg with some character of
the alphabet followed by a terminal substring of the patt€his variant of the algorithm
is mentioned in the “Historical Remarks” section of [2].

Here is an example. We find the first occurrence of the inditp#dtern pat) in the
text (txt). The arrow {}) indicates which character fromt we will read. We show a trace
of the algorithm below and then we explain each step.

1. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

f i =5

2. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

i i =4

3. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

T i =3
4. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx
T i =8
5. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx
T i =14
6. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx
f i =15
7. pat: aBCdBC

txt: xxxaBCxxGxaBCdBCxxxx
T i =14

8. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

f i =13
9. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx
T i=12
10. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx
f i=11
11. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx
f i =10
12. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx
f i =9

Note on linel, we start by reading and matching th& at text positioni =5 with
the ‘C at the end of the pattern. We back up. We match &is. ‘We back up. On lin@
we read thea’ ati =3 and it fails to match thed’ (at positionj =3)’ in the pattern. So
we skip ahead by some precomputed amount as a function ohtdraater just read
from the text, a’, and the index of the matched terminal substrihC") of the pattern
(j =4). It turns out that the precomputed amoudns 5. So we add toi and get the
newi =8 of line 4. What is special about 5? Note that on l#eafter adding’ to 7 and
shifting the pattern rightwards to that position, the disred" aBC" of the text aligns
with its last occurrence in the pattern.

On line4, we read G. It does not match its counterpart in the pattern. The pmeco
puted table (forG and the empty substring) says we can increnmiehy § = 6. This is
becausehereisno ‘G in the pattern! So we can slide the pattern forward by its length
to get entirely past thes.

Onl i ne 5, we readB'. Following the same routine, we use the precomputed table
to shift the pattern to align the lad®”in the pattern with the discoverdgl

On lines6 throughl1 we just back up confirming each character.

Onlinel2, we have “walked off the left end of the pattern.” That meaesmatched
all the characters. The match start$ af., or position10 in the text.

Here is a more realistic example using English text:

pat: pattern
txt: we can preprocess the pattern to

1 i =6
pat: pattern
txt: we can preprocess the pattern to
f i =13
pat: pattern

txt: we can preprocess the pattern to

f i =20

pat : pattern
txt: we can preprocess the pattern to
1 i =22

pat: pattern
txt: we can preprocess the pattern to

n i =28
pat: pattern
txt: we can preprocess the pattern to

n i =27
etc.

Here we see the algorithm skipping through the text in stegistypically grow with the
length of the pattern. This illustrates the key advantaginefBoyer-Moore fast string
searching algorithnit advances through the text without reading all the characters and
in steps that are often nearly as big as the pattern is long.

To the best of our knowledge, the only variant of the Boyerelkédfast string search-
ing algorithm that has been proved correct mechanicallyés“delta; version” de-
scribed in [3]. There, Boyer and Moore described an impezamplementation of their
algorithm without thedeltas array, annotated it with assertions, generated verifioatio
conditions (VCs), and proved those VCs with the theorem @raescribed in [3]. See
also [4] for a verified Fortran implementation of thielta; version.

No other mechanized treatments of the Boyer-Moore seaguiriim have been
found. However in 2002, M. Besta and F. Stomp used PVS to pteveorrectness of
the notoriously error-prone preprocessing for the origitgorithm[1].

The original algorithm was proved to execute in time lin@ahie location at which
the first match is found. In [8], it is shown to be bounded abloy&:. Later that was
lowered todi by Guibas and Odlyzko [6], and finally 83 by Cole [5]. It should be noted
that (a) we do not deal with the performance, much less tleatity, of the algorithm
proved here, and (b) it is natpriori obvious that our variant is linear just because each
of its skips is at least as great as the skips in the origigaréghm.

1. Formalization

We formalize both the fast algorithm and the obviously caredgorithm in ACL2 [7]
and prove them equivalent. The complete formalization andfscript is available [9].
“ACL2" stands for “A Computational Logic for Applicative Gomon Lisp.” We
assume the reader can read Lisp notation. Here are a fewesaxamples:
ACL2 conventional notation
(>=j (length pat)) j= |pat|
(char pat (+j 1)) patlj + 1]
(xmatch pat j txt i) axmatch(pat,j,tat,i)
In ACL2, strings are indexed fron®. So the character afchar pat (-
(length pat) 1)) isthelastcharacteripat, providedpat is non-empty.
The ACL2 expression

(cond ((not (natp i)) nil)
((>=1 (length txt)) nil)
((xmatch pat 0 txt i) i)
(t (correct-loop pat txt (+ 11i))))

may be read as

If 7 is not a natural numbethen ni | ,
elseif i > [txt|, thenni |,

elseif amatch(pat, 0, txt, 1), then i,
else correct—loop(pat, tat, 1 4 1).

1.1. A Correct Algorithm

Below we define three functiongjmat ch, corr ect -1 oop, andcorr ect . The last

is our “obviously correct” algorithm(correct pat txt) returns the index in the
stringt xt atwhich we find the left-most exact match of the stirag , or elseni | ifno
such exact match exists irxt . The function “works” by checking, for each successive
legal index intat xt starting from0, whether there is an exact matchpat starting at
that index.

(defun xmatch (pat j txt i)
(decl are (xargs :nmeasure (nfix (- (length pat) j))))
(cond ((not (natp j)) nil)
((>=j (length pat)) t)
((>=i (length txt)) nil)
((equal (char pat j)
(char txt i))
(xmatch pat (+ 1 j)
txt (+11)))
(t nil)))

(defun correct-loop (pat txt i)
(declare (xargs :neasure (nfix (- (length txt) i))))
(cond ((not (natp i)) nil)
((>=1i (length txt)) nil)
((xmatch pat 0 txt i) i)
(t (correct-loop pat txt (+ 11i)))))

(defun correct (pat txt)
(correct-loop pat txt 0))

The top-level functiorcor r ect takes two argumentpat andt xt (which will
be strings), and calls its “subroutinedr r ect - | oop on them, initializing the locail
of correct-1oopto0. Think ofcorrect -1 oop as awhi | e loop. For each legal
index intot xt it checks whether there is an exact matchpat (starting at index0)
with t xt (starting at). If so, it returng . If not, it iterates (recurs), incrementimgby
1.

The functionxmat ch checks for an exact match between the charactepaof
(starting af) with the corresponding charactersoft (starting ai). It terminates with
t if pat is exhausted first and terminates withl if t xt is exhausted first or if unequal
characters are found.

The decl ar e forms above supply ACL2 with a measure of the arguments that
ACL2 uses in the termination proofs for these recursive dedirs. The tests that and
j are natural numbers are necessitated by ACL2’s requirethahfunctions are total
(defined on all inputs). Henceforth, we will omit such detdilbom this paper and refer
the reader to the proof script.

We take it as obvious thator r ect returns the smallestindexintoct at which an
exact match opat occurs. This can be formalizeximat ch insures that corresponding
characters are equal;dbr r ect returnsni | , there is no exact match; anctiér r ect
returns nomi | , there is an exact match at the indicated index and there e&ar@r
match. The formal statements of these properties can arel theen proved. But we
believe the definitions above are as clear as the formalizesdons of these remarks. We
usecor r ect as the specification of the fast string searching algorithm.

1.2. The Fast Algorithm

The top-level function for the fast algorithm is defined atofws.

(defun fast (pat txt)
(if (equal pat "")
(if (equal txt "")
nil
0)

(fast-1oop pat
(- (length pat) 1)
t xt
(- (length pat) 1))))

The initial case analysis is required because the main lbtpedast algorithm requires
thatpat be non-empty. That loop is formalized byst - | oop which takespat , an
indexj into pat, t xt, and the index intot xt. Indexi corresponds to the arrows
(“0t") in our diagrams — the place irxt at which we will read — and indgx points to the
corresponding place ipat . We call these théocus locations. The difference between
i andj indicates the currerdlignment, the location int xt corresponding to the'”
character opat . Fast enters the loop witlpat aligned with thed®” character of xt
and the focus on the last charactepatt .

(defun fast-loop (pat j txt i)

(cond

((<1] 0)

(+11))

((<= (length txt) i)
nil)

((equal (char pat j) (char txt i))
(fast-loop pat (- j 1) txt (- i 1)))
(t (fast-1loop pat

(- (length pat) 1)

txt

(+1 (delta (char txt i)

J
pat)))))))

Note that there are two recursive calls. The first, when tleeastiers af andi (in their
respective strings) are equal, decrements the two indid¢esother, when the characters
are unequal, incremenisby an amount computed by the functidel t a, described
below, and resetpg to the index of the last character rat . The function terminates
with(+ 1 i) ifj isdecremented belo@and terminates withi | if i isincremented
past the right end dfxt . Tests (not shown above) insure tipait andt xt are strings,

i andj are integerg, is either- 1 or alegal index intgat , andj is less than or equal
toi .

Termination is proved using a lexicographic measure in tvithhe primary compo-
nent is the alignment gfat andt xt , which is advancing weakly monotonically to the
right, and in which the secondary component is the posjtionpat, which is decreasing
toward- 1.

In this model, rather than look up the skip distance in anyamige compute the
appropriate skip with the functicshel t a. Del t a takes the character, just read from
t xt, the index of the corresponding characterpat , andpat . We know thatv is
unequal to the characterjain pat . Del t a returns the amount by which we increment
theindex intot xt .

Sincedel t a is a function of an arbitrary character in the alphabet anéhedax
into pat , we could precompute givepat (and the known alphabet). The imperative
program verified in [9] usedel t a to initialize a 2-dimensional array indexed yand
j , and uses the array insteadd#| t a in its loop. By formalizingf ast this way, we
factor the correctness of the imperative code: we do theretchere, proving thdtast
(anddel t a) are correct and leave certain bookkeeping tasks for theegpondence
between the imperative code ahdst . As a consequence, we are not concerned here
with the efficiency with which we computiel t a.

(defun delta (v j pat)
(letx ((pat~ (coerce pat 'list))
(dt~ (cons v (nthcdr (+] 1) pat~))))
(+ (- (len pat~) 1) (- (x dt~pat~ (-] 1))))))

Because we are not concerned with efficiency, we convertrihiglgm from one about
strings to one about lists of characters. We use the corretitat ‘pat ~” is the list of
characters corresponding to the strpgg . Notice above thadt ~ is the list of characters
starting withv and then consisting of the terminal substringpait starting at index
j +1. This is thediscovered text in t xt starting at index where we read. The role
of del t a is to provide a skip that realigns the pattern so that thedisstovered text
matches its rightmost occurrencegat .

So we compute the rightmost indexpat at whichdt ~ occurs. We can start that
search at indek-1. That computation is performed by the functioriThen, we subtract
the value ofx from index of the last character jpat . That is the distance between
the beginning of the match aft ~ and the last character pfat . That is thus the skip
distance.

Below we show one skip in the execution of the algorithm on tepa of length
25 (so the index of the last characterZd). The cryptic digits below help you count.
Consider the first alignment below, showipgt andt xt . Supposg is 19 and the
corresponding index im xt is as indicated by the first arrow. Thus, we have already
matched the five termindls inpat and then find a mismatch comparing that index

19inpat totheVint xt . The discovered textis thM&ZZZZ. Its rightmost occurrence
in pat is at the index labeled, which is 7. The difference between 24 and 7 is 17,
which is how far down we must shift the uparrow.

111111111122222
0123456789012345678901234

x j
pat: aaaaaaaVZZZZZaaaaaawZZZZZ

txt: ... V2722727
1)

pat : aaaaaaaVZZZZZaaaaaawZZZZ7Z

txt: ... V2722727

f

012345678901234567

The second alignment is after shiftipgt to the right. Note that the discovered text from
t xt matches the corresponding charactensah and that the arrow has been moved to
the right by 17.

However, the algorithm must handle the possibility thatrttach of the discovered
text is only partial (i.e., the discovered text “falls ofgft end ofpat):

0123456789012345678901234
X j

pat : /Z7aaaaaaaaaaaaaaaawZzZzzz
txt: ... \VZ2722727.
1)

So when the functiorx searches backwards througlat ~ for dt ~ it must allow
dt ~ to “fall off” the left end of pat. To check this we defin@mat ch so that
(prmatch dt~ pat~ j) returng orni | toindicate whether there is a partial match
of dt ~ in pat at “position”j , wherej is allowed to be negative. The valuexofn the
example above is 3, indicating that the first 3 characteng4Z) of the discovered text
have fallen off the end gfat .

(defun pmatch (dt~ pat~ j)
(if (<] 0
(equal (firstn (len (nthedr (- j) dt~)) pat~)
(nthedr (- j) dt-~))
(equal (firstn (len dt~) (nthcdr j pat-~))
dt~)))

(Firstn n s) returnsthe firsh elements of liss. (Nt hcdr n s) returns then'”
tail of s, i.e., the result of removing the firastelements. Thus, the idiogfirstn n
(nthcdr m s)) denotes tha elements of starting at the one with indax

(Pmatch '(VZ 2 "(abcVZZdewZZ2Z 3)ist and so is
(pmatch "(VZ 2 '(ZZcf ghdewZ2 -1).

Note that as long adt ~ is a proper list there is alwayg asuch tha{ pmat ch dt ~
pat ~j) istrue: letj be—n, wheren is the length ofdt ~. This remark explains why
the functionx terminates: it decremenijtsuntil prmat ch succeeds. (Omitted tests insure
that the arguments are of the proper types.)

(defun x (dt~ pat~ j)
(cond ((pmatch dt~ pat~j) j)
(t (x dt~ pat~ (- j 1)))))
2. Proof Strategy

Before we discuss the particulars of the proof of equivadebetweenf ast and
correct, we present two basic ideas that are used repeatedly in alranized proof.

2.1. Trading Strings for Lists

As exploited in the definition oflel t a, there is a correspondence between strings and

lists of characters. Given a stringt r, (coerce str '|ist) returns a list of the
characters, sayt r ~, and(coerce str~ ’'string) isthe inverse that returns the
stringstr.

Reasoning about lists is easier than reasoning about stigigen the ACL2 primi-
tives. Most theorems about strings involve indices thag gise to necessary hypotheses
bounding them and relating them. Inductions have to managgetindices. This awk-
wardness could be alleviated by building suitable definifiad lemma libraries in which
one could extract substrings as though they were “compshehstrings and add and
remove characters so that one could map down a string as actebfhout needing to
use auxiliary variables to keep track of the “current positi However these features are
already present in lists and so it is natural to do stringtesl proofs by stepping down
to the list level.

As an illustration of this, considefxmat ch pat j txt i), which checks
whether the characters pat starting aj exactly match the characterstaft starting
ati . Lettingpat ~ andst r ~ be the list counterparts @fat andst r, this is just:

(equal (firstn n (nthedr i txt-~))
(nthedr j pat~))

That is, the substring dfxt of lengthn starting ati is the terminal substring gfat
starting af . Replacingkmat ch by an equality is a powerful proof technique.
Here is the theorem that allows ACL2 to do this:

(defthm xmat ch-trade
(implies (and (stringp pat)
(stringp txt)
(natp j)
(natp i))
(equal (xmatch pat j txt i)
(equal (firstn

(len (nthedr j (coerce pat 'list)))
(nthcdr i (coerce txt "list)))
(nthecdr j (coerce pat 'list))))))

Practically speaking, as long as this lemma is “enabledgnever ACL2 encounters an
xmat ch expression applied to two strings and two naturals as hysathd above, it

will replace thexmat ch expression by the equality of the corresponding “compaient
of the list level counterparts of the strings.
When we wish to stop operating at the list level, we “disalbtes lemma.

2.2. An Alternative List Construction

The second part of our strategy is to comprehend lists ag lmginstructed of two parts
(determined by some indeX) combined by concatenation.
ACL2 can prove the following theorem expressing this idea.

(defthmfirstn-nthcdr-elim
(inmplies (and (natp n)
(< n (len x)))
(equal (append (firstn n x) (nthcdr n x)) X))
irule-classes :elim

When stored as an “elim” rule as specified above, ACL2 addpsfallowing proof
strategy:

Let(¢ n x (firstn n x) (nthcdr n x)) be a schematic representation of any
theorem involving a variable symbal known to be a natural number, a variable symkbol
known to be a list of length exceedimg and one or both of the expressiofisi r st n n

x) and(nthcdr n x). Thento provg(¢ n x (firstn n x) (nthcdr n x))

it is sufficient to prove(¢ (1 en a) (append a b) a b), wherea andb are fresh
variable symbols.

This is permitted because if you prove the latter, you cataitste it by replacing
aby(firstn n x) andb by (nthcdr n x) andthenuséir st n-nt hcdr - -
el i mand the fact that the length 6f i r st n n x) isn to prove the original goal.

This strategy is powerful because it eliminaftés st n andnt hcdr by introducing
variables in their places. Simple list processing lemmas ttome into play to normalize
expressions.

The two most important are the associativityagfpend

(defthm assoc- of - append
(equal (append (append a b) c)
(append a (append b c))))

and lemmas establishing when two lists formed by concatamate equal. For example,
if a andb are proper lists, theflappend a c) is equal to(append b c¢) if and
only if a is equal tdb. Similarly, (append a b) is(append a c) ifandonlyifb
isc.

2.3. The Utilities Library

Our proof of the equivalence éfast andcor r ect exploits both the strategy of elim-
inatingxmat ch in favor off i r st n, nt hcdr, and equality, and the strategy of elimi-
natingf i r st n andnt hcdr by comprehending lists as concatenations.

The combined result is that if we are dealing with a conjectiontaining the term
(xmatch pat j txt i),forsuitablepat,j ,txt,andi ,thenwe will re-represent
the problem in terms of the list level counterpartgaft andt xt , namelypat ~ and

t xt ~, except that fopat ~ we will use(append p qg) and fort xt ~ we will use
(append a (append b c)),wherethe new variables are known to be lists of char-
acters, withp being of lengthj , a of lengthi , andb is the same length a$. In this
representation, the list counterpart of the terminal suigsof pat starting af is just
g and the list counterpart of the terminal substring »f starting ai is just(append
b c).Thus,thg xmatch pat j txt i) term will become a simple equality of
andb.

During the course of the proof thalist is correct we identified many useful
theorems about list processing functions. These were drioy¢he second author, Mar-
tinez, and are available intheg i I i ti es. | i sp “book” mentioned in [9].

3. TheProof Plan

In this section we describe our “proof plan.” ACL2 does ndeomechanized support
for such plans. Instead, the user carries them out expe&@hg to fill in the gaps. Each
step corresponds to a formula to prove. We have numbered thethe “plan” we just
sketch the formula we have in mind, omitting details to comioate the ideas. In the
next section we show the actual script, numbered the same way

The theorem we wish to prove is

(defthm fast-is-correct ; (1)
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))

To prove (*1), we need to prove that the two loops are equitales., that

(equal (fast-loop pat j txt i) v (72)
(correct-loop pat txt (- i j)))

under suitable hypotheses. The main hypothesis isghat starting atj +1 exactly
matcheg xt starting ai +1. The difference expression above reflects the fact tiegt th
andi inthef ast -1 oop term point to the right end of the current alignment while the
index incor r ect - | oop points to the left end.

To prove this we’ll do an induction to unwinfdlast - | oop. There will be two
inductive cases, one for the case where we back up becauserteeponding characters
are identical, and one for the case where we skip forwardddyt a. We discuss the
second case in this sketch.

The inductive step in that case will look something like this

(inmplies (and ...
(not (equal (char pat j) (char txt i))) ; hypl

(equal (fast-loop pat j7 txt) ; hyp2
(correct-loop pat txt (- i jr)))
ca)
(equal (fast-loop pat j txt i) ; concl
(correct-loop pat txt (- i j))))

where hypothesis 1 describes the case where the charaetarsexjual and hypothesis
2 is the inductive hypothesis. In our inductive hypothesie,assume the formula for
| replaced byjr andi replaced byis, where values ofi/ andi/ are just those in the

recursive call of ast - | oop in this case:

jr. (- (length pat) 1)
i (+ 1 (delta (char txt i) j pat))

The conclusion is just the theorem we are proving, (*2). Thkaf f ast - | oop
will expand under hypothesis 1 and becoffeast - | oop pat ;7 txt is). Note
that this is the term our induction hypothesis mentions.

We will then use the induction hypothesis to produce a caiatuof the form

(equal (correct-loop pat txt (- i j7))
(correct-loop pat txt (- i j)))

So the proof abouf ast -1 oop is easy if we can prove this lemma about
correct -1 oop. The actual lemma, substituting the expressiong/fand;’ and sim-
plifying with arithmetic will look like this:

(equal (correct-loop pat txt ; (*3)
(+1i
(- (length pat))
(delta (char txt i) j pat)))
(correct-1oop pat txt

(- 113))).

Lemma (*3) has many hypotheses. The two main ones are thpafaktarting af +1
exactly matchesxt starting ai +1 and (b) the charactersjatandi are different.

Think of the third argument ofor r ect - | oop as being the index of a proposed
alignment ofpat andt xt . Corr ect - | oop just tests whether there is a match there
and if not, moves the proposed alignment down by 1. (*3) tedlthat we can shift down
by a larger amount, determined tegl t a, without missing a match. That is the crux of
the Boyer-Moore algorithm.

The main lesson is that we can do the proof of the equivalehtast - | oop and
correct -1 oop with one standard induction dnast - | oop, if we can prove that
correct -1 oop allows the same big skips thiaast - | oop does. This will take some
intricate reasoning about exact matches, mismatchedateasaandlel t a. We do that
reasoning at the list level, not the string level.

So to prove (*3), which is about strings, we jump to its listdecounterpart, which
is called (*4). But to even state the lemma at the list levelnged a recursive function
on lists that is the list-level correspondent of the strieeglcor r ect - | oop.

We call that functioncorrect -1 oop~ (*5) and we prove that it is the list-
level counterpart o€orr ect -1 oop in (*6). To convert (*3) to the list level, replace
correct-1loop bycorrect-1oop~, pat by pat~,txt bytxt~andl ength
(which operates on strings) byen (which operates on lists). In additioahar which
operates on strings can be replaced by an expression ingdlvécar of thent hcdr
of the list counterpart of the string, ae!l t a can be replaced by its body which was
intentionally formulated at the list level for this very sz,

With those transformations (*3) becomes

(equal ; (4)
(correct-1loop~ pat~ txt-~
(+ i
(- (x
(cons (car (nthcdr i txt-~))
(nthedr j (cdr pat~)))
pat ~
(+-1j)))))

(correct-1oop~ pat~ txt~

(+i (-1))))

Thecons expression above is just the “discovered tedt,™.
To prove thatorr ect - | oop~ allows jumps to the alignment identified &y we
break the argument into two steps.

e Correct -1 oop~ allows jumps byany amount — provided no exact matches are
skipped! To state this we need to invent a list-level pregithat says “there are
no matches between here and there.” That predicate is cdlledr (*7) and its
basic property is formalized (*8):

(implies (and ...
(clear pat~ txt~ k n))
(equal (correct-loop~ pat~ txt~ (+ k n))
(correct-1loop~ pat~ txt~ k)))

)

e Then we prove that there are no matches in the region jumpadaxhen we shift
the pattern to th& alignment.

(cl ear pat~ 7 (*9)
txt ~
(- 117)
(-] (x (firstn d (nthedr i txt~)) pat~j)))
Here, think of(firstn d (nthecdr i txt~)) as the discovered text (of
lengthd). We discuss the reason we formulated it this way in the sorguded
in Appendix A.

(*8) and (*9) allow us to prove (*4), which allows us to provs] given that we
can move fromcorrect - | oop~ to correct -1 oop via (*6). Given (*3), we can
complete the inductive proof of (*2) establishing the ealewnce off ast - | oop and
correct -1 oop. Then (*1) is straightforward by expansionfoist andcorr ect .

4. Conclusion

We proved that a version of the Boyer-Moore fast string da@agcalgorithm is correct.
The version we considered does not use the original [2] Gation for the skip distance
— the maximum of two independent calculations based on tteolecurrence of the
character just read and the last occurrence of the termuteitisng discovered by the
partial match — but instead uses a combination that is gtegdrio produce at least as
large a skip.

We proved that an implementation of the algorithm, caflest , in applicative
Common Lisp is terminates and always returns the same arasatee naive algorithm
that successively searches for the leftmost exact matctyimgtsuccessive alignments.

Rather than pre-compute the skips by preprocesdiagt computes each skip
when needed using a function defined here calleldt a. Our proof establishes the cor-
rectness of an algorithm for computidgl t a.

We do not consider efficiency of either the computatiordef t a or the search
itself.

In [9] we describe a bytecode implementatiorf efst . Bytecode fodel t a is not
verified in [9]. Instead, the bytecode fbast is invoked on a 2-dimensional array of
sizek x |a|, wherek is the length of the pattern andis the alphabet. It is assumed that
the caller has initialized that array with values equal wsthcomputed bgiel t a. That
paper exhibits an algorithm, in terms @€l t a, that initializes the array appropriately.
No attention is paid to the efficiency of that algorithm anexecutes in timé? x |a/.
The paper proves that under these pre-conditions the gedoof ast is equivalent to
fast.

The combination of this paper and [9] is that a bytecode imgletation of the
Boyer-Moore algorithm is correct and that a certain aldpnitcorrectly computes the
2-dimensional array required.

Future work includes the implementation of the preproecggsaigorithm in bytecode
and the proof that the implementation satisfies the assomgpthade above.

Of special interest is the strategy used to proveflzatt is correct. Two key tech-
niques were used. In the first, we reason about strings bgmeagsabout their list-level
counterparts. Most importantly, this allowed the replaeatrof the concept of “there
is an exact match gbat starting at positio with t xt starting at position ” by an
equality of a “component” of thpat with a “component” ot xt . These “components”
are expressed in terms of the firsand all-but-the-first elements of a list. The second
technique eliminates the use of those two concepts in favarcomprehension of the
relevant list into the concatenation of two arbitrary listéengths constrained by various
inequalities. This reduces the problem largely to one daharétic, concatenation, and
equality.

To the best of our knowledge, this is the first mechanicallyosied proof of the
correctness of a version of the Boyer-Moore algorithm thelftides consideration of the
skip based on the partially matched substring.

A. The ACL2 Proof

In the following we show each of the steps mentioned above. (Fh)—(*9) numbers
appear out of order because ACL2 proofs are presented bagtom

(defun correct-1oop~ (pat~ txt~ i) i (*B)
(declare (xargs :neasure (nfix (- (len txt~) i))))
(cond ((not (natp i)) nil)
((>=1i (len txt~)) nil)
((equal (firstn (len pat~) (nthcdr i txt~))
pat ~)
i)

(t (correct-loop~ pat~ txt~ (+ 1i)))))

(defthm correct-1oop-trade ; (*6)
(inplies (and (stringp pat)
(stringp txt))
(equal (correct-loop pat txt i)

(correct-1oop~ (coerce pat 'list)
(coerce txt 'list)
i))))
(defun clear (pat~ txt~ k n) i (*7)

(decl are (xargs :neasure (nfix n)))
(cond ((zp n) t)
((equal (firstn (len pat~) (nthcdr k txt=~))
pat ~)
nil)
(t (clear pat~ txt~ (+ k 1) (- n 1)))))

(defthmcl ear-inplies-skip ; (*8)

(inmplies (and (natp k)

(< k (len txt=~))

(natp n)

(clear pat~ txt~ k n))

(equal (correct-loop~ pat~ txt~ (+ k n))
(correct-loop~ pat~ txt~ k)))

:rul e-classes nil)

Lemma (*8), above, is not stored as a rewrite rule (natel e- cl asses above)
because ACL2 cannot “see” how to use it automatically. Ingteof of (*4) below, we
supply a hint that instantiates (*8) as required.

Lemma (*9), below, is the other half of our decomposition #f)(As noted the
fir st nexpressionyields the list representation of the discalnedt ~. Technically,
it is the character just read frohxt ati consed onto tail opat starting aj +1. But
that direct formulation oflt ~ (a) hides its relation td xt and (b) makes it a function
of j . But to prove (*9) we induct o) and the induction requires that thdt“~" in
the induction hypothesis be the sant# *” in the induction conclusion. (*9) is thus a
generalization of the theorem we need because it deals wahbdtrary substring df x t
of lengthd. This introduction ofd and the separation aft ~ from pat makes (*9) not
useful as a rewrite rule in the proof of (*4) and so in that grnee have to provide a hint
as to how to use (*9).

(defthm cl ear-x 7 (*9)
(inplies (and (true-listp pat~)
(true-listp txt~)
(consp pat~)
(natp i)
(natp d)
(<= (+1i d) (len txt~))
(integerp j)
(natp (- i j))
(natp (+] d))

(<= (+] d) (len pat~)))
(cl ear pat~
txt~
(-1 17)
(-] (x (firstn d (nthedr i txt~)) pat~j))))
:rul e-classes nil)

(defthm crux~ ;o (*4)
(inmplies (and (true-listp pat-~)
(true-listp txt~)
(integerp j)
(<=-11])
(integerp i)
(<= -11)
(<=0 j)
(<i (len txt=~))
(not (equal (nth j pat~) (nth i txt~)))
(consp pat~)
(<=0 (len pat~))
(<j (len pat~))
(<=17j 1)
(equal (firstn (len (nthcdr (+ 1 j) pat~))
(nthedr (+ 1 1) txt~))
(nthcdr (+ 1 j) pat~)))

(equal
(correct-1 oop~
pat ~ txt~
(+1i

(- (x (cons (car (nthcdr i txt~))
(cdr (nthcdr j pat~)))
pat~ (+ -17j)))))
(correct-loop~ pat~ txt~ (+i (- j)))))

; Here we give the two hints mentioned above.
chints
(("Goal"
1 use
((:instance
cl ear-x ; hint using (*9)
(d (- (len pat~) j)))

(:instance
clear-inplies-skip ; hint using (*8)
(pat~ pat~)
(txt~ txt~)
(k (+1 (-1)))
(n
(+]
(- (x (cons (nth i txt~) (nthcdr j (cdr pat~)))
pat~ (+-17]))))))))))

(defthm crux 7 (*3)

(implies (and (stringp pat)
(stringp txt)

(integerp j)
(<=-11])
(integerp i)
(<= -11)
(<=01j)

(<i (length txt))
(not (equal (char pat j)
(char txt i)))
(not (equal pat ""))
(<j (length pat))
(<=7 1)
(xmatch pat (+ 1 j) txt (+ 11i)))
(equal (correct-loop pat txt
(+ 11 (- (length pat))
(delta (char txt i) j pat)))
(correct-loop pat txt (+i (- j))))))

The plan calls for us to ascend to the string level and pro2¢ €stablishing that
fast-1oopiscorrect-I| oop, via a routinef ast - | oop induction. The plan left
out two things that come up in trying to carry out that proof.

First, one of the hypotheses of (*2) isamat ch expression expressing the idea that
everything to the right of in pat matches its counterpart irxt . But when we slide
the pattern dowrj, becomeg- (1 ength pat) 1).Inthatcase, we are guaranteed
anxmat ch because the region in question is empty. That is establishielde lemma
below.

(defthm enpty- xmat ch
(inplies (and (stringp pat)
(stringp txt)
(natp i))
(xmatch pat (length pat) txt i)))

Second, note thdtast - | oop stops (and returnsi |) when the right end of the
pattern “falls off” the right end of xt . Butcor r ect - | oop keeps going (getting re-
peatedkmat ch failures) until the left end of the pattern falls off the rig¢nd oft xt .
This lemma tells usor r ect - | oop could stop wheffi ast - | oop does.

(defthmearly-termnation
(implies (and (natp k)
(stringp pat)
(stringp txt)
(<= (length txt) (+ k (- (length pat) 1))))
(not (correct-loop pat txt k))))

The plan calls for the proofs of (*2) and (*1) to be conductétha string level. To
make ACL2 operate at the string level, we disable the rulesdhive it down to the list
level. It can complete the proof.

(in-theory (disable xmatch-trade

correct-1 oop-trade
delta
I ength
char))

(defthm fast-1oop-is-correct-I|oop ;o (%2)
(inmplies (and (stringp pat)

(integerp j)

(stringp txt)

(integerp i)

(<=-11j)

(< (length pat))

(<=7 1)

(not (equal pat ""))

(xmatch pat (+j 1) txt (+i 1)))
(equal (fast-loop pat j txt i)

(correct-loop pat txt (- i j)))))

(defthm fast-is-correct ;o (*1)
(inplies (and (stringp pat)

(stringp txt))
(equal (fast pat txt)

(correct pat txt))))

References

[1] M. Besta and F. Stomp. A complete mechanization of a ctmess proof of a string-preprocessing
algorithm. Formal Methods in System Design, 27(1-2):5-27, 2005.

[2] R.S.BoyerandJS. Moore. A fast string searching algoritComm. ACM, 20(10):762-772, 1977.

[3] R.S.BoyerandJS. Mooré Computational Logic. Academic Press, New York, 1979.

[4] R.S.Boyer and J S. Moore. A verification condition get@rdor FORTRAN. InThe Correctness
Problem in Computer Science, pages 9-101, London, 1981. Academic Press.

[5] Richard Cole. Tight bounds on the complexity of the begeyore string matching algorithm. BODA
'91: Proceedings of the second annual ACM-SAM symposium on Discrete algorithms, pages 224-233,
Philadelphia, PA, USA, 1991. Society for Industrial and Agg Mathematics.

[6] L. Guibas and A. Odlyzko. A new proof of the linearity ofetlboyer-moore string searching algorithm.
S AM Journal of Computing, 9:672-682, 1980.

[7] M. Kaufmann, P. Manolios, and J S. Moor€omputer-Aided Reasoning: An Approach. Kluwer Aca-
demic Press, Boston, MA., 2000.

[8] D. Knuth, V. Pratt, and J. Morris. Fast pattern matchingstrings. SAM Journal of Computing,
6(2):323-350, 1977.

[9] J S. Moore. Mechanized operational semantics: Lectanessupplementary material. Marktober-

dorf Summer School 2008: Engineering Methods and Tools for Software Safety and Security, 2008.
http://www.cs.utexas.edu/users/moore/publicatiafissimarktoberdorf-08/index.html.

