
A Mechanically Checked Proof of the
Correctness of the Boyer-Moore Fast

String Searching Algorithm

J Strother MOOREa,1

and Matt MARTINEZa

a Department of Computer Sciences, University of Texas at Austin, Texas, USA

Abstract. We describe a mechanically checked proof that the Boyer-Moore fast
string searching algorithm is correct. This is done by expressing both the fast algo-
rithm and the naïve (obviously correct) algorithm as functions in applicative Com-
mon Lisp and proving them equivalent with the ACL2 theorem prover. The algo-
rithm verified differs from the original Boyer-Moore algorithm in one key way: the
original algorithm preprocessed the pattern into two arrays and skipped forward by
the maximum of the skip distances recorded in those arrays; the algorithm verified
uses one array that combines the two original arrays (and awhose size is the prod-
uct of that of the original arrays). The algorithm here skipsat least as far as the
original Boyer-Moore algorithm and often skips further, though we do not prove
that mechanically. A key fact about the original algorithm is that preprocessing can
be done in time linear in the length of the pattern,|pat|, and the size of the alpha-
bet, |α|. Our implementation of the preprocessing here is unconcerned with effi-
ciency and has complexity|α| × |pat|2. Our mechanically checked proof includes
a proof that our preprocessing is correct. We briefly describe a proof (shown in de-
tail elsewhere) that an imperatively coded version of the fast algorithm implements
the algorithm verified here.

Keywords. ACL2, software verification, theorem proving

The Algorithm

The Boyer-Moore fast string algorithm[2] looks for the firstexact match of one string,
called thepattern in another, called thetext.2 Given a proposed alignment of the two
strings, the algorithm compares them character by character starting at the right-hand
end of the pattern. Consider two corresponding characters, sayu from the pattern at
indexj andv from the text at the corresponding indexi. If u = v, the algorithm backs
up, decrementingj andi. If u 6= v, the algorithm has “discovered” a substring in the
text. This substring isalmost a terminal substring of the pattern starting atj, except
the discovered string starts withv instead ofu. The next possible exact match of the

1Corresponding Author: Department of Computer Sciences, Taylor Hall 2.124 #C0500, The University of
Texas at Austin, 1 University Station, Austin, Texas 78712-0233, U.S.A. E-mail: moore@cs.utexas.edu

2This sketch of the algorithm is taken largely verbatim from the unpublished notes distributed as part of
Moore’s Marktoberdorf Summer School, 2008, lectures.

pattern and the text is obtained by shifting the pattern to the right to align the discovered
substring with its rightmost occurrence in the pattern. Given that there are only a finite
number of terminal substrings of the pattern and of characters in the alphabet, one can
preprocess the pattern to determine the skip distance efficiently during the search itself.

In the original algorithm [2], the algorithm skips forward by the maximum of two
distances, calleddelta1 anddelta2. The first is the distance necessary to align the charac-
terv with its last occurrence in the pattern. The second is the distance necessary to align
the matched terminal substring starting atj +1 with its last occurrence in the pattern not
preceded byu.

In the algorithm we study, we skip forward by the amount necessary to align the
actual discovered substring (v followed by the terminal substring starting atj + 1). This
requires a 2-dimensional array,δ, be used in our preprocessing. Given the last character
read from the text,v, and the corresponding location in the pattern,j, at which it was
mismatched, we store the skip distance atδ[v, j]. This number will always be larger than
the maximum ofdelta1 anddelta2 and can be pre-computed by determining the location
in the pattern of the right-most occurrence of every string starting with some character of
the alphabet followed by a terminal substring of the pattern. This variant of the algorithm
is mentioned in the “Historical Remarks” section of [2].

Here is an example. We find the first occurrence of the indicated pattern (pat) in the
text (txt). The arrow (⇑) indicates which character fromtxt we will read. We show a trace
of the algorithm below and then we explain each step.

1. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=5

2. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=4

3. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=3

4. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=8

5. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=14

6. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=15

7. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=14

8. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=13

9. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=12

10. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=11

11. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=10

12. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=9

Note on line1, we start by reading and matching the ‘C’ at text positioni=5 with
the ‘C’ at the end of the pattern. We back up. We match the ‘B’s. We back up. On line3
we read the ‘a’ at i=3 and it fails to match the ‘d’ (at positionj=3)’ in the pattern. So
we skip ahead by some precomputed amount as a function of the characterv just read
from the text, ‘a’, and the index of the matched terminal substring ("BC") of the pattern
(j=4). It turns out that the precomputed amountδ is 5. So we addδ to i and get the
newi=8 of line 4. What is special about 5? Note that on line4, after addingδ to i and
shifting the pattern rightwards to that position, the discovered"aBC" of the text aligns
with its last occurrence in the pattern.

On line4, we read ‘G’. It does not match its counterpart in the pattern. The precom-
puted table (for ‘G’ and the empty substring) says we can incrementi by δ = 6. This is
becausethere is no ‘G’ in the pattern! So we can slide the pattern forward by its length
to get entirely past the ‘G’.

Online 5, we read ‘B’. Following the same routine, we use the precomputed table
to shift the pattern to align the last ‘B’ in the pattern with the discoveredB.

On lines6 through11 we just back up confirming each character.
On line12, we have “walked off the left end of the pattern.” That means we matched

all the characters. The match starts ati+1, or position10 in the text.
Here is a more realistic example using English text:

pat: pattern
txt: we can preprocess the pattern to

⇑ i=6

pat: pattern
txt: we can preprocess the pattern to

⇑ i=13

pat: pattern
txt: we can preprocess the pattern to

⇑ i=20

pat: pattern
txt: we can preprocess the pattern to

⇑ i=22

pat: pattern
txt: we can preprocess the pattern to

⇑ i=28

pat: pattern
txt: we can preprocess the pattern to

⇑ i=27
etc.

Here we see the algorithm skipping through the text in steps that typically grow with the
length of the pattern. This illustrates the key advantage ofthe Boyer-Moore fast string
searching algorithm:it advances through the text without reading all the characters and
in steps that are often nearly as big as the pattern is long.

To the best of our knowledge, the only variant of the Boyer-Moore fast string search-
ing algorithm that has been proved correct mechanically is the “delta1 version” de-
scribed in [3]. There, Boyer and Moore described an imperative implementation of their
algorithm without thedelta2 array, annotated it with assertions, generated verification
conditions (VCs), and proved those VCs with the theorem prover described in [3]. See
also [4] for a verified Fortran implementation of thedelta1 version.

No other mechanized treatments of the Boyer-Moore search algorithm have been
found. However in 2002, M. Besta and F. Stomp used PVS to provethe correctness of
the notoriously error-prone preprocessing for the original algorithm[1].

The original algorithm was proved to execute in time linear in the locationi at which
the first match is found. In [8], it is shown to be bounded aboveby 6i. Later that was
lowered to4i by Guibas and Odlyzko [6], and finally to3i by Cole [5]. It should be noted
that (a) we do not deal with the performance, much less the linearity, of the algorithm
proved here, and (b) it is nota priori obvious that our variant is linear just because each
of its skips is at least as great as the skips in the original algorithm.

1. Formalization

We formalize both the fast algorithm and the obviously correct algorithm in ACL2 [7]
and prove them equivalent. The complete formalization and proof script is available [9].

“ACL2” stands for “A Computational Logic for Applicative Common Lisp.” We
assume the reader can read Lisp notation. Here are a few simple examples:

ACL2 conventional notation
(>= j (length pat)) j ≥ |pat|
(char pat (+ j 1)) pat[j + 1]
(xmatch pat j txt i) xmatch(pat, j, txt, i)

In ACL2, strings are indexed from0. So the character at(char pat (-
(length pat) 1)) is the last character inpat, providedpat is non-empty.

The ACL2 expression

(cond ((not (natp i)) nil)
((>= i (length txt)) nil)
((xmatch pat 0 txt i) i)
(t (correct-loop pat txt (+ 1 i))))

may be read as
If i is not a natural number,then nil,
else if i ≥ |txt|, then nil,
else if xmatch(pat, 0, txt, i), then i,
else correct−loop(pat, txt, 1 + i).

1.1. A Correct Algorithm

Below we define three functions,xmatch, correct-loop, andcorrect. The last
is our “obviously correct” algorithm:(correct pat txt) returns the index in the
stringtxt at which we find the left-most exact match of the stringpat, or elsenil if no
such exact match exists intxt. The function “works” by checking, for each successive
legal index intotxt starting from0, whether there is an exact match ofpat starting at
that index.

(defun xmatch (pat j txt i)
(declare (xargs :measure (nfix (- (length pat) j))))
(cond ((not (natp j)) nil)

((>= j (length pat)) t)
((>= i (length txt)) nil)
((equal (char pat j)

(char txt i))
(xmatch pat (+ 1 j)

txt (+ 1 i)))
(t nil)))

(defun correct-loop (pat txt i)
(declare (xargs :measure (nfix (- (length txt) i))))
(cond ((not (natp i)) nil)

((>= i (length txt)) nil)
((xmatch pat 0 txt i) i)
(t (correct-loop pat txt (+ 1 i)))))

(defun correct (pat txt)
(correct-loop pat txt 0))

The top-level functioncorrect takes two arguments,pat andtxt (which will
be strings), and calls its “subroutine”correct-loop on them, initializing the locali
of correct-loop to 0. Think of correct-loop as awhile loop. For each legal
index intotxt it checks whether there is an exact match ofpat (starting at index0)
with txt (starting ati). If so, it returnsi. If not, it iterates (recurs), incrementingi by
1.

The functionxmatch checks for an exact match between the characters ofpat
(starting atj) with the corresponding characters oftxt (starting ati). It terminates with
t if pat is exhausted first and terminates withnil if txt is exhausted first or if unequal
characters are found.

The declare forms above supply ACL2 with a measure of the arguments that
ACL2 uses in the termination proofs for these recursive definitions. The tests thati and
j are natural numbers are necessitated by ACL2’s requirementthat functions are total
(defined on all inputs). Henceforth, we will omit such details from this paper and refer
the reader to the proof script.

We take it as obvious thatcorrect returns the smallest index intotxt at which an
exact match ofpat occurs. This can be formalized:xmatch insures that corresponding
characters are equal; ifcorrect returnsnil, there is no exact match; and ifcorrect
returns non-nil, there is an exact match at the indicated index and there is noearlier
match. The formal statements of these properties can and have been proved. But we
believe the definitions above are as clear as the formalized versions of these remarks. We
usecorrect as the specification of the fast string searching algorithm.

1.2. The Fast Algorithm

The top-level function for the fast algorithm is defined as follows.

(defun fast (pat txt)
(if (equal pat "")

(if (equal txt "")
nil

0)
(fast-loop pat

(- (length pat) 1)
txt
(- (length pat) 1))))

The initial case analysis is required because the main loop of the fast algorithm requires
thatpat be non-empty. That loop is formalized byfast-loop which takespat, an
indexj into pat, txt, and the indexi into txt. Indexi corresponds to the arrows
(“⇑”) in our diagrams – the place intxt at which we will read – and indexj points to the
corresponding place inpat. We call these thefocus locations. The difference between
i andj indicates the currentalignment, the location intxt corresponding to the0th

character ofpat. Fast enters the loop withpat aligned with the0th character oftxt
and the focus on the last character ofpat.

(defun fast-loop (pat j txt i)
(cond
((< j 0)
(+ 1 i))
((<= (length txt) i)
nil)
((equal (char pat j) (char txt i))
(fast-loop pat (- j 1) txt (- i 1)))
(t (fast-loop pat

(- (length pat) 1)
txt
(+ i (delta (char txt i)

j
pat)))))))

Note that there are two recursive calls. The first, when the characters atj andi (in their
respective strings) are equal, decrements the two indices.The other, when the characters
are unequal, incrementsi by an amount computed by the functiondelta, described
below, and resetsj to the index of the last character inpat. The function terminates
with (+ 1 i) if j is decremented below0 and terminates withnil if i is incremented
past the right end oftxt. Tests (not shown above) insure thatpat andtxt are strings,
i andj are integers,j is either-1 or a legal index intopat, andj is less than or equal
to i.

Termination is proved using a lexicographic measure in which the primary compo-
nent is the alignment ofpat andtxt, which is advancing weakly monotonically to the
right, and in which the secondary component is the positionj in pat, which is decreasing
toward-1.

In this model, rather than look up the skip distance in an array, we compute the
appropriate skip with the functiondelta. Delta takes the character,v, just read from
txt, the indexj of the corresponding character inpat, andpat. We know thatv is
unequal to the character atj in pat. Delta returns the amount by which we increment
the indexi into txt.

Sincedelta is a function of an arbitrary character in the alphabet and anindex
into pat, we could precompute givenpat (and the known alphabet). The imperative
program verified in [9] usesdelta to initialize a 2-dimensional array indexed byv and
j, and uses the array instead ofdelta in its loop. By formalizingfast this way, we
factor the correctness of the imperative code: we do the hardpart here, proving thatfast
(anddelta) are correct and leave certain bookkeeping tasks for the correspondence
between the imperative code andfast. As a consequence, we are not concerned here
with the efficiency with which we computedelta.

(defun delta (v j pat)
(let* ((pat~ (coerce pat ’list))

(dt~ (cons v (nthcdr (+ j 1) pat~))))
(+ (- (len pat~) 1) (- (x dt~ pat~ (- j 1))))))

Because we are not concerned with efficiency, we convert the problem from one about
strings to one about lists of characters. We use the convention that “pat~” is the list of
characters corresponding to the stringpat. Notice above thatdt~ is the list of characters
starting withv and then consisting of the terminal substring ofpat starting at index
j+1. This is thediscovered text in txt starting at indexi where we readv. The role
of delta is to provide a skip that realigns the pattern so that the just-discovered text
matches its rightmost occurrence inpat.

So we compute the rightmost index inpat at whichdt~ occurs. We can start that
search at indexj-1. That computation is performed by the functionx. Then, we subtract
the value ofx from index of the last character inpat. That is the distance between
the beginning of the match ofdt~ and the last character ofpat. That is thus the skip
distance.

Below we show one skip in the execution of the algorithm on a pattern of length
25 (so the index of the last character is24). The cryptic digits below help you count.
Consider the first alignment below, showingpat andtxt. Supposej is 19 and the
corresponding index intxt is as indicated by the first arrow. Thus, we have already
matched the five terminalZs inpat and then find a mismatch comparing thew at index

19 in pat to theV in txt. The discovered text is thusVZZZZZ. Its rightmost occurrence
in pat is at the index labeledx, which is7. The difference between 24 and 7 is 17,
which is how far down we must shift the uparrow.

111111111122222
0123456789012345678901234

x j
pat: aaaaaaaVZZZZZaaaaaawZZZZZ
txt: ...VZZZZZ............

⇑

pat: aaaaaaaVZZZZZaaaaaawZZZZZ
txt: ...VZZZZZ............

⇑

012345678901234567

The second alignment is after shiftingpat to the right. Note that the discovered text from
txt matches the corresponding characters inpat and that the arrow has been moved to
the right by 17.

However, the algorithm must handle the possibility that thematch of the discovered
text is only partial (i.e., the discovered text “falls off” left end ofpat):

0123456789012345678901234
x j

pat: ZZZaaaaaaaaaaaaaaaawZZZZZ
txt: ...VZZZZZ............

⇑

So when the functionx searches backwards throughpat~ for dt~ it must allow
dt~ to “fall off” the left end of pat. To check this we definepmatch so that
(pmatch dt~ pat~ j) returnst ornil to indicate whether there is a partial match
of dt~ in pat at “position”j, wherej is allowed to be negative. The value ofx in the
example above is-3, indicating that the first 3 characters (VZZ) of the discovered text
have fallen off the end ofpat.

(defun pmatch (dt~ pat~ j)
(if (< j 0)

(equal (firstn (len (nthcdr (- j) dt~)) pat~)
(nthcdr (- j) dt~))

(equal (firstn (len dt~) (nthcdr j pat~))
dt~)))

(Firstn n s) returns the firstn elements of lists. (Nthcdr n s) returns thenth

tail of s, i.e., the result of removing the firstn elements. Thus, the idiom(firstn n
(nthcdr m s)) denotes then elements ofs starting at the one with indexm.

(Pmatch ’(V Z Z) ’(a b c V Z Z d e w Z Z) 3) is t and so is
(pmatch ’(V Z Z) ’(Z Z c f g h d e w Z Z) -1).

Note that as long asdt~ is a proper list there is always aj such that(pmatch dt~
pat~ j) is true: letj be−n, wheren is the length ofdt~. This remark explains why
the functionx terminates: it decrementsj until pmatch succeeds. (Omitted tests insure
that the arguments are of the proper types.)

(defun x (dt~ pat~ j)
(cond ((pmatch dt~ pat~ j) j)

(t (x dt~ pat~ (- j 1)))))

2. Proof Strategy

Before we discuss the particulars of the proof of equivalence betweenfast and
correct, we present two basic ideas that are used repeatedly in our mechanized proof.

2.1. Trading Strings for Lists

As exploited in the definition ofdelta, there is a correspondence between strings and
lists of characters. Given a string,str, (coerce str ’list) returns a list of the
characters, saystr~, and(coerce str~ ’string) is the inverse that returns the
stringstr.

Reasoning about lists is easier than reasoning about strings, given the ACL2 primi-
tives. Most theorems about strings involve indices that give rise to necessary hypotheses
bounding them and relating them. Inductions have to manage these indices. This awk-
wardness could be alleviated by building suitable definition and lemma libraries in which
one could extract substrings as though they were “components” of strings and add and
remove characters so that one could map down a string as an object without needing to
use auxiliary variables to keep track of the “current position.” However these features are
already present in lists and so it is natural to do string-related proofs by stepping down
to the list level.

As an illustration of this, consider(xmatch pat j txt i), which checks
whether the characters ofpat starting atj exactly match the characters oftxt starting
ati. Lettingpat~ andstr~ be the list counterparts ofpat andstr, this is just:

(equal (firstn n (nthcdr i txt~))
(nthcdr j pat~))

That is, the substring oftxt of lengthn starting ati is the terminal substring ofpat
starting atj. Replacingxmatch by an equality is a powerful proof technique.

Here is the theorem that allows ACL2 to do this:

(defthm xmatch-trade
(implies (and (stringp pat)

(stringp txt)
(natp j)
(natp i))

(equal (xmatch pat j txt i)
(equal (firstn

(len (nthcdr j (coerce pat ’list)))
(nthcdr i (coerce txt ’list)))

(nthcdr j (coerce pat ’list))))))

Practically speaking, as long as this lemma is “enabled,” whenever ACL2 encounters an
xmatch expression applied to two strings and two naturals as hypothesized above, it

will replace thexmatch expression by the equality of the corresponding “components”
of the list level counterparts of the strings.

When we wish to stop operating at the list level, we “disable”this lemma.

2.2. An Alternative List Construction

The second part of our strategy is to comprehend lists as being constructed of two parts
(determined by some indexn) combined by concatenation.

ACL2 can prove the following theorem expressing this idea.

(defthm firstn-nthcdr-elim
(implies (and (natp n)

(< n (len x)))
(equal (append (firstn n x) (nthcdr n x)) x))

:rule-classes :elim)

When stored as an “elim” rule as specified above, ACL2 adopts the following proof
strategy:

Let (φ n x (firstn n x) (nthcdr n x)) be a schematic representation of any
theorem involving a variable symboln known to be a natural number, a variable symbolx
known to be a list of length exceedingn, and one or both of the expressions(firstn n
x) and(nthcdr n x). Then to prove(φ n x (firstn n x) (nthcdr n x))
it is sufficient to prove(φ (len a) (append a b) a b), wherea andb are fresh
variable symbols.

This is permitted because if you prove the latter, you can instantiate it by replacing
a by (firstn n x) andb by (nthcdr n x) and then usefirstn-nthcdr--
elim and the fact that the length of(firstn n x) is n to prove the original goal.

This strategy is powerful because it eliminatesfirstn andnthcdr by introducing
variables in their places. Simple list processing lemmas then come into play to normalize
expressions.

The two most important are the associativity ofappend

(defthm assoc-of-append
(equal (append (append a b) c)

(append a (append b c))))

and lemmas establishing when two lists formed by concatenation are equal. For example,
if a andb are proper lists, then(append a c) is equal to(append b c) if and
only if a is equal tob. Similarly,(append a b) is (append a c) if and only if b
is c.

2.3. The Utilities Library

Our proof of the equivalence offast andcorrect exploits both the strategy of elim-
inatingxmatch in favor offirstn, nthcdr, and equality, and the strategy of elimi-
natingfirstn andnthcdr by comprehending lists as concatenations.

The combined result is that if we are dealing with a conjecture containing the term
(xmatch pat j txt i), for suitablepat,j,txt, andi, then we will re-represent
the problem in terms of the list level counterparts ofpat andtxt, namelypat~ and

txt~, except that forpat~ we will use(append p q) and fortxt~ we will use
(append a (append b c)), where the new variables are known to be lists of char-
acters, withp being of lengthj, a of lengthi, andb is the same length asq. In this
representation, the list counterpart of the terminal substring of pat starting atj is just
q and the list counterpart of the terminal substring oftxt starting ati is just(append
b c). Thus, the(xmatch pat j txt i) term will become a simple equality ofq
andb.

During the course of the proof thatfast is correct we identified many useful
theorems about list processing functions. These were proved by the second author, Mar-
tinez, and are available in theutilities.lisp “book” mentioned in [9].

3. The Proof Plan

In this section we describe our “proof plan.” ACL2 does not offer mechanized support
for such plans. Instead, the user carries them out expectingACL2 to fill in the gaps. Each
step corresponds to a formula to prove. We have numbered them. In the “plan” we just
sketch the formula we have in mind, omitting details to communicate the ideas. In the
next section we show the actual script, numbered the same way.

The theorem we wish to prove is

(defthm fast-is-correct ; (*1)
(implies (and (stringp pat)

(stringp txt))
(equal (fast pat txt)

(correct pat txt))))

To prove (*1), we need to prove that the two loops are equivalent, i.e., that

(equal (fast-loop pat j txt i) ; (*2)
(correct-loop pat txt (- i j)))

under suitable hypotheses. The main hypothesis is thatpat starting atj+1 exactly
matchestxt starting ati+1. The difference expression above reflects the fact that thej
andi in thefast-loop term point to the right end of the current alignment while the
index incorrect-loop points to the left end.

To prove this we’ll do an induction to unwindfast-loop. There will be two
inductive cases, one for the case where we back up because thecorresponding characters
are identical, and one for the case where we skip forward bydelta. We discuss the
second case in this sketch.

The inductive step in that case will look something like this:

(implies (and ...
(not (equal (char pat j) (char txt i))) ; hyp 1
...
(equal (fast-loop pat j′ txt i′) ; hyp 2

(correct-loop pat txt (- i′ j′)))
...)

(equal (fast-loop pat j txt i) ; concl
(correct-loop pat txt (- i j))))

where hypothesis 1 describes the case where the characters are unequal and hypothesis
2 is the inductive hypothesis. In our inductive hypothesis,we assume the formula for
j replaced byj′ andi replaced byi′, where values ofj′ and i′ are just those in the
recursive call offast-loop in this case:

j′: (- (length pat) 1)
i′: (+ i (delta (char txt i) j pat))

The conclusion is just the theorem we are proving, (*2). The call of fast-loop
will expand under hypothesis 1 and become(fast-loop pat j′ txt i′). Note
that this is the term our induction hypothesis mentions.

We will then use the induction hypothesis to produce a conclusion of the form

(equal (correct-loop pat txt (- i′ j′))
(correct-loop pat txt (- i j)))

So the proof aboutfast-loop is easy if we can prove this lemma about
correct-loop. The actual lemma, substituting the expressions fori′ andj′ and sim-
plifying with arithmetic will look like this:

(equal (correct-loop pat txt ; (*3)
(+ 1 i

(- (length pat))
(delta (char txt i) j pat)))

(correct-loop pat txt
(- i j))).

Lemma (*3) has many hypotheses. The two main ones are that (a)pat starting atj+1
exactly matchestxt starting ati+1 and (b) the characters atj andi are different.

Think of the third argument ofcorrect-loop as being the index of a proposed
alignment ofpat andtxt. Correct-loop just tests whether there is a match there
and if not, moves the proposed alignment down by 1. (*3) tellsus that we can shift down
by a larger amount, determined bydelta, without missing a match. That is the crux of
the Boyer-Moore algorithm.

The main lesson is that we can do the proof of the equivalence of fast-loop and
correct-loop with one standard induction onfast-loop, if we can prove that
correct-loop allows the same big skips thatfast-loop does. This will take some
intricate reasoning about exact matches, mismatched characters, anddelta. We do that
reasoning at the list level, not the string level.

So to prove (*3), which is about strings, we jump to its list level counterpart, which
is called (*4). But to even state the lemma at the list level weneed a recursive function
on lists that is the list-level correspondent of the string-levelcorrect-loop.

We call that functioncorrect-loop~ (*5) and we prove that it is the list-
level counterpart ofcorrect-loop in (*6). To convert (*3) to the list level, replace
correct-loop by correct-loop~, pat by pat~, txt by txt~ andlength
(which operates on strings) bylen (which operates on lists). In addition,char which
operates on strings can be replaced by an expression involving thecar of thenthcdr
of the list counterpart of the string, anddelta can be replaced by its body which was
intentionally formulated at the list level for this very reason.

With those transformations (*3) becomes

(equal ; (*4)
(correct-loop~ pat~ txt~

(+ i
(- (x

(cons (car (nthcdr i txt~))
(nthcdr j (cdr pat~)))

pat~
(+ -1 j)))))

(correct-loop~ pat~ txt~
(+ i (- j))))

Thecons expression above is just the “discovered text,”dt~.
To prove thatcorrect-loop~ allows jumps to the alignment identified byx, we

break the argument into two steps.

• Correct-loop~ allows jumps byany amount – provided no exact matches are
skipped! To state this we need to invent a list-level predicate that says “there are
no matches between here and there.” That predicate is calledclear (*7) and its
basic property is formalized (*8):

(implies (and ... ; (*8)
(clear pat~ txt~ k n))

(equal (correct-loop~ pat~ txt~ (+ k n))
(correct-loop~ pat~ txt~ k)))

• Then we prove that there are no matches in the region jumped over when we shift
the pattern to thex alignment.

(clear pat~ ; (*9)
txt~
(- i j)
(- j (x (firstn d (nthcdr i txt~)) pat~ j)))

Here, think of(firstn d (nthcdr i txt~)) as the discovered text (of
lengthd). We discuss the reason we formulated it this way in the script included
in Appendix A.

(*8) and (*9) allow us to prove (*4), which allows us to prove (*3) given that we
can move fromcorrect-loop~ to correct-loop via (*6). Given (*3), we can
complete the inductive proof of (*2) establishing the equivalence offast-loop and
correct-loop. Then (*1) is straightforward by expansion offast andcorrect.

4. Conclusion

We proved that a version of the Boyer-Moore fast string searching algorithm is correct.
The version we considered does not use the original [2] calculation for the skip distance
– the maximum of two independent calculations based on the last occurrence of the
character just read and the last occurrence of the terminal substring discovered by the
partial match – but instead uses a combination that is guaranteed to produce at least as
large a skip.

We proved that an implementation of the algorithm, calledfast, in applicative
Common Lisp is terminates and always returns the same answeras the naïve algorithm
that successively searches for the leftmost exact match by trying successive alignments.

Rather than pre-compute the skips by preprocessing,fast computes each skip
when needed using a function defined here calleddelta. Our proof establishes the cor-
rectness of an algorithm for computingdelta.

We do not consider efficiency of either the computation ofdelta or the search
itself.

In [9] we describe a bytecode implementation offast. Bytecode fordelta is not
verified in [9]. Instead, the bytecode forfast is invoked on a 2-dimensional array of
sizek × |α|, wherek is the length of the pattern andα is the alphabet. It is assumed that
the caller has initialized that array with values equal to those computed bydelta. That
paper exhibits an algorithm, in terms ofdelta, that initializes the array appropriately.
No attention is paid to the efficiency of that algorithm and itexecutes in timek2 × |α|.
The paper proves that under these pre-conditions the bytecode forfast is equivalent to
fast.

The combination of this paper and [9] is that a bytecode implementation of the
Boyer-Moore algorithm is correct and that a certain algorithm correctly computes the
2-dimensional array required.

Future work includes the implementation of the preprocessing algorithm in bytecode
and the proof that the implementation satisfies the assumptions made above.

Of special interest is the strategy used to prove thatfast is correct. Two key tech-
niques were used. In the first, we reason about strings by reasoning about their list-level
counterparts. Most importantly, this allowed the replacement of the concept of “there
is an exact match ofpat starting at positionj with txt starting at positioni” by an
equality of a “component” of thepat with a “component” oftxt. These “components”
are expressed in terms of the firstn and all-but-the-firstn elements of a list. The second
technique eliminates the use of those two concepts in favor of a comprehension of the
relevant list into the concatenation of two arbitrary listsof lengths constrained by various
inequalities. This reduces the problem largely to one of arithmetic, concatenation, and
equality.

To the best of our knowledge, this is the first mechanically checked proof of the
correctness of a version of the Boyer-Moore algorithm that includes consideration of the
skip based on the partially matched substring.

A. The ACL2 Proof

In the following we show each of the steps mentioned above. The (*1)–(*9) numbers
appear out of order because ACL2 proofs are presented bottomup.

(defun correct-loop~ (pat~ txt~ i) ; (*5)
(declare (xargs :measure (nfix (- (len txt~) i))))
(cond ((not (natp i)) nil)

((>= i (len txt~)) nil)
((equal (firstn (len pat~) (nthcdr i txt~))

pat~)
i)

(t (correct-loop~ pat~ txt~ (+ 1 i)))))

(defthm correct-loop-trade ; (*6)
(implies (and (stringp pat)

(stringp txt))
(equal (correct-loop pat txt i)

(correct-loop~ (coerce pat ’list)
(coerce txt ’list)
i))))

(defun clear (pat~ txt~ k n) ; (*7)
(declare (xargs :measure (nfix n)))
(cond ((zp n) t)

((equal (firstn (len pat~) (nthcdr k txt~))
pat~)

nil)
(t (clear pat~ txt~ (+ k 1) (- n 1)))))

(defthm clear-implies-skip ; (*8)
(implies (and (natp k)

(< k (len txt~))
(natp n)
(clear pat~ txt~ k n))

(equal (correct-loop~ pat~ txt~ (+ k n))
(correct-loop~ pat~ txt~ k)))

:rule-classes nil)

Lemma (*8), above, is not stored as a rewrite rule (note:rule-classes above)
because ACL2 cannot “see” how to use it automatically. In theproof of (*4) below, we
supply a hint that instantiates (*8) as required.

Lemma (*9), below, is the other half of our decomposition of (*4). As noted the
firstn expression yields the list representation of the discovered textdt~. Technically,
it is the character just read fromtxt ati consed onto tail ofpat starting atj+1. But
that direct formulation ofdt~ (a) hides its relation totxt and (b) makes it a function
of j. But to prove (*9) we induct onj and the induction requires that the “dt~” in
the induction hypothesis be the same “dt~” in the induction conclusion. (*9) is thus a
generalization of the theorem we need because it deals with an arbitrary substring oftxt
of lengthd. This introduction ofd and the separation ofdt~ from pat makes (*9) not
useful as a rewrite rule in the proof of (*4) and so in that proof we have to provide a hint
as to how to use (*9).

(defthm clear-x ; (*9)
(implies (and (true-listp pat~)

(true-listp txt~)
(consp pat~)
(natp i)
(natp d)
(<= (+ i d) (len txt~))
(integerp j)
(natp (- i j))
(natp (+ j d))

(<= (+ j d) (len pat~)))
(clear pat~

txt~
(- i j)
(- j (x (firstn d (nthcdr i txt~)) pat~ j))))

:rule-classes nil)

(defthm crux~ ; (*4)
(implies (and (true-listp pat~)

(true-listp txt~)
(integerp j)
(<= -1 j)
(integerp i)
(<= -1 i)
(<= 0 j)
(< i (len txt~))
(not (equal (nth j pat~) (nth i txt~)))
(consp pat~)
(<= 0 (len pat~))
(< j (len pat~))
(<= j i)
(equal (firstn (len (nthcdr (+ 1 j) pat~))

(nthcdr (+ 1 i) txt~))
(nthcdr (+ 1 j) pat~)))

(equal
(correct-loop~
pat~ txt~
(+ i

(- (x (cons (car (nthcdr i txt~))
(cdr (nthcdr j pat~)))

pat~ (+ -1 j)))))
(correct-loop~ pat~ txt~ (+ i (- j)))))

; Here we give the two hints mentioned above.
:hints
(("Goal"
:use
((:instance

clear-x ; hint using (*9)
(d (- (len pat~) j)))

(:instance
clear-implies-skip ; hint using (*8)
(pat~ pat~)
(txt~ txt~)
(k (+ i (- j)))
(n
(+ j

(- (x (cons (nth i txt~) (nthcdr j (cdr pat~)))
pat~ (+ -1 j))))))))))

(defthm crux ; (*3)

(implies (and (stringp pat)
(stringp txt)
(integerp j)
(<= -1 j)
(integerp i)
(<= -1 i)
(<= 0 j)
(< i (length txt))
(not (equal (char pat j)

(char txt i)))
(not (equal pat ""))
(< j (length pat))
(<= j i)
(xmatch pat (+ 1 j) txt (+ 1 i)))

(equal (correct-loop pat txt
(+ 1 i (- (length pat))

(delta (char txt i) j pat)))
(correct-loop pat txt (+ i (- j))))))

The plan calls for us to ascend to the string level and prove (*2) establishing that
fast-loop is correct-loop, via a routinefast-loop induction. The plan left
out two things that come up in trying to carry out that proof.

First, one of the hypotheses of (*2) is anxmatch expression expressing the idea that
everything to the right ofj in pat matches its counterpart intxt. But when we slide
the pattern down,j becomes(- (length pat) 1). In that case, we are guaranteed
anxmatch because the region in question is empty. That is establishedby the lemma
below.

(defthm empty-xmatch
(implies (and (stringp pat)

(stringp txt)
(natp i))

(xmatch pat (length pat) txt i)))

Second, note thatfast-loop stops (and returnsnil) when the right end of the
pattern “falls off” the right end oftxt. But correct-loop keeps going (getting re-
peatedxmatch failures) until the left end of the pattern falls off the right end oftxt.
This lemma tells uscorrect-loop could stop whenfast-loop does.

(defthm early-termination
(implies (and (natp k)

(stringp pat)
(stringp txt)
(<= (length txt) (+ k (- (length pat) 1))))

(not (correct-loop pat txt k))))

The plan calls for the proofs of (*2) and (*1) to be conducted at the string level. To
make ACL2 operate at the string level, we disable the rules that drive it down to the list
level. It can complete the proof.

(in-theory (disable xmatch-trade

correct-loop-trade
delta
length
char))

(defthm fast-loop-is-correct-loop ; (*2)
(implies (and (stringp pat)

(integerp j)
(stringp txt)
(integerp i)
(<= -1 j)
(< j (length pat))
(<= j i)
(not (equal pat ""))
(xmatch pat (+ j 1) txt (+ i 1)))

(equal (fast-loop pat j txt i)
(correct-loop pat txt (- i j)))))

(defthm fast-is-correct ; (*1)
(implies (and (stringp pat)

(stringp txt))
(equal (fast pat txt)

(correct pat txt))))

References

[1] M. Besta and F. Stomp. A complete mechanization of a correctness proof of a string-preprocessing
algorithm. Formal Methods in System Design, 27(1-2):5–27, 2005.

[2] R. S. Boyer and J S. Moore. A fast string searching algorithm. Comm. ACM, 20(10):762–772, 1977.
[3] R. S. Boyer and J S. Moore.A Computational Logic. Academic Press, New York, 1979.
[4] R. S. Boyer and J S. Moore. A verification condition generator for FORTRAN. InThe Correctness

Problem in Computer Science, pages 9–101, London, 1981. Academic Press.
[5] Richard Cole. Tight bounds on the complexity of the boyer-moore string matching algorithm. InSODA

’91: Proceedings of the second annual ACM-SIAM symposium on Discrete algorithms, pages 224–233,
Philadelphia, PA, USA, 1991. Society for Industrial and Applied Mathematics.

[6] L. Guibas and A. Odlyzko. A new proof of the linearity of the boyer-moore string searching algorithm.
SIAM Journal of Computing, 9:672–682, 1980.

[7] M. Kaufmann, P. Manolios, and J S. Moore.Computer-Aided Reasoning: An Approach. Kluwer Aca-
demic Press, Boston, MA., 2000.

[8] D. Knuth, V. Pratt, and J. Morris. Fast pattern matching in strings. SIAM Journal of Computing,
6(2):323–350, 1977.

[9] J S. Moore. Mechanized operational semantics: Lecturesand supplementary material. InMarktober-
dorf Summer School 2008: Engineering Methods and Tools for Software Safety and Security, 2008.
http://www.cs.utexas.edu/users/moore/publications/talks/marktoberdorf-08/index.html.

