INTRODUCING ITERATION INTO
THE PURE LISP THEOREM PROVER

sy J STROTHER MOORE

CSL 74-3 DECEMBER, 1974 (REVISED MARCH, 1975}

It is shown how the LISP iterative primitives PROG, SETQ, GO, and RETURN may be
introduced into the Boyer-Moore method for automatically verifying Pure LISP
programs. This is done by extending some of the previously described heuristics for
dealing with recursive functions. The resulting verification procedure uses
structural induction to handle both recursion and iteration. The procedure does not
actually distinquish between the two and they may be mixed arbitrarily., For
example, since properties are stated in terms of user-defined functions, the theorem
prover will prove recursively specified properties of iterative functions. Like its
predecessor, the procedure does not require user-supplied inductive assertions for the

iterative programs.

KEY WORDS AND PHRASES: LISP, automatic theorem proving, structural

inductions, program verification.

CR CATEGORIES: 3.64, 4.22, 5.21.

PALO ALTO REQE:QQC%* CENTER

2323 COYOTE HILL ROAD / PALO -

3338 COYO LL ROAD / PALD ALTC / CALIFORNIA 94304

ool

i. BACKGROUND

This paper assumes the reader is familiar with the description of the Boyer-Moore
Pure LISP Theorem Prover, as found in [2] or [7] This section presents an

informal summary of the theorem prover as it stood before the current extension.

The theorem prover deals with functions defined recursively in terms of the LISP-
like primitives NIL, CONS, CAR, CDR, EQUAL, and an n-place conditional operator
called CONDL. Properties to be proved are stated as LISP expressions. Given such
an expression, the theorem prover tries to show that it would always evaluate to T

for any values of the free variables in it2.

The proof procedure is composed of
four parts: simplification, which applies equivalence preserving rewrite rules
{including those of symbolic evaluation}); fertilization, which 1is an equality
substitution rule which "uses" equalities and then throws them away; generalization,
which generalizes the theorem to be proved; and a structural induction heuristic,

In this paper we will describe extensions to the generalization and induction

heuristics. Therefore, it is important to get a good undersianding of them.

Generalization is often necessary because of the presence of induction. Intuitively,

to prove a theorem by induction one must show [among other things] that the truth

i

The conditional operator in the earlier papers was three-place. However, since COND in
LISP actually takes an indefinite number of clause arguments, the three-place COND
was confusing. Therefore, the LISP conditional was adopted. (COND {p x)(g y)
. (T z)) is read: if p is non-NIL then x, otherwise if q is non-NIL then y, ..
otherwise, Z.

27 is the true truth value and is defined to be the non-NIL object EQUAL io the value
of (CONS NIL NIL}Y

2
of one instance of the expression implies the truth of another (related] imstance.
This means that it is often necessary to prove & more general theorem than that
given, merely because one needs the additional generality in the hypothesis. This is
frequently expressed by saying that the original theorem "is not strong enough to
carry itself through induction.” The generalization heuristic described in [2] and [7]
finds non-trivial subterms common to both sides of equalities and implications, and
replaces them by new universally quantified variables. For example, if the theorem

to be proved was:

(EQUAL (APPEND (REVERSE X) NIL) (REVERSE X}},
the generalization heuristic would rewrite it to be:

(EQUAL (APPEND Y NIL} Y}.

See [7] for the details.

The induction routine exploits the dualism between recursion and Burstall's structual
tnduction, [37], to construct an induction argument. In its simplest form, the idea is
that if the conjecture involves an application of some recursive function, F, and that
application would recursively decompose the structure represented by some variable,

X, then one should consider induction on the structure of X.

The intuitive justification is as follows: The induction principle requires proof that
if the conjecture holds for the output of F applied to some value of X, then it
holds for the output of F applied to some "larger” structure. In our implementation
(but not Burstall's formulation), "larger” means simply that the structure can be
obtained from X {and possibly other structures) by some fixed sequence of CONSes.

Now by construction, an application of F in the conclusion is recursively

3
decomposing that larger structure which contains X. By analysis of the definition of
F, we can choose that structure with X so placed within it to make one expansion
with the definition of F produce an expression involving the (recursive] application
of F to X. But since our induction hypothesis supplies information about the result
of this very application, we can (possibly) use the hypothesis to simplify the

conclusion.

Of course, to complete the inductive argument, sufficient "base cases” must also be
established so that all possible structures can be obtained from the base cases and

repeated applications of the sequence of CONSes used to construct the larger X.

Section 4 provides an example of an induction argument produced by this heuristic.

Several full proofs are described in [2] and the heuristics are explained in detail in

[71

2. OUTLINE OF THE EXTENSION TC ITERATION

We will proceed as follows: We first introduce the LISP primitives allowing the
definition of iterative programs. We then sketch a method of translating such
iterative definitions into recursive programs that compute equivaient results "in the

same way.”

Then we demonstrate how the original induction heuristic fails to cope with such
translations. Provided the conjecture to be proved is sufficiently general, the
necessary extension to the induction heuristic is straightforward. This extension is

explained and demonstrated.

4
We then turn our attention to the problem of generalizing the conjecture to enable
the new induction heuristic to apply. The basic problem is ‘generalizing from =
conjecture sbout the state of the computation after one iteration to & conjeciure
about the state after an indefinite number of iterations. It is shown how a machine
generated recursive function can be introduced to express the generalization for a
particular class of iterative functions. It is then shown how the generalization is
guaranteed to allow the induction step of the theorem prover's next induction
argument to succeed. This will leave only the establishment of an "easier” base
case -- with the caveat that the generalized conjecture might not be a theorem

because the base case will be false.

We then justify the rather unexpected introduction of the generalization. This is
done in two ways: an intuitive explanation of what the generalization is doing in
terms of the state of the iterative computation, and a demonstration that the method
is equivalent to replacing the iterative functions by less obvious but better behaved
recursive functions at 2 point in the proof that is guaranteed to allow a similifying

generalization {of the old typel.
An example of the method at work is then exhibited.

The paper concludes with a brief comparison of this method with the work of other

authors.

Two appendices list several iterative functions and some of their properties

automatically proved by the extended program.

(&34

3. THE ITERATIVE PRIMITIVES

We will assume that the reader is familiar with the behavior of the LISP iterative
primitives PROG, SETQ, GO, and RETURKN. Consider the foliowing iterative LISF
program, called REVERSE:3, which reverses its argument by CONSing the elements
onte an initially empty list:
{REVERSE: (LAMBDA Xg
PROG (Yg

(SETQ Y NIL)
LP {COND ((NUL(X ARETURN Yin)

;SETQ Y éCONS SC R X) Yy}

(

SETG X {CDR X

J
GO LP))J).

How can the technigues of the Boyer-Moore theorem prover be applied to such &
function? Since both the notion and the notation of recursion are crucial to the
discovery and representation of an induction argument by the Boyer-Moore theorem
prover, it is a logical step to view this definition as an abbreviation for the

following recursive definition:
(REVERSE: (LAMBDA (X} (REVERSE:LP X NIL})},
where REVERSE:LP is defined as:

(REVERSE:LP (LAMBDA (X Y
CON %NULL x% Y)
(REVERSE:LP (CDR X)

{CONS [CAR X)

This way of introducing PROGs into the system was described in [7]. It should be

o
3
o

© In this paper, cil functions defined with the ilferative primitives have names ending with
the letier ":".

g
clear that the two definitions of REVERSE: (above] return the same result. Indeed,
they calculate the result in the same way; In calculating (REVERSE: A} the values
of X and Y at the nth arrival at LP in the iterative definition will be precisely the
same as the values of X and Y at the nth call to REVERSE:LP from the recursive
definition. From this assertion {which is easily proved], it is clear that the
recursive definition can be viewed as merely a notation for describing the state of
the iterative computation. In particular, any recursive call of the form
(REVERSE:LP A B) can be considered to denote the result returned by a
computation that arrives at LP (in the iterative definition of REVERSE:} with X set

toc A and Y to B.

It is quite easy to make the translation from an arbitrary PROG to a collection of
recursive functions. The method was first mentioned by McCarthy in [86]
Essentially, one generates a new recursive function for every label in the PROG.
Each new function has as many argumenis as there are formal parameters to the
function, and locals to the PROG. One then accumulates the effects of the
assignments down all branches. When eé GO is encountered, it is translated into a
call to the recursive function associated with the label to which control is being
transferred. The argumenis to the call are just the current values of the formals

and locals.

Formally, we will consider forms involving the iterative primitives to be merely
abbreviations expanded as sketched above. However, we shall choose to view this
translation as a notation for packaging up the iteration so that we can talk asbout it
The rest of this paper deals with how one proves theorems about the functions
produced by this translation. We do not dwell on the transiation mechanism itself

since it is fairly obvious and has been described in [6]

s}

4. ACCUMULATORS

We call the Y-position argument of REVERSE:LF an accumulaior because it is used

to accumulate partial results during the recursion. In if a f{unction

=
g
@
]
[q¢d
by
jd

=

modifies an argument during {some] recursive call but does not test the argument in
the termination conditions, the program considers that argument to be an
accumulator. Most functions produced by the translation mechanism described above
use accumulatoers. The only exceptions are those functions which do not save
partial results from one iteration to the next. For such functions the iterative
definition cannot be distinquished by the thecrem prover from the natural recursive
definition. MEMBER, SUBSET, and many other boclean valued functions are good
examples.

However, functions which use accumulators cause trouble for the induction heuristic

described in the original papers. Consider the following theorem:

(1) (EQUAL (REVERSE:LP A B) (APPEND (REVERSE A) B)),

3
=
D
Y
D
=
B
o)
Il
e
)
™
)
el
™
—

/ERSE are defined as in the origina! papers:

(APPEND (LAMBDA (X Y
Cond ((WULL Xy Y)
(CONS’ (CAR X) (APPEND (CDR X) Y

R
L
s
et

gt

anc

on

it to B. The sense in which (1} is & theorem is that il ig claimed tc be T for all

possibie values of A and B4.

Consider how the induction heuristic described in [2] and [7] would attempt ic
prove (1). The heuristic chooses to induct upon the structure of A because that
structure is being recursively decomposed by REVERSE and iteratively decomposed by
REVERSE:LP {although in our representation of REVERSE:LF the theorem prover
does not detect the difference between iteration and recursion}. We say that

"induction on A" has been chosen. [Note that induction on B was not even

considered since no function call in {1} recursively decomposes B.

The heuristic next discovers that both recursions on A recurse on the COR of A.
This means that the "larger” structure {tc replace the A's in (1) to form the
conclusion) should just be z single CONS with A in the CDR: (CONS Al A}, where
21 is a2 new Skolem constant. We are to supply & hypothesis by instantiating {1)
for each of the substructures {of the larger structure} that is involved in s
recursive call. This means we need & hy’pothesis about the CDR of the CONS above
{i.e. about A}. This is obtained by instantiating {1} by replacing A with A (This
is & trivial substitution simply because we chose to use A as the CDR of that CONS
to make it so.} Since no recursion is interested in the CAR component of the CONS,
nc hypothesis about Al is necessary. Finally, the base case is simply that instance
of {1} where A is not the output of any CONS, which is to say, the case where A

is simply NIL.
Therefore, the entire inductive argument is represented by the formulsa:

nformaily, A and B can be considered to be program variables whose values are
nown and may range over ali possible objects (NIL and ali of the trees one can

t with CONS). Formally, & and B are constants, called Skolem constanis. See
ussion and proof of Herbrand's Theorem in [&].

o

{ AND g QUAL (REVERSE:LP NIL B) (APPEND (REVERSE NIL) B})
{IMPLIES (EQUAL (REVERSE:LP A B}

gAPPENB (REVERSE A‘ 8)

(EQUAL {REVERSE:LP ”@NQ é

)
§ B)
{APPEND (REVERSE NS A1

ETR TR
AY) BY))).

where A, A1, and B are Skolem constants and AND and IMPLIES are just functions
defined in terms of COND.
The base case is trivial since both sides of the equality:

(EQUAL (REVERSE:LP NIL B) (APPEND (REVERSE NIL) B})
simplify to 8.
Therefore, consider the induction step. The hypothesis of the IMPLIES sbove is
just {1}. The conclusion is:

(2) (EQUAL (REVERSE:LP égams AL A) B)
APPEND (REVERSE (CONS A1°A)) B)).

Simplifying (2) by applying the definitions of REVERSE:LP and REVERSE produces:

(3) (EQUAL (REVERSE:LP A (CONS Al g
{APPEND (APPEND (REVERSE A) (CONS Al NIL)) B)).

Mote that we are completely unable fo use our inductive hypothesis, {1}. Why?
Because {1) makes 2 statement about the result computed after arrival at LP with
X set to A and Y set to B, but the {evaluated) conclusion, (3}, is & statement about

the result computed after arrival at LP with X set to A and Y set to {CONS A1l B}.

5, INDUCTION REVISITED

Let ug suppose we wish to prove some theorem:

C((REVERSE:LP A B)),

where A and B are Skolem constants. This means we are trvi

ot
5
a
o
&
o
o
o
P
M

V X (V Y C((REVERSE:LP X Y)}).

Suppose we wish to induct upon X. The induction rule states that we must

therefore prove the basis:
Y Y C{{REVERSE:LP NIL Y)}
and we must prove the implication:

V X ((VY ©{(REVERSE:LP X Y)))
Y (V Z € ((REVERSE:LP (CONS Z X) Y))})),

where 7 does not cccur in € and € is € with all the occurrences of X replaced by

Y

{CONS Z X}. If we Skolemize this formuls {see [8]} the conclusion becomes:
{43 €' {(REVERSE:LP {CONS A1 &) B)},

where A1, A and B are Skolem constanis: we must prove the theorem without

knowing anvthing about A1, A, or B. However, the hypothesis becomes:
{5} C{(REVERSE:LP A& y}),

where A is the same Skolem constant as in the conclusion, {4}, but v iz a free

variable: we get io assume the theorem for that particular A, and for all possible

V&,

With this in mind we can now rewrite the induction comeclusion, (4), using the

definition of REVERSE:LFP and get:

s,
L]

) C©'((REVERSE:LF A (CONS Al

P

Pk
oo

o

We can now instantiate the free variable, y, in the hypothesis, (5], with {CONS A

B8)}. The hypothesis thus becomes:
(7) C{(REVERSE:LP A (CONS Al B})}}.

so that the REVERSE:LP term in the rewritten conclusion, {(€), matches the
REVERSE:LP term in the instantiated hypothesis, (7}, increasing the chances that
we can use the hypothesis in the usual ways. (At the very least, if simplification
and fertilization fail to use the hypothesis, the generalization heuristic described in
Section 1 will replace the common REVERSE:LP expressions in the hypothesis and

conclusion by a new variable, eliminating that function from the conjecture.}

Rather than provide a hypothesis with free variables in it, it is nicer to assume
only those instances which one expects to need. This is because the interaction of
the guantifiers becomes increasingly more complicated with subsequent inductions.
Since we supply X with a CONS in the induction conclusion to allow it to "recurse
back down” to the induction hypothesis, we should let y, in the hypothesis, be

(CONS A1 B), knowing that is what the value of Y will be after the recursion.

The general rule we wish to add to our induction mechanism concerns only the
generation of inductive hypotheses. It states that if we are doing induction on &
structure which is controlling the accumulation of results in some argument position
of some iterative function, and if that accumulator argument position is occupied by
a2 Skolem constant other than one we are inducting upon, then, when forming the
hypothesis for the recursive call of that function, replace that Skolem constant by

the value forced into that argument position by a single step of the function.

6. AN EXAMPLE

With this in mind, let us reconsider the proof of (1}):
(1) (EQUAL (REVERSE:LP A B) (APPEND (REVERSE A) B)).

Again, we induct on A and agein the NIL case is trivial. The induction conclusion
is still (2}):

(2) (EQUAL (REVERSE:LP (CONS A1 A) B)
{APPEND (REVERSE (CONS A1 A)) B)).

However, according to our new induction heuristic, the hypothesis is the instance of:
(8) (EQUAL (REVERSE:LP A y) (APPEND (REVERSE A} y))

obtained by letting y be the value of the Y-accumulator of REVERSE:LP one step
after X is (CONS A1 A) and Y is B. This just yields (9) as our induction
hypothesis:

) (O (VIS £ETHS Hobas o)

Note that our hypothesis, {9}, says: the result after arrival at LP with X set o A
and Y set to (CONS A1 B) is equal to some expression. Our conclusion, {2), says:
the result after arrival at LP with X set to (CONS A1 A) and Y set to B is equal
tc some {other) expression. That this is a sound induction argument is assured by
the arguments in Section 5. That this is a useful induction argument is
immediately apparent. (2) symbolically evaluates to {3):

(3) (EQUAL (REVERSE:LP A (CONS At 3}g
(APPEND (APPEND (REVERSE A) (CONS A1 NIL)) B)).

- We can now use our induction hypothesis, (9}, because the term (REVERSE:LFP A

a2

oo

[fw]
oty
N

the leit

w

{CONS A1 B)) occurs as the left-hand sidge of the equality in {8} and a
hané side of the conclusion (3). Fertilization replaces the iefi-hand side of (3}
with the right-hand side of (8), and then "throws sway" the hypothesis, (&},
producing: ~
(10) (EQUAL (APPEND (REVERSE A) (CONS Al B3

{ APPEND (APPEND (RéVERSE A} {Cé(\éS £1 NIL}) B}
Then the common subterm generalization heuristic described in Section 1 replaces
the common subterm (REVERSE A), in (10), by the new Skolem constant C:

(EQUAL (APPEND C écsms Azfgg%Q ,

{APPEND (APPEND C 1 NIL)) B}).

This expression is just a trivial lemma about APPEND, and can be easily proved by
an induction on C. Thus, with a minor addition to the induction heuristic, we have

proved the equality between an iterative form and & recursive one.

7. THE NEED FOR GENERALIZATION

In the example above, the induction step was proving that (2} follows from an
instance, (9), of a valid induction hypothesis, (8). It is extremely important that
we realize that y in (8) may be instantiated at will. Furthermore, it is important
that we choose -the correct instantiation. Consider the following description of the

induction step above.

We decide to induct on A because we realize that A is being decomposed by the
iteration in REVERSE:. We are reguired by the induction conclusion to show that

1 at LP with X set to {CONS Al A} and Y set o B
G

€

the result computed after arrive

INS A1 A) and B. A

16

-is eguivalent ¢ some recursive expression invelving 8

14
hypothesis, we may assume that the result of a computation that arrives at LP with
% set to A and Y set to any value we choose is equivalent to some expression
involving A and the chosen Y. Note that if (CONS Al A} is the value of X at the
nth arrival at LP, then A is the value at the n+ist arrival. This is why we induct
on A. If, for a hypothesis, we choose the value of Y which is consistent with this
view, that is, if we choose the value of Y which exists at the n+lst step, then the
hypothesis will concern the computation state precisely ome iteration after that

described by the conclusion.

Two things should be noted regarding this induction argument. The first is that we
are able to state the argument in terms of the ultimate result computed by the
loop. This is a natural product of our notation but is not possible in the usual
Floyd assertion method. For this reason the inductive arguments used by the
program do not resemble those produced for the assertion method of program

verification.

The second point is that the induction we are doing procedes in the direction
opposite that of Floyd: we are assuming & property to hold at the n+lst step, and
showing that it holds at the nth step. This sounds strange only because we are
counting the steps from the initial entry into the loop. If we count forward to the
termination of the loop, our hypothesis concerns the state existent k steps from

termination, and our conclusion concerns the state k+1 steps from iermination.

Of course, this is just the usual direction of & structural induction argument.
Which way we count is unimportant, so we will count from the initial entry inte
the loop (in the Floyd way) and expect the reader not to become confused about

which way the induction is leading.

What is important is that if we can interpret the conclusion as concerning the

[72]
-
gl
4]
oo
)
I
e
=
t
-t
]
)

output of the nth step, then we should try to provide & hypothesi

the state at the n+list step.

To do this the accumulator terms must contain variables which allow the proper
instantiations. In particular, we cannot do it if the accumulator positions are
occupied by constants in the statement of the theorem. DBut this is & very common
situation, since the accumulators arising {rom PROG locals are slways assigned an

initial value upon entry to the PROG. Thus, a theorem like:
{EQUAL (REVERSE: A} (REVERSE A},
immediately becomes:

(EQUAL (REVERSE:LP A NIL) (REVERSE A)),

since REVERSE: assigns NIL as the initial value of Y, and we cannot insiantiate the
accumulator {the NIL in the REVERSE:LFP term] as required by the induction
heuristic since it is not z free variable. '

We must discover a way tc generalize the accumulator positions sc that we can
instantiate the hypothesis to provide information about the state of the iterative

computation produced by the conclusion.

o

8. GENERALIZING ACCUMULATORS

5

The original generalization heuristic replaces subterms which occur in both sides of

equalities or implications by new Skolem constants. The justification for the

on
ot
o
sy
R
e
oy
o

] ietie ie thst it i : 5 b N £t} rnlne nf sueh 2 term i
heuristie is that it is not so important what the vaiue of such g term is &

16
Replacing a term by a variable on only one side of, say, an equality is "dangerous”
because it is possible to instantiate that variable and change one side but not the
other. But if the generalized term occurs on both sides, then any changes in the

value affect both sides.

By these arguments it is natural to require that an accumulator argument be
replaced by & more general expression only when another accumulator argument,
used in the same way, can be found on the other side of an equality or implication,
to absorb the effect of the generalization. We say that these two accumulator
values are maifched. Requiring that both terms be matching accumulalors is a way
of insuring that changes in the value of the accumulator effect both sides in the

same way.

It is actually very easy to get matched accumulators on each side of an equality or

implication. This is done by induction.

For example, if the term {REVERSE:LP A NIL) occurs in the hypothesis of an
induction on A, then the term (REVERSE:LP A ([CONS A1 NIL}} will cceur in the
conclusion. We therefore match the NIL in the REVERSE:LP term in the

hypothesis with the (CONS A1 NIL) in the REVERSE:LP term in the conclusion.

In general, if we are trying to prove some theorem involving an accumulator-using
function, and we cannot instantiate the accumulator as we describe above, we merely
do the induction without the desired hypothesis {i.e. use the hypothesis generated by
the original heuristic}. The resulting implication (after simplification} will have the
initial value of the accumulator in the hypothesis, and the subsequent value of the

accumulator in the conclusion. (If the theorem is an equality, a fertilization may

1

take place, with the result that the matching accumulator values are on opposi

=
H

oy

sides of an equality.] We have therefore solved both the problem of obtaining a
form of the theorem with accumulators on both sides, and the problem of how to
match multiple accumulators {match an accumuletor in the hypothesis with the
value it obtained in the conclusion}.

This leaves us with the question: How do we create a reasonable generalization? A
reasonable generalization is an expression which has the original expression as an
instance, which we have reason to believe is in fact a theorem, and which is easier

to prove than the original expression.

We clearly cannot replace the matched accumulators by some new Skolem constant,
simply because the accumulators are not identical: the result would not be a sound
generalization. The best we can do is replace each accumulator by some expression
containing a free variable, and to define the expression in such a way that for some
value of that variable the expression takes on the value of the accumulator it
replaced. But the whole motivation behind the generalization is to allew the
induction heuristic to instantiate the accumulator positions in the hypothesis in such
& way that they take on the values they will have in the conclusion. This means
that for some wvalue of the free wvariable ({the one wused in the instantiated
hypothesis] the expression must take on the wvalue of the accumulator in the
conclusion. However, the value of the accumulator in the conclusion will just be
any value the accumulator can take on in one iteration from any of the possible
values of the expression in the uninstantiated hypothesis. Thus, the expression
must be capable of being instantisted toc provide each of the successive values of
the accumulsator.,

It turns out that the generalization heuristic will arrange this by writing & new

S

"recursive function, based on the behavior of the accumulator around the loop.

pont
(s}

Tty

o
[
34

o)
ey
(@)

Furthermore, it turns out that this function need not necessarily capture

structure of the accumulator.

The generalization heuristic about to be described takes the theorem to be proved
and two indicated occurrences of accumulator values, AC4 and ACy, which have been
chosen for genera!izationS, and produces a new theorem to be proved, by possibly
renaming selected occurrences of some variables and by replacing the relevant
occurrences of ACy and ACy; by new expressions Ej and Eo respectively. By the
nature of £y and Ey the result is guaranieed to be more general. Furthermore, the
generalization has the following startling property: The induction step, that is the
implication from inductive hypothesis to inductive conclusion, for an induction eon
the variables controlling the loop using these accumulators, is guaranteed to be true
and proveable by simplification! In fact, the induction hypothesis and the induction
conclusion will usually evaluate to identical expressions! The danger is thai the
basis case{s} for the induction may not be true. That is, the generalization may not

be a theorem because the basis breaks down.

jescribe this heurisic for s class of iterative functions somewhat more

®
5
o

restricted than necessary. This is done for simplicity. Certain extensions to this

class are obvious and are mentioned.

Let the function F: have the following defining form:

g

o

Actually the method applies to any number of matched accumulators. We use just fwo
here for illustration, since our description of accumulator maiching just picks pairs.
The matching algorithm actually used moy group more than two accumulctor values
iogether a@s maiches, on ithe same ancestral grounds described. The actual
generglization heuristic accepts groups of wvalues, rather than just pairs, and the
heurisiic about to be described works perfectiy well for such groups.

[}

ot

(F: (LAMBDA 2é%

06 (Y)
SETQ Y NIL)

LP SCDND ((NULL X) (RETURN Y)))
SETQ Y (H X Y)
(SETQ X éCDR xﬁg
(GO LP}))).

where H is an arbitrary function of two arguments. Actually, since H is arbitrary,
Y may not be modified in the same way each time around the loop. Turthermore,
F: may have more than one formal argument, there may be more than cne local to
the PROG, the locals need not be initialized to NIL, the exit condition may be other
than a simple NULL check (but may not invoive the accumulator}, some arbitrary
function may be applied to the value of the accumulator when the RETURN is
executed, and X may be decomposed in more complicated ways than merely CDRing.
We will ignore these possibilities and leave it to the reader to convince himself that

these introduce minor variations of the generalization heuristic.

Note that the recursive translation of F: is as follows:
(F: (LAMBDA (X) (F:LP X NIL))),
where F:LP is defined as:

{F:LP (LAMBDA (X Y)
gcomé (%NULL X) Yg
(T (F:LP (COR X) (H X Y)))))).

Let the theorem tc be proved be:

(11) C((F:LP A ACq) (F:LP A ACz}3},

where € 1is an arbitrary expression involving the two F:LP terms using the

accumulators to be generalized.

20

The result of asccumulator generalization applied to (11} will be & new expression,
(12) C((F:LP X (E Z ACq)) (F:LP X (E Z AC2}))},

where F is a new, recursive function, written by the theorem prover from the
definition of F:LP, and X and 7 are new Skolem constants, occuring only in the
F:LP terms, and only as explicitly shown in {(12). This expression, (12}, will
have the properties guaranteed above: it will be a generalization of (11} and the

inductive step. for an induction on X will be trivially true.

This is accomplished by defining the £, for this F:LPG, tc be:

{(E (LAMBDA (Z Y
CON E NULL Zl Y%
I (H (CAR £} (E (CDR Z) Y})})))s
where the H used in this definition is that used to build the accumulator in F:LP.
Note that E does not depend upon the AC;. As we indicated above, E is capable of
taking on any value the accumulator can have after any computation sequence
because it can be given the initial value of the accumulator (Y] and a list which
contains the entire succession of wvalues of the contirol parameter for the particular

computation sequence desired {Z].

Given this definition of E, {12) is clearly a generalization of {11} because when X
is A and 7 is NIL the evaluation of the E terms in {12} makes that expression

identical to {117},

&
- In genergl there is an
accumulator function” for

~py P

or each accumulator position. We call this E the "Y-

P
o

[l

Now consider the inductive step for an induction on X to prove ({1

.
e
it

conclusion will be:
(13) ©((F:LP (CONS X1 X} (E Z ACqy) (F:LP (CONS X1 X} (E Z ACz}) 3.
This evaluates to:

14) ©((F:LP X (H (CONS X1 X) (E Z ACq)))
(14) (/F LP X (H (CONS X1 x% (E Z Acifff‘

Now a valid induction hypothesis is any instance of:
(18 C©((F:LP X {E z ACy}) (F:LP X (E z ACg}}).

Because of the way E is defined we choose to instantiate z in {15} with {(CONS
(CONS X1 X} Z}, where the X1, X, and 7 are the same Skolem constanis appearing
in the conclusion, {13}. Thus our hypothesis {{15) with z instantiated as above)}

is:

(18) C((F:

™= =
e

E (CONS (CONS X1 X) Z) ACy)
E (CONS (CONS X1 X) Z} ACy $1y.

(
(

5

But because E may be evslualed one recursive step when its first argument is g

CONS, as above, {16) becomes:
{17y ©((F LP ;CONS X1 X E 7 AC,
(F:LP H (CONS X1 X E Z ACy

by evaluation.

Sacqos?
w

s identical 1o the evaluated

s

But the instantiated evaluated hypothesis, (17},

conclusion, {14}! Thus, the induction step is straightforward.

"The danger of this generalization is that the NIL case for the inducticn above may

[0}

not hoid. Note that the KIL case is simplw:

(5}

]
[

(18) C((E Z ACy) (E Z ACp)).

It happens that there are s great many theorems for which this NIL case is in fact

true and proveable with an additional induction’.

8. JUSTIFICATION OF ACCUMULATOR GENERALIZATION

The arguments above are just so much syntactic magic. The real questions are:
What is the relationship between F:LP and E? Why does the induction step go
through so easily when £ is introduced? Why should the NIL case, (18}, be true,
and if true, why should it be eassier to prove than {11}, which it greatly

resembles?

The relationship between F:LP and [is clearly stated: given the proper Z, (E Z
Y) is eguivalent to (F:LP X Y}. Let Z and X be lists of the same length, let the
successive CDRs of Z be Zg, 14, etc, and let the successive CDRs of X be Xg, Xy,

etc. Then {E 7 Y} computes:

) ... (H (CAR Z,) ¥)...)).

{H (CAR Zp) (H (CAR I,
while (F:LP X Y} computes:
(H Xg (HXpoq oo (HXg Y).oo0)).

Thus, if we let (CAR L4} be Xp.s, we see that {(E I Y} computes {F:LP X Y}

o

od Burstall, in a private communicafion, has pointed ouf that oaccumulaior
eneralization could be viewed simply as o proof rule that says that a possible way of
proving a theorem like (11} is tc prove {18} instead.

oy Oy

()

5
&
In general, Z is a list of the successive values of X as seen by H during the

iteration in F:LP, in reverse order.

In fact, if F:REV computes a list of the successive values of the X in F:LF as 2

function of the initial value of X, then:
(F:LP X Y} = (E {F:REV X} Y}.

But given this relationship, we could obtain (18) more or less directly from (11}
by simply replacing the F:LP expressions in (11) by the equivalent E expressions
and then generalizing away the F:REV expressions. We know we would generalize
those expressions simply because of the criteria we used for selecting matching

accumulators in the first place.

Thus, the whole issue of accumulator generalization can be recast simply as
replacing the accumulator-using functions by more tractable, if less obvious,
functions and then generalizing in the old way. Indeed, the question now arises as
to why we should introduce the accumulator-using functions at all, rather than just

use the equivalent E expressions from the beginning.

It is possible to show that introducing E expressions from the beginning is formally
equivalent to the method described here. However it is somewhat clumsier due to
the presence of F:REV. In addition, we know that if we stay with the original
formulation of the problem, the technigue in Section 5 will let us avoid the
introduction of both E and F:REV altogether in the cases where the accumulator can
be instantiated. Finally of course, the view of E as capturing the generalized state

of the accumulator is instructive and offers new insighis into structural induction

on loops.

If we do view the step from (11) to (18) as accumulator generalization, why does
the induction step work? The induction conclusion is about the nth iteration. We

know that the result of that iteration is the same as that of the n+lst iteration,

£t

ey

provided the function does not terminate immediately after the nth iteration.
terminates after the nth iteration we do not need our induction hypothesis at all
If it does not terminate, we get to make a hypothesis about the result of the loop
when X is the same as it is in the n+list iteration. If we generalize the state of
the accumulator by introducing E and the new variable z we can choose z so that
the value of the accumulator in the hypothesis is alsc that found at the n+lst
iteration. ‘Therefore, we have constructed precisely the hypothesis we need: The
theorem holds for the result of the n+lst iteration, which we know is the result of

the nth iteration.

Regardiess of which way we view the step to (18), why should {18) be essier to

prove than (11)7 The reason is that (11} involves F:LP terms which use

H
S

P

instantiated accumulators, while {18) involves I terms which are very well-behaved.

Bv "well-behaved" is meant that & structurel induction on the variable controlling

ecursion in the £ terms will cause the E terms in the conclusicn fto

=

he

-y

symbolically evaluate tc expressions invelving the E terms in the hypothesis. An
F.LP term is not well-behaved unless the first argument is a Skolem constant and
the accumulator contains a free variable which can be instantiated as described in

Section 5. Note also that the expression (E (F:REV X} Y} is not well-behaved.

Because {E Z AC;) is well-behaved, an induction on the CONS-structure of Z is

kN

effectively an induction on the computational form of the possible values of Fobb,

n

tarting with the accumulator set to ACj;.

[
(93]

In either view of the role of E it is conceptuelly convenient to observe certain
conventions when writing the definition of E. Let A be the vaiue of the control
parameter, X, upon entry to the loop represented by F:LP (as it is in (11)}. If H
{(in F:LP) can be expressed as a function of {CAR X) rather than of X, then E
should be written using that definition of H. This allows us to think of 7 as
merely some succession of elements from A. Furthermore, if H does not invoive X
at all, then Z can be thought of as merely a number (the number of computation

steps necessary for the iteration in F:LP to completely decompose AJ.

For example, these conventions mean that the generalized state of the accumulator
in REVERSE: is obtained by appending some arbitrary list Z onto the front of its
initial value. The generalized state of the accumulator in FACT: {see Appendizx A}
is obtained by multiplying its initial value by the product of the elements of an
arbitrary list Z. The generalized state of the accumulator in EXP: {see Appendix
A} is obtained by multiplying its initial value by C an arbitrary number of times

(23

The reason we can often ignore the very strong relationship between I and A, even
though both mey be involved in (18), is the same reason we can often safely
replace common subterms after an induction: The process of induction often embeds
sufficient information in the theorem itself to capture the necessary properties of
the term being generalized. Let us illustrate this claim and the heuristics described

. by a final exampie.

10. AN EXAMPLE OF ACCUMULATOR GENERALIZATION

Suppose we have the following function for collecting all those elements of X which

o

satisfy some [unspecified] property ¢t

Gos W w G

L] o @ [«
»,x‘xvra ﬂo‘“ "V-. (027
EeS @ W W @O
ooy B e
[e .l) ﬂ:ﬂ
~ T s, [w] i @
o G d o
— [P ¢ 1,
G s "~ " @]
o o = b
e ow W N
o w2 s I3 A W_)
3 = B

[
mr
"
[X S o4 o - 53]
s peq st)
SS 2 23
£ o] m o O
d e @
. o, <ol @ e Yo
o po s s |3 P W
1 o "o
« Lbd 2 o ey @ R
s wd (=) L0000 b N
P d IS @ O w &
e = o - o
- o o B,
o - £ 2 @
5] ¢
= o P R -
o o o, B -, .o
e s o - I jou| [n%w
s 3 - o & oy ol
o < o mm [) e o o
. o g It X .
Nt ok ol LY ok o oo ¢ b o
S ot s . o “ e W =y
0. foos e 5 o O & .
CFE C ik [ek o < % [o
e G2 [Led o e o @ <
ead €9 L €3 o 20 oy 3
e 0 LD WD ook S o =% @ e,
[P - < [s » - 4
[S - o a fond
[S W St [o ?ﬁw 1%} oy o
L] o o 2 e iy [
- e ¢ W . W
e o~ [e mm o P e X
P L E2S (3 G % B [© o
N [[e da.’u « > 2f [
o] W% o O Gy (9 oo
ox =X o @ bt o Bt .o .o
Q 3 v ot] & et o o
@0 <L s I - St , > -
uy = wd 0o @R 3] L
zme\ < e Mw o té) ol W -l mw.w -
o e ey Bt g2] o eed b ek
o - = I S B A [s ol
: 4 ¢ o '
S . v - @ 8@ B Fw b &
fut [§ ,m X = wm “ W) el -
e Lt L2 [. © w2 2 o wm [,
o il Lad mw ' nw bad . w et
wod ok o - e [® 2 o ¢ C .
g o - G % ow E o & @ A
Mw re) & W 1% - [$) @] [$8) s o
B0 O - & & »o8 g
[} o St ol w e o @D bl ? A2 &
; . o o - N o]
B © e 175 i = fu.
@ et) @
w b b G P o & 5
Pt s 3] 5] o
e £ o2y £ e =
f 3 =T e et St V4]

-
£ B :
ot el o~ <
o ed 7] Rl
- -
% wt = e
“ - < .
i wm el o —
o) ool 2 g
% A e
) < .
@ = s%. & wm
o u [S @ @ «
©w wx, o
4] ¢ - “ Mw
5 ” & _ ® o a 44 o
o) 23 . o e " "
o - S K « = B,) oy
. o = . o o €
b = . ad ot w acu N Se? -
2 S
wm & @ o, n = B - aa o
= - e - “ ~ o
Pt - . o . et y @ g o N @
g oy o @ i &= 2wy = G
e oz ™ S 5 8 F e ©
—— e © w W o = & o U
b 7 S St 2 5 B o
. 2, Pt & . - £ - (o} =
(i3] bt i et 45] W o] b Q
503 s O &g~ 205 0 o~ B
. gs! W Bog 7 g 0w = '
é) pos ., 5 ¢ o %] o
IS . 172 19 o o sd i () - ¥
L o 3 by bt ! ot 5] = o2 e
& <k = @ < @ @ w2 A < wd €3 8 ™
© < < -t SR =3 - ©
od £ () «© o3 o = [N
2 v @ . & o & s 8 Z e g @
e e - £ e o at w S
% g e w o oy el «f o
W @ . 4. b N = - 2
= o3 ok Anm Ly @ - (7] «f . “,b ©
o = £ o ! = = S W B 8. 5 o
3 b @ (78] mw - [} & o Pt rd - foi
(3 S W [} Mni? [[s v o oo © oy
v - 4 . p & - 7R o e o
- B <K - A o I Iz 3
G o o w 0n e @] & @
o ! P . 7] s B e} < © < & b b
o sk b ..zw T s [t IS [O o] =S
ot . o - e - 3} . o B e Q
: o o3 . [) £ 5 ¢ © W
= O e . OO wd K2 =)
L e @) e 5 . @ L 2
d | ud Lot - - o £ A2 g e o B
ot - - . uw Vs w8 € w oo) e o
k= & St o pert [ea) s @ LLd N o n [o R
u) < fya = 8 s & oo e ety o &
] . v - a8 oo = <]
oo s - R [(o4 wond ‘o3 o . « b
tad by U&w e 2L S ..,% (e} Ca i & © [sa)ea] - oy
“vio5 - 4 & “ B .4 b & S -8
try e 2 [= 7] - i o [- o (%1% @ &
bbd o) o P (o] W N]
o [=5) & Ll S~ Lid P O et 8 .
73] o0 17} po [Mm @ [Lo W . oL G
ot [poe - o3 ed N o ad . " o o @«
2 oy 73} 58] 5 et e ot Rz - W
i i3} o] = G %3] =] - W ﬂ ey
W o o 3 3 A, & oo e S VR S N D
9 b a 2 £ g 5 2 v 5 & g 2
pes e mm g Bt e 17 » ey . [a W [&
o o o o A i - T e - &
¢ o < < A S e b . Pt R
PR o R © g o oo — 4
25 2 = = 5 5 O CE B - G
™ ot 4 purd wd [o
e £oof e R =
Foet] o @ 13 = . w
. « St S B o
B o o
et %

usion.

3
i

Conc

~

the

&

replacing

by

ifying

new

KI

T.LP:
X3}, we

ECT
i above,

[
ined

‘LE

3
i
$

t

i

Y
A

e

e

H

o1

s
O
et
]
o
e
[}
€2
od
i
s

inition of CC
ihe

now generate the

£

g

isin

the de
u

unction of (CAR
or
E,

£

e

in
as &
for

d

selecting this definition

must

The Y-accumula
Recause we treated

identify an ¥
expresse
the pattern

We
in

-

OLLECT

I
S

between

T

Y

egualit

introduce

o

>
&L
&
©
I
Wl

)
ding
we

ie

5

eralization

3

¢ generalize the sia
btained by appen

en to be ©

sing COLLECT:LF" ¢
};

This is obtained from (22) in the same way that (1Z) is obteined from (11}:
The two accumulator values, NIL and (CONS Al NIL}, in (2Z) are embedded in
COLLECT:LP' expressions, and two of the occurrences of the wvariable controlling
the iteration for those accumulators, A, are replaced by the new variable X. Note

that there are other occurrences of A which are not replaced by X.

Of course, (23) is just momentarily hideous, since we know that an induction on X,
with the proper instantiation of z in the hypothesis, is trivial and will leave us
with the base case only. This may not be as apparent as it was in the F:LFP
example. However, we will leave it to the reader to convince himself that if the
induction hypothesis is (23) with z replaced by (CONS X1 Z), and the induction
conclusion is (23) with X replaced by (CONS X1 X} and z replaced by Z, then the
hypothesis and conclusion evaluate to precisely the same expression. Therefore,
there is actually no need to introduce (23}, since we are assured the induction step
will go through. Instead, we can merely consider the base case, obtained by letting
X be NIL in (23):

(24) (IMPLIES (SUBSET (COLLECT:LP’
(SUBSET (COLLECT:LP’

(RS Rt
=
fruef
o

is™
(CONS A1 NIL)) (CONS A1l A))).

We are now in a position to illustrate the claim that the base case often holds,
even though we ignore the complicated restrictions on Z. Recall that the only
condition under which the COLLECT:LP' expressions in (24) are equivalent to the
COLLECT:LP expressions in (22) is when Z is the reverse of A. However, we are
now claiming, effectively, that we can replace the COLLECT:LP expressions in (22}
by the COLLECT:LP' expressions in {24} and still have a theorem, without even

linking the new Z to the old A still in (24]}.

v 3

opefully the reader is convinced that (24} is indeed true. It says that if one

i

7 i e o . - [it ’
252 E 8 88 3§
W e e A5 - wo 2 £o Gy
T g f g B« TR @ @ B
> 1 @ 1] i
ook - I mow Q8 o 9
s ow B2 g T B2 5 & A .8 " 0
Pz . S 5 oa 3 k o G
ot o o phee [<« 3 =
! mgw . wi ¥ £ o T 1) o) i R
e o v (&} o s gy €3 ps) g
ey & , & & & o o S8}
0 L oo g O by [B S - .
Sown , « - & e y < W A ES
P o & 2 o o s 4 s Ral
& 8 8 8 3B B9 b b = "o
bw © £ = - ® %
m,v . ¢ gt = e o ha - uzu rC i A{i
T 75 o] @]) & e 4
- @ ot o L2 €2 = o .8
v 4 & | o oog o noM e o,
AR S v cno B e b "
Pt « » [=3 ot D o St <
= ld = S s [. «$) i
v 5ooBom © O G g o £
@ w W & w8 PO = T B v .8
gow oD 5 d S e GRS r a8
) 2] .-o@ P o] a [3]
o .9 T T © @ O o o =
@ 2 S T e £ SS B o
- o o od 4 o [} o A2 [- “) low! Syt
e - et —" I [¢5] o] o gd P N ey st [
=1 o L2 e o P et 7 e ~ o W
2 o e - @ B o o o0 ‘ W
o W R & e e b ot mn.z o o o e - ¥
CEE- A g b A R) “ ©og
& R R B -
Tt (&} [w] =} - ® P
B W Lk B [R 5 - e P m - jw i [/ P
[N S 1 o g [Bl w = o @ < b
sy d e N o < g b i o e = €9 - ot el
et Ty e P " bt ..un i oy w =t R e e
Gs - W) § . £ o St bt - = W & £2
ooowom A it o o Bow B3 o b [SEE)
Rt @ ad P et o e - s Bt o o] s -y
R o o W b & o s R ~] @ (=] s R
PR B [T o B T T S =+ —t e S LI
& oo B ooH oo @ w “w o« @ @
o - @ gt [[o Gt W e []
- bt v.w o~ $oa .@ o © et] %) e & o M
v e~ 3 O 12 = R T >]
- o smm - ey .,M.u Gt (%] i g o A o w w© N e i
-l i . =}) o oo = [oe) &5 zmw e Lot ., i v £,
() o s S22 o e o 51 o [} "] i
4) - ~ D bSO TS S S . W
{2 . 4 bo oy e A < o . Qo w
O foud Ry s o and b [- o o H o e
T o« © 5 2 w & SR TR o &)
« o owiow B g8 e w B 5 5 = 2 [
) o o a8y e) -] fa @ [[72] -
v » , 5 8 & & &, i o = 2
22 g 6 5 MG I~ B =
R) o o3 o o oy e s o
I A s} o) oo It 4
[) [4 v ek v P < @ §
R = Qo [s = e o® 9 A
d e et ot et e o o o * [ea o
8 g 3 g B 7 _ = a2 =z 08
@9 oo w B @ i Sowm,, OB) w9
o R W b4 3 o b S) 4 o et) 1 W
@ @ (o RS B, @ o fd @ h A (]) =} w2
8 5 ¥ B oo 0 o - - - S - B A,
g ke £ fit A R R :)
. ¥ & (&) v g H P [V Bl b & o Iy o
ERE @ [wd e @ I o J IS
RN T - = g2 8 B B o © i = :
[} e -] - t o
g o w o m 8 9 § g = O o @ e 59 B u = B D
[Roru O oo - A (] < PR o W =
1) (=) 3 W 42 e bl il g o @ s joes) e
wog B R Lo e 2l = o = o 55 Lud = b
oW > @ a8 \ wed o tad < [-) TR B = =1 — . & L e
2 B g 5L 2 2 5 0 A =R B o & - Ko B
g oo o o@ o«) <o R R T B @ o
Tt o oy .hu, @ ™ & o . v = © e PO R @© & o .
B e e g 2 ek o o O o] & e & b feS
et oo ! LW @ b mw W
@ > @ bt =R el =8 et
A 29 SV
w ot ;Am ﬁm

21
Of course, the heuristics described are not complete. The sccumulator generalization
heuristic sometimes produces expressions which are not theorems, because toc much
information is lost regarding the relationship between the old and new variables. A
simple example can be obtained by writing the most obvious iterative function for
generating a list of the numbers from 1 to N and then proving that the output is
always ORDERED. The generalization produced effectively states that if 7 is
ORDERED then the the result of appending N as the last element is also ORDERED.
This is true only if Z is known to contain no element greater than N, which is

missed by the generalization. An extension of the machine generated "type

functions” of [7] is being considered as a means of restricting the generalizations.

The translation of nested iteration is straightforward, but proving facts about the

translations is somewhat more difficult. This is being studied with Ben Weghbreit.

12. RELATED WORK

There sre three aress of related work. The first is the program optimization work
of Darlington and Burstall, [4]. Under certain conditions on H it is easy to write a
well-behaved definition of F:LP which is much like E. It is clear that if the
thecrem prover actually checked for these conditions and translated F:LP as

described in [473, many proofs would be simpler.

The second area is that of the sutomatic generation of induction assertions for
program verifiers using the Floyd method. Two methods studied were those of
Wegbreit, [10], and Katz and Manna, [5]. Of course, the central problem is to
generate some assertion about the general state of the computation within & loop,

.and to insure that the sassertion is relevant to the overall goal of proving some

[
[

theorem azbout the output. It is difficult to compare our method and theirs becaus

o

we express assertions in terms of the ultimate output of the loop and we allow
assertions concerning the output of two or more distinct computation seguences
through the loop (as in (23}]). Our method resembles the "top-down" approach (in
the terminology of [5]) in that the generalization is produced from the thecrem
being proved. This insures its relevancy. However, our method also resembles the
"bottom-up" approach since the program analyzes the behavior of the loop to extract
the general description of the state of the accumulator. The relationship between

the Boyer-Moore theorem prover and the automatic generation of Floyd assertions is

being explored with Ben Wegbreit.

The {inal related area is the similar but independent work by Aubin, [17], who is

using the original implementation of the Boyer-Moore theorem prover at th

m

University of Edinburgh. Aubin’s suggested generalization method invelves using
iook-shead to discover how our matched accumulators fail to unify. He proposes {0
generalize the original theorem, introducing & free variable as we do, and only then

proceed with his first induction. ‘

The difficulty with this approach, shared by [10] and [5], is illustrated by
considering how one might generalize the NIL in (EQUAL (REVERSE:LP A NIL}
(REVERSE A)). Clearly any generalization of that term must somehow be reflected
on the other side of the equality. To do this one must "understand” both how the

sccumulator is being modified and how it relates to the rest of the theorem.

We avoid the problem by waiting until induction has introduced Dalanced

ae

accumulators. We then have a relationship between two distinct computations

o

through the loop, starting at different asccumulator values. We then merely iry io
3 P w

[+

3
show that this relationship holds for the generalized state of the accumulators.
Thus we have decoupled the problem of understanding how the accumulators are
used from the problem of understanding their relationship with the rest of the

theorem.

13. REMARKS ON THE IMPLEMENTATION

The theorem prover is implemented in INTERLISP-10 at Xerox PARC. Unlike the
original version, the induction formula is now set up without evaluating the theorem
and looking at the failures. Instead, functions are carefully analyzed when they are

defined, and this analysis is stored and used to generate inductive arguments.

The new version of the program salso makes extensive use of previously proved
theorems as lemmas. The use of lemmas allows the theorem prover to handle more
difficult programs since the properties of subroutines can be verified first. When &
new property arises the program can still fall back on the recursive definitions to

try to establish the result inductively.

The new version of the program is several times faster than the original. The
average proof (from a sample of about 100 theorems proved routinely after program
modifications) requires about 6 seconds of cpu time. Roughly 95% of that time is

spent in the simplification routine.

34
ACKNOWLEDGEMENTS

I would like to thank Bob Boyer and Ben Wegbreit for hours of clarifying
conversations on the topic presented here. In addition, Raymond Aubin, Hod
Burstall, Gordon Plotkin, and Richard Waldinger have also made several enlightening

suggestions.

REFERENCES

[17 R. Aubin, "Generalization in Proofs of Simple Program Properties,” unpublished
memo, Department of Artificial Intelligence, University of Edinburgh, 1974.

{21 R. S. Boyer and 4 S§. Moore, "Proving Theorems About LISP Functions,” Journal
of the ACM, January, 1878.

(3] R. M. Burstall, "Proving Properties of Programs by Structural Induction,”
Computer Journal, pp. 41-48, Vol. 12, 19689.

[47 J. Darlington and R. M. Burstall, "A System which Automatically Improves
Programs,” Proc. of the Third IJCAI, pp. 537-542, 1873.

[5] S. M. Katz and Z. Manna, "A Heuristic Approach to Program Verificaticn," Proc.
of the Third IJCAI, pp. 500-512, 1973.

{61 J. McCarthy, "Recursive Functions of Symbolic Expressions and Their
Computation by Machine,” Communications of the ACM, Vol. 3, April 1960.

[77 J S. Moore, "Computational Logic: Structure Sharing and Proving Program
Properties,” Ph.D. Thesis, University of Edinburgh, 1973.

[8] J. R. Shoenfield, Mathematical Logic, Addison-Wesley Publishing Company,
Reading, Massachusetts, 1967.

rg7 H. Wang, "Toward Mechanical Mathematics,” IBM Journal, pp. 2-22, January
1960.

[t C bt
(AR 763 .X4 s,w
£ b £
k= ZK
o mm u
& iyt
vl [y +
<l An ”
Rt
W
> 5o
3 g
(W) ST d
=] iy s
e WM &
" s‘a;;,! s
©» iy
£ i~ .
vy o i, .
8 = =
o = - =
N
& w =
s Q ol o
] o = ol
@ =2 s]
59 @ bt &
e e L3 o W\N\
g5y © e ,
o o Ot S
vi o) > Wy -
o] L 0 Ld =t s
r — o " ¢ 4
m.Uz © o -t [yl et
Ei = W bt <
- m‘m i ., o e () Ty
P et e el Q\;‘% fa.\mfs < U
et [
i 2 o o £ "3
&) s Lo o oegood oA
Ea= B Ll - b et
Z, oo P W etd € L b € o]
V) oy 0 e fws NI VIV S e
bt L & RO P e S PR
N) ’ < L
L oW <€ a6 ¢ <L €0
2z D oz Qe & o=
"y o o sa frageet
e [Y 0D P @ G
4 L ol L e
i ® wed — aweed
) Lo k
o W & e
n & "y
o O = b
s W »< o -]
b © £ e b " <L
[e o - o [
z 23 St
R3] ST
i ol
W
By £
-
< [y

fox]

Lo

{SORT: {(LAMBDA 5%2
* (PROG (Y)
55??@ Y NIL)
1P (COND {{Nijié Xy {RETURN ”f}}@
ISETQ Y (ADDTOLIST (CAR X} Y))
{SETQ X (CDR X})
(60 LP))))
APPENDIX B - SAMPLE THEOREMS PROVED
Below are some of the theorems proved by the extended program. In SOmMe C&ses
the program appeals to lemmas which it has previously proved (such as the laws
governing PLUS and TIMES]. While this list of thecrems is by no means complete,
it is representative of the upper limits of the program's current compelence.

(EQUAL (FACT:

(EQUAL (FACT:LP I J) (TIMES J (FACT I)))

(EQUAL (EXP: T J) (EXP I J))

(EQUAL (EXP:LP I J K) (TIMES K (EXP: I J)))

(EQUAL (EXP: T (PLUS J K)) (TIMES (EXP: I J) (EXP: I K}})
(EQUAL (EXP: I (TIMES J K)) (EXP: (EXP: I J) K})

(IMPLIES (MEMBER A B) (MEMBER A (UNION: 8 C)})

(IMPLIES (MEMBER A C) (MEMBER A (UNION: B C)))

(IFF (MEMBER A (UNION: B C)) (MEMBER A (UNION B C)))
(SUBSET A £ 8)

La2

(SUBSET

INT

[a

RSEC

e
-
o
o
i)

(ORDERED (SORT: A3})

{EQUAL (COUNT A (SORT: B} (COUNT & B}

Note that these last two results establish that SORT: is correct: |

/ t produces crdered
output and its output is z permutation of its inputl.

)

