
An Extension of Equivalence-based Rewriting

Matt Kaufmann and J Strother Moore

Dept. of Computer Science, University of Texas, Austin, TX, USA
{kaufmann,moore}@cs.utexas.edu

http://www.cs.utexas.edu

Abstract. Previous work by the authors generalized conditional rewrit-
ing from the use of equalities to the use of arbitrary equivalence relations.
This (classic) equivalence-based rewriting automates the replacement of
one subterm by another that may not be strictly equal to it, but is
equivalent to it, where this equivalence is determined automatically to
be sufficient at that subterm occurrence. We extend that capability by
introducing patterned congruence rules in the ACL2 theorem prover, to
provide more control over the occurrences where such a replacement may
be made. This extension enables additional automation of the rewriting
process, which is important in industrial-scale applications. However, be-
cause this feature is so new (introduced January, 2014), we do not yet
have industrial applications to verify its utility, so we present a small
example that illustrates how it supports scaling to large proof efforts.

Keywords: ACL2, rewriting, congruence, equivalence relation

1 Introduction

A conditional rewrite rule, (P1 ∧ . . . ∧ Pn → L = R), directs an instance of the
term L to be rewritten to the corresponding instance of the term R, provided the
corresponding instances hold for hypotheses P1 through Pn. In previous work [1]
we showed how to generalize conditional rewrite rules to allow an arbitrary
equivalence relation, ∼, in place of =, thus: (P1 ∧ . . .∧Pn → L ∼ R). Key is the
use of proved congruence rules and refinement rules1 to associate, automatically,
an equivalence relation with each call of the rewriter, such that it is sound to
replace a subterm by one that is equivalent. The above generalized rewrite may
then be used when ∼ is a refinement of that equivalence relation. This capability
is implemented in the ACL2 theorem prover [7, 6] and has seen substantial use:
as of ACL2 Version 6.4, the community distribution of ACL2 input files [10]
contains more than 1800 instances of congruence rules.

We give a preliminary report on a generalization, patterned congruence rules,
introduced into ACL2 in Version 6.4, January, 2014. At this “rough diamond”
stage we can only guess at uptake of this capability by the ACL2 community,

1 Refinement rules work essentially the same way in this new setting as they did before.
We do not mention them further in this paper.



2 LNCS: An Extension of Congruence-based Reasoning

although we do expect it to be used at least by the requester of this feature at
Centaur Technology [9].

Our (existing and updated) approach to equivalence-based rewriting differs
from approaches based on the use of quotient structures in higher-order logic,
for example in HOL [3], Isabelle [4], and Coq [2]. To the best of our knowledge,
our approach to first-order equivalence-based rewriting (without quotients) is
the only one that automates the tracking of which equivalences are sufficient to
preserve in a given context.

We begin in Section 2 by presenting a self-contained example to illustrate
our previous work [1]. Section 3 then builds on that example to introduce our
extension to patterned congruence rules, followed by a sketch of the relevant
algorithm and theory in Section 4. We conclude with a few reflections.

The online ACL2 User’s Manual [7] provides user-level introductions to e-
quivalence-based rewriting. See topics EQUIVALENCE, CONGRUENCE, and
(for this new work) PATTERNED-CONGRUENCE.

2 Previous work

The example below uses traditional syntax. Complete ACL2 input is online [5].
The following recursively-defined equivalence relation holds for two binary

trees when one can be transformed to the other by some sequence of “flips”:
switching left and right children.

t1 ∼ t2 ,
IF leaf-p(t1) ∨ leaf-p(t2) THEN t1=t2 ELSE
(left(t1) ∼ left(t2) ∧ right(t1) ∼ right(t2)) ∨

(left(t1) ∼ right(t2) ∧ right(t1) ∼ left(t2))

When provided a suitable induction scheme, ACL2 automatically proves and
stores the theorem that ∼ is an equivalence relation. We now define a function
that swaps every pair of children in a binary tree (cons is the pairing operation).

mirror(tree) ,
IF leaf-p(tree) THEN tree
ELSE cons(mirror(right(tree)), mirror(left(tree)))

The equivalence-based rewrite rule below directs the replacement of any in-
stance of the term mirror(x) by the corresponding instance of the term x, in
contexts for which it suffices to preserve equivalence with respect to ∼. Of course,
the ordinary rewrite rule mirror(x) = x is not a theorem!

REWRITE RULE: tree-equiv-mirror
mirror(x) ∼ x

Where can it be sound to replace mirror(x) by x? The following function,
which returns the product of the numeric elements of the fringe of a tree, provides
one such context: ACL2 proves the congruence rule below, stating that the return
values are equal for equivalent inputs of the function tree-product.



Rough Diamond: An Extension of Congruence-based Reasoning 3

tree-product(tree) ,
IF [tree is a number] THEN tree
ELSE IF leaf-p(tree) THEN 1
ELSE tree-product(left(tree)) * tree-product(right(tree))

CONGRUENCE RULE: tree-equiv-->-equal-tree-product
x ∼ y → tree-product(x) = tree-product(y)

ACL2 can now prove the following theorem automatically by applying rewrite
rule tree-equiv-mirror to the term mirror(x). The congruence rule just above
justifies this rewrite.

THEOREM: tree-product-mirror
tree-product(mirror(y)) = tree-product(y)

This particular theorem is easy for ACL2 to prove automatically even with-
out congruence rules or the rewrite rule tree-equiv-mirror (though induction
is then used). But to see the scalability of this approach, imagine that there
are k1 functions like mirror and k2 like tree-product. If we then prove k1
rewrite rules like tree-equiv-mirror and k2 congruence rules like tree-equiv-
-implies-equal-tree-product, then these k1 + k2 rules set us up to perform
automatically all k1 ∗ k2 rewrites like tree-product-mirror.

3 Patterned congruence rules

A congruence rule, as discussed above, specifies when a given argument of a
function call may be replaced by one that is suitably equivalent. A patterned

congruence rule generalizes this idea by allowing a specified subterm of that
call, which is not necessarily a top-level argument, to be replaced by one that
is suitably equivalent. The following example is one that we will discuss further
below.

PATTERNED CONGRUENCE RULE: tree-equiv-->-equal-first-tree-data
x ∼ y → first(tree-data(x) = first(tree-data(y)

Notice that unlike a “classic” congruence rule, where the replacement of an
equivalent subterm is specified at a specific argument of a function call, here
x is to be replaced by y at a deeper position: a subterm of a subterm of the
call. Indeed, the conclusion of the rule can be an equivalence between complex
patterns, for example: x ∼1 y → f(3, h(u, x), g(u)) ∼2 f(3, h(u, y), g(u)). That
rule justifies replacement of a term x by term y ∼1 x, within any term of the
form f(3, h(u, x), g(u)) that occurs where it suffices to preserve ∼2.

A patterned congruence rule is thus a formula of the form x ∼inner y →

L ∼outer R, subject to the following requirements. Function symbols ∼inner and
∼outer have been proved to be equivalence relations. L and R are function calls
such that x occurs in L, y occurs in R, and these are the only occurrences of x
and y in the rule. Finally, R is the result of substituting y for x in L.



4 LNCS: An Extension of Congruence-based Reasoning

This rule enables the automatic rewrite of a subterm of L at the position
of x to a term that is ∼inner-equivalent to x, in any context where it suffices
to preserve ∼outer. We illustrate this process by continuing the example of the
preceding section, this time defining a function that sweeps a tree to collect a list

of results, whose first element is the product of the numeric leaves (as before).
We omit some details; function combine-tree-data(t1,t2) returns a list whose
first element is the product of the first elements from the recursive calls.

tree-data(tr) ,
IF [tr is a number] THEN [tr, . . .]
ELSE IF leaf-p(tr) THEN [1, . . .]
ELSE combine-tree-data(tree-data(left(tr)), tree-data(right(tr)))

ACL2 can now automatically prove the patterned congruence rule displayed
at the start of this section, tree-equiv-->-equal-first-tree-data. ACL2
then proves the theorem below as follows, much as it proves Theorem tree-

-product-mirror in the preceding section. First, the patterned congruence rule
informs the rewriter that it suffices to preserve ∼ when rewriting mirror(y).
Hence, the rewrite rule rule tree-equiv-mirror (from the preceding section) is
used to replace mirror(y) by y. Also as before, this small example suggests the
importance of (patterned) congruences for scalability, where k1 + k2 rules set us
up to perform automatically k1 ∗ k2 different rewrites.

THEOREM: first-tree-data-mirror
first(tree-data(mirror(y))) = first(tree-data(y))

4 Algorithm correctness and patterned equivalence

relations

In this section we outline briefly the algorithm implemented in ACL2 for using
pattern-based congruence rules, and we touch on why it is correct. More details
are provided in a long comment in the ACL2 source code [8]. Of special con-
cern is that ACL2 procedures that manipulate terms must quickly determine
the available equivalences on-the-fly and tend to sweep the terms left-to-right,
innermost first.

ACL2 implements classic equivalence-based rewriting by maintaining a gen-

erated equivalence relation, or geneqv : a finite list of function symbols that have
each been proved to be an equivalence relation, representing the smallest equiva-
lence relation containing them all. Rewriting is inside out, so to rewrite a function
call, the rewriter first rewrites each argument of that call. Congruence rules are
employed to compute the geneqv for rewriting each argument.

We have incorporated patterned congruence rules into that algorithm without
changing its basic structure or efficiency (based on timing the regression suite).
The key idea is to pass around a list representing so-called patterned equivalences,
or pequivs for short, as defined below. We show how this list is updated as the
rewriter dives into subterms, ultimately giving rise to equivalences to add to the
current geneqv.



Rough Diamond: An Extension of Congruence-based Reasoning 5

A pequiv is an equivalence relation corresponding to a term L that is a func-
tion call, a variable x that occurs uniquely in L, an equivalence relation ∼, and
a substitution s. The pequiv based on L, x, ∼, and s is the smallest equivalence
relation containing the following relation: a ≈ b if and only if there exist substi-
tutions s1 and s2 extending s that agree on all variables except perhaps x such
that a = L/s1, b = L/s2, and s1(x) ∼ s2(x).

For a natural number k and function call C = f(t1, . . . , tk, . . . , tn), the follow-
ing notation is useful: pre(C) is the list (t1, . . . , tk−1), @(C) is tk, and post(C)
be the list (tk+1, . . . , tn). Now consider the pequiv based on L, x, ∼, and s, and
let u be a term f(t1, . . . , tk, . . . , tn), where f is the function symbol of L and x
occurs in tk. Then the next equiv is the pequiv or equivalence relation defined
when for some substitution s′ extending s, pre(u) is pre(L)/s and post(u) is
post(L)/s.2 Let s′ be the least such substitution. There are two cases. If x is an
argument of L then the next equiv is the equivalence relation, ∼. Otherwise the
next equiv is the pequiv based on @(L), x, ∼, and s′.

The ACL2 rewriter maintains a list of pequivs and a geneqv (list of equiva-
lence relations). Here we outline how those lists change when the rewriter, which
is inside-out, calls itself recursively on a subterm. As before [1], classic congru-
ence rules are applied to create a geneqv for the subterm; here we focus on how
the list of pequivs contributes to the pequivs and geneqv for the subterm. Con-
sider a pequiv p based on L, x, ∼, and s, among the list of pequivs maintained
as we are rewriting the term f(t1, . . . , tk, . . . , tn), and consider the rewrite of tk.
There are three cases. If the next equiv for p (for position k) is ∼, then ∼ is
added to the geneqv for rewriting tk. If the next equiv for p is a pequiv p′, then
p′ is added to the list of pequivs for rewriting tk. Otherwise the next equiv for
p does not exist, and p is ignored when rewriting tk.

The following two theorems (relative to an implicit first-order theory) justify
this algorithm. The first explains why a congruence rule justifies maintaining
the corresponding pequiv. The second explains why it suffices to maintain the
next pequiv when rewriting a subterm.

Theorem 1. For a provable patterned congruence rule x ∼inner y → L ∼outer

R, let ∼ be the pequiv based on L, x, ∼inner, and the empty substitution. Then

∼ refines ∼outer, i.e., the following is a theorem: x ∼ y → x ∼outer y.

Theorem 2. Let ∼1 be a pequiv, let u be a term, and assume that the next

equiv, ∼2, exists for ∼1 and k. Let arg be the kth argument of u, let arg′ be a

term, and let u′ be the result of replacing the kth argument of u by arg′. Then
the following is a theorem: arg ∼2 arg′ → u ∼1 u′.

5 Reflections

ACL2 development began in 1989. Recent years have seen an increase in indus-
trial application, with regular use at Advanced Micro Devices, Centaur Technol-

2 We are simplifying the actual condition here, because the rewriter applies to both a
term and a substitution, and this substitution must be applied to post(u).



6 LNCS: An Extension of Congruence-based Reasoning

ogy, Intel, and Rockwell Collins, as well as academia and the U.S. Government.
In order to support these users, we have been continuously improving ACL2; in
particular, after the December 2012 release of Version 6.0 through the January
2014 release of Version 6.4, 129 distinct improvements have been reported in
RELEASE-NOTES topics of the online ACL2 User’s Manual [7].

While some of these improvements may present topics of interest to the ITP
community, most are technical and specific to ACL2, as the focus has increas-
ingly been on direct support for the user community, in particular industrial
users. While few of these topics are likely candidates for traditional academic
publication, patterned congruence rules seem to us an exception: any modern
ITP system might benefit from them, if it is important to perform rewriting
efficiently at the scale of industrial projects.

Acknowledgments

This research was supported by DARPA under Contract No. N66001-10-2-4087
and by ForrestHunt, Inc.

References

1. Brock, B., Kaufmann, M., Moore, J: Rewriting with equivalence relations in ACL2.
Journal of Automated Reasoning 40(4), 293–306 (2008), http://dx.doi.org/10.
1007/s10817-007-9095-9

2. Cohen, C.: Pragmatic quotient types in Coq. In: Blazy, S., Paulin-Mohring,
C., Pichardie, D. (eds.) Interactive Theorem Proving, Lecture Notes in Com-
puter Science, vol. 7998, pp. 213–228. Springer Berlin Heidelberg (2013), http:
//dx.doi.org/10.1007/978-3-642-39634-2_17

3. Homeier, P.: A design structure for higher order quotients. In: Hurd, J., Melham,
T. (eds.) Theorem Proving in Higher Order Logics, Lecture Notes in Computer
Science, vol. 3603, pp. 130–146. Springer Berlin Heidelberg (2005), http://dx.
doi.org/10.1007/11541868_9

4. Huffman, B., Kunar, O.: Lifting and transfer: A modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) Certified Programs and Proofs,
Lecture Notes in Computer Science, vol. 8307, pp. 131–146. Springer International
Publishing (2013), http://dx.doi.org/10.1007/978-3-319-03545-1_9

5. Kaufmann, M.: ACL2 demo of (patterned) congruences, see URL https://

acl2-books.googlecode.com/svn/trunk/demos/patterned-congruences.lisp

6. Kaufmann, M., Manolios, P., Moore, J S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers, Boston, MA (Jun 2000)

7. Kaufmann, M., Moore, J S.: ACL2 home page, see URL http://www.cs.utexas.

edu/users/moore/acl2

8. Kaufmann, M., Moore, J S.: Essay on Patterned Congruences and Equivalences, in
ACL2 source file rewrite.lisp; see URL https://acl2-devel.googlecode.com/

svn/trunk/rewrite.lisp

9. Swords, S.: Personal communication
10. ACL2 Community Books, see URL http://acl2-books.googlecode.com/


