
6

The Sharing of Structure in
Theorem-proving Programs

R. S. Boyer and J S. Moore
Department of Computational Logic
School of Artificial Intelligence, Edinburgh

Abstract

We describe how clauses in resolution programs can be represented and used
Without applying substitutions or cons-ing lists of literals. The amount of
space required by our representation of a clause is independent of the
number of literals in the clause and the depth of function nesting. We intro-
duce the concept of the value of an expression in a binding environment
which we use to standardize clauses apart and share the structure of parents
in representing the resolvent. We present unification and resolution algorithms
for our representation. Some data comparing our representation to more
conventional ones is given.

1. INTRODUCTION

In this paper we are concerned with representing literals and clauses in
computers. Lists provide the most obvious and natural representation of
literals because lists perfectly reflect function nesting structure. A list is also
a reasonable representation of a set, in particular of a clause. Lists, however,
can consume large amounts of space, and cause frequent garbage collections.
We shall present in this paper a representation of clauses and literals which is
as natural as lists but far more compact. We achieve this economy by sharing
the structure of the parents of a resolvent in our representation of the
resolvent.
A clause is a set of literals; but throughout this paper we shall speak of the

literals of a clause as having an order. That is, we shall speak of the first,
second, etc., literal of a clause.
Suppose c and D are clauses and lc is the ith literal of c and L is the jth

literal of D. Suppose further that the signs of K and L are opposite. Finally,
suppose that the substitution a most generally unifies the atoms of K and L.
Under these hypotheses, we may resolve C and D on lc and L to obtain

101

COMPUTATIONAL LOGIC

the resolvent R=((C—{K})u (D — (L}))c. We think of the literals in R that
come from c as being 'before' the literals that come from D. (We ignore

merging and factoring until section 8.)
The tuple T=<C, 1, D, j, a> contains sufficient information to enable one

to construct the resolvent R. Therefore, in some sense, T represents R. At first
sight T does not appear to be a very good way to represent R; for it seems that
the only way to use T is to construct a list consisting of all but the ith literal
of c and jth literal of D and then to apply a to the list.
We shall show in this paper that it is possible, in fact easy, to use a tuple

like T without constructing any lists or applying any substitutions. Actually,
the tuples we shall use have the form

<C, 1, D, j, NL, MI, a>.
NL is simply the number of literals in the resolvent, that is, the sum of the
number of literals in c and D minus 2. mt is a number which helps us standar-
dize clauses apart. The MI of an input clause is 1; the MI of a resolvent is the

sum of the MI's of the parents. ('MI' is mnemonic for 'maximum index'.)

2. TERMS AND SUBSTITUTIONS

To understand how to avoid applying substitutions, it is first necessary to

understand the concept of the value of a term in the context of a substitution.

First, an example:
The value of the term

(P x(fy (g z x)))

in the context of the substitution

((y. (f v w))(z . (g x u))(u . (h x)))

is the term
(P x (f(f v w)(g (g x (h x)) x))).

By a term, we mean either a variable (e.g. x,y,z) or a list whose first

member is a symbol (e.g. f,g ,P,Q) and whose other members are terms.*
By a substitution we mean a collection of pairs; the first member of each

pair is a variable and the second member is a term. If (v AR . TERMB) is a

member of a substitution S, we say that VAR is bound in S IO TERMB.

By the value of a term T in the context of a substitution S, we mean the
result of replacing each variable in T that is bound in S to a term TERMS by

the value of TERMB in S.
Our definitions are not those standard to the theorem-proving literature.

For example, we do not need to distinguish between predicate and function

symbols. Furthermore, there exist substitutions S such that some terms have

no value in the context of S. We take precautions never to generate such

substitutions. Roughly speaking, a variable ought not be bound twice or

bound to something whose value contains that variable.
It is possible to determine anything about the value of a term in the context

We think of a term such as (a) as a constant.

102

BOYER AND MOORE

of a substitution S without physically creating the value. The only thing one
must do is:

Whenever one encounters a variable VAR, check whether VAR is
bound to some term TERMB. If VAR is bound, proceed as if one
had encountered TERMB instead of VAR.

For example, suppose we wish to determine whether some variable v occurs
in the value of a term TERM in the context of a substitution S. We define the
recursive function OCCUR:
Definition of OCCUR(V,TERM)

If TERM is a variable, then
If TERM is bound to TERMB in S, retum(occuR(v,TERmn))
Otherwise, if V =TERM, return (true)
Otherwise return (false)

Otherwise TERM is not a variable and has the form (f T1 • • • Ta).
If any call of occuR(v,Ti) returns true, then return (true)
Otherwise return (false)

End of definition.
Notice that we check to see if we have encountered a variable that is bound

to some term TERMB in S (S is global to 0 c cuR). If it is, we proceed as if
we had encountered TERMB instead of the variable by returning the result of
the recursive call OCCUR(V,TERMB).
By avoiding the application of substitutions to terms it is possible to

achieve a dramatic saving in space, which, of course, one pays for by looking-
up the bindings of variables. That this is worth while is demonstrated by the
successful use of similar methods to 'substitute' values for the formal para-
meters in LISP and ALGOL function calls.

3. EXPRESSIONS AND BINDINGS
The key to our representation of clauses is the avoidance of physically
creating the value of a term in the context of a substitution. This idea is at
least as old as the first LISP. Terms and substitutions, however, are not quite
sufficient for our purposes because we often need to refer to different versions
of a term at one time. Therefore, we introduce the concepts of an expression,
a binding environment, and the value of an expression in a binding environ-
ment. First some examples:
The value of the expression

(P x (f y (g z x))), 10
in the empty binding environment is the term

(P xi° (13110 (9 zio x10)))
The value of the expression

(P x (fy (g z x))), 5
in the empty binding environment is the term

(P x5 (f y5 (g z5 x5))).
Notice that these two values have no variables in common.

103

COMPUTATIONAL LOGIC

The value of the expression
(Px(fy(gzx))),5

in the binding environment
((y,5 • (f xY), 4)
(z, 5 . (g x u), 5)
(u, 5. (h x), 5))

is the term
(P x5 (.i(f x4 Y4) (9 (9 xs (h x5)) x5))).

By an index we mean a positive integer. By an expression we mean a term
together with an index. If we denote an expression by T,I then T is a term and
is an index.
By a binding we mean a pair (VAR,INDEX . TERMB,INDEXB) where VAR

is a variable, TERMB is a term, and INDEX and INDEXB are indices.
By a binding environment we mean a collection of bindings. If (VAR,

INDEX. TERMB,INDEXB) iS a member of the binding environment BNDEV,
we say that VAR,INDEX is bound in BNDEV to TERMB,INDEXB.
The value of an expression T,I in a binding environment BNDEV is the

result of replacing each variable v in T by the value of v,I in BNDEV. If v,I is
not bound in BNDEV, its value is the variable vi (i.e. v subscript I). If v,i is
bound to TERMB,INDEXB in BNDEV, then its value is the value of TERMB,
INDEXB in BNDEV.

It is possible to determine anything about the value of an expression in a
binding environment without physically creating the value.
Throughout this paper we shall use two procedures, ISBOUND and BIND,

to facilitate the handling of binding environments. ISBOUND(VAR,INDEX,
BNDEV) returns true if VAR,INDEX is bound in BNDEV, and false otherwise.
If true is returned, then the global variables TERMB and INDEXB will have
been SO set that VAR,INDEX is bound to TERMB,INDEXB in BNDEV.
BIND (v,i,T,J,IIND EV) so alters the binding environment BNDEV that v,i is
then bound to T,J in BNDEV.
In the next three sections we shall display binding environments as lists of

bindings. We do this to help introduce our representation of clauses intuitively.
The actual structure of a binding environment is made precise in section 7.
The only essential feature of a binding environment is that one can discover
bindings with IS BOUND and add bindings with BIND.
Suppose we wish to determine whether some variable v, occurs in the value

of the expression TERM,J in the binding environment BNDEV. We define the
recursive function OCCUR as below and call o c cuR(v,I,TERM,J):
Definition of 0 CCUR (V,I,TERM,J)

If TERM is a variable, then
If ISBOUND(TERM,J,BNDEV) then retUrli(OCCUR(V,I,TERMB,

INDEXB))

Otherwise if v =TERM and 1=J, return (true)
Otherwise return (false)

104

BoYER AND MOORE

Otherwise TERM is not a variable and has the form (f Ti . . .
If any call of occuR(v,i,Ti,J) returns true, then return (true)
Otherwise return(false)

End of definition.
Observe the similarity between this definition and the previous definition

Of OCCUR. BNDEV is global to OCCUR.

4. UNIFY: OUR UNIFICATION ALGORITHM

Suppose that vAul is the value of the expression TERM1 ,INDEX1 in the
binding environment BNDEV. Suppose further that vA1.2 is the value of
TERM2,INDEX2 in BNDEV. Finally suppose that VAL is the most general
common instance of vAL1 and vAL2. If we call UNIFY(TERM1,INDEX1,
TERM2,INDEX2) then BNDEV will be altered during the call so that the
value of TERM1,INDEX1 in BNDEV and the value Of TERM2,INDEX2 in
BNDEV are both equal to VAL. If VALI and VA L2 have no common instance,
then the call will return false. Our procedure UNIFY, like the procedure
OCCUR of the previous section which UNIFY uses, applies no substitutions.
We write x=y if x and y are the same atom or number. By EQUAL we mean
the LISP EQUAL.
Definition of UNIFY(TERM1,INDEX1,TERm2,INDEx2)

If EQUAL (TERM1,TERM2) and INDEX1=INDEX2 then return (true)
Otherwise if TERM1 is a variable, then

If ISBOUND(TERM1,INDEX1,BNDEV) then return(uNIFY
(TERMB,INDEXB,TERm2,1NDEx2))

Otherwise if OCCUR(TERM1,INDEX1,TERm2,INDEx2) then
return(false)

Otherwise BIND(TERM1 ,INDEX1,TERM2,INDEX2,BNDEV)
and return (true)

Otherwise if TERM2 is a variable, then return(UNIFY(TERM2,INDEX2,
TERMLINDEX1))

Otherwise, since neither TERM1 nor TERM2 is a variable, TERM1 has the
form (f T1 . . . T) and TERM2 has the form (gsi Sm).

Iff0g, then return(false)
Otherwise if every call of UNIFY(T1,INDEX1,SI,INDEX2) returns
true, return (true)
Otherwise return (false)

End of definition.
Here is an example of unification. Let TERM1 be (P x y) . Let TERM2 be

(P (g x) z). Let BNDEV be
((x, 2 . x, 3)
(y, 2 . (f x y), 4)
(y,4 . x, 3)
(z, 7 . (f x y), 8)
(x, 8 . x, 7)
(y, 8. (g y), 5)).

105

COMPUTATIONAL LOGIC

The value of TERM1,2 in BNDEV is (P X3 (f X4 X3))•
The value of TERm2,7 in BNDEV is (P (g x7) (f x7 (g y5))).

After a call of UNIFY(TERM1,2,TERM2,7),BNDEV is
((x, 4 . y, 5)
(x, 7 . x, 4)
(

added by UNIFY
x, 3 . (g x), 7)

(x, 2. x, 3)
(y, 2 . (f x y), 4)
(y, 4 . x, 3)
(z, 7. (f x y), 8)
(x, 8 . x, 7)
(y,8 . (g y), 5)).

The value of TERM! ,2 in the new BNDEV is (P (g y5) (f y5 (g y5))).
The value of TER m2,7 in the new BNDEV is (P (g y5) (f y5 (g y5))).

the Old BNDEV

5. INCREMENTING INDICES: HOW TO STANDARDIZE
EXPRESSIONS APART

Let T be the term (Q (fx (a)) (g y z)). The value of the expression T,5 in the
binding environment

BNDEV1: ((x, 5. (g y z), 5)
(z, 5 . (f (a) u), 6)
(u, 6 . x, 3))

is (Q (f (g y5 (f (a) x3)) (a)) (g y5 (f (a) x3))). The value of the expression
T, 11 in the binding environment

BNDEV2: ((X, 11 (g y z), 11)
(z, 11 . (f (a) u), 12)
(u, 12 . x, 9))

is (Q (f (g yii (f (a) x9)) (a)) (g yn (f (a) x9))).

Notice that the value of T,5 in BNDEVI is a variant of the value of T,11 in
BNDEV2; furthermore, the values have no variable in common, that is, they
have been standardized apart. Notice that BNDEV2 is obtained from BNDEvl
by adding the increment 6 to every index in BNDEV1.
Suppose that T is a term, BNDEV1 is a binding environment, and BNDEV2

is obtained from BNDEV1 by adding the increment INC to every index in
BNDEV1. Then the value of T,J in BNDEV1 is a variant of the value of
T,J-FINC in BNDEV2. If INC is greater than any index in BNDEV1 then the
two values have no variable in common.

6. RESOLVING CLAUSES USING EXPRESSIONS AND
BINDINGS

In this section we describe by example how expressions, incrementing indices,
and our unification procedure work together in resolution. We use in this
section a simple representation of clauses, namely a list of expressions in a

106

BOYER AND MOORE

binding environment. After we have performed one resolution using this
representation, we come to the main point of the paper.
The list

cl ((+(QY Y)),2
(+ (P x y)), 2

(- (P x (f y z))), 4)
in the binding environment
Bi: ((x, 2 . x, 3)

(y, 2 . (f x y), 4)
(y, 4 . x, 3)
(z, 4. (f x y), 2))

represents the clause
(Q (f X4 X3) (fX4 x3)) (P X3 Cf X4 X3))- (P X4 U. X3 (.1 X3 (f X4 X3)))) •

in an obvious way.
Similarly, the list

c2: ((- (Q x y)), 1
(- (P (g x) z)), 3
(+(Rx(fxy)),4)

in the binding environment
D2: ((z, 3 . (f x y), 4)

(x, 4 . x, 3)
(y, 4 . (g y), 1)
(y, 2 . (g z), 3))

represents the clause
W2: —(Q x y1)-(P (g x3) (f x3 (g yl))) (R x3 (f x3 (g yi))).
To resolve WI and W2 on their second literals, we first standardize WI and

(e2 apart. We do this by adding 4 to every index in c2 (we denote the result
as c2') and by adding 4 to every index in B2 (we denote the result by B2').
We add 4 because it is the maximum index in cl or B 1. c2' in the binding
environment B2' represents the clause

— (Q x5 y5)-(P (g x7) (f x7 (g y5))) (R x7 (f x7 (g y5))).
(C2' is a variant of <e2 and has no variables in common with l.

We obtain the second expression (+ (P x y)), 2 of cl and the second
expression (—(P (g x) z)), 7 of c2'. We check that their signs are opposite.
We then call uNiFy((P x y), 2, (P (g x) z), 7). Of course UNIFY requires a
binding environment. In this case BNDEV is originally set to BI uB2'. The
call to UNIFY returns true and BNDEV has been modified so that it is

((x, 4 . y, 5) }
(x, 7 . x, 4) added by UNIFY
(X, 3 . (g x), 7)

(x, 2 . x, 3)
(y, 2. (f x y), 4)
(y, 4 . x, 3) B1

(z, 4 . (f x y), 2)

107

COMPUTATIONAL LOGIC

(z, 7 . (f x y), 8)
(x, 8 . x, 7)
(y,8 . (g y), 5)
(y, 6 . (g z), 7)).

B2'

The resolvent, a, could be represented by a list of expressions R in the
binding environment BNDEV above. R is obtained by appending cl and c2'
after removing their second literals.

R: (Q Y Y)) 2
(—(Px(fyz))),4

(—(QxY)),5
(+ (R x (f x y))), 8).

R in the binding environment BNDEV represents the resolvent
a: (Q (f ys (g y5)) (f ys (g ys)))

— (P y5 (f (g ys) Cf (g y5) (f ys (g y5)))))
— (Q x5 Y5)
(R y5 (f y5 (g y5))).

We now come to the central part of this paper. It should be obvious that it is
exceedingly wasteful to create physically the lists c2' and R and the binding
environments B2' and BNDEV, given their definitions in terms of cl, Bl, c2,
and B2. We certainly do not physically create any of c2', R, B2', or BNDEV.
We do represent a clause so that we can easily retrieve (1) the expression for
the nth literal and (2) the binding of v,i (if it is bound). Under the hypothesis
that we can retrieve (1) and (2) for cl and c2, our clause record contains
precisely enough information to retrieve easily (1) and (2) for R.
(1) Assume, inductively, that it is possible to retrieve the expression for the
nth literal of either parent, cl or c2, of a resolvent R. The expression for the
nth literal of R is either the expression for the jth literal of c 1 or the expression
for the jth literal of c2 with its index incremented by the maximum index
(MI) of cl. j depends only upon the number of literals in Cl and the numbers
of the literals in cl and c2 upon which we resolved. The following picture
should make it obvious how to compute]. We are resolving on L3 and K2.

c 1 c2

LI L2 L3 L4 L5 K1 K2 K3 K4 K5 K6

Ri R2 R3 R4 R5 R6 R7 R8 R9

(2) Assume, again inductively, that it is possible to determine whether v,i is
bound to TERMB,INDEXB in the binding environments of either parent.
If in the representation of a resolvent we include the bindings added by the
unification of the resolution, it is possible to determine if v, i is bound to

108

BOYER AND MOORE

TERMB,INDEXB in the binding environment of R. In particular, v,i is bound
to TERMB,INDEXB in R if and only if

IMI and v,i is bound to TERMB,INDEXB in the binding environ-
ment of cl, or

I>MI and v,i—ml is bound to TERMB,INDEXB—MI in the binding
environment of c2, or

v,i was bound to TERMB,INDEXB in the unification made for the
resolvent.

The main point of this paper is:
If we can compute the expressions and binding environments for input
clauses, then we can compute them for derived clauses if we include only the
following information in the record of such a resolvent:
1. the record of the left parent, cl
2. the number of the literal resolved upon in cl
3. the record of the right parent, c2
4. the number of the literal resolved upon in c2
5. the number of literals in the clause resolvent
6. the maximum index of the resolvent
7. the bindings added during the unification for the resolvent.

This is precisely the information we include in our clause representation
described in detail in the next section.

7. THE DETAILS OF OUR REPRESENTATION

By a clause record we mean either an input record or a resolvent record. By
an input record, we mean a list of literals. A literal has a sign which may be
+ or — followed by an atomic formula which is a term in the sense of
section 2. Here are two input records:

((+(P x Y))))
((—(Q x y)) (+ x) .0) (+(R (a) z)))

IfIP is an input record, then NUMBEROFLITERALS(IP)IN is the length of IP,
and MAXIMUMINDEX(IP) is 1.
By a resolvent record, R, we mean a structure of 7 components:
1. a clause record which we access as LEFTPARENT(R)
2. an integer which we access as LEFTLITERALNUMBER(R)
3. a clause record which we access as RIGHTPARENT(R)
4. an integer which we access as RIGHTLITERALNUMBER(R)
5. an integer which we access as NUMBEROFLITERALSIN(R)
6. an integer which we access as MAXIMUMINDEX(R)
7. a list of bindings which we access as BINDINGS(R). The function
ISBOUND accesses this component. The function BIND accesses and
alters this component.

These components represent, in order, the items enumerated at the end of
the previous section.
To obtain the expression for the Kth literal of a clause record c IL we call

109

COMPUTATIONAL LOGIC

GETLIT(CL,K). GETLIT sets a global variable LITG to the input literal and a
global variable INDEXG to the index such that the expression LITG,INDEXG
represents the Kth literal of CI, (in the binding environment of CO.
Definition of GETLIT(CL,K)

If CI, is an input record, then
set LITG to the Kth member of CI,
set INDEXG to 1

Otherwise if K<LEFTLITERALNUMBER(CL) then
call GETLIT(LEFTPARENT(CL),K)

Otherwise if K<NUMBEROFLITERALSIN(LEFTPARENT(CL)) then
call GETLIT(LEFTPARENT(cL),K+1)

Otherwise if K<NUMBEROFLITERALSIN(LEFTPARENT(CL))-1
±RIGHTLITERALNUMBER(CL) then

call GETLIT(RIGHTPARENT(CL),
K—NUMBEROFLITERALSIN(LEFTPARENT(CL))+1)

set INDEXG to INDEXG+MAXIMUMINDEX(LEFTPARENT(CL))
Otherwise

call GETLIT(RIGHTPARENT(CL),
K—NUMBEROFLITERALSIN(LEFTPARENT(CL))+ 2)

set INDEXG to INDEXG+MAXIMUMINDEX(LEFTPARENT(CL))
End of definition.
To determine the binding, if any, of a variable VAR and an index INDEX in

a binding environment BNDEV we call ISBOUND(VAR,INDEX,BNDEV). The
call returns true if VAR,INDEX is bound in BNDEV. Otherwise, the call
returns false. If the call returns true, then ISBOUND has set a global variable
TERMB to the term and a global variable INDEXB to the index such that
VAR,INDEX is bound to TERMB,INDEXB in BNDEV. BNDEV is always a
clause record. ISBOUND looks in the BINDINGS(BNDEV) for a binding of
VAR,INDEX. If none exists, ISBOUND is called recursively on the appropriate
parent Of BNDEV.
Definition of ISBOUND(VAR,INDEX,BNDEV)

If BNDEV is an input clause, return (false)
Otherwise if there is some binding of the form (VAR,INDEX . T, I) in

BINDINGS(BNDEV) then
set TERMB to T
set INDEXB to I
return (true)

Otherwise if INDEX<MAXIMUMINDEX(LEFTPARENT(BNDEV)) then
retUMOSBOUND(VAR,INDEX,LEFTPARENT(BNDEV)))

Otherwise
Call ISBOUND(VAR,INDEX—MAXIMUMINDEX

(LEFTPARENT(BNDEV)),RIGHTPARENT(BNDEV))
If the call returns false, then return(false)
Otherwise

'110

BOYER AND MOORE

set INDEXB to INDEXB+MAXIMUMINDEX(LEFTPARENT
(BNDEV))

return (true)
End of definition.
To add a binding (v,I . T,J) to BNDEV we call BIND(V,I,T,J,BNDEV).

Definition of BIND(V,I,T,J,BNDEV)
set BINDINGS(BNDEV) to coNs((the binding (v,i .

BINDINGS(BNDEV))
End of definition.
To resolve two clause records CLI and cL2 on their ith and Jth literals

respectively, we call REsoLvE(cL1,i,cL2,J). RESOLVE uses the local
variables: LEFTLIT,RIGHTLIT,LEFTINDEX,RIGHTINDEX,BNDEV.
Definition of REsoLvE(cL1,1,cL2,J)

Call GETLIT(cL1,1)
Set LEFTLIT to LITG
Set LEFTINDEX to INDEXG
Call GETLIT(CL2,J)
Set RIGHTLIT to LITG
Set RIGHTINDEX to INDEXG-EMAXIMUMINDEX(CL1)
Set BNDEV to the new resolvent record

<CLI,I,CL2,J,NUMBEROFLITERALSIN(CL1)+
NUMBEROFLITERALSIN(CL2)— 2,

MAXIMUMINDEX(CL1)+MAXIMUMINDEX(CL2),
the empty list>

Check to see that the signs Of RIGHTLIT and LEFTLIT are opposite.
If not, return (FAIL)

Call UNIFY(theat0M0f(LEFTLIT),LEFTINDEX,theatOMOf
(RIGHTLIT),RIGHTINDEX)

If UNIFY returns true, then return (BNDEv)
Otherwise return (FAIL)

End of definition.
Note that the most time consuming function in RESOLVE is the unification

step. In particular, notice that standardizing the clauses apart is accomplished
entirely by incrementing indices, and that except for the unifying substitution,
the work involved in the creation of the resolvent is independent of the
complexity of the two clauses represented by the parents. If the unification is
successful, BNDEV is the clause record of the resolvent, and is returned.
Otherwise, RESOLVE returns FAIL. The functions UNIFY and OCCUR are
exactly as in sections 4 and 3 (except that they now use the definitions of
ISBOUND and BIND of this section).

With minor alterations one can avoid constructing the new BNDEV unless
the unification succeeds. In section 8 we mention other instances in which
we have sacrificed efficiency for clarity in our definitions.
Figure 1 exhibits a derivation involving four resolutions. Figure 1(a) of

111

((
—(
P4
.0
))
)(
—(
gf
x)
()
')
))
)

c
2

(
(
+
(
P
x
Y
)
)
(
+
 (P
yx
))
(+
 (
Q
x
Y
)
)
)

c4

c
5 <
*
,

,
 2,
 3
,2
, (
(x
, 2
.
 (f
y)
,
1)
(x
,
1
.y
,
2)
)>

,
 „
 3,
 3,

 ((
y,
 3
 .
 (f
y)
,
1)
(x
,
1 .
 x,

 3
))
>

C
l ,
 I,
 ,
 3,
 4,

 6,
 ((
Y,
 6

(f
Y)
,
1)
(Y
, 5

x,
 1)
)>

c
6

c
3

((
+(
Qx
(f
x)
))
(+
(Q
xY
))
)

,
 1,

3,
 3
, (
(y
,

1 .
 x,
 3
)(
x,
 3
.
 (f
x)
,
1)
)>

01001 IVNOIIVII1dPIO3

21 .V, - cs'

wl
-(
Px
1(
fy
1)
)-
(Q
(f
x1
)(
fy
1)
)

W
2 (
P
x
1
Y
1
)
(
P
Y
i
x
i
)
(
Q
x
1
Y
1
)

W
4
-(
af
y2
)(
fy
i)
)(
P(
fy
i)
v2
)(
Q(
fY
i)
y2
)

W
3
(
Q
x
1
(
f
x
0
)
(
Q
x
t
Y
t
)

W
S

W
6

-(
Q(
f(
fy
2)
)(
fy
i)
)-
(Q
(N
yi
))
(f
y2
))
(Q
(I
y2
)(
fy
i)
)

(
P
(
N
Y
2
D
Y
2
)
(
0
.
1
(
f
Y
2
)
)
Y
2
)
(
Q
U
Y
2
W

-(
gf
(f
Yi
))
(f
y2
))
(Q
(.
02
)(
fy
i)
)(
P(
f(
f(
fy
2)
))
(f
y2
))
(g
f(
f(
fy
2)
))
(f
y2
))

H110011 CINV /13A0£1

COMPUTATIONAL LOGIC

the figure exhibits the tree of clause records, while 1(b) shows the clauses
represented at each node.
The clauses labeled cl, c2, and c3 are input clause records. The four

remaining clause records are generated by RESOLVE as follows:
c4 =REsoLvE(c1,1,c2,2)
c5 =REsoLvE(c1,1,c4,2)
c6=REsoLvE(c4,1,c3,1)
C7 =RESOLVE (c5,1, c6,3) .

It is useful to trace the descent of the 3rd literal of c2 through the tree.
In c2 it is represented by the expression T,1 where T is (+(Q x y)). In the
binding environment c2 this expression has the value (Q x yi).
The descendant of this literal in clause c4 is the 3rd literal of that clause.

There the expression is T,2 which has value (Q(f yi) y2) in c4 due to the
binding (x,2 . (f y), 1) in BINDINGS(c4).
In c5, the term has index 3 and represents the 3rd literal of c5. T,3 in c5

has the value (Q(fy2) (fYi))•
Of course, the value of this expression in c5 in no way affects its value in

c4. Thus, when we resolve c4 and c3 to form c6, the 3rd literal of c4 descends
to become the 2nd literal of c6, where it is represented by T,2. The value of
T,2 in c6 is (Q (f(f y2)) y2), due to bindings at c6 and c4.

Finally, we can trace the term, T, to Cl where it has index 3 as the 2nd
literal and index 5 as the 4th literal of Cl. T,3 in c7 has value (Q(f Y2) (fY1))•
T,5 in c7 has value (Q(f(f(f y2))) (fy2)).
Note that the double use of c4 in the tree introduces no confusion of

bindings. In using both T,3 and T,5 ISBOUND finds relevant bindings at c4.
However, in one case it returns to c4 via the branch through c5, and in the
other via the branch through c6.
As an example of how bindings on one side of the tree can affect values of

terms from the other, the reader should calculate the value of y,4 in the
binding environment c7. It is found to be (f(f y2)) after using bindings
found at c6, c4, Cl, and c5.

8. NOTES

We have completely ignored merging and factoring up to this point; however,
they present no difficulty for our representation. All that is required to
represent a merge or factor is an indication of which literal is to be deleted
and the substitution used. In one of our programs we represent a merge as a
resolvent in which one of the parents is a dummy (with one literal and maxi-
mum index zero), and the other is the clause containing the literal to be
merged. We pretend to be resolving on that literal.
Subsumption and variant checking are also possible. Because the indices

can be used to note from which clause a given variable has come, it is easy
to redefine the function OCCUR in such a way that UNIFY succeeds only
when one term subsumes (or is a variant of) the other. Thus the code for

114

BOYER AND MOORE

UNIFY can be made to do several different jobs in this representation.
The recursion in the functions ISBOUND and GETLIT can be replaced by

loops. The first recursion in OCCUR and the first two in UNIFY can also be
replaced by loops. The resulting code is more efficient and opaque.
A more interesting increase in efficiency can be obtained by eliminating the

search ISBOUND makes through the tree of clause records. We set up a two
dimensional array we call VALUE Of VARIABLES X INDICES. When we
expect to use a clause record CI, for any length of time (e.g., repeated resolu-
tions, factoring, subsumption), we load VALUE with the binding environment
of CI,. Then to find if VAR,INDEX is bound we simply check VALUE(VAR,

INDEX).
In the context of the VALUE array, BIND takes only four arguments, and it

inserts TERMB,INDEXB into VALUE(VAR,INDEX). In addition, it pushes a
pointer to the VALUE cell thus modified so that we can recover the substitution
produced by UNIFY and later remove the bindings inserted. This allows
recursive code for factoring, subsumption checking, and depth-first (back-
tracking) search. At each level of the recursion, VALUE contains the current
BNDEV. Successful unifications add bindings to the array so that it contains
the correct binding environment for the resolvent or factor produced. Upon
exiting from recursion (in the search or factoring functions, for example),
the stack is used to restore VALUE IO its configuration upon entry (by
removing the bindings inserted since entry).

It was because of the extensive use of VALUE that we chose integers as
indices. Actually, all that an index must do is specify a unique branch up the
binary tree of clause records. In one of our programs we use logical words
treated as bit strings in place of indices. Each bit tells ISBOUND whether to
branch to the right or left parent at the current node. Instead of incrementing
indices, one shifts them.
Our 7-tuple representation can probably be improved for many restrictions

of resolution. For example, in our implementation of n-resolution
(Kowalski and Kuehner 1971) we take advantage of the fact that in SL one
parent of each resolvent is an input clause. Furthermore, the literals last to
enter a clause are the first resolved upon. Thus n-derivations have an
attractive stack structure in which each stack entry is the residue of an input
clause. Instead of keeping the number of literals in a clause, we keep a bit
mask for each stack entry to tell us which literals from the input clause are
still around. In this representation merging involves merely turning off a bit
and storing a substitution.

Since many of the components of our records contain small integers, it is
possible to pack these so that a record requires very few machine words. Our
general non-linear implementation in Pop-2 requires (7 + 2n) 24-bit words
per clause, where n is the number of bindings made. This includes the over-
head for the Pop-2 structures involved. Our SL implementation requires
(6 + 2n) 24-bit words. A machine code implementation of the general

115

COMPUTATIONAL LOGIC

structure sharing on a 36-bit word machine would require (2 + n) words per
clause. Of course, the beauty of these expressions is that the space required
to represent a clause is independent of its length or the depth of its function
nesting.
We have obtained some rough statistics comparing our representation

with two others, namely the most obvious list representation and the most
compact character array imaginable. The latter is extremely slow to use since
one spends almost all of one's time parsing. We assumed a 36-bit word
machine was being used. On the basis of 3,000 randomly generated clauses,
our representation is 10 times more compact than character arrays (at 5
characters per word) and 50 to 100 times more compact than lists (at 1 cons
per word).
This data was generated using a general purpose implementation of

structure sharing in Pop-2 on an ICI, 4130. Each clause was generated using
structure sharing and the space required to represent it under the various
schemes was then calculated. The VALUE array was not used. On terms
whose average function nesting depth was 5, the program required 160
milliseconds per unification. The average longest branch in the derivations
searched by ISBOUND was 8.3. For comparison purposes it should be
pointed out that Pop-2 on the 4130 requires 160 microseconds to execute
'1 + 2' in a compiled function.
Our SL-resolution implementation is written as efficiently as possible in

Pop-2 and generates 9 clauses per second on the 4130. This includes tautology
checking (but not subsumption) for each clause generated. The compiled
P o p-2 code requires 10K of 24-bit words and the program causes no garbage
collection.

J. A. Robinson describes (1971) how unification of terms in the context of
a substitution is possible without applying the substitutions. We believe that
R. Yates wrote for oA3 the first such algorithm. The idea also appears in
Hoffman and Veenker (1971).

Acknowledgements

Our thanks to J.A.Robinson, B. Meltzer, Pat Hayes, Robert Kowalski, and to the
Science Research Council for financial support.

REFERENCES

Hoffman, G. R. & Veenker, G. (1971) The unit-clause proof procedure with equality.
Computing, 7, 91-105.

Kowalski, R. & Kuehner, D. (1971) Linear resolution with selection function.
Artificial Intelligence, 2, 227-60.

Robinson, J.A. (1971) Computational logic: the unification algorithm. Machine
Intelligence 6, pp. 63-72 (eds Meltzer, B. & Michie, D.) Edinburgh: Edinburgh
University Press.

116

