
Symbolic Simulation:an ACL2 ApproachJ Strother Moore1Department of Computer SciencesThe University of Texas at AustinAustin, TX 78712-1188moore@cs.utexas.eduAbstract. Executable formal speci�cation can allow engineers to test(or simulate) the speci�ed system on concrete data before the system isimplemented. This is beginning to gain acceptance and is just the formalanalogue of the standard practice of building simulators in conventionalprogramming languages such as C. A largely unexplored but potentiallyvery useful next step is symbolic simulation, the \execution" of the formalspeci�cation on indeterminant data. With the right interface, this neednot require much additional training of the engineers using the tool. Itallows many tests to be collapsed into one. Furthermore, it familiarizesthe working engineer with the abstractions and notation used in thedesign, thus allowing team members to speak clearly to one another. Weillustrate these ideas with a formal speci�cation of a simple computingmachine in ACL2. We sketch some requirements on the interface, whichwe call a symbolic spreadsheet.1 IntroductionThe use of formal methods requires relatively high up-front costs to create aformal speci�cation of the desired system or component. The cost of doing proofs,e.g., to relate a formal speci�cation to an implementation or lower-level model,is even higher. Still more e�ort is required to construct mechanically checkedproofs. These concerns are formidable barriers to the adoption of formal methodsby industry.Those of us in the formal methods community recognize that speci�cationwithout proof is still valuable; we also recognize that careful mathematical argu-ment without mechanically checked formal proof is valuable. The more carefullyone records and analyzes design decisions, the more likely bugs will be found.The earlier the process starts, the earlier the bugs will be found. While valid,these arguments justify what might be called \informal formal methods," the useof conventional mathematical techniques in the service of hardware and softwaredesign, without mechanized support.There is no doubt that such methods are e�ective and economical in thehands of experts { virtually all of mankind's deep mathematics has been donewithout mechanized support. But the promise of formal methods is to harness



mathematical rigor, precision, and abstraction to help the man or woman in thecubicle. Thus, many of us have focused on tools.We are working on making our tools \smarter" and more convenient to use.This work includes better proof procedures, better interfaces, better tutorials andintroductory material, and more comprehensive libraries of previously-formalizedresults. With some moderate amount of training in the use of the tools, thiswill make it possible for lead engineers to create formal design speci�cationdocuments. There is no need, in my opinion, for the average engineer to havethe skills necessary to do this.However, it is important that these formal design documents be useful to amuch wider audience than those who write them. One mechanism is provided bythe possibility that formal speci�cations can be executable. This idea is some-what contrarian in the theorem proving and formal methods communities, whichtend to favor abstraction over other attributes of a logic. But in the hardwaredesign community, executable speci�cations are almost standard practice, if oneregards the ubiquitous simulators, written in C and other conventional program-ming languages, as speci�cations.These simulators play a dual role. First, they allow engineers to run the designon sample input, for example to help debug the requirements. Second, the sourcecode may be inspected to clarify or disambiguate the informal design documentsproduced by the lead engineers. Formal speci�cations, written in executablelogics such as Pure Lisp or other functional programming languages, can servethe same purposes while encouraging a somewhat more abstract speci�cationstyle and providing a migration path to proof. Because evaluation and simulationare already well-understood by engineers, the use of the formal speci�cationrequires little or no training beyond the logical notation used for constants.A more radical suggestion is that the formal speci�cations be used to providea \symbolic simulation" tool. Of course, symbolic simulation (or \symbolic eval-uation") is not new. Programmers have been using it since the earliest days |indeed, symbolic evaluation of a program is often easier than execution when oneis limited to paper and pencil methods. Symbolic evaluation played a key role inthe �rst version of the Boyer-Moore Pure Lisp theorem prover [15, 2] where it wascalled, simply, \evaluation." It was also used in the SELECT system [3], whereit was combined with path assertions and counterexample generation for lineararithmetic constraints to produce an extended program testing environment.With a symbolic simulation capability an engineer can \run" a design oncertain kinds of indeterminant data, thereby covering more cases with one test.Because of its close connection with simulation, symbolic simulation is easy tograsp; indeed, it so naturally follows simulation that one may not notice itspower at �rst.With such tools, properly packaged, the formal speci�cation could be in-spected and analyzed by many people with knowledge of the design issues andapplications. This has two bene�cial e�ects. First, \bugs" or other undesirablefeatures of the design are more liable to be found early. Second, it will botheducate the work force and raise expectations of clarity and abstraction. In par-



ticular, engineers will learn to read the speci�cation notation used by the leadengineers. Language inuences how we think. Seeing the abstract ideas of a de-sign rendered into syntax is helpful. Given examples, people can generalize fromthem and will use the notation informally to communicate { and to reason {about the design. Expectations are raised in the sense that engineers will cometo value the clarity and abstraction of formal speci�cations, once the languageis familiar.Symbolic simulation tools are thus an important bridge between current prac-tice and the more wide-spread use of formal methods. I believe that when sym-bolic simulation tools are widely available, industry will �nd in its ranks a larger-than-expected number of engineers who are able to exploit the expressive powerof formal notation to produce cleaner and more reliable designs. Furthermore, Ibelieve this clarity, combined with the re-usability of previously formalized no-tions, will make it possible to create new designs faster than is currently done.Greve makes many of these same points in [9], where he discusses a symbolicsimulator for the JEM1 microprocessor. His paper gives speci�c examples ofactual design bugs found by engineers using a symbolic simulator.In the rest of this paper, I use one particular formal logic and theorem proverto illustrate the points just made. The system I use is ACL2. \ACL2" stands for\A Computational Logic for Applicative Common Lisp" [6, 14]. It was developedby Matt Kaufmann and me as a successor to the Boyer-Moore theorem prover,Nqthm [5]. The main idea was to replace the home-grown Pure Lisp of Nqthmwith applicative Common Lisp so that formal models could be executed moree�ciently and on a wider variety of platforms. However, symbolic simulation asa general technique can probably be provided by virtually any theorem provingsystem (see, for example, [9] which uses PVS [7]) that provides automated termrewriting, because at the logical level symbolic simulation is just \simpli�cation."2 Formalizing Computing MachinesConsider a simple computing machine whose state is given by a program counter,a control stack of suspended program counters, a memory, a status ag, and aprogram ROM. How might we formalize such a machine in ACL2? The mostcommonly used approach is described in [4]. We only sketch the formal modelhere. The ACL2 script corresponding to the results of this paper is available athttp://www.cs.utexas.edu/moore/publications/symsim-script/index.html.We represent the state of the machine as a 5-tuple. The �ve components ofthe state are accessed by functions named, respectively, pc, stk, mem, halt, andcode. Each is de�ned in the obvious way to retrieve the appropriate element ofa linear list. New states are constructed by making a list of the �ve components,e.g., (list pc stk mem halt code). Invariants (\guards") are maintained toinsure that certain relationships hold among the components. For example, memis always a list of integers. Because we generally construct new states by mod-ifying a few �elds in old states, we use a Common Lisp \macro" to write mostof our states. For example, (modify s :pc x1 :halt x2) is the state whose



components are the same as those of s except that the pc is x1 and the halt agis x2. That is, the modify expression above denotes (list x1 (stk s) (mems) x2 (code s)). Note that, despite the name, modify does not destructivelychange the state but constructs a new \copy." ACL2 is an applicative language.We omit the de�nition of modify.Individual instructions at the ISA level are given semantics by de�ning func-tions that appropriately modify the current state of the machine. For example,(MOVE 2 0) is an instruction. At the level of abstraction used in this exam-ple, we represent instructions as lists, e.g., '(MOVE 2 0). Informally, the MOVEinstruction takes two addresses and moves the contents of the second into the�rst. We formalize the semantics of MOVE by de�ning a function that takes oneadditional argument, the current state of the machine. The function returns thestate(defun move (a b s)(modify s:pc (pc+1 (pc s)):mem (put a (get b (mem s)) (mem s)))) ,obtained by incrementing the program counter and changing memory as de-scribed.Once such a function is de�ned for every instruction, the \execute" part ofthe machine's \fetch-execute" cycle is de�ned by case analysis on the opcode ofthe given instruction.(defun execute (ins s)(let ((op (opcode ins))(a (a ins))(b (b ins)))(case op(MOVE (move a b s))(MOVI (movi a b s))(ADD (add a b s))(SUBI (subi a b s))(JUMPZ (jumpz a b s))(JUMP (jump a s))(CALL (call a s))(RET (ret s))(otherwise s)))) .The \fetch-execute" step is then de�ned by composition, with suitable han-dling of the halt status ag.(defun step (s)(if (halt s)s(execute (current-instruction s) s))) .Finally, the machine's basic cyclic behavior is then de�ned



(defun sm (s n)(if (zp n)s(sm (step s) (+ n -1))))as an \iterated step function". It steps the state s n times. The name \sm" standsfor \small machine."3 ACL2 as an Execution EngineThis model is easily programmed in applicative Common Lisp. One immediateconsequence is that the model can be executed. That is, if you supply an explicitinitial state and some number of instructions to execute, sm can be executed onany Common Lisp host to return the �nal state. Using evaluation you can testthe system speci�cation.Below we show a particular program in the sm language. The program isnamed TIMES and it computes the product of two natural numbers by repeatedaddition. The comments explain how it works.(TIMES (MOVI 2 0) ; 0 mem[2] <- 0(JUMPZ 0 5) ; 1 if mem[0]=0, go to 5(ADD 2 1) ; 2 mem[2] <- mem[1] + mem[2](SUBI 0 1) ; 3 mem[0] <- mem[0] - 1(JUMP 1) ; 4 go to 1(RET)) ; 5 return to callerIf called with two naturals i and j in memory locations 0 and 1, the programleaves i� j in memory location 2 and clears location 0 (by \counting i down").The list constant shown above will be denoted by �. It represents a typical entryin the code component of a state.Consider the following explicit state. Call this state �.(st :pc '(TIMES . 0):stk nil:mem '(7 11 3 4 5):halt nil:code '(�))The program counter, pc, of � is a pair containing the symbol TIMES and a 0,indicating that the next instruction is the 0th instruction of the TIMES programin the code of the state. The stack component, stk, of � is empty. The � statehas only �ve memory locations, containing, respectively, 7, 11, 3, 4, and 5. Thehalt ag is nil.If we evaluate (step �) in ACL2 we get(st :pc '(TIMES . 1):stk NIL:mem '(7 11 0 4 5):halt nil:code '(�)) .



The MOVI instruction at pc 0 of our TIMES program has been executed. Theprogram counter has been incremented by one and memory location 2 has beencleared. \Single stepping" like this is often useful. Note that we could have usedthe expression (sm � 1) to run � one step.To run � 31 steps, evaluate the ACL2 expression (sm � 31). This producesthe following state:(st :pc '(TIMES . 5):stk NIL:mem '(0 11 77 4 5):halt T:code '(�)) .The program counter points to the 5th instruction of TIMES. Observe that loca-tion 0 has been cleared, location 1 still contains 11, and location 2 contains 77.The halt ag has been set. The code still contains the list containing �.This is an example of simple execution. The example illustrates looping butnot subroutine CALL. A suitable interface would make it possible for an engineernot trained in formal methods { but familiar with the informal design documentsfor the sm machine { to use the formal speci�cation to do tests of the design. Thispoint was illustrated in the ACL2 demonstration accompanying Dave Hardin'stalk at the 1998 Computer Aided Veri�cation conference [12], in which an ACL2model of the JEM1 ALU was integrated into a JEM1 simulator written in C.The sm example is so small that it does not illustrate an important point:ACL2's execution capability can handle much larger system designs. Indeed,on \well-typed" (i.e., \gold" de�nitions [14]), ACL2's execution capability isjust Common Lisp. We discuss performance measures of ACL2's execution andsymbolic simulation of sm examples later in this paper.In [6] we discuss a project in which Bishop Brock used ACL2 to formalize theMotorola CAP digital signal processor[8]. A model similar to the one describedhere was used, but it was orders of magnitude more complex. From [6]:The CAP design follows the `Harvard architecture', i.e., there are sep-arate program and data memories. The design includes 252 programmer-visible data and control registers. There are six independently address-able data and parameter memories. The data memories are logicallypartitioned into `source' and `destination' memories; the sense of thememories may be switched under program control. The arithmetic unitincludes four multiplier-accumulators and a 6-adder array. The CAP ex-ecutes a 64-bit instruction word, which in the arithmetic units is furtherdecoded into a 317-bit, low-level control word. The instruction set in-cludes no-overhead looping constructs and automatic data scaling. Asmany as 10 di�erent registers are involved in the determination of thenext program counter. A single instruction can simultaneously modifywell over 100 registers. In practice, instructions found in typical appli-cations simultaneously modify several dozen registers. Finally, the CAPhas a three-stage instruction pipeline which contains many programmer-visible pipeline hazards.



The ACL2 speci�cation of the CAP could be used as described above forsimulation. In fact, the ACL2 model executed several times faster than the com-piled SPW (Signal Processing Workbench) simulator and yet accurately modeledevery bit in the processor, every cycle.More recently, ACL2's execution capability was exploited at AMD. As part ofa project to verify certain oating-point designs for the AMD-K7TM, Art Flatauof AMD, wrote a mechanical translator from AMD's RTL language (essentiallya subset of Verilog) to ACL2. This translator was used to produce ACL2 modelsof the oating-point circuits to be studied. However, before investing the timeto try to prove the models correct, AMD managers insisted that the translatorbe \vetted" against the production RTL simulator. The ACL2 and RTL modelswere executed on some 80 million test vectors and found to return the sameresults. Only after this successful test was it deemed worthwhile to try to provethe ACL2 models correct. Such corroborative evidence would have been muchharder to gather had the formal models not been executable. It is noteworthythat the 80 million test vectors failed to expose errors in the designs { errorslater found by proof.ACL2 is currently being used in an experiment at Rockwell-Collins to con-struct an executable speci�cation of their JEM1, the world's �rst silicon JavaVirtual Machine[17, 11].4 ACL2 as a Theorem-Proving EngineOur example makes it so clear that the de�nition of sm is \just" a Lisp programthat it may be more appropriate to argue that it can be used as a speci�cation!With ACL2 we can prove the following simple theorem about the speci�cation.(defthm sm-+(implies (and (natp i) (natp j))(equal (sm s (+ i j))(sm (sm s i) j))))This theorem shows that sm runs compose. The theorem is proved automaticallyby ACL2, by an induction on i, followed by simpli�cation of both the base caseand the induction step under the axioms and de�nitions involved. It takes ACL2about 12 seconds to �nd the proof.The user of ACL2 can help the theorem prover by giving it hints. For ex-ample, the proof above takes so long because, in the induction step, the systemunnecessarily case splits on the instruction executed by step. This is obviouswhen one looks at ACL2's output during the proof: one sees a case for eachinstruction opcode. The proof would take even longer if our de�nition of stepde�ned more opcodes. But the de�nition of step is actually irrelevant to thistheorem! The system does not \know" that, but the user may { or may at leastintuit it. If the user gives the system the hint to \disable step," which means totry to �nd a proof without using the de�nition of step, the system succeeds in�nding a proof and only takes 0.12 seconds. This is just an example of the intro-duction of abstraction into the proof process. The details of step are irrelevant.



By exploiting such knowledge the user can dramatically speed up proofs; moreimportantly, the user can lead ACL2 to proofs that it would not �nd on its own.The most common way for the user to give hints to the system is to build inrewrite rules about newly de�ned concepts. The user formulates these rules astheorems for the system to prove. Once they are proved the system interpretsthese theorems as rules and uses them automatically during simpli�cation. Forexample, the sm-+ theorem, above, implicitly instructs the system to rewrite allexpressions of the form (sm s (+ i j)) into the form (sm (sm s i) j). To bee�ective at extending the rule-base, the ACL2 user must understand how thesystem interprets previously proved theorems as rules.The user can collect de�nitions, theorems and other forms of hints and adviceinto \books." Books can be \certi�ed" once and then \included" into an ACL2session. This has the e�ect of con�guring the ACL2 simpli�er (and all otherproof techniques) as speci�ed in the book. Multiple books can be included. Theinteraction of independently developed rules must be considered, but there aresome hooks in the system to help authors codify their strategies.It takes a lot of expertise to develop books. It is not unlike trying to teacha new class. A lot of material must be organized in ways that, when done, seemobvious; but many other, less-e�ective organizations are available and have tobe considered. In [4] we describe such a book for sm. We show how to lead ACL2to a proof of the following theorem about the TIMES program.(defthm times-correct(implies (and (statep s0)(< 2 (len (mem s0)))(equal i (get 0 (mem s0)))(equal j (get 1 (mem s0)))(<= 0 i)(equal (current-instruction s0) '(CALL TIMES))(equal (assoc-eq 'TIMES (code s0)) '�)(not (halt s0)))(equal (sm s0 (times-clock i))(modify s0:pc (pc+1 (pc s0)):mem (put 0 0(put 2 (* i j)(mem s0))))))) .This theorem can be read as follows. Consider a state with a memory containingat least three items (which, by de�nition of statep, must be integers). Let iand j be the 0th and 1st, respectively, and suppose 0 � i. Suppose the currentinstruction of the state points to the instruction (CALL TIMES) and that TIMESis de�ned by our previously exhibited �. We can paraphrase this rather longhypothesis by saying the state is poised to execute our TIMES on natural num-bers i and j. The theorem tells us what the state will look like if we run it acertain number of steps. The number is not explicitly given, but is computedby times-clock as a function of i. The resulting state is a modi�cation of the



starting one obtained by incrementing the program counter by one, depositinga 0 into location 0, and depositing i� j into location 2.It takes ACL2 less than 2 seconds to prove the theorem above. However, evenwith well-designed books, proving theorems like this requires a certain amountof training in how to use the book, how to approach the proof at a high level,and how to interact with ACL2. We explain some of the techniques used in [4].What ACL2 can achieve in the hands of an expert is illustrated by DavidRussino�'s work in [16]. Russino� used ACL2 to check proofs of the correctnessof the AMD-K7 hardware for oating-point addition, subtraction, multiplica-tion, division and square root. Using the translator mentioned above, Russino�translated AMD's HDL descriptions (at the RTL level) into ACL2 functions.Russino� then developed books containing thousands of lemmas about oating-point arithmetic. Using these books, he checked his proofs of the compliance ofthe hardware to the IEEE oating point standard. Bugs were found and cor-rected.5 ACL2 as a Symbolic SimulatorCan the formal speci�cation be made accessible to engineers not wishing to doformal proofs? The answer is yes: use it to drive a symbolic simulator for thedesign. We now illustrate that with our sm model.Consider the following state:(st :pc '(TIMES . 0):stk nil:mem (list i j x y z):halt nil:code '(�))This state is like � except that the �ve memory locations have unspeci�ed con-tent. We use the variables i, j, x, y and z to denote those contents and assumethem to be integers. We use � to denote the state above.Recall the TIMES program �:(TIMES (MOVI 2 0) ; 0 mem[2] <- 0(JUMPZ 0 5) ; 1 if mem[0]=0, go to 5(ADD 2 1) ; 2 mem[2] <- mem[1] + mem[2](SUBI 0 1) ; 3 mem[0] <- mem[0] - 1(JUMP 1) ; 4 go to 1(RET)))) ; 5 return to callerWhat is the result if we start a simulation on � and run for 4 steps? Assumethat i and j are natural numbers and that i is positive. Then the answer isobvious: After 4 steps, location 0 contains i�1 and location 2 contains j. Inaddition, the program counter is (TIMES . 4), i.e., the next instruction is theJUMP back to 1.Here is that problem, posed as a conjecture to ACL2:



(implies (and (ints i j x y z)(< 0 i))(equal (sm � 4) v))Here v is a simple variable symbol. Note that its only occurrence in the conjectureis as the right-hand side of the conclusion. The conjecture could not possiblybe a theorem under these circumstances (unless, of course, the hypotheses arecontradictory). Nevertheless, the attempt to prove it with ACL2, using the abovementioned book, reduces to the goal of proving that v is(st :pc '(TIMES . 4):stk nil:mem (list (- i 1) j j y z):halt nil:code '(�)) .That is, the rules in the book con�gure ACL2's simpli�er into a symbolic simu-lator for the machine code in our speci�cation.1It is clear that an interface is required so as to hide the simpli�cation processfrom the user. We have not constructed such an interface. But for the purposesof this paper we imagine one. We call it a symbolic spreadsheet. As its namesuggests, we imagine a collection of \boxes" containing data. Boxes are linkedvia operations, with some boxes representing input and others representing out-put. However, unlike conventional spreadsheets, the data is symbolic, the linksconnecting boxes are formally de�ned logical functions, and the processing doneby the spreadsheet is symbolic simpli�cation. Familiar notation ought to be usedwhere possible (e.g., in arithmetic expressions). We imagine being able to collectboxes together into larger structures, so that one of our states can be representedas a hierarchy of boxes on the spreadsheet. Obviously, it should be possible tohide data, i.e., to display the \memory" box by the contents of locations 0 and2 only. Furthermore, it should be possible to have multiple states on the screenat once, so one can compare di�erent states.Such a spreadsheet should permit a rather simple con�guration in which theuser �lls in a \form" to describe an initial symbolic state, such as �, and seesthe result of stepping that state in another such form.In our view, the di�culty is not so much the interface as the simpli�cation.We argue in this paper that the ACL2 simpli�er can be con�gured to do thisjob. We therefore continue to present our results as formal ACL2 terms, ratherthan as displayed in our imagined spreadsheet.What if we start in � and run 4 steps, then 1 more (getting back to the topof the loop) and then 3 more? Then we should see i decremented twice and weshould see the sum of two j's in location 2. Of course, this happens only if weknow that i exceeds 1. Indeed, the proof attempt produces the goal to prove theunknown v equal to1 It is not necessary to phrase the problem as a bogus theorem-proving challenge. Itis possible to invoke the ACL2 simpli�er directly.



(st :pc '(TIMES . 4):stk nil:mem (list (- i 2) j (+ j j) y z):halt nil:code '(�))This illustrates another requirement on the spreadsheet. We need an \as-sumptions" box which contains assumptions about the variables. This can bemenu-driven to limit the assumptions to those supported by the underlyingrules.What happens if we forget to say that i exceeds 1? That is, suppose we justhave that i is positive? The result is a two-way case split. In one case, we have theadditional hypothesis that (- i 1) exceeds 0 and the goal state shown above.In the other we have the additional hypothesis that (- i 1) is 0 and the goalstate(st :pc '(TIMES . 5):stk nil:mem (list 0 j j y z):halt t:code '(�))in which the program has halted.In our imagined spreadsheet, the execution of this branching symbolic com-putation results in two copies of the output state being displayed, each withits own assumptions box. The two states might be \stacked", a visual arrange-ment that would immediately alert the user to the fact that the computationbranched.6 Extensibility of the Symbolic SimulatorSo far we have used the symbolic simulator only to run primitive instructions.It is worthwhile to point out that it is extensible. Of course, it requires an\expert" to extend it because extension is done by adding new theorems to thedatabase driving ACL2. But suppose that someone proves times-correct asstated above.The symbolic simulator can then run calls of the TIMES code. For example,a run of length (+ (times-clock i) 2) starting in the symbolic state(st :pc '(MAIN . 0):stk nil:mem (list i j x y z):halt nil:code '(�(MAIN (CALL TIMES)(ADD 4 2)(SUBI 4 1))))produces the state



(st :pc '(MAIN . 3):stk nil:mem (list 0 j (* i j) y (+ (* i j) z -1)):halt nil:code '(�(MAIN (CALL TIMES)(ADD 4 2)(SUBI 4 1)))) .Is this correct? The MAIN program calls TIMES, multiplying i times j andleaving the result in location 2. Then the MAIN program adds location 2 intolocation 4 and subtracts 1. The �nal value of location 4 ought to be (i�j)+z�1.So the simulator produced the expected results, regardless of the values of thevariables. Note also that the simulator run shows that location 0 is cleared bythis code sequence and that locations 1 and 3 are unchanged.Actually, for this example to work the expression specifying the length of therun should be (cplus (times-clock i) 2). As noted in [4], it is convenient tomaintain an isolation between arithmetic expressions denoting run-lengths andother expressions, so the former can be used by user to control proof decompo-sition. The interface to our symbolic simulator could mitigate this somewhat bytranslating arithmetic operators in the \run length" box to their \clock opera-tor" counterparts. But the user would still have to understand how to formulate\clock expressions" so as to decompose the execution. For example, the equiva-lent expression (cplus 2 (times-clock i)) would have a very di�erent e�ecton the simulator.7 PerformanceHow fast is ACL2's symbolic simulation? That is, how fast is the ACL2 rewriter?To put it in perspective, we start by measuring the performance of ACL2 eval-uation. All of our measurements were conducted on the small machine modelsm and carried out on a 200 MHz Sun Microsystems Ultra 2 with 512 MB ofmemory, running ACL2 Version 2.2 built on Gnu Common Lisp.ACL2 is applicative Common Lisp, provided the Common Lisp primitives areonly applied in their intended domains. For example, the Common Lisp functioncar is intended to be applied to conses and to nil and the Common Lisp function+ is intended to be applied to numbers. Common Lisp implementations are notrequired to check at runtime whether their arguments are suitable; that is theuser's responsibility. Implementations are thus e�cient but not \safe."ACL2 functions, on the other hand, are axiomatized to be total. In our ax-ioms, car returns nil if applied outside its intended domain and + treats non-numeric arguments as though they were 0. This notion of intended domain isformalized in ACL2 by the use of guards, arbitrary ACL2 formulas that specifythe intended relationships between the input variables. By proving certain me-chanically generated guard conjectures, ACL2 can guarantee that a given ACL2function is Common Lisp compliant or \gold," which means that its executionon arguments satisfying its guard is \safe." See [14] for details.



If an ACL2 function is known to be Common Lisp compliant, it can be eval-uated (on arguments satisfying its guard) via direct Common Lisp execution.In practice this means we execute binary code compiled from the function def-inition. If, on the other hand, an ACL2 function is not known to be compliant,or the actual arguments do not satisfy the guard, evaluation is performed by apurpose-built ACL2 interpreter that completes the Common Lisp primitives inaccordance with the axioms. In practice, this means we run binary code compiledfrom a translation of the function de�nition in which function symbols have beenmapped to completed counterparts which do runtime guard checks. When wetalk of the execution speed of ACL2 functions we must specify whether we meanthe speed of \possibly uncompliant" code or \compliant" code. Here we providemeasures of both.The de�nition of sm is Common Lisp compliant provided the guard on (sms n) requires s to be a \well-formed state" and n to be a natural number. Wedo not exhibit the guards in this paper but they are given in the previouslymentioned script available on the web. Since guards are optional, it is possibleto strip them out to obtain \possibly non-compliant" code.How much work is it to provide guards and prove compliance? Supplyingguards for all of the functions in the sm system requires de�ning six predicatesused nowhere but in guards (i.e., the notions of syntactically well-formed pro-gram counters, stacks, memories, instructions, programs, and systems of pro-grams), as well as supplying a guard for each function in the sm system. Inaddition, about twenty additional lemmas have to be proved in order to leadACL2 to the proof that sm and all of its subroutines are Common Lisp compli-ant. It took me several hours to invent appropriate guards.2 Without guards,the small machine system can be admitted (syntax checking plus terminationproofs) in less than a second. Verifying the guards requires about 5 seconds ofadditional proof.How fast can ACL2 execute sm? We used the following expression:(sm (st :pc '(MAIN . 0):stk nil:mem (list 0 0 0 0 0):halt nil:code (list �'(MAIN (MOVI 0 10000)(MOVI 1 1000)(CALL TIMES)(RET))))40007)2 The guards on a function must imply the guards on all the subfunctions used inits de�nition, including recursive calls. In general this may be as hard as �ndinginductive invariants, but in practice it is not di�cult. The di�culty in choosingguards is more stylistic: should one endeaver merely to insure that the CommonLisp primitives are used properly or should one strengthen the guard formulas sothat they capture the correctness speci�cation?



This requires sm to execute 40,007 instructions to multiply 10,000 times 1000 (by10,000 repeated additions) leaving 10 million in memory address 2. The number40,007 is just (+ 2 (times-clock i) 1), where i is 10,000.If sm is regarded as non-compliant, the computation takes 7.39 seconds. Ifsm is regarded as compliant, it takes 0.53 seconds. This illustrates the value ofguard veri�cation if execution speed is of importance.Since sm is an instruction interpreter, it is convenient to translate this per-formance into small machine instructions per second. Non-compliant executionproceeds at 40,007/7.39 or 5,414 small machine instructions per second in thisexample. Compliant execution proceeds at about 75,000 small machine instruc-tions per second in this example. Because sm represents memory as a linear listof values, the speed degrades as memory size increases. Our particular experi-ment uses a very small memory and all the writes target the �rst three locations,reducing \copying" time. In more realistic tests of a comparable ACL2 model,Greve, Hardin and Wilding in [10] measured simulation speeds of about 19,000instructions per second. A model written in C of the same processor provided2.47 million instructions per second. The authors of [10] describe modi�cationsto ACL2 that allowed them to achieve speeds of 1.85 million instructions per sec-ond. While some of the techniques used in [10] impose a burden on the user toinsure �delity with the axioms, I highly recommend the paper to those wishingto use ACL2 to simulate formal processor models.Now we consider symbolic simulation. Here there is no di�erence betweencompliant and non-compliant models: the computation is done by ACL2's rewriteengine. The expression we have chosen to symbolically simulate is(sm (st :pc '(MAIN . 0):stk nil:mem (list 1000 j x y z):halt nil:code (list �'(MAIN (CALL TIMES) (RET))))(+ (* (+ 1000 1) 4) 1))in a context in which the variables are assumed integral. Obviously, this simpli�esto(st :pc '(MAIN . 1):stk nil:mem (list 0 j (* 1000 j) y z):halt T:code (list �'(MAIN (CALL TIMES) (RET))))and requires the symbolic simulation of 4,005 small machine steps.It takes ACL2 about 55 seconds to symbolically simulate this expression.This translates to about 72 symbolic instructions per second.Since symbolic simulation is just simpli�cation, an arbitrary amount of search(through the lemma data base) might be involved in a given symbolic simulation.



The simplication of the expression above produces, in addition to the �nal stateshown, a list of all the rules used. If one poses the original symbolic simulationproblem again, and this time gives ACL2 the hint to use only the rules listed,the time required drops to about 21 seconds.Remarkably, if one discounts the time required to track the rules being usedthe time drops to about 46 seconds (with no hint) and to about 17 seconds(with the hint). The latter performance translates to 235 symbolic instructionsper second.The performance of a symbolic simulation engine is very dependent upon thedata base of rules available. In addition, as the rule tracking observation aboveillustrates, \extraneous" aspects of a theorem prover may a�ect performance. Wemight therefore ask how many rewrites are involved in this symbolic simulation.First, what is a \rewrite?" (a) Is it a call of a program in the simpli�erwhich might replace a term with another term? (b) Is it the attempt to applya conditional rewrite rule? (c) Is it the successful application of such a rule? Or(d) is it the application of such a rule on a path that actually leads to the �nalresult? Interpretation (a) would let us count as a rewrite any call of ACL2'srewriter or type facility on a term, since any such call might return a changedterm. Interpretation (b) excludes the use of built-in rules, such as the reductionof (equal x x) to t. The di�erence between (b) and (c) has to do with whethera rule is just \tried" (meaning we try to match the left-hand side of the ruleand then try to relieve the hypotheses, etc.) or \used" (meaning the try wassuccessful and the right-hand side of the rule was substituted for the target).Finally (d) brings to light the fact that the majority of rewrites usually happenon non-productive branches, i.e., branches in the proof search that do not lead tosuccess and which are ultimately abandoned. The use of the hint, above, prunesout many (but not all) of these unsuccessful branches.How many \rewrites" are involved in the symbolic evaluation of the termabove? First consider the symbolic simulation without any hint. Approximately1,000,000 calls of rewriting routines occur. Approximately 900,000 rules are triedand 425,000 are applied. However, only about 150,000 rule applications are ac-tually involved in the �nal result. If we provide the hint, only about 400,000 callsoccur. Approximately 160,000 rules are tried and virtually all of them are actu-ally applied and used in the �nal result. These statistics are somewhat rough butgive an idea of the amount of symbolic manipulation work involved in symbolicsimulation.It is useful also to map this to the number of rewrites per symbolic instructionsimulated. Recall that 4,005 instructions are simulated in this experiment. So,without the hint, we try about 225 rules per instruction, actually apply about100 and actually need about 40. In this example, the hint limits the search almostperfectly.It should be noted that \long" symbolic simulation runs such as this oneare generally impossible to do in the presence of indeterminant branching, sincethe answer state then grows exponentially. We timed a long run to amortize thecost through the general theorem prover entrance and to demonstrate that in



appropriate contexts ACL2 can do such runs.8 ConclusionOur conclusions were drawn in the introduction, which might be appropriatelyre-read now. A symbolic simulator could be of great use to a design team, inpart because it is accessible to many more people on the team than a veri�cationtool would be. Furthermore, it leads naturally to veri�cation and so representsa technology driver.We have illustrated how such a simulator might be constructed with ACL2.The simple nature of the problem we tackled here may make some readers thinkthis is an unrealistic proposal for designs of industrial scale. However, ACL2 hasbeen used successfully to handle very large problems. Indeed, in the MotorolaCAP work [6], Brock used ACL2 in exactly the fashion described producingstates that sometimes required several megabytes of text to print fully. ACL2'ssimpli�er is up to the task. One of Brock's problems was how to glean informationfrom such large symbolic states. The spreadsheet would help render such statessurveyable.Two subtasks remain. The �rst is to construct an interface that invites theengineer to use it. This could become a lucrative product if successful. ACL2 isin the public domain and represents the heart of the tool.The second subtask is to construct the books necessary to con�gure thesimulator for a particular industrial model. The place to start is with current\heavy duty" ACL2 users who are proving theorems about large systems. It islikely that their existing books already contain the bulk of the required rules,simply because their books have been designed to do proofs and so often codifysimpli�cation of symbolic states.9 AcknowledgmentsThese ideas have been kicking around in the Nqthm and ACL2 user communitiesfor many years. A symbolic simulation capability is basically a �rst step in anyACL2 project aimed at code proofs and our ideas for how to harness the simpli�erin this capacity have been developed by many, especially those who participatedin the CLI \short stack" work[1] and its extensions, including Bill Bevier, BobBoyer, Bishop Brock, Art Flatau, Warren Hunt, Matt Kaufmann, Matt Wilding,and Bill Young. I am especially indebted to Warren Hunt and Bishop Brock forthe current view of the symbolic spreadsheet. I am also indebted to Dave Greve,Dave Hardin and Matt Wilding for their work in integrating ACL2 models intothe JEM1 processor design process.References1. W. R. Bevier, W. A. Hunt, J S. Moore and W. D. Young. Special Issue on SystemVeri�cation Journal of Automated Reasoning 5(4), 1989.



2. R. S. Boyer and J S. Moore, Proving Theorems about Pure LISP Fucntions, JACM,22(1), pp. 129{144, 1975.3. R. S. Boyer, K. N. Levitt and B. Elspas, SELECT{A Formal System for Testingand Debugging Programs, Proceedings of the International Conference on ReliableSoftware, IEEE Catalogue Number 75CHO940-7CSR, pp. 234{245, 1975.4. R. S. Boyer and J S. Moore. Mechanized Formal Reasoning about Programs andComputing Machines. In R. Vero� (ed.), Automated Reasoning and Its Applications:Essays in Honor of Larry Wos, MIT Press, 1996.5. R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second Edition.Academic Press, London, 1997.6. B. Brock, M. Kaufmann, and J S. Moore. ACL2 Theorems about Commercial Mi-croprocessors. In Proceedings of Formal Methods in Computer-Aided Design (FM-CAD'96), M. Srivas and A. Camilleri (eds.), Springer-Verlag, November, 1996, pp.275{293.7. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introductionto PVS, presented at Workshop on Industrial-Strength Formal Speci�cation Tech-niques, Boca Raton, FL, April 1995 (see http://www.csl.sri.com/pvs.html).8. S. Gilfeather, J. Gehman, and C. Harrison. Architecture of a Complex ArithmeticProcessor for Communication Signal Processing in SPIE Proceedings, InternationalSymposium on Optics, Imaging, and Instrumentation, 2296 Advanced Signal Pro-cessing: Algorithms, Architectures, and Implementations V, July, 1994, pp. 624{625.9. D. A. Greve, Symbolic Simulation of the JEM1 Microprocessor, Technical Re-port, Advanced Technology Center, Rockwell Collins Avionics and Communica-tions, Cedar Rapids, IA 52498, April, 1998 (also appearing in this volume, TheProceedings of FMCAD '98.10. D. A. Greve, D. S. Hardin and M. M. Wilding, E�cient Simulation Using a SimpleFormal Processor Model, Technical Report, Advanced Technology Center, RockwellCollins Avionics and Communications, Cedar Rapids, IA 52498, April, 1998.11. D. A. Greve and M. M. Wilding Stack-based Java a back-to-future step, Elec-tronic Engineering Times, Jan. 12, 1998, pp. 92.12. D. S. Hardin, M. M. Wilding, and D. A. Greve, Transforming the Theorem Proverinto a Digital Design Tool: From Concept Car to O�-Road Vehicle, in A. J. Hu andM. Y. Vardi (eds.) Computed Aided Veri�cation: 10th International Conference,CAV '98, Springer-Verlag LNCS 1427, pp. 39{44, 1998.13. M. Kaufmann. ACL2 Support for Veri�cation Projects. In 15th InternationalConference on Automated Deduction (CADE) (to appear, 1998).14. M. Kaufmann and J S. Moore. An Industrial Strength Theorem Prover for a LogicBased on Common Lisp. In IEEE Transactions on Software Engineering 23(4),April, 1997, pp. 203{213.15. J S. Moore, Computational Logic: Structure Sharing and Proof of Program Prop-erties, Ph. D. dissertation, University of Edinburgh, Scotland, 1973.16. D. M. Russino�. A Mechanically Checked Proof of IEEE Compliance of the Float-ing Point Multiplication, Division, and Square Root Algorithms of the AMD-K7TMProcessor URL http://www.onr.com/user/russ/david/k7-div-sqrt.html.17. A. Wolfe. First Java-speci�c MPU Rolls Electronic Engineering Times, Sept 22,1997, pp. 1.This article was processed using the LATEX macro package with LLNCS style


