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How Far Can You Walk?

At 5 km/hour, 8 hours per day, 5 days per

week, for the duration of a typical research

grant (2 years), you move about 20,000

km.

In 45 years, you move over 400,000 km.
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A Few Axioms

• t 6= nil

• x = nil → (if x y z) = z

• x 6= nil → (if x y z) = y

• (car (cons x y)) = x

• (cdr (cons x y)) = y

• (endp nil) = t

• (endp (cons x y)) = nil

ACL2 includes primitives for integers,

rationals, complex rationals, conses,

symbols, characters, and strings.
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Theorems Proved: 1970s

• ap is associative:

(equal (ap (ap a b) c)

(ap a (ap b c)))

∀a∀b∀c : ap(ap(a,b),c) = ap(a,ap(b,c)).
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Definition

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

(ap ’(1 2 3) ’(4 5 6))

= (1 2 3 4 5 6)
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1980s Academic Math

• undecidability of the halting problem

(18 lemmas)

• invertibility of RSA encryption

(172 lemmas)
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• Gauss’ law of quadratic reciprocity

[Russinoff]

(348 lemmas)

• Gödel’s First Incompleteness Theorem

[Shankar]

(1741 lemmas)
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1980s Academic CS

• The CLI Verified Stack:

– microprocessor: gates to machine code

[Hunt]

– assembler-linker-loader

(3326 lemmas)

– compilers [Young, Flatau]

– operating system [Bevier]

– applications [Wilding]
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00100100000011

Procedure Mult(var

loop
  if K le 0

var K: int:= 0;

0111010100011

0011101001001010
0101110111110011

0111010001001111

fabricated

by mechanically

checked proofs

formal models related

FM9001 device

INPUTS A,B,C;
OUTPUTS SUM, CARR
LEVEL FUNCTION;
DEFINE
T0(SUM1,CARRY1)=H
  (SUM,CARRY2) =

die plot produced by LSI Logic, Inc, from
verified NDL via conventional CAD tools 

Micro-Gypsy

Piton
assembly language

FM9001
machine code

Formal NDL
netlist
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An elusive circuitry error is causing a chip

used in millions of computers to generate

inaccurate results

— NY Times, “Circuit Flaw Causes

Pentium Chip to Miscalculate, Intel

Admits,” Nov 11, 1994
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Intel Corp. last week took a $475 million

write-off to cover costs associated with the

divide bug in the Pentium microprocessor’s

floating-point unit — EE Times, Jan 23,

1995
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IEEE 754 Floating Point Standard

Elementary operations are to be performed

as though the infinitely precise (standard

mathematical) operation were performed

and then the result rounded to the

indicated precision.
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AMD K5 Algorithm FDIV(p, d,mode)

1. sd0 = lookup(d) [exact 17 8]

2. dr = d [away 17 32]

3. sdd0 = sd0 × dr [away 17 32]

4. sd1 = sd0 × comp(sdd0, 32) [trunc 17 32]

5. sdd1 = sd1 × dr [away 17 32]

6. sd2 = sd1 × comp(sdd1, 32) [trunc 17 32]

... ... = ... ...

29. q3 = sd2 × ph3 [trunc 17 24]

30. qq2 = q2 + q3 [sticky 17 64]

31. qq1 = qq2 + q1 [sticky 17 64]

32. fdiv = qq1 + q0 mode
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Using the Reciprocal

1 2

+
+
+

.0 4

.0 0 0 0 0 8

-2.0 4
-2.

3 5.8 3 3 3 3 4
4 3 0.0 0 0 0 0 0
4 3 2.

-.1 7
3 6.

.0 4 0 8

.0 0 0 8-

.0 0 3 4

.0 0 0 0 6 6-

.0 0 0 7 9 2-
-

Reciprocal Calculation:

1/12 = 0.0833 ≈ 0.083 = sd2

Quotient Digit Calculation:

0.083 × 430.0000 = 35.6900000 ≈ 36.000000 = q0
0.083 × -2.0000 = -.1660000 ≈ -.170000 = q1
0.083 × .0400 = .0033200 ≈ .003400 = q2
0.083 × -.0008 = -.0000664 ≈ -.000067 = q3

Summation of Quotient Digits:

q0 + q1 + q2 + q3 = 35.833333
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Computing the Reciprocal

i

2
sd sd sd

0 1
1/d

sd
i+1

= sd
i
(2 - sd d)

dy
dx

= - x
-2

y = 1
x

- d
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top 8 bits approx

of d inverse

1.00000002 0.111111112
1.00000012 0.111111012
1.00000102 0.111110112
1.00000112 0.111110012
1.00001002 0.111101112
1.00001012 0.111101012
1.00001102 0.111101002
1.00001112 0.111100102
1.00010002 0.111100002
1.00010012 0.111011102
1.00010102 0.111011012

... ...
1.00101102 0.110110102
1.00101112 0.110110002
1.00110002 0.110101112
1.00110012 0.110101012
1.00110102 0.110101002
1.00110112 0.110100112
1.00111002 0.110100012
1.00111012 0.110100002
1.00111102 0.110011112
1.00111112 0.110011012

top 8 bits approx

of d inverse

1.01000002 0.110011002
1.01000012 0.110010112
1.01000102 0.110010102
1.01000112 0.110010002
1.01001002 0.110001112
1.01001012 0.110001102
1.01001102 0.110001012
1.01001112 0.110001002
1.01010002 0.110000102
1.01010012 0.110000012
1.01010102 0.110000002

... ...
1.01101102 0.101101002
1.01101112 0.101100112
1.01110002 0.101100102
1.01110012 0.101100012
1.01110102 0.101100002
1.01110112 0.101011112
1.01111002 0.101011102
1.01111012 0.101011012
1.01111102 0.101011002
1.01111112 0.101010112

top 8 bits approx

of d inverse

1.10000002 0.101010102
1.10000012 0.101010012
1.10000102 0.101010002
1.10000112 0.101010002
1.10001002 0.101001112
1.10001012 0.101001102
1.10001102 0.101001012
1.10001112 0.101001002
1.10010002 0.101000112
1.10010012 0.101000112
1.10010102 0.101000102

... ...
1.10101102 0.100110012
1.10101112 0.100110002
1.10110002 0.100101112
1.10110012 0.100101112
1.10110102 0.100101102
1.10110112 0.100101012
1.10111002 0.100101012
1.10111012 0.100101002
1.10111102 0.100100112
1.10111112 0.100100112

top 8 bits approx

of d inverse

1.11000002 0.100100102
1.11000012 0.100100012
1.11000102 0.100100012
1.11000112 0.100100002
1.11001002 0.100011112
1.11001012 0.100011112
1.11001102 0.100011102
1.11001112 0.100011102
1.11010002 0.100011012
1.11010012 0.100011002
1.11010102 0.100011002

... ...
1.11101102 0.100001012
1.11101112 0.100001002
1.11110002 0.100001002
1.11110012 0.100000112
1.11110102 0.100000112
1.11110112 0.100000102
1.11111002 0.100000102
1.11111012 0.100000012
1.11111102 0.100000012
1.11111112 0.100000002
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The Futility of Testing

If AMD builds this, will it work?

A bug in this design could cost AMD

hundreds of millions of dollars.

On Tianhe-2 (33.86 petaflops), testing all

possible cases would take

8178337571240167641483597

∼ 8× 1024 years.
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The Formal Model of the Code
(defun FDIV (p d mode)

(let*

((sd0 (eround (lookup d) ’(exact 17 8)))

(dr (eround d ’(away 17 32)))

(sdd0 (eround (* sd0 dr) ’(away 17 32)))

(sd1 (eround (* sd0 (comp sdd0 32)) ’(trunc 17 32)))

(sdd1 (eround (* sd1 dr) ’(away 17 32)))

(sd2 (eround (* sd1 (comp sdd1 32)) ’(trunc 17 32)))

...

(qq2 (eround (+ q2 q3) ’(sticky 17 64)))

(qq1 (eround (+ qq2 q1) ’(sticky 17 64)))

(fdiv (round (+ qq1 q0) mode)))

(or (first-error sd0 dr sdd0 sd1 sdd1 ... fdiv)

fdiv)))
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The K5 FDIV Theorem (1200 lemmas)

(defthm FDIV-divides

(implies (and (floating-point-numberp p 15 64)

(floating-point-numberp d 15 64)

(not (equal d 0))

(rounding-modep mode))

(equal (FDIV p d mode)
(round (/ p d) mode))))

(by Moore, Lynch and Kaufmann, in 1995,

before the K5 was fabricated)
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Changing the Process

AMD implemented a translator from RTL

to ACL2, and

compared it with their RTL emulator on

hundreds of millions of floating point tests.

It was “bit- and cycle-accurate.”

All elementary floating point operations on

the AMD Athlon and Opteron have been

mechanically verified with ACL2.
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Aside: Hardware v Software

Verification

“Is ACL2 only good for hardware

verification?”

All ACL2 models and specifications are

written in (a subset of) an ANSI standard

programming language: Common Lisp.

Thus, everything we do in ACL2 can be

understood as software verification.
37



Hardware companies are more amenable to

formal verification because specifications

are clearer, designers are committed to

specs, and post-silicon bugs are expensive.
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1990s

• FDIV on AMD K5

(Moore-Kaufmann-Lynch)

• AMD Athlon floating point

(Russinoff-Flatau)

• Motorola 68020 binaries produced by gcc

-o for Berkeley C String Library (Yu)
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1990s

• ...

• Motorola CAP DSP (Brock)

• Rockwell Collins microarchitectural

equivalence

• Rockwell Collins / aJile Systems JEM1

(Hardin-Greve-Wilding)
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2000s

• IBM Power4 divide and square root

(Sawada)

• Rockwell Collins AAMP7 Separation

Kernel Microcode

• Rockwell Collins/Green Hills OS Kernel

• Sun Microsystems JVM
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JVM Operational Semantics

M6 is a JVM bytecode interpreter in ACL2.

Built to verify properties of JVM code for

class loading.

It executes most J2ME Java programs

(except those with significant I/O or

floating-point)

M6 was created by Hanbing Liu (now at

AMD) with support from Sun.
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The model is 160 pages of ACL2 (plus 500

pages of constants representing the CLDC

API with 87 classes containing 672

methods).
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Mac% cat Demo.java

class Demo {

public static int fact(int n){

if (n>0)

{return n*fact(n-1);}

else return 1;

}

public static void main(String[] args){

int n = Integer.parseInt(args[0], 10);

System.out.println(fact(n));

return;

}

}

Mac% javac Demo.java

Mac% javap -c Demo

Compiled from "Demo.java"
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class Demo {

Demo();

Code:

0: aload 0

1: invokespecial #1 // Method java/lang/Object."<init>":()V

4: return

public static int fact(int);

Code:

0: iload 0

1: ifle 13

4: iload 0

5: iload 0

6: iconst 1

7: isub

8: invokestatic #2 // Method fact:(I)I

11: imul
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12: ireturn

13: iconst 1

14: ireturn

public static void main(java.lang.String[]);

Code:

0: aload 0

1: iconst 0

2: aaload

3: bipush 10

5: invokestatic #3 // Method java/lang/Integer.parseInt:(Ljava/lang/Stri

8: istore 1

9: getstatic #4 // Field java/lang/System.out:Ljava/io/PrintStream;

12: iload 1

13: invokestatic #2 // Method fact:(I)I

16: invokevirtual #5 // Method java/io/PrintStream.println:(I)V

19: return

}
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Mac% java Demo 6

720
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ACL2 Demo
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Mac% java Demo 6

720

Mac% java Demo 20
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Mac% java Demo 6

720

Mac% java Demo 20

-2102132736

Mac%
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Quick Summary of Some Current

Projects

• Oracle: FP and JVM

• Intel: FP, SystemC modeling, elliptic

curve crypto

• Kestrel: JVM+Android modeling,

Android app verification

• AMD: high-level transaction protocol

analysis tools
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x86 ISA in ACL2

Intended Applications of the x86 model:

• x86 ISA emulation

• System code verification

• Development of trustworthy programs

• Build-to (for x86 vendors) and compile-to

(for user) specs
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• Goal: booting FreeBSD, verification of

user and system programs

Work by Hunt, Goel, et at.
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x86 ISA in ACL2

Performance

user level: ∼ 3.3 million ips

system level: ∼ 912,000 ips
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Centaur (VIA) Nano 64-bit x86 CPU
• ∼20 FP operations verified

• LOC: FADD is 33,700 lines of
Verilog

• Proof Times: few secs – few
hrs

• Memory: 1 – 80 GB

• design and (automatic) proofs
change daily

• hard-to-discover bugs found
(e.g., 4 tests out of 2160 would
have failed)
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Centaur (VIA) QuadCore

4 Nano 64-bit x86

“most efficient x86 multicore processor on

the planet”

Lenova and HP use QuadCore chips in all

laptops.

ACL2 is now a critical part of the workflow

(after 8 years of investment in ACL2 use at

Centaur).
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Highly-Automated Process

• automatic translation (by an ACL2

program) of 1.1M lines of Verilog into a

form suitable for ACL2 analysis

– nightly regression of all proofs (run on

100s of machines)

– errors introduced yesterday are

addressed today

– automated low-level reasoning using

ACL2 verified bit-blasting
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– ACL2 verified tools check wire-level

engineering changes and clock trees

(saving days)

– cost of ACL2 staff is less than license

fees previously paid for regression

testing
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Present - Why are we succeeding?

Reason 1: Our mathematical logic is an

executable programming language.

• Many very efficient heavy-duty

implementations

• Supported on many platforms
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• Many independently provided

programming/system development tools

and environments.
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Reason 2: We have invested 45 years

• supporting efficient execution and proof

(so models are dual-purpose)

• integrating a wide variety of proof

techniques (so proofs are more

automatic)

• engineering for industrial scale formulas

• developing reusable books
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• interfacing to other tools (e.g., IBM Sixth

Sense, ABC, SAT, MC) (so embedded

theorem proving can glue disparate

fragments together), and

• supporting verification tool building (so

users can build, verify, and then

efficiently execute special-purpose tools)
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Reason 3: We have chosen the right

problems. In our applications, the models

• are bit- and cycle-accurate, not “toys”,

• are useful as pre-fab simulation engines,

and

• permit mathematical abstraction

supported by proof.
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Reason 4: We have a very talented user

community, without whom a talk like this

would be impossible.
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Reason 4: We have a very talented user

community, without whom a talk like this

would be impossible.

“The reason the Boyer-Moore theorem

is so ‘good’ is that only smart people

use it!” – anonymous critic, early 1980s
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Reason 5: Industry has no other alternative

than to use mechanized reasoning; their

artifacts are too complicated to analyze

accurately any other way.

70



Our Hypothesis

The “high cost” of formal methods

– to the extent the cost is high –

is a historical anomaly due to the fact that

virtually every project formally

recapitulates the past.
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The use of mechanized formal methods

• decreases time-to-market, and

• increases reliability.

72



Conclusion

Mechanical reasoning systems have

changed the way complex digital artifacts

are built.

Complexity not an argument against formal

methods.

It is an argument for formal methods.
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How Do We Know ACL2 is Sound?

“Trust us!” – Kaufmann and Moore

Obviously, we would like to prove it correct.

But with what prover?
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Meaning of Correctness

π

Yes No
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Proof Checker

φ

Theorem Prover

Proof Generator
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Plan

Π

Yes No
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�����
�����

�����
�����
�����
�����
�����

Proof Checker

‘‘I am correct’’

Theorem Prover

Proof Generator

• Prove “I am correct” with

Theorem Prover

• Generate that proof Π

• Check Π with Proof Checker

• Never generate another low-level

proof
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Jared Davis’ Stack “Milawa”
Level

  2  Propositional reasoning

  3  Rules about primitive functions

  4  Miscellaneous ground work

  7  Case splitting

  9  Evaluation and unconditional rewriting

10  Conditional rewriting

11  Induction and other tactics

  5  Assumptions and clauses

  6  Factoring, splitting help

  8  Audit trails (in prep for rewriting)
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  1  Primitive proof checker
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