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The Problem

One of the classic problems in computing is string
searching: find the first occurrence of one character
string (“the pattern”) in another ( “the text").

Generally, the text is very large (e.g., gigabytes) but
the patterns are relatively small.



Examples

Find the word “comedy” in this NY Times article:

Fred Armisen’s office at “Saturday Night Live" is
deceptively small, barely big enough to fit a desk, a
couch, and an iPod. The glorified closet, the subject of a
running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking ...



AAAAAAAAAAAAACAAAGACAGGGGCAACAAAGTGAGACCCTAAAAAAAAAAAAACCCCA
AAACGGAGAACTTGGAATCCTGTGTCCAAAAAAAAAAGCAGGAAGAGAGCGTGTAGAAAC
TGAAGCTGAAGTGGAAAAAAAAAAGTCGCCAGCACCTACTGTGGAGACCAGAAAGGAAAA
AAAAAATTGGCAGTCTCGTAGCATACCAAAACTAGGCTTGAAAAAAAAAACACACAAAAA
AACACAGGCTACCCAGTATTTTATCGTCCAAAAAAAAAGAGGGAAGAAGGACATTTATAT
TTGCCTTCTGCCAAAAAAAAAAGTACCTCCCGCCTAGAAGAGAGTTTAGAAATCACCAAA
AAAAAATAGAGAGTCCCAAAATGTTCGGAATACTCAGAAAAAAAAATCTTAGTCAGTGCT
CACTCAGAGGGACCGGGTATTTAAAAAAAACCTAGACCAGATGCAGCAGGTACAAATTAA
TCAATCCCAAAAAAAAGACCTTCTACCCTTCCAAAAAATGATAGTTGTCTGCAATCCAAA
AAAAAGACTCTCCGGAAGGTGGACATGCAGAACCTACCAAAAAAAAAGAGAAGAAAGAAT
TGCCGGGCAAAAAGTTCCACGTAAAAAAAAAAGGAAATGGGAATGGAGTGTTGTTCTCCT
TCCTACCTAGTTTTGAAAAAAAAGGATGGATGTGGGTCACCTGCTCACGTTCTCCAAAAA
AAAGTGGGTGCTCTCTCACAATATTCTTAGAGGTGGCAAAAAAAATAAAGTTGATGGAAA
CAGTACTGTGTGGGCCAAACAAAAAAAAAATGGCACCACCTTTTCATTGGCTGAAAAAAA
AATTCAACTGAAAAACACAAGTCATACCTTCCTGTTTTATTTGCAAAAAAAATTTTTCAA
ACCCCACGGCAACAAACGACAGTATCAAAAAAACAACTTCATTTGACATTCTGCTATATT
AATGCTCTATGTGGAAAAAAAAACCATCAAGTTGTGCCTTTTTTCAAAGAAATCCATGCA
AAAAAAAGACCCATGAAATAATTTTCTGGATCATCCATACAGAACCAAAAAAAAGAGGTG
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Variants of the problem allow wildcards in the
pattern and/or the text. Exact matching is when no
wildcards are allowed.

We describe the fastest sequential algorithm for
solving the exact string searching problem. The
algorithm is called the Boyer-Moore fast string

searching algorithm.



Example

Find the word “comedy” in this NY Times article:

Fred Armisen’s office at “Saturday Night Live" is
deceptively small, barely big enough to fit a desk, a
couch, and an iPod. The glorified closet, the subject of a
running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking ...
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Key Property: The longer the pattern, the faster

the search!



Pre-Computing the Skip Distance

pat: 543210
COMEDY
txt: xXXXXOXXXXXXXXXXX. ..

1

A6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C b5 H 6 M3 R 6 W 6
D1 I6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O

Z 6

This is a 1-dimensional array, skiplc], as big as
the alphabet.
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skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6
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But Wait! There’s More!

pat: NONPARTIPULAR
tXt: ————— e

44



But Wait! There’s More!

pat: NONPARTIPULAR
txt: ———————————- R-—————————
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- A
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- P ——————

47



But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- P ——————

Slide 2 to match the discovered character.
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: ————————- PP ?——————
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- PAR—————————-
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But Wait! There’s More!

pat: NONPARTIPULAR
tXt: ————— e
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: ———————————- R——————————

52



But Wait! There’s More!

pat: NONPARTIPULAR
txt: ——————————- AR——————————

53



But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————-— PAR-—-———————-—
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But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————-— PAR-—-———————-—

55



But Wait! There’s More!

pat: NONPARTIPULAR

Slide 7 to match the discovered substring!
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j |pat]
||
pat: NONPARTIPULAR

txt: —————————-— PAR-—-———————-—

dt: txtl[i] patlj+1] ... patl|pat|]

P A R

57



dt: txtli] patlj+1] ... patl|pat|]
dt can be computed given txt[:] and index j in pat!

There are only |a| X |pat| combinations, where |
Is the alphabet size.
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The Skip Distance — Delta

Given pat, the skip can be pre-computed for every
combination of character read, ¢, and pattern index,
1, by finding how far we must slide to find the /ast
occurrence of dt in pat.
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pat: NONPARTIPULAR
txt: ———————- PAR

60



NONPARTIPULAR

61



pat: BC-ABC-BBC-CBC
txt: —————————- BBC

62



BC-ABC-BBC-CBC
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pat: BC-ABC-BBC-CBC
txt: ——————————- ABC
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BC-ABC-BBC-CBC
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pat: BC-ABC-BBC-CBC
txt: —————————- DBC

66



BC-ABC-BBC-CBC

67



pat: EE-ABC-BBC-CBC
txt: —————————- DBC

68



EE-ABC-BBC-CBC
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The Delta Array

deltalc,j] is an array of size || X |pat| that gives
the skip distance when a mismatch occurs after
comparing ¢ from txt to pat[j].
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The Algorithm

fast (pat, txt)

If pat = ""
then
If tat = ""
then return Not-Found;
else return 0; end;
end;
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preprocess pat to produce delta;

j = |pat] —1;
L=

72



while (0 < 7 A @ < |tat])
do
If pat|j] = tat]i]
then
1 =1 — 1;
g:=7—1;
else
i =1+ deltaltxt|i], j|;
j := |pat| —1;
end;

73



If (7 <0)
then return 2 + 1;
else return Not-Found; end;

end;
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Performance

How does the algorithm perform?

This depends on the size of the alphabet. We only
have data on English text right now.

In our test:
txt: English text of length 177,985.

pat: 100 randomly chosen patterns of length 5 —
30, chosen from another English text and filtered so
they do not occur in the search text.
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The naive string searching algorithm would look at
all 177,985 characters of the search text. In fact, it
would look at some characters more than once.
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Number of Characters Read from Text
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Length of Average Skip
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Goal

Prove the correctness of an M1 program for the
Boyer-Moore fast string searching algorithm.

We will not code the preprocessing in M1.

We will write code for the Boyer-Moore algorithm
that assumes that the contents of a certain local
contains a 2-dimensional delta array.

We will initialize the array variable with ACL2 code,
not M1 code.
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We will proceed as previously advised:

e Step 1: prove that the code implements the
algorithm

e Step 2: prove that the algorithm implements the
spec

We'll do Step 2 first. It's always the hardest.
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Caveat

In this talk | will ignore hypotheses and distracting
arithmetic details.

The ACL2 proof scripts provide the complete
details.

81



The Obviously Correct Algorithm

(defun matchp (pat j txt i)
(cond ((not (matp j)) nil)
((>= j (length pat)) t)
((>= i (length txt)) nil)
((equal (char pat j)
(char txt i))
(matchp pat (+ 1 j)
txt (+ 1 1)))
(t nil)))
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The Obviously Correct Algorithm

(defun matchp (pat j txt i)

(cond

((>= j (length pat)) t)
((>= i (length txt)) nil)
((equal (char pat j)
(char txt i))
(matchp pat (+ 1 j)
txt (+ 1 1)))
(t nil)))
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(defun correct-loop (pat txt i)
(cond ((>= i (length txt)) nil)
((matchp pat 0 txt i) i)
(t (correct-loop pat txt (+ 1 1)))))

(defun correct (pat txt)
(correct-loop pat txt 0))
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The Fast Algorithm

(defun fast-loop (pat j txt i)
(cond
((<jo)y (+11i))
((<= (length txt) i) nil)
((equal (char pat j) (char txt i))
(fast-loop pat (- j 1) txt (- i 1)))
(t (fast-loop pat
(- (length pat) 1)
Txt
(+ i (delta (char txt i)

j pat)))))
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(defun fast-loop (pat j txt i)
(declare
(xargs :measure (measure pat j txt i)
:well-founded-relation 1<))
(cond ...
((equal (char pat j) (char txt i))
(fast-loop pat (- j 1) txt (- i 1)))
(t (fast-loop pat
(- (length pat) 1)
TXT
(+ i (delta (char txt i)

j pat))))))

86



Note Above:

In this formalization of the algorithm, we do not
pre-compute delta but instead compute the skip
distance as a function of the char from txt, the

index j In pat, and pat.

The M1 code will use a 2-dimensional array
initialized by an ACL2 function.

We will prove the ACL2 preprocessing correct.

But at the algorithmic level, we needn’t think about
arrays.
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(defun fast (pat txt)
(if (equal pat "")
(if (equal txt "")
nil
0)

(fast-loop pat
(- (length pat) 1)
TXT
(- (length pat) 1))))
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“Pre-Processing”

(defun delta (v j pat)
(let* ((pat™ (coerce pat ’list))
(dt (cons v (nthcdr (+ j 1) pat™))))
(+ (- (len pat™) 1)
(- (find-pmatchp dt pat™ (- j 1))))))

(defun find-pmatchp (dt pat”™ j)

(cond ((pmatchp dt pat™ j) j)
(t (find-pmatchp dt pat™ (- j 1)))))
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pat:
dt:

pmatchp:

pat:
dt:

pmatchp:

pat:
dt:

pmétchp:

BC-ABC-BBC-CBC
BBC
BBC

BC-ABC-BBC-CBC
ABC
ABC

BC-ABC-BBC-CBC

GBC
GBC
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Goal

(defthm fast-is-correct
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))
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Observation 1 — List Counterparts

Every string processing function has a list
processing counterpart.

(char str i) = (nth i (coerce str ’list))
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Observation 1 — List Counterparts

Let pat™ be (coerce pat ’list).

(equal (correct-loop pat txt i)
(correct-loop”~™ pat™ txt™ i))
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Observation 1 — List Counterparts

(defun delta (v j pat)
(let* ((pat™ (coerce pat ’list))
(dt™ (cons v (nthcdr (+ j 1) pat™))))
(+ (- (len pat™) 1)
(- (find-pmatchp dt~ pat™ (- j 1))))))
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Observation 2 — Matching is Equality
(defun matchp (pat j txt i)
(cond ((>= j (length pat)) t)
((>= 1 (length txt)) nil)
((equal (char pat j) (char txt i))
(matchp pat (+ 1 j) txt (+ 1 1)))
(t nil)))
J
pat: abcUVW
txt: XXXXXUVWxXxXXX
i
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Observation 2 — Matching is Equality

(equal (matchp pat j txt i)
(equal (firstn (len (nthcdr j pat™))
(nthcdr i txt™))
(nthedr j pat™)))

]
pat: abcUVW
txt: XXXXXUVWXXXXX

i
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Observation 3 — Destructor Elimination
(append (firstn n x) (nthcdr n x)) = X

So to prove:
Y(x, (firstn n x), (nthcdr n x))

It is sufficient to prove

Y ((append a b), a, b)
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Goal

(defthm fast-is-correct
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))
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The Crux

(implies
(equal (firstn (len (nthcdr (+ 1 j) pat™))
(nthcdr (+ 1 i) txt™))
(nthedr (+ 1 j) pat™))
(equal
(correct-loop™ pat”™ txt”
(+ i (- (find-pmatchp
(cons (car (nthcdr i txt™))
(nthcdr j (cdr pat™)))
pat™ (+ -1 3)))))
(correct-loop™ pat™ txt™ (+ i (- j)))))

99



Decomposition

The crux is to prove that correct-loop can skip
ahead in big steps (like fast does).

But we can decompose this into two parts.

100



Decomposition

(a) correct-loop can skip ahead if there are no
matches in the region skipped

(b) there are no matches in the region skipped by
find-pmatchp
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Summary of Step 2

A total of 9 definitions and lemmas are proved to
establish

(defthm fast-is-correct
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))
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Step 1
(defconst *ml-boyer-moore-programx

; Allocation of locals

; pat 0
s ] 1
; txt 2
;01 3
; pmax 4 = (length pat)
; tmax 5 = (length txt)
; array 6 = (preprocess pat)
; C 7 = temp - last char read from txt
’(
(load 0) ;0 (load pat)

(pUSh nn ) ; 1 (pU.Sh nn )
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(ifane 5)

(load
(push

2)
n ll)

(ifane 40)
(goto 43)

; loop:

(load
(iflt
(load
(load
(sub)
(ifle
(load
(load

(aload)

(load
(load

2)
3)

(aload)
(store 7)

o O b W N

© 00

10

12
13
14
15
16
17
18
19

(ifane loop)

(load
(push

txt)
n ll)

(ifane win)

(goto

(load
(iflt
(load
(load
(sub)
(ifle
(load
(load

lose)

j)
win))
tmax)

i)

lose)
pat)
j)

(aload)

(load
(load

txt)
i)

(aload)
(store v)
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(load 7)
(sub)
(ifne 10)
(load 1)
(push 1)
(sub)
(store 1)
(load 3)
(push 1)
(sub)
(store 3)
(goto -24)

; skip:

(load 3)
(load 6)
(load 7)
(aload)
(load 1)
(aload)

; 20
; 21
; 22
; 23
; 24
; 25
; 26
; 27
; 28
; 29
; 30
; 31

; 32
; 33
; 34
; 35
; 36
; 37

(load v)
(sub)

(ifne skip)
(load j)
(push 1)
(sub)
(store j)
(load i)
(push 1)
(sub)
(store i)
(goto loop)

(load 1)
(load array)
(load wv)
(aload)
(load j)
(aload)
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(add)
(store 3)
(load 4)
(push 1)
(sub)
(store 1)
(goto -37)
; win:
(load 3)
(push 1)
(add)
(return)
; lose:
(push nil)
(return) )

; 38
; 39
; 40
; 41
; 42
; 43
; 44

; 45
; 46
; 47
; 48

; 49
; 50

(add)
(store i)
(load pmax)
(push 1)
(sub)
(store j)
(goto loop)

(load i)
(push 1)
(add)

(return)

(push nil)
(return))
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The Schedule

How do we define the schedule for such a
complicated piece of code?

107



The Schedule

(defun ml-boyer-moore-loop-sched (pat j txt i)
(cond
((< j 0) (repeat 0 6))
((<= (length txt) i) (repeat 0 8))
((equal (char-code (char pat j))
(char-code (char txt i)))
(append (repeat 0 25)
(ml-boyer-moore-loop-sched pat (- j 1)
txt (- 1 1))))
(t (append (repeat 0 29)
(m1-boyer-moore-loop-sched
pat (- (length pat) 1)
txt (+ i (delta (char txt i) j pat))))).
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The Schedule

(defun ml-boyer-moore-loop-sched (pat j txt i)
(cond
((< j 0) (repeat 0 6))
((<= (length txt) i) (repeat 0 8))
((equal (char-code (char pat j))
(char-code (char txt i)))
(append (repeat 0 25)
(ml-boyer-moore-loop-sched pat (- j 1)
txt (- 1 1))))
(t (append (repeat 0 29)
(m1-boyer-moore-loop-sched
pat (- (length pat) 1)
txt (+ i (delta (char txt i) j pat))))).
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(defun ml-boyer-moore-sched (pat txt)
(if (equal pat "")
(if (equal txt "")
(repeat 0 9)
(repeat 0 10))
(append (repeat 0 3)
(ml-boyer-moore-loop-sched
pat (- (length pat) 1)
txt (- (length pat) 1)))))
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The Schedule

Defining the schedule is trivial if you have verified
the algorithm.

They have identical recursive structure and
justification.
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(defthm ml-boyer-moore-is-fast
(implies
(and (stringp pat) (stringp txt))
(equal (top (stack
(run (ml1-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx))))
(fast pat txt))))
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(defthm ml-boyer-moore-halts
(implies
(and (stringp pat) (stringp txt))
(haltedp
(run (ml-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx*)))))
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Main Theorem

Given

(defthm fast-is-correct
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))

and

114



(defthm ml-boyer-moore-is-fast
(implies
(and (stringp pat) (stringp txt))
(equal (top (stack
(run (ml1-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx))))
(fast pat txt))))

It 1s trivial to show:
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(defthm ml-boyer-moore-is-correct
(implies
(and (stringp pat) (stringp txt))
(equal (top (stack
(run (ml1-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx))))
(correct pat txt))))

116



Demo 1
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Conclusion

Mechanized operational (interpretive) semantics

e are entirely within a logical framework and so
permit logical analysis of programs by traditional
formal proofs, without introduction of
meta-logical transformers (VCGs)

e are generally executable
e are easily related to implementations

e allow derivation of language properties
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e may allow derivation of intensional properties
(e.g., how many steps a program takes to
terminate)

e allow verification of system hierarchies (multiple
layers of abstraction can be formalized and
related within the proof system)
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Thank You
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