Mechanized Operational
Semantics

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Marktoberdorf Summer School 2008

(Lecture 4: Boyer-Moore Fast String Searching)

The Problem

One of the classic problems in computing is string
searching: find the first occurrence of one character
string (“the pattern”) in another (“the text").

Generally, the text is very large (e.g., gigabytes) but
the patterns are relatively small.

Examples

Find the word “comedy” in this NY Times article:

Fred Armisen’s office at “Saturday Night Live" is
deceptively small, barely big enough to fit a desk, a
couch, and an iPod. The glorified closet, the subject of a
running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking ...

AAAAAAAAAAAAACAAAGACAGGGGCAACAAAGTGAGACCCTAAAAAAAAAAAAACCCCA
AAACGGAGAACTTGGAATCCTGTGTCCAAAAAAAAAAGCAGGAAGAGAGCGTGTAGAAAC
TGAAGCTGAAGTGGAAAAAAAAAAGTCGCCAGCACCTACTGTGGAGACCAGAAAGGAAAA
AAAAAATTGGCAGTCTCGTAGCATACCAAAACTAGGCTTGAAAAAAAAAACACACAAAAA
AACACAGGCTACCCAGTATTTTATCGTCCAAAAAAAAAGAGGGAAGAAGGACATTTATAT
TTGCCTTCTGCCAAAAAAAAAAGTACCTCCCGCCTAGAAGAGAGTTTAGAAATCACCAAA
AAAAAATAGAGAGTCCCAAAATGTTCGGAATACTCAGAAAAAAAAATCTTAGTCAGTGCT
CACTCAGAGGGACCGGGTATTTAAAAAAAACCTAGACCAGATGCAGCAGGTACAAATTAA
TCAATCCCAAAAAAAAGACCTTCTACCCTTCCAAAAAATGATAGTTGTCTGCAATCCAAA
AAAAAGACTCTCCGGAAGGTGGACATGCAGAACCTACCAAAAAAAAAGAGAAGAAAGAAT
TGCCGGGCAAAAAGTTCCACGTAAAAAAAAAAGGAAATGGGAATGGAGTGTTGTTCTCCT
TCCTACCTAGTTTTGAAAAAAAAGGATGGATGTGGGTCACCTGCTCACGTTCTCCAAAAA
AAAGTGGGTGCTCTCTCACAATATTCTTAGAGGTGGCAAAAAAAATAAAGTTGATGGAAA
CAGTACTGTGTGGGCCAAACAAAAAAAAAATGGCACCACCTTTTCATTGGCTGAAAAAAA
AATTCAACTGAAAAACACAAGTCATACCTTCCTGTTTTATTTGCAAAAAAAATTTTTCAA
ACCCCACGGCAACAAACGACAGTATCAAAAAAACAACTTCATTTGACATTCTGCTATATT
AATGCTCTATGTGGAAAAAAAAACCATCAAGTTGTGCCTTTTTTCAAAGAAATCCATGCA
AAAAAAAGACCCATGAAATAATTTTCTGGATCATCCATACAGAACCAAAAAAAAGAGGTG

Norton AntiVirus 2006 :; Download or Physical Shipment - Mozilla

T File Edit Miew Go Bookmarks Tools Window Help

Back Farward

- @ @ ‘!hﬂpf.l\wmsymamecsto :

Fast Exact String Pattern-matching Algorithms Adapted to the Characteristics of the Medical Language - Mozilla

v‘ <% Home | ﬁauukmarks 4Imernel &jLUUkup @NEW&CUUI # Google

9 symantec.

File Edit Miew Go Bookmarks Tools Window Help
@ i ¥ @ @ | nitpfrunin pubmedzentral.nin.gowsarticlerender fogi7 arid=61442 [V] |22 searct
Back Forward

Home & Home Office

! GLoBAL STORES

> Heme & Home {

Hama | (4 Bookmarks
PubMed

ﬁ Central

Journal List

PR_ODI.IF_\'S .

. Software
> Internet Security
s Virus Protection
> Problem-Solving

Norton

AntiVirus™ 2

N » Communications Newest version
> Macintosh Stay protected wi
M Applying Fast String Matching to Intrusion Detec|
T Elle Edit Miew Go Bookmarks Tools Window Help
@ b Q * @ @ | Tt rumne stormingmedia us/BEE
Back Fonward - |

" “ % Home ! ggaunkmarks llniemet @Lnukup E.NEW&CDEII 4 Google

W Detection and Countermeasures -

Abstract

nFull Text

Flgures and Tables
PLF (275K)
Contents

Archive

Related material:

PubMed articles by:
Lovis, C.

|| Baud, R,
jfor‘f?ﬁ-ﬂg A/Iedz-g Penragon Reports: Fast. Definitive. Comy
< Top
_ nAbstract
Home AboutUs ContactUs View Cart My Accour|ll i ition

Morphologic
Characteristics of
Wedical Language
Search Algorithms
Measures

Results
Conclusion
References

#internat (fLoakup 4 NewaCool ¢ Gaogle

JAMIA

The Journal of the American Medical informatics Association

Journal List > J Am Med Inform Assoc > v.7{4); Jul-Aug 2000
J Am Med Inform Assoc, 2000 Jul-Aug; 7(4); 378-391,
Copyright € 2000, American Medical Informatics Association

Fast Exact String Pattern-matching Algorithms Adapted to the Characteristics
of the Medical Language

Christian Lovis, MD and Robert H. Baud, PhDD

ubhed related arts j ; Affiliations of the authors: Puget Sound Health Care System, Seattle, Washington {CL); University

e

= Hospital of Geneva, Geneva, Swritzerland (RHB).
=

Correspondence and reprints: Christian Lovis, MD, University Hospital of Geneva, Division of
IMedical Informatics, Rue Micheli-du-Crest, CH-1211 Geneva 4, Switzerland; e-mail:
<christian, lovis@dim heuge.chs,

Received October 26, 199%; Accepted February 16, 2000.

Ohjective: The authers consider the problem of exact string pattern matching using algorithms that
do not require any preprocessing. To choose the most appropriate algorithm, distinctive features of
the medical language must be taken info account. The characteristics of medical language are
emphasized in this regard, the best algorithm of those reviewed is proposed, and detailed

- evaluations of time complexzity for processing medical texts are provided.

2088 Wig| pa

Design: The authors first illustrate and discuss the technigues of various string pattern-matching
algorithms, Next, the source code and the behavior of representative exact string pattern-matching
algorithms are presented in a comprehensive manner to promote their implementation, Detailed
explanations of the use of various techniques to improve performance are given.

JO3S LUDJU| Paj) Wy

Measurements: Real-time measures of time complexity with English medical tezts are presented.
They lead to results distinet from those found in the computer science literature, which are
typically computed with normally distributed texts,

§ Horspool algorithm achieves the best overall results when used with
medical texts. This algorithm usually performs at least twice as fast as the other algorithms tested.

Ads by

%&lﬁ Applying Fast String Matching to Intrus
Attack Authors: Mike Fisk, George Varghese; LOJ
Cetection

Reall time Abstract: The performance of signature-b
g”u%”'iggﬂg for detection tools Is dominated by the sfring
acﬂem, A many signatures, In this paper we study h
whatever detection system Snort can be bast optim|
Cv?.vn\xonn;r igi?d matehing algorithms, We analyze the perf
Intrusion sfring matching algorithm, 8, &
Protection? algorithms. The performance of signature-b
Eé?grjtstgg;is detection tools is dominated by the string
harm! Robust many signatures. [n this paper we study hi

% E 2 BB @B |

IFS for secure

detection systemn Snort can be best optimized to utilize different string

[
I

wish to order,

Variants of the problem allow wildcards in the
pattern and/or the text. Exact matching is when no
wildcards are allowed.

We describe the fastest sequential algorithm for
solving the exact string searching problem. The
algorithm is called the Boyer-Moore fast string

searching algorithm.

Example

Find the word “comedy” in this NY Times article:

Fred Armisen’s office at “Saturday Night Live" is
deceptively small, barely big enough to fit a desk, a
couch, and an iPod. The glorified closet, the subject of a
running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking ...

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JANNEEEEENNEEEEENED

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

CHENNNEEEEEEEEEEEE

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

AE<ENNENENNNENEEEEE

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEERNRRREANC

O

M

E

D

Y

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEERCEREEENNNNNEER

JOKE ON THE COMEDY

COMEDY

EEEERCEREEENNNNNEER

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEEREEER-EENENEEEN

JOKE ON THE COMEDY

COMEDY

EEEEREEER-EENENEEEN

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

COMEDY

JOKE ON THE COMEDY

JOKE ON THE COMEDY

COMEDY

C

O

ME

D

Y

Key Property: The longer the pattern, the faster

the search!

Pre-Computing the Skip Distance

pat: 543210
COMEDY
txt: xXXXXOXXXXXXXXXXX. ..

1

A6 F 6 K 6 P 6 U 6
B 6 G 6 L 6 Q 6 V 6
C b5 H 6 M3 R 6 W 6
D1 I6 N 6 S 6 X 6
E 2 J 6 0 4 T 6 Y O

Z 6

This is a 1-dimensional array, skiplc], as big as
the alphabet.

COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

EEEERCEREEENNNNNEER

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

EEEERCEREEENNNNNEER

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

G [[[[{]]]

JOKE ON THE COMEDY

skiplc]:

A6
B 6
C b5
D1
E 2

F 6
G 6
H 6
16
J 6

K 6
L 6
M3
N 6
0 4

P 6
Q 6
R 6
S 6
T 6

U 6
V 6
W 6
X 6
Y O
Z 6

COMEDY

G [[[[{]]]

JOKE ON THE COMEDY

skiplc]:

A6
B 6
C b5
D1
E 2

F 6
G 6
H 6
16
J 6

K 6
L 6
M3
N 6
0 4

P 6
Q 6
R 6
S 6
T 6

U 6
V 6
W 6
X 6
Y O
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

EEEENEEENEEEEEREREN

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

COMEDY

JOKE ON THE COMEDY

skiplc]:

A6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q6 V 6

C5 H 6 M3 R 6 W 6

D1 16 N 6 S 6 X 6

E 2 J 6 0 4 T 6 YO
Z 6

JOKE ON THE COMEDY

skiplc]:

A6
B 6
C b5
D1
E 2

F 6
G 6
H 6
16
J 6

K 6
L 6
M3
N 6
0 4

P 6
Q 6
R 6
S 6
T 6

U 6
V 6
W 6
X 6
Y O
Z 6

COMEDY

C

O

ME

D

Y

But Wait! There’s More!

pat: NONPARTIPULAR
tXt: ————— e

44

But Wait! There’s More!

pat: NONPARTIPULAR
txt: ———————————- R-—————————

45

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- A

46

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- P ——————

47

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- P ——————

Slide 2 to match the discovered character.

48

But Wait! There’s More!

pat: NONPARTIPULAR
txt: ————————- PP ?——————

49

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————- PAR—————————-

50

But Wait! There’s More!

pat: NONPARTIPULAR
tXt: ————— e

51

But Wait! There’s More!

pat: NONPARTIPULAR
txt: ———————————- R——————————

52

But Wait! There’s More!

pat: NONPARTIPULAR
txt: ——————————- AR——————————

53

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————-— PAR-—-———————-—

54

But Wait! There’s More!

pat: NONPARTIPULAR
txt: —————————-— PAR-—-———————-—

55

But Wait! There’s More!

pat: NONPARTIPULAR

Slide 7 to match the discovered substring!

56

j |pat]
||
pat: NONPARTIPULAR

txt: —————————-— PAR-—-———————-—

dt: txtl[i] patlj+1] ... patl|pat|]

P A R

57

dt: txtli] patlj+1] ... patl|pat|]
dt can be computed given txt[:] and index j in pat!

There are only |a| X |pat| combinations, where |
Is the alphabet size.

58

The Skip Distance — Delta

Given pat, the skip can be pre-computed for every
combination of character read, ¢, and pattern index,
1, by finding how far we must slide to find the /ast
occurrence of dt in pat.

59

pat: NONPARTIPULAR
txt: ———————- PAR

60

NONPARTIPULAR

61

pat: BC-ABC-BBC-CBC
txt: —————————- BBC

62

BC-ABC-BBC-CBC

63

pat: BC-ABC-BBC-CBC
txt: ——————————- ABC

64

BC-ABC-BBC-CBC

65

pat: BC-ABC-BBC-CBC
txt: —————————- DBC

66

BC-ABC-BBC-CBC

67

pat: EE-ABC-BBC-CBC
txt: —————————- DBC

68

EE-ABC-BBC-CBC

69

The Delta Array

deltalc,j] is an array of size || X |pat| that gives
the skip distance when a mismatch occurs after
comparing ¢ from txt to pat[j].

70

The Algorithm

fast (pat, txt)

If pat = ""
then
If tat = ""
then return Not-Found;
else return 0; end;
end;

71

preprocess pat to produce delta;

j = |pat] —1;
L=

72

while (0 < 7 A @ < |tat])
do
If pat|j] = tat]i]
then
1 =1 — 1;
g:=7—1;
else
i =1+ deltaltxt|i], j|;
j := |pat| —1;
end;

73

If (7 <0)
then return 2 + 1;
else return Not-Found; end;

end;

74

Performance

How does the algorithm perform?

This depends on the size of the alphabet. We only
have data on English text right now.

In our test:
txt: English text of length 177,985.

pat: 100 randomly chosen patterns of length 5 —
30, chosen from another English text and filtered so
they do not occur in the search text.

75

The naive string searching algorithm would look at
all 177,985 characters of the search text. In fact, it
would look at some characters more than once.

76

Number of Characters Read from Text

45000

40000

35000

30000

25000

20000

15000

10000

Pattern Length vs. Number of Characters Read from Text

.....MMMMM_

o E

© E

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Pattern Length

7

Length of Average Skip

16

14

12

10

Pattern Length vs. Length of Average Skip

LU

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Pattern Length

th !
5 6 7 8 9

Goal

Prove the correctness of an M1 program for the
Boyer-Moore fast string searching algorithm.

We will not code the preprocessing in M1.

We will write code for the Boyer-Moore algorithm
that assumes that the contents of a certain local
contains a 2-dimensional delta array.

We will initialize the array variable with ACL2 code,
not M1 code.

79

We will proceed as previously advised:

e Step 1: prove that the code implements the
algorithm

e Step 2: prove that the algorithm implements the
spec

We'll do Step 2 first. It's always the hardest.

80

Caveat

In this talk | will ignore hypotheses and distracting
arithmetic details.

The ACL2 proof scripts provide the complete
details.

81

The Obviously Correct Algorithm

(defun matchp (pat j txt i)
(cond ((not (matp j)) nil)
((>= j (length pat)) t)
((>= i (length txt)) nil)
((equal (char pat j)
(char txt i))
(matchp pat (+ 1 j)
txt (+ 1 1)))
(t nil)))

82

The Obviously Correct Algorithm

(defun matchp (pat j txt i)

(cond

((>= j (length pat)) t)
((>= i (length txt)) nil)
((equal (char pat j)
(char txt i))
(matchp pat (+ 1 j)
txt (+ 1 1)))
(t nil)))

83

(defun correct-loop (pat txt i)
(cond ((>= i (length txt)) nil)
((matchp pat 0 txt i) i)
(t (correct-loop pat txt (+ 1 1)))))

(defun correct (pat txt)
(correct-loop pat txt 0))

84

The Fast Algorithm

(defun fast-loop (pat j txt i)
(cond
((<jo)y (+11i))
((<= (length txt) i) nil)
((equal (char pat j) (char txt i))
(fast-loop pat (- j 1) txt (- i 1)))
(t (fast-loop pat
(- (length pat) 1)
Txt
(+ i (delta (char txt i)

j pat)))))

85

(defun fast-loop (pat j txt i)
(declare
(xargs :measure (measure pat j txt i)
:well-founded-relation 1<))
(cond ...
((equal (char pat j) (char txt i))
(fast-loop pat (- j 1) txt (- i 1)))
(t (fast-loop pat
(- (length pat) 1)
TXT
(+ i (delta (char txt i)

j pat))))))

86

Note Above:

In this formalization of the algorithm, we do not
pre-compute delta but instead compute the skip
distance as a function of the char from txt, the

index j In pat, and pat.

The M1 code will use a 2-dimensional array
initialized by an ACL2 function.

We will prove the ACL2 preprocessing correct.

But at the algorithmic level, we needn’t think about
arrays.

87

(defun fast (pat txt)
(if (equal pat "")
(if (equal txt "")
nil
0)

(fast-loop pat
(- (length pat) 1)
TXT
(- (length pat) 1))))

88

“Pre-Processing”

(defun delta (v j pat)
(let* ((pat™ (coerce pat ’list))
(dt (cons v (nthcdr (+ j 1) pat™))))
(+ (- (len pat™) 1)
(- (find-pmatchp dt pat™ (- j 1))))))

(defun find-pmatchp (dt pat”™ j)

(cond ((pmatchp dt pat™ j) j)
(t (find-pmatchp dt pat™ (- j 1)))))

89

pat:
dt:

pmatchp:

pat:
dt:

pmatchp:

pat:
dt:

pmétchp:

BC-ABC-BBC-CBC
BBC
BBC

BC-ABC-BBC-CBC
ABC
ABC

BC-ABC-BBC-CBC

GBC
GBC

90

Goal

(defthm fast-is-correct
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))

91

Observation 1 — List Counterparts

Every string processing function has a list
processing counterpart.

(char str i) = (nth i (coerce str ’list))

92

Observation 1 — List Counterparts

Let pat™ be (coerce pat ’list).

(equal (correct-loop pat txt i)
(correct-loop”~™ pat™ txt™ i))

93

Observation 1 — List Counterparts

(defun delta (v j pat)
(let* ((pat™ (coerce pat ’list))
(dt™ (cons v (nthcdr (+ j 1) pat™))))
(+ (- (len pat™) 1)
(- (find-pmatchp dt~ pat™ (- j 1))))))

94

Observation 2 — Matching is Equality
(defun matchp (pat j txt i)
(cond ((>= j (length pat)) t)
((>= 1 (length txt)) nil)
((equal (char pat j) (char txt i))
(matchp pat (+ 1 j) txt (+ 1 1)))
(t nil)))
J
pat: abcUVW
txt: XXXXXUVWxXxXXX
i

95

Observation 2 — Matching is Equality

(equal (matchp pat j txt i)
(equal (firstn (len (nthcdr j pat™))
(nthcdr i txt™))
(nthedr j pat™)))

]
pat: abcUVW
txt: XXXXXUVWXXXXX

i

96

Observation 3 — Destructor Elimination
(append (firstn n x) (nthcdr n x)) = X

So to prove:
Y(x, (firstn n x), (nthcdr n x))

It is sufficient to prove

Y ((append a b), a, b)

97

Goal

(defthm fast-is-correct
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))

98

The Crux

(implies
(equal (firstn (len (nthcdr (+ 1 j) pat™))
(nthcdr (+ 1 i) txt™))
(nthedr (+ 1 j) pat™))
(equal
(correct-loop™ pat”™ txt”
(+ i (- (find-pmatchp
(cons (car (nthcdr i txt™))
(nthcdr j (cdr pat™)))
pat™ (+ -1 3)))))
(correct-loop™ pat™ txt™ (+ i (- j)))))

99

Decomposition

The crux is to prove that correct-loop can skip
ahead in big steps (like fast does).

But we can decompose this into two parts.

100

Decomposition

(a) correct-loop can skip ahead if there are no
matches in the region skipped

(b) there are no matches in the region skipped by
find-pmatchp

101

Summary of Step 2

A total of 9 definitions and lemmas are proved to
establish

(defthm fast-is-correct
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))

102

Step 1
(defconst *ml-boyer-moore-programx

; Allocation of locals

; pat 0
s] 1
; txt 2
;01 3
; pmax 4 = (length pat)
; tmax 5 = (length txt)
; array 6 = (preprocess pat)
; C 7 = temp - last char read from txt
’(
(load 0) ;0 (load pat)

(pUSh nn) ; 1 (pU.Sh nn)

103

(ifane 5)

(load
(push

2)
n ll)

(ifane 40)
(goto 43)

; loop:

(load
(iflt
(load
(load
(sub)
(ifle
(load
(load

(aload)

(load
(load

2)
3)

(aload)
(store 7)

o O b W N

© 00

10

12
13
14
15
16
17
18
19

(ifane loop)

(load
(push

txt)
n ll)

(ifane win)

(goto

(load
(iflt
(load
(load
(sub)
(ifle
(load
(load

lose)

j)
win))
tmax)

i)

lose)
pat)
j)

(aload)

(load
(load

txt)
i)

(aload)
(store v)

104

(load 7)
(sub)
(ifne 10)
(load 1)
(push 1)
(sub)
(store 1)
(load 3)
(push 1)
(sub)
(store 3)
(goto -24)

; skip:

(load 3)
(load 6)
(load 7)
(aload)
(load 1)
(aload)

; 20
; 21
; 22
; 23
; 24
; 25
; 26
; 27
; 28
; 29
; 30
; 31

; 32
; 33
; 34
; 35
; 36
; 37

(load v)
(sub)

(ifne skip)
(load j)
(push 1)
(sub)
(store j)
(load i)
(push 1)
(sub)
(store i)
(goto loop)

(load 1)
(load array)
(load wv)
(aload)
(load j)
(aload)

105

(add)
(store 3)
(load 4)
(push 1)
(sub)
(store 1)
(goto -37)
; win:
(load 3)
(push 1)
(add)
(return)
; lose:
(push nil)
(return))

; 38
; 39
; 40
; 41
; 42
; 43
; 44

; 45
; 46
; 47
; 48

; 49
; 50

(add)
(store i)
(load pmax)
(push 1)
(sub)
(store j)
(goto loop)

(load i)
(push 1)
(add)

(return)

(push nil)
(return))

106

The Schedule

How do we define the schedule for such a
complicated piece of code?

107

The Schedule

(defun ml-boyer-moore-loop-sched (pat j txt i)
(cond
((< j 0) (repeat 0 6))
((<= (length txt) i) (repeat 0 8))
((equal (char-code (char pat j))
(char-code (char txt i)))
(append (repeat 0 25)
(ml-boyer-moore-loop-sched pat (- j 1)
txt (- 1 1))))
(t (append (repeat 0 29)
(m1-boyer-moore-loop-sched
pat (- (length pat) 1)
txt (+ i (delta (char txt i) j pat))))).

108

The Schedule

(defun ml-boyer-moore-loop-sched (pat j txt i)
(cond
((< j 0) (repeat 0 6))
((<= (length txt) i) (repeat 0 8))
((equal (char-code (char pat j))
(char-code (char txt i)))
(append (repeat 0 25)
(ml-boyer-moore-loop-sched pat (- j 1)
txt (- 1 1))))
(t (append (repeat 0 29)
(m1-boyer-moore-loop-sched
pat (- (length pat) 1)
txt (+ i (delta (char txt i) j pat))))).

109

(defun ml-boyer-moore-sched (pat txt)
(if (equal pat "")
(if (equal txt "")
(repeat 0 9)
(repeat 0 10))
(append (repeat 0 3)
(ml-boyer-moore-loop-sched
pat (- (length pat) 1)
txt (- (length pat) 1)))))

110

The Schedule

Defining the schedule is trivial if you have verified
the algorithm.

They have identical recursive structure and
justification.

111

(defthm ml-boyer-moore-is-fast
(implies
(and (stringp pat) (stringp txt))
(equal (top (stack
(run (ml1-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx))))
(fast pat txt))))

112

(defthm ml-boyer-moore-halts
(implies
(and (stringp pat) (stringp txt))
(haltedp
(run (ml-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx*)))))

113

Main Theorem

Given

(defthm fast-is-correct
(implies (and (stringp pat)
(stringp txt))
(equal (fast pat txt)
(correct pat txt))))

and

114

(defthm ml-boyer-moore-is-fast
(implies
(and (stringp pat) (stringp txt))
(equal (top (stack
(run (ml1-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx))))
(fast pat txt))))

It 1s trivial to show:

115

(defthm ml-boyer-moore-is-correct
(implies
(and (stringp pat) (stringp txt))
(equal (top (stack
(run (ml1-boyer-moore-sched pat txt)
(make-state O
(list pat (- (length pat) 1)
txt (- (length pat) 1)
(length pat) (length txt)
(preprocess pat)
0)
nil *ml-boyer-moore-programx))))
(correct pat txt))))

116

Demo 1

117

Conclusion

Mechanized operational (interpretive) semantics

e are entirely within a logical framework and so
permit logical analysis of programs by traditional
formal proofs, without introduction of
meta-logical transformers (VCGs)

e are generally executable
e are easily related to implementations

e allow derivation of language properties

118

e may allow derivation of intensional properties
(e.g., how many steps a program takes to
terminate)

e allow verification of system hierarchies (multiple
layers of abstraction can be formalized and
related within the proof system)

119

Thank You

120

