Mechanized Operational Semantics:
The M1 Story

J Strother Moore
Department of Computer Sciences,
University of Texas at Austin,
Taylor Hall 2.124,
Austin, Texas 78712

DRAFT

1 Abstract

In this paper we explain how to formalize an “operational*siate-transition” semantics of a
von Neumann programming language in a functional progrargitainguage. By adopting an
“interpretive” style, one can execute the model in the fioral language to “run” programs
in the von Neumann language. Given the ability to reasontabheufunctional language, one
can use the model to reason about programs in the von Neumiagudge.

In theory at least, such a formal semantics thus has a duahsisesimulation engine and
as an axiomatic basis for code proofs.

The beauty of this approach is that no more logical machirseengeded than to support
execution and proof in a functional language: no new prodagies and no new meta-logical
tools like “verification condition generators” are needed.

In this paper we will illustrate the techniques by formaigia simple programming lan-
guage called “M1,” for “Machine (or Model) 1.” It is looselyalsed on the Java Virtual Ma-
chine but has been simplified for pedagogical purposes. \Wdevhonstrate the executability
of M1 models. We will develop several styles of code proafs|uding direct (symbolic sim-
ulation) proofs based on Boyer-Moore “clock functions” &idyd-Hoare inductive assertion
proofs. We construct proofs only for the the simplest of pangs, namely an iterative facto-
rial example. But to illustrate a more realistic use of thededipwe discuss the correctness
proof for an M1 implementation of the Boyer-Moore fast ggrgearching algorithm.

We also define a compiler for a higher level language calldd ahd show how to do
proofs about J1 code without benefit of a formal semanticatrcode. Throughout we use
the ACL2 logic and theorem proving system.

2 Preface

The most widely accepted meaning of “operational semdrttcky is Plotkin’s “Structural
Operational Semantics” (SOS) [22] in which the semantiggésented as a set of inference
rules on syntax and “configurations” (states) defining tHel\teansitions.

2 Mechanized Operational Semantics: The M1 Story

But in these lectures | take an older approach perhaps Hist Gaterpretive semantics,”
in which the semantics of a piece of code is given by a receislefined interpreter on the
syntax and a state.

| suspect the older approach came from McCarthy who wrotfitkaning of a program
is defined by its effect on the state vector,” in his seminglgodTowards a Mathematical
Science of Computation” (1962).

The interpretive approach was used with mechanized suppérComputational Logic
(Boyer and Moore, 1979) to specify and verify an expressamgiler. The low level machine
was defined as a recursive function on programs (sequenceestofi¢tions) against a state
consisting of a push down stack and an environment assigailugs to variables. We also
used the approach to formalize the semantics of the ingtruset of the BDX 930 flight
control computer as part of the SIFT project at SRI [7] — arr@ge that ultimately failed
because our theorem prover at the time was not capable dfseming states as large and
complex as arose in the BDX 930. That motivated us to intredyuot e and “executable
counterparts,” in the late 1970s, but that is another story.

Plotkin rightly states that the interpretive approach tetalproduce large and possibly
unweildy states. Procedure call and non-determinism miaikg$ even worse. But this is
mitigated by the presence of a mechanized reasoning systéanpretive semantics also
confer certan advantages | will discuss herein.

The Boyer-Moore community has used operational semamtitse “interpretive” sense)
with great success since the mid-1970s, including, for gtanthe verification of the CLI
Stack [1], the verification of the Berkeley C String Librariaxcompilation to MC68020
machine code witlgcc, and proofs about JVM bytecode [14].

3 Introduction

In this paper we explain how to formalize the semantics of m Meumann programming
language in a functional programming language.

The entire project will be carried out in a mechanized logamnely, with the ACL2 the-
orem proving system. “ACL2” stands for “A Computational Lodor Applicative Common
Lisp.” The programming language supported by ACL2 is a vargé, functional (or “applica-
tive”) subset of ANSI Standard Common Lisp. The semantidbatf programming language
is formalized via axioms and definitions within a first-oraeathematical logic with induc-
tion. A mechanized theorem proving environment supporsdiscovery of proofs in the
theory. We use the name ACL2 for all three of these aspe@gritgramming language, the
logical theory, and the theorem prover.

ACL2 is distributed under the Gnu General Public Licenseiaifally documented online
[12]. To learn how to use ACL2, see [10].

The von Neumann language used to illustrate this will be & senplified version of
the Sun Java Virtual Machine we call “M1.” M1 is the first in arise of models of the
JVM culminating in M6: an elaborate and accurate model ofJ¥is1 supporting multiple
threads, class loading, exceptions, etc. The formalimatimd proof techniques used in M1
were the guiding principles in the construction of the M6 mlo8ut M6 is over 160 pages of
ACL2 formalism (not counting another 500 pages represgritia M6 translation of the 672
methods and 87 classes in the Sun CLDC API library). In cehtM1 is less than 3 pages.

This paper is very similar to the author’s “Proving Theorexheut Java and the JVM with

Mechanized Operational Semantics: The M1 Story 3

ACL2” [20]. But the earlier paper discussed a fairly comated JVM model, M5, whereas
this one uses M1. The differences made by exploring a simpbelel are sufficiently startling
to bear the creation of this near repetition of the earligrepa

Unlike the former paper, we also model a compiler and we erplaductive assertion
style proofs here.

Associated with this paper is an ACL2 script that containgcdly the definitions and
theorems shown here, in the same sequence. With a few migepeans the paper is a
complete description of what must be presented to ACL2 ¥ar8i3 to construct the proofs.
The exceptions concern the precise definition of the “M1 syiphckage” (a Common Lisp
construct used to avoid name conflicts) and the correctrmess for the Boyer-Moore fast
string searching implementation. The missing definitioms$ #theorems are in the associated
ACL2 script (and the ACL2 “books” it loads).

With regard to the string searching proof, it may be brokewmmto two steps: prove
that the M1 code implements the Boyer-Moore algorithm arehtprove that the Boyer-
Moore algorithm is a correct string searching algorithmtiBparts have been done with
ACL2. But in this paper, we only discuss the first part. In jgaiterr, we use the direct (“clock
function”) approach to prove that certain M1 code implemsenew and improved variant of
the Boyer-Moore fast string searching algorithm. The prasgumeshat the preprocessing
of the pattern has been performed to set up a correctly linggh 2-dimensional array. The
code we analyze does not do the preprocesssing. We can aothbiM1 code proof with the
algorithm correctness proof to show that the M1 code is aecostring searching program
(assuming the proper preprocessing has been done).

4 TheACL2 Programming Language

ACL2 is a functional programming language, a mathemategit, and an automatic theorem
prover. For the moment, we will focus entirely on the funoibprogramming language.

4.1 Syntax

The syntax of ACL2 is that of Lisp. Here is how the user introcglsia new function, in this
case, the factorial function:

(defun fact (n)

(if (zp n)
1
(* n (fact (- n 1)))))
We write

(*» n (fact (- n 1)))

where more traditionally one would write
n* fact(n —1).

Thedef un command above definésct to be a function of one argumemt, whose value
is determined by thef -expression.

4 Mechanized Operational Semantics: The M1 Story

The 3-argument functionf is Lisp’'sif-then-else (i f x y 2) isy if z is nonhi |,
and isz if z isni | . The Lisp convention of “testing against | ” treats the objechi | as
“false” and treats all other objects as “true.” When we says‘true” we actually meanz*
is nonni | . When we say # is false” we mean# is ni | .” Using this circumlocution, we
cansayif x y 2) isyif zistrue and: if x is false, acting liker has some conventional
Boolean value when in fact it can be any object.

4.2 Data Types

ACL2 supports five data types.

e numbers: The most common numbers in this document will berakst, written0, 1, 2,
.... ACL2 also supports negative integers, rationals, and ¢exmationals. We only use
the integers here.

e characters: There are 256 character objects,#8.@,#\ a, and#\ Space. To each char-
acter there corresponds an ASCII code, i.e., an integerdegt® and 255.

e strings: A string is a finite sequence of character objecgs,"eHel | o Wor | d! .

e symbols: A symbol may be thought of as an object represeatiagne e.g., of a function,
variable, opcode, or theorem. For examplact , n, STORE, andassoci ati vi ty- -
of - append are all symbols. For our purposes, case is unimporfaatt , Fact , and
FACT all denote the same symbol. Symbols containing “unusuatatters like spaces,
parentheses, etc., must be written with special delimiietsve do not use such symbols
here.

e pairs: A pair is an object containing two arbitrary objettfe call the left component of
a pair itscar and the right component itdr. Typically we use nested pairs to construct
lists. For example, the ligtRED BLUE GREEN) is thought of as a list of three symbols
but it is “really” an ordered pair whose car is the symBR&D and whose cdr is a list of
the two symbolg BLUE GREEN) . That list is an ordered pair whose car is the symbol
BLUE and whose cdr is a list of one symidBREEN) . That list is an ordered pair whose
car is the symboGREEN and whose cdr is the symbbl L. Note that thesymbolni |
plays the role of the empty “list!”

Objects of different types are different. Thus, the strifgddELLO" and the symbol
HELLOare different.

Because Lisp tests againstl , there is no unique truth value denoting true. For exam-
ple,0, 1, "HELLO', and(HELLO WORLD) are all nonni | . If the test of an if-then-else
expression returned one of these values, the if-then-etsgdwevaluate to the true branch.
By convention when we need to return an object denoting *twestend to use the symbol
t.

When we say a function Boolearnwe mean it returns or ni | . When we say a Boolean
functionrecognizes type of object we mean that it returnsor ni | according to whether
its argument is in the type.

Lisp terms are written in the same parenthetical notati@dus write Lisp objects. In-
deed, though it is beyond the scope of this paper, Lisp tanmkisp objects! When we see
(- n 1) how do we know whether we mean the difference between theesain and

Mechanized Operational Semantics: The M1 Story 5

1 or the list of length three containing the symbglthe symboin, and the integet? The
answer is that when we mean to use an expression as a valugjtera Wsingle quote” mark
in front of it. Thus, theternf- n 1) denotes the difference ofandl and theterm (- n
1) denotes a constant list of length three. The tarig a variable; the termn is a constant
whose value is the symbaol

The key notion to keep in mind is whether we are displayinggression as &erm
to be evaluatedr as avalue For example, we might saytar (cdr *(fact (- n
1)))) evaluatest¢- n 1).” The first parenthesized expression is being used as aterm t
be evaluated and the second is its value.

4.3 Primitive Functions

All that remains is to list the available primitive functi@mymbols. We use a small subset
of ACL2 in this paper and we document only that subset herelie reason, the set of
primitives documented below may seem arbitrary.

(if z y z) theif-then-else operator; if is true, theny, elsez.

(and z; z» ... xz,) logical conjunction; if allx; are true, then the value is the last one,
T, otherwise the value isi | .

(or x; xs ... x,) logical disjunction; if there is ansuch thatz; is true, then the value
is the first such;; otherwiseni | .

(not xz) logical negationt if x is nil; ni | otherwise.

(inmplies z; z3) logicalimplication;ifz; is true, then the resultisorni | depending
on whetherr, is true; if z; isni | , the result ig .

(cons xz; x,) ordered pair constructor; the value is the ordered pair ehefscomponent
is z; and whose right componentis.

(consp x) Boolean recognizer for ordered pairs.

(car x) left component of ordered pair;, ni | if x not a pair.

(cdr x) right component of ordered pait ni | if x not a pair.

(endp z) Boolean recognizer for non-pairs (esp.|).

(at om z) Boolean recognizer for non-pairs.

(synbol p x) Boolean recognizer for symbols.

(stringp z) Boolean recognizer for strings.

(coerce z 'list) thelistof characters corresponding to the string
(characterp z) Boolean recognizer for characters.

(char-code ¢) ASCII code for charactet.

6 Mechanized Operational Semantics: The M1 Story

(i ntegerp z) Boolean recognizer for integers.

(nat p z) Boolean recognizer for integers such that x.

(equal x; z3) t ornil according to whethet; andz, are the same object.
(+ x; ... x,) sum.x;+ ...+ x,; non-numeric arguments are treatedas

(- x1 xp) difference:x; — z5; non-numeric arguments are treatedas

(* =y ... z,) productiz; x ... X xz,; nONn-numeric arguments are treatedas
(/ x1 x2) quotientix;/xo; if 1 iS non-numeric, it is treated as

(< x1 x3) lessthant ornil according tar; < x2; non-numeric arguments are treated
asO.

(<= 1 w,) lessthan or equat: or ni | according tor; < z,; hon-numeric arguments
are treated a@.

(> x1 xy) greaterthart orni | accordingtor; > x5; non-numeric arguments are treated
as0.

(>= x; z,) greaterthan orequal:orni | accordingtor; > x9; nON-numeric arguments
are treated as.

(zp z) if zis0, the value ig , if x is a positive natural, the value 18 | ; otherwise the
value ist .

The talk above about non-numeric arguments highlightsabethat ACL2 is an untyped
language. Itis legal to writt+ T 3) and(<= -2 ’ MONDAY) . According to the descrip-
tions above, the first evaluates 3oand the second evaluatesrol , because non-numeric
arguments are treated @s

The definition ofzp is oddly complicated but convenient. Consider the idiom

(if (zp n) <base> <recursion>)

and inspect the definition &p. If n is 0, the<base> case is taken. If is a nonO natural
number, the<r ecur si on> case is taken. But what i is something else, likel or a
non-integer rational or even a list? In all such cases<these> case is taken, i.ezp treats
non-naturals as it doés

The following three functions are not used explicitly in th@del or theorems shown
below. But they play crucial roles behind-the-scenes roldsoth the definitional principle
and the induction principle, and they appear often in prodesdiscuss ordinals ang further
in subsection 8.1 below.

(o-p z) t ornil according to whether is an ordinal below.

(0< z; wp) t ornil accordingto whether; a smaller ordinal tham, (provided both are
ordinals belowgy).

Mechanized Operational Semantics: The M1 Story 7

(acl 2-count z) a natural number measure of the “size” of objerfor objects com-
posed entirely of pairs and natural numbers it, for exantpke sum of number of pairs
plus the sum of all the natural numbers.

The syntax of ACL2 can be extended with macros. Through nsaem can eliminate
much repetitive syntax. We avoid macros in what follows fed@agogical purposes. When
you see the same patterns of terms emerging again and agifithat could be eliminated,
but I'd have to master macros to understand it.”

4.4 A Few Pre-Defined Functions

With these few primitives we can define a wide variety of ubkfctions. In fact, many such
functions come already defined in ACL2. Below we show debniifor the ones we use in
this paper. Sometimes are definitions differ from those etihilt-in ACL2 functions, but not
in ways that are exposed by their usage in this paper.

The following function determines the length of a list.

(defun len (x)
(if (endp x)
0
(+ 21 (len (cdr x)))))

Thus,(len " (A B C D E)) evaluates t®. If applied to a non-lisk, | en behaves as
thoughx wereni | (because of the definition endp), e.g.,(1 en 7) evaluates t®.
This function concatenates two lists.

(defun append (x vy)
(if (endp x)
y
(cons (car x)

(append (cdr x) y))))

Thus,(append "(A B C '(D E)) evaluatest¢ A B C D E).
Here is the function that returns th& element of a list.

(defun nth (n x)
(if (zp n)
(car x)
(nth (- n 1) (cdr x))))

Forexample(nth 3 " (A B C D E)) evaluates t®. The functiomt h “inherits” from
the primitives the treatment of “inappropriate” argumeriisr example(nth 3 ' (A B
C)) evaluates tami | becausear andcdr returnnil onnil.(Nth -3 " (A B Q)
evaluates to the symbd@lbecause the3 is treated a® by zp. (Nt h 2 * ABC) evaluates
toni | by the above properties ofar andcdr .

Two properties oht h are shown below. The first says th&th returnsni | when its
second argument is | (regardless of its first argument). This follows from thepgedies of

IFor example, ACL2 permits functions to hayeardsspecifying expected pre-conditions and we omit them.
Also, some “functions” here are actually macros in ACL2 pigting optional arguments. But in all cases the
expressions used in the paper have exactly the meaningsigivthe function definitions here.

8 Mechanized Operational Semantics: The M1 Story

car andcdr noted above. The second theorem says that whieran ordered pair, the size
of (nth n x) is smaller than that of, regardless of. By “size” we mean the previously
mentionedacl 2- count .

(deft hm nt h-ni |
(equal (nth n nil) nil))

(defthm acl 2-count -nth
(inplies (consp Xx)
(< (acl 2-count (nth n x))
(acl 2-count x)))
:rul e-classes :linear)

The def t hmcommands above direct ACL2 to prove the indicated formufed & suc-
cessful, store them as theorems with the namtels- ni | andacl 2- count - nt h. The
rul e- cl asses argument, when provided, tells ACL2 how to use the theoresuirse-
guent proofs. ACL2 proves these two lemmas automaticajlyntbuction onn.

We do not discuss how ACL2 proves these properties, but thdin should be self-
evident. The reason we need them is that we will later defimeestunctions that recur on
substructures of obtained by applyingt h to x. These theorems allow ACL2 to prove that
such recursion terminates.

The functionchar is like nt h but takes a string and an index and returns the correspond-
ing character from the string. Logically speaking it is definn terms oft h.

(defun char (s n)
(nth n (coerce s 'list)))

Thus,(char "Hell 0" 1) evaluates t&\ e, the lowercase character ‘e’.
Here is another useful definition.

(defun update-nth (n v x)
(if (zp n)
(cons v (cdr x))
(cons (car x)
(update-nth (- n 1) v (cdr x)))))

This function “changes¥% by setting then’” element tov. Actually, of course, it copiex.
(update-nth 3 "X (A B C D E)) evaluates td A B C X E) . Interestingly, it
extendsk on the right as necessary to “make room” forrdh element(updat e- nt h 4
"Z ' (A B Q) evaluatest¢ A B C NIL Z).

Finally, here is a useful “predicate.”

(defun nenber (e x)
(if (endp x)
ni |
(i1f (equal e (car x))
X
(menmber e (cdr x)))))

Note its non-Boolean naturé.Menber 'C ' (A B C D E)) evaluates t C D E),
which is nonni | and can thus be used as “true” integtsenber "G’ (A B C D E))

Mechanized Operational Semantics: The M1 Story 9

evaluates toi | . Menber is defined the way it is so that the programmer can discover not
just whethere occurs inx but where.

5 An Operational Semanticsfor a Toy JVM

We now define the operational or state-transition semanofiessimple programming lan-
guage. The language (and the machine it runs on) is called M1.

5.1 Basic State Manipulation Functions

We define functions that let us pretend that lists are stdtksh takes an object and a stack
and returns the stack with that object on tdpp takes a stack and returns the top itérap
takes a stack and returns the stack obtained by removingph&sn.

(defun push (obj stack) (cons obj stack))
(defun top (stack) (car stack))
(defun pop (stack) (cdr stack))

Thus,(push 3 (push 2 (push 1 nil))) evaluatestothe“stack’3 2 1) whose
t op is 3 and which yields the “stack’2 1) whenpop is applied to it.

We will represent M1 instructions as listcode returns the operation code of the in-
structioni nst andar g1 returns its first operand. For examp|€0TO - 10) and(STORE
2) are instructions. The instructigrGOTO - 10) has opcod€&OTOandar g1 - 10.

(defun opcode (inst) (nth O inst))
(defun argl (inst) (nth 1 inst))

An M1 program is just a list of instructions accessed posdlly with nt h.

The core of our semantics is the notion dcdtate The states of the M1 machine consist
of 4-tuples containing a program counter (pc), a vector chlwariable values accessed by
0-based indexing, a stack of intermediate results (therapmestack”), and a program. Here
are the functions to construct a state and return the vacoogponents of a state.

(defun nmake-state (pc | ocals stack program
(cons pc
(cons local s
(cons stack
(cons program
nil)))))
(defun pc (s) (nth 0 s))
(defun locals (s) (nth 1 s))
(defun stack (s) (nth 2 s))
(defun program (s) (nth 3 s))

2The precise instruction set we attribute to M1 varies wittiedént publications, but the M1 architecture
remains as described here. We include here just thosedtistna needed to do the examples shown. Our code
proof techniques are immune to the presence of unused dtising in the instruction set. To actually carry
out the definitions shown below it is necessary to be in a symphokage called ML" where certain pre-
defined Common Lisp symbols, e.guysh andst ep, are undefined. See the associated script for the package
definition.

10 Mechanized Operational Semantics: The M1 Story

The functionnext - i nst takes a state and returns the instruction indicated by the pc

(defun next-inst (s)
(nth (pc s) (programs)))

5.2 The Semantics of Each Instruction

We define the semantics of an M1 instruction by defining a fondhat takes an instruction
of a given class and a state and returns the next state. Ovgrttoon will be that the semantics
of the opcodep will be given by an ACL2 function with the nanexecut e- op. All of the
instructions defined below are modeled closely on actual JMtuctions. We discuss the
relationship between M1 and the JVM in subsection 5.4.

The (PUSH k) instruction increments the pc iy, pushexk on the operand stack, and
leaves the locals and program unchanged.

(defun execute-PUSH (inst s)
(make-state (+ 1 (pc s))
(local s s)
(push (argl inst) (stack s))

(programs)))

The(LOAD n) instruction increments the pc Hyand pushes the value of local variable
n onto the operand stack.

(defun execute-LQOAD (inst s)
(make-state (+ 1 (pc s))
(l ocal s s)
(push (nth (argl inst)
(locals s))
(stack s))

(programs)))

The (ADD) instruction increments the pc, pops two items off the stadkls them, and
pushes the result.

(defun execute-ADD (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))
(local s s)
(push (+ (top (pop (stack s)))
(top (stack s)))
(pop (pop (stack s))))
(programs)))

Mechanized Operational Semantics: The M1 Story 11

The(STORE n) instruction increments the pc, pops one item off the opessack, and
deposits it into local variable.

(defun execute-STORE (inst s)
(make-state (+ 1 (pc s))
(update-nth (argl inst)
(top (stack s))
(locals s))
(pop (stack s))

(programs)))

The(SUB) instruction is likeADD but pushes the difference of the top two items.

(defun execute-SUB (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))
(local s s)
(push (- (top (pop (stack s)))
(top (stack s)))
(pop (pop (stack s))))
(programs)))

The(MJL) instruction is likeADD but pushes the product of the top two items.

(defun execute-MJL (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))
(l ocal s s)
(push (* (top (pop (stack s)))
(top (stack s)))
(pop (pop (stack s))))
(programs)))

The(GOTO k) instruction increments the pc ly(which may be negative).

(defun execute-GOTO (inst s)
(make-state (+ (argl inst) (pc s))
(l ocal s s)
(stack s)

(programs)))

The(1 FLE k) instruction pops one item off the operand stack. If that itethess than
or equal td), it increments the pc by (which may be negative); otherwise, it increments the
pc by1l.
(defun execute-IFLE (inst s)
(make-state (if (<= (top (stack s)) 0)
(+ (argl inst) (pc s))

12 Mechanized Operational Semantics: The M1 Story

(+ 1 (pc s)))
(local s s)

(pop (stack s))
(programs)))

The next two instructiong,| FLT k) and(| FNE k) are analogous tbFLE except test
the top of the stack with “less than” or with “not equal” O ieat. When the test succeeds,
they increment the pc bly.

(defun execute-IFLT (inst s)
(make-state (if (< (top (stack s)) 0)
(+ (argl inst) (pc s))
(+ 1 (pc s)))
(l ocal s s)
(pop (stack s))

(programs)))

(defun execute-IFNE (inst s)
(make-state (if (not (equal (top (stack s)) 0))
(+ (argl inst) (pc s))
(+1 (pc s)))
(local s s)
(pop (stack s))

(programs)))

The(| FANE k) pops two items off the stack and increments the p& lythe two are
equal.

(defun execute-1 FANE (inst s)
(make-state (if (not (equal (top (pop (stack s)))
(top (stack s))))
(+ (argl inst) (pc s))
(+ 1 (pc s)))

(l ocal s s)
(pop (pop (stack s)))
(programs)))

Finally, the last instruction on M1 iGALQAD) . It finds two items on the stack, an “array”
a and index (with the index on top of the stack). In our model, the array i@ either a list
or a string. The instruction popsand: off the stack and pushes either tieelement of or
the ASCII code of that element, depending on whethisra list or a string.

(defun execute-ALOAD (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))

(local s s)
(push

Mechanized Operational Semantics: The M1 Story 13

(i1f (stringp (top (pop (stack s))))
(char-code (char (top (pop (stack s)))

(top (stack s))))
(nth (top (stack s))
(top (pop (stack s)))))
(pop (pop (stack s))))
(programs)))

For example, the following sequence of instructions:

(PUSH " HAT")
(PUSH 1)
(ALOAD)

would leave65 (the ASCII code for uppercase ‘A) on the stack. If lo&Glcontains the
“array” of strings(" Mon" " Tue" "Wed" "Thu" "Fri" "Sat" "Sun") and local
4 contains the integer 5, then

(LOAD 3)
(LOAD 4)
(ALOAD)

would leave the string Sat " on the stack.

5.3 Putting It All Together

Now we put it all together by defining a “big switch” functiohat takes an M1 instruction
and dispatches on its opcode to invoke the appropriatestatsition function.

(defun do-inst (inst s)
(if (equal (opcode inst) ’PUSH)
(execute-PUSH inst s)
(if (equal (opcode inst) ’'LOAD)
(execute-LOAD inst s)
(i1f (equal (opcode inst) 'STORE)
(execute- STORE inst s)
(if (equal (opcode inst) ' ADD)
(execute-ADD inst s)
(if (equal (opcode inst) ’SUB)
(execute-SUB inst s)
(i1f (equal (opcode inst) ' MJL)
(execute-MJL inst s)
(if (equal (opcode inst) 'GOTO
(execute-G0OTO inst s)
(if (equal (opcode inst) 'IFLE)

(execute-I FLE inst s)
(if (equal (opcode inst) 'IFLT)
(execute-1FLT i nst s)

(if (equal (opcode inst) 'IFNE)
(execute-1FNE inst s)

14 Mechanized Operational Semantics: The M1 Story

(1f (equal (opcode inst) 'IFANE)
(execute-1 FANE inst s)
(if (equal (opcode inst) ’'ALOAD)
(execute-ALOAD inst s)
$)))))))))))))

Note that any opcode other than the dozen tested above i®p:rapplyingdo- i nst to an
unknown instruction returns the stase,unchanged.

To step an M1 state, we simply fetch the next instruction g ete it against the current
state.

(defun step (s)
(do-inst (next-inst s) s))

Note that if the next instruction has an unknown opcadegp is a no-op. Hence, if the pc
points to an unknown instruction, then it points to that sams&uction after &t ep is taken.
Repeatedly stepping such a state causes no change. Thatstien on an unknown opcode
halts the machine! It is convenient to define the notion ofmiii® machine is halted.

(defun haltedp (s)
(equal s (step s)))

To run the M1 machine repeatedly from some sgteve step it once for every element
in a schedulsched.

(defun run (sched s)
(if (endp sched)
S
(run (cdr sched) (step s))))

We comment below on why we defimeun to take a list and ignore all aspects of it but its
length.

5.4 Comparing M1 to the JVM

To bring home the spiritual similarity of M1 to the JVM, we comant on the differences.
Recall the first instruction we defined.

(defun execute-PUSH (inst s)
(make-state (+ 1 (pc s))
(l ocal s s)
(push (argl inst) (stack s))

(programs)))

The Sun JVM specification [13] describes a close relativéisfinstruction as follows:
bipush
Operation
Push i nt constant
Format

Mechanized Operational Semantics: The M1 Story 15

bi push byte
Form (actual byte code)
bi push = 16 (0x10)
Operand Stack
.. = ...,value
Description
The immediatéyte is sign-extended to am nt value. That
value is pushed onto the operand stack.

All JVM instructions are described in this format.

Among the differences between MIPJSH and the JVM’sbi push are the following.
First, a program on the JVM is a stream of bytes, so the opeaabdpush is just the byte
after the opcode in the stream; on M1, a program is a list dfunsons and each instruction
is an object (list) containing its operands. Second,lithpush instruction can only push
a 32-biti nt ; the M1 PUSH instruction can push any ACL2 object. Third, the names of
the instructions are different! JVM instructions almostays have names beginning with a
one- or two-letter prefix indicating the type of data they rape on; the bi ” indicates the
instruction converts a byte into amt . M1 instructions carry no type information in their
names.

The next M1 instruction wa6LOAD n) . The JVM contains four analogous “load” in-
structionsdl oad, f | oad, i | oad, andal oad, to be used according to the type of data in
the indicated local variable: double, float, 32-bit integeraddress (reference), respectively.
The JVM versions of these instructions each consume twcshgtéhe instruction stream:
one for the opcode and one for the number of the local. Bedaisgery common to load
from localsO, 1, 2, and3, there are one-byte versions of these opcodes with mneslokec
dl oad_0,dl oad_1, dl oad_2, anddl oad_3, etc. M1 avoids this duplication too.

The M1'sADD, SUB, andMJL arithmetic instructions do unbound arithmetic. The JVM’s
instructions implement bounded arithmetic of various sypeg.,i add, i sub, andi nmul
operate on and return to 32-bit twos-complemenng*”) representation. The JVM supports
doubles and floats as well. In our more sophisticated mod#tedVM, we describe bounded
arithmetic accurately.

The(| FANE k) instruction on M1 is modeled after the JVM’$ _acnpne instruction.

It pops two items off the stack and increments the p& bifthe two are equal. On the JVM,
the two items are expected to be addresses.

The M1's(ALOAD) is based on the JVM familgal oad, cal oad, dal oad, f al oad,

i al oad, | al oad, aal oad, andsal oad, for pushing onto the stack a datum of type byte,
char, double, float, 32-bit integer, long, address, and ghespectively) obtained by indexing
into an array. Both the array, and the indexj, are found on the stack, popped off, and
replaced byi[i] as in M1.

However, our generi@dL OAD instruction differs in a more fundamental way from those
on the JVM. The JVM finds on the stack, in placeapfan address into the JVM heap. The
corresponding JVM instructions de-reference that addaesisobtain the array object into
which they index. But M1 does not model a heap. What M1 findsherstack fow is either
an ACL2 string or an ACL2 list.

By omitting the heap and having M1 traffic in ACL2 objects weafty simplify M1
proofs. But we also make it impossible to model the destractiodification of Java objects.
In more sophisticated models we model the heap as a finite mapdddresses to ACL2

16 Mechanized Operational Semantics: The M1 Story

objects. Bytecode instructions which “operate on Java €@$jeactually expect to find ad-
dresses on the stack, just as in the JVM. The modification a¥a @bject in the heap is then
modeled by associating a different ACL2 object with the Jagect's heap address in the
model of the heap.

Aside from the heap, the most glaring omission from M1 is supjor procedure call and
return, called “method invocation” and return on the JVM.sSIpport it, imagine changing
the state so that it is really a stack of M1-like states. Edement of thiscall stackis called
a frame and corresponds to the activation of some method.b&kie method invocation
instruction on the JVMi, nvokevi r t ual obtains an object from the operand stack, uses it
(via method resolutionto obtain some bytecode, and constructs a new frame (“Mé&"$t®
run that code with the actuals loaded into the lodgksturninstructions of various types pop
the frame off the call stack and push the computed value(s)tbe callers operand stack.

As to why we define un to take a “schedule” and then ignore all but its length, tlasoa
is that this keeps M1 similar to our more sophisticated JVMleis. In those models (e.g.,
M5 [20] and M6 [14, 15]), we elaborate the state considerablinclude a thread table, a
heap, and a class table. In these models, the state corfsastisread table, a heap (modeled
as described above), and a class table. We model the cldssatah finite map from class
names to class descriptions, which include the names areg tfthe fields and methods of
the class, including the bytecode for each defined method.

Each thread in the thread table has a thread identifier anlfl staek as described above.
To step this multi-threaded state, one must specify thathte be stepped. In these models,
the schedule is a list of “thread identifiers” andn passes each successive thread identifier
to thest ep function so that the appropriate thread state is stepped.

The reader ought to be able at least to imagine growing M1lariteal” JVM. For peda-
gogical purposes, we keep M1 very simple.

6 An Example Program

Consider the following simple Java program defining an tteedactorial methodi f act .

public static int ifact(int n){

int a=1;
while (n>0) {a = nxa; n =n-1;}
return a;

In this section we will show the M1 program correspondinghis nd we show how to
use the operational semantics model to execute (“simyl#tes’program on concrete data.

6.1 The Program

If one compilesthe f act program with Sun’g avac compiler, one obtains JVM bytecode.
Below we define a constant, nametlact - pr ogr am, whose value is the corresponding
program on M1. In Lisp, comments are preceded by a semi-@idreverything to the right
of the semi-colon on a line is ignored. Thus,f act - pr ogr amx is just the list shown to
the left of the column of semi-colons.

Mechanized Operational Semantics: The M1 Story 17

The variablen in the Java code is local varialfdein the bytecode. The variabéeis local
variablel. Thus, to run this program on some valuge must first put: into local variable
0.

Consider the display below and note the five columns. Theneollabeled “M1 code”
is the list of instructions on our machine. The column labéM1 pc” is the location in the
list of each successive instruction; the numbers are séqustarting from0. The column
labeled “JVM pc” is the actual byte address of the correspandVvM bytecode instruction.
The bytecode instructions are shown in the column labelgtetmde.” Finally, the column
labeled “Java” contains the Java statements that gaveortbe torresponding bytecode.

(def const =*ifact-program

; ML ML JVM JVM Java
; code pc pc byt ecode
"((PUSH 1) ; 0 0 bi push_1

(STORE 1) ; 1 1 istore_l a = 1,
(LOAD 0) 2 2 I 1 oad_0 whi l e (n>0) {
(1 FLE 10) 3 3 ifle 17
(LOAD 0) 4 6 il oad_0
(LOAD 1) 5 7 iload.1l
(MUL) 6 8 I mul
(STORE 1) 7 9 istore_l a = nxa;
(LOAD 0) 8 10 I 1 oad_0
(PUSH 1) 9 11 bi push_1
(SuB) 10 12 i sub
(STORE 0) 11 13 istore0 n =n-1;
(GOTO -10) 12 14 got o 2 }
(LOAD 1) 13 17 il oad 1
(RETURN) 14 18 ireturn return a;
))

Note that the JVM pcs generally increaselbgn successive lines. That indicates that the
bytecode instruction on that line takes up one byte. Bui flee andgot o instructions take
3 bytes each; thus the JVM pc column jumps by three on those. lde M1, we address the
locations in the program by instruction counts, not bytentsu

Also note that the M1 FLE andGOT O instructions contain operands used as offsets to
the current pc. But the numbers shown in the correspondimg idigtructions at JVM pcS
and14 are the absolute byte addresses of the branch targets.sTjost ian artifact of how
bytecode is printed by the Syravac utility. In fact, the JVM instructions f | e andgot o
really do operate on offsets.

With the exceptions noted above, and our convention of dngpbe type-specify prefixes
on the instruction opcodes, the constanf act - pr ogr amx is just what the Supavac
compiler produces. Of course, the semantics of our instnistare actually somewhat sim-
pler than those of the JVM, even for this subset.

18 Mechanized Operational Semantics: The M1 Story

Note that the M1 program above uses the undefined instruBEIMJRN. It effectively
halts the machine. Given tfeOAD 1) at our pcl3, when the machine halts the value of
a is on the stack.

6.2 Running the Program

To run the program we must have a schedule. The length of feglate should be the number
of steps to takes to runi f act - pr ogr amx from the first instruction to the last. To define
the schedule we need a utility functiomgpeat , which returns a list of a given length.

(defun repeat (th n)
(if (zp n)
nil
(cons th (repeat th (- n 1)))))

For example(repeat 0 4) evaluatestg0 0 0 0).

To define a schedule fori f act - pr ogr amx we first consider the loop that starts at
M1 pc 2. Inspection of<i f act - pr ogr amx reveals that if. is 0 when the pc i, then it
takes four steps to reach the terminatREgTURN instruction at our pd 4. In particular, the
machine will execute these four instructions: H@AD at 2, thel FLE at 3, and then, because
local variable0 is equal ta0, theLOADat M1 pc13 (=3 + 10), and theRETURN. If, on the
other handp is non-0, the program will execute the 11 instructions betwlgl1 pc2 and the
GOTOand be back at p2 with » — 1 in local 0.

Thus, a suitable schedule to run the program from M2 fjo termination is given as a
function ofn as follows.

(defun ifact-1oop-sched (n)
(if (zp n)
(repeat 0 4)
(append (repeat 0 11)
(ifact-loop-sched (- n 1)))))

Since it takes 2 instructions to get from the top of the progta the top of the loop, a
scheduletoruni f act - pr ogr anx to completion is constructed by the following function.

(defun ifact-sched (n)
(append (repeat 0 2)
(i fact-1oop-sched n)))

With this schedule we can, in principle, ranf act - pr ogr anx on any natural number
n. To do it, construct a state, with program component being f act - pr ogr am: such
that the pc i€, the locals is a list containing as its0’* element, and the stackis | . Use
run to steps according to the scheduld f act - sched n). This produces some other
states’. Finally, get the operand stack frogshand take its top item. We claim the result will
be(fact n).

For any natural constamtwe can phrase this as a theorem. Below is an example run for
n = b.

Mechanized Operational Semantics: The M1 Story 19

(defthm factorial -5-exanpl e
(equal (top
(stack
(run
(ifact-sched 5)
(make-state
0
(5 0)
ni
i fact-program))))
(fact 5))
:rul e-classes nil)

This theorem is trivial to prove: we just execute the modethle case of. = 5 the schedule
is of length 61, which mearrsun takes 61 steps.

We can run the M1 model on larger examples. For example, ifepéace5 above by
1000, M1 steps 11,006 times and comput@80!, a number with 2,568 decimal digits. Our
little M1 inherits a lot of power from its parent language, IAC We can execute these eleven
thousand instructions in less than 0.03 seconds on a 2.4 GtEzQore 2 Duo Mac OS X
laptop. That is about 360,000 instructions per second.

This supports the claim that an operational model formdlirea functional language
can be used as a simulation engine. At AMD, where ACL2 is ueecktify floating point
hardware designs for all AMD processors from the Athlon omisaACL2 models have been
run on over 80 million floating point test cases as part of fieegss of validating the models
against more conventional simulators [24, 25]. ReseasdidRockwell Collins, where ACL2
is used to explore security properties of hardware and so&wartifacts, report that ACL2
models run at 50% to 90% the speed of their C models [8].

While ACL2 models are not as fast as conventional indussimalulators, they are not
mere toys.

7 Another Programming L anguage

To help solidify intuitions about M1, we develop a compiler fa simple language with
assignment and while statements. We call the language The"compiler will transform a
well-formed J1 program into an M1 program. J1 is not very.ritis a language of arithmetic,
assignment, and while statements, with the only test besiga “greater than.” It does not
support arrays or string data. So it does not illustrate fis@soAL OAD instruction and some
of thel Fxx instructions. But it suits our purposes.

7.1 Grammar of J1

<expr> = <var>| <i nt-constant>| (<expr> <op> <expr>)
<op> =+ -]

<t est > = (<expr> > <expr>)

<stnt > = (<var> = <expr>) |

(while <test> <stnt+>) |

20 Mechanized Operational Semantics: The M1 Story

(return <expr>)

<stnt x> = <stnt> | <stnm> <stnt=*>
<pr ogr ane = (<stnt=*>)
<var > = any ACL2 synbol

any ACL2 integer

<i nt-constant> :

Thus, an example J1 program is:

((a =1)
(while (n > 0)
(a=(n~* a))
(n=(n- 1)))

(return a))

I 1 o

For the purposes of this exercise, we will assume that evexyram we wish to compile
is syntactically well-formed. We also assume every J1 @ags implicitly paired with a list
of formal parametersin the J1 program above, the only formal parameter.igh a more
sophisticated language, programs are given names anddbais are explicitly declared, as
in the first line of a Java method.

We show the complete compiler in Appendix A. It takes six gaigedefine, explain, and
illustrate the compiler. But if one evaluates

(conpile ' (n)
"((a = 1)
(while (n > 0)
(a =(n* a))
(n=(n-1)))

(return a)))

the result is the M1 program shown above.

At this point, we have a choice. One “natural” activity woudd to prove that the J1 to
M1 compiler is correct. The other is to prove some M1 prograorsect, using the compiler
merely as a means to obtain some interesting programs.

To prove the compiler correct we would need to define the séosaof J1. Semantics of
higher level languages have been repeatedly defined imsgdilee ACL2 and compilers for
them have been proved correct [18, 26, 4]. As with M1, we waislel an operational seman-
tics for J1 and the state would be the bindings of the varsafmientioned in the program.

But we prefer not to formalize the semantics of J1. The reasdhat this better re-
flects the situation we find today in the software industrye Bemantics of widely used
programming languages are most often given only by theirplens! For example, C and
C++ actually have platform-specific semantics. Java’'s s¢icgis made precise and nearly
platform-independent by virtue of a very well-designed apdcified virtual machine.

So we proceed now to prove J1 programs correct — by provinghtiecounterparts cor-
rect. This work, too, has been carried out with very large el&d-or example, Yuan Yu used
the earlier Boyer-Moore theorem prover, NQTHM, to verifg tBerkeley C String Library by
compiling it withgcc - o to obtain Motorola MC68020 binary and then verified the bmnar
with respect to a formal model of the MC68020 [3]. Sandip Raiyvpte communication]
used the M5 model of the JVM to verify the invertibility of AER28 encryption/decryption.

Mechanized Operational Semantics: The M1 Story 21

8 Proving Theoremswith ACL2
8.1 The ACL2 Logic and Theorem Prover

ACL2 is afirst-order mathematical logic that includes a gipie of recursive definition and a
principle of mathematical induction. Key to both principlkere the ordinals belowy = w**
and the well-founded relatiom< on them. The ordinals, recognized byp, are constructed
from ordered pairs and natural numbers along the lines otdnerete representation pro-
posed by Gentzen [6]. See [17].

The principle of definition requires that every recursivadtion definition be “proved
to terminate” by exhibiting an ordinal measure of the argota¢hat is proved to decrease
in every recursive call. The principle of induction allowseoto assume inductive instances
of the conjecture being proved, provided there is an ordimeédsure of the variables being
instantiated that can be proved to decrease under the tiastag substitutions.

To this logic we add axioms characterizing the primitiveduion symbols. For example,
one of those axioms is

(def axi om car - cons
(equal (car (cons x y)) X))

We leave the other axioms to the reader’s imagination [11].

The ACL2 theorem prover attempts to prove conjectures sitibanby the user. To a
first approximation, the theorem prover works as followsclEaubgoal is attacked first
by exhaustive simplification, applying axioms, definitipasd previously proved lemmas
arewrite rules Wheni f -expressions are introduced by rewriting, the resultirnageals are
splitinto cases and exhaustive simplification continuesamh case. Any subgoal that fails to
be proved this way is attacked with induction. Inductiveuangnts are formulated based on
the recursions of the functions involved. Of course, theeesnaany more heuristics, dozens
of uses for previously proved lemmas besides rewritingggrdted decision procedures, ac-
commodations for user-supplied hints, and many other feaf 0].

But the salient feature of the above description is that tle@rem prover’s behavior is
determined by the theorems previously proved. Thus, to nfakeystem capable of auto-
matically proving many theorems in some particular probbmmain the user’s task is to
formula lemmas about the function symbols in that domaipicslly with the aim of making
the simplifier canonicalize expressions over those funciiambols.

8.2 The M1 Problem Domain

With that in mind, we now present the theorems about M1 theairawolved in virtually every
M1 code proof.

Since M1 involves arithmetic, we include a standard set whetic theorems, called
"arithnetic/top-wth-neta" thatis distributed with ACL2. Such sets of definitions
and theorems in ACL2 are callédoks The standard ACL2 distribution comes with over 200
books supporting formal reasoning in various domains. Welevose other arithmetic books,
for example, if M1 supported 32-hitnt arithmetic.

To support our pretense that certain ordered pairs aresstaekhave the following rewrite
rules.

22 Mechanized Operational Semantics: The M1 Story

(deft hm st acks
(and (equal (top (push
(equal (pop (push

x

s)) x)
s)) s)

X

(equal (top (cons x s)) Xx)
(equal (pop (cons x s)) s)))
We then instruct the rewriterotto expand the definitions @ush, t op, andpop.

(in-theory (disable push top pop))

This way, we do not seeons, car, andcdr in our proofs where we expect to spash,
t op, andpop.

One might wonder why we need the odd rules alidubp (cons x s)) and(pop
(cons x s)),giventhapush is disabled. The reason is that even wpers h is disabled
ACL2 will compute(push 3 (push 2 (push 1 nil))) tothe constant expression
"(3 2 1),whichunifieswith(cons x s) ;sowe need rules for taking the@p andpop
of explicit “stack” constants.

We treat M1 states analogously

(defthm st at es
(and (equal (pc (make-state pc locals stack progran)) pc)
(equal (Il ocals
(make-state pc |locals stack progran)
| ocal s)
(equal (stack
(make-state pc |l ocals stack progran))
st ack)
(equal (program
(make-state pc |locals stack progran)
pr ogr am

(equal (pc (cons pc x)) pc)
(equal (locals (cons pc (cons locals x))) |ocals)
(equal (stack

(cons pc (cons locals (cons stack x))))

st ack)

(equal (program

(cons pc

(cons locals (cons stack (cons programx)))))

progranm))

(in-theory (disable nmake-state pc |ocals stack progran))

We next arrange for the M1 state transition functishgep, to expand only if we can
determine that the next instruction is an ordered pair. Nlo& the right-hand side of the
concluding equality below is just the body of the definitidnsd ep. The theorem is trivial
to prove. But after proving it, we disabsd ep.

Mechanized Operational Semantics: The M1 Story 23

(deft hm st ep- opener
(inplies (consp (next-inst s))
(equal (step s)
(do-inst (next-inst s) s))))
(in-theory (disable step))

The effect is that if we have deeply nesttidep expression, e.g(,step (step (step
(step s)))) thenwe will not expand any of thet eps unless we know the corresponding
instruction to be executed. Typically, that will force omhe innermosst ep to expand —and
only if enough is known aboutto resolve the instruction, e.g., the specific pc and program
Allowing the theorem prover to exparst ep prematurely is disastrous: eashep above
would expand to a case analysis on all possible M1 instrostio

We also control the expansion ofin. First we prove

(defthm run- opener
(and (equal (run nil s) s)
(equal (run (cons th sched) s)
(run sched (step s)))))

to forcer un open only when the schedule is an explicit painot . Our goal is to disable
run.
But first we prove a most important and beautiful theorem &bl

(deft hm run-append
(equal (run (append a b) s)
(run b (run a s))))
(in-theory (disable run))

Recall that schedules are lists. This theorem considerbedste created by concatenating
two schedules. It tells us that we can determine the fina $tatrunning the second part of
the schedule on the state produced by running the first plaig.iJ “sequential composition”
and is trivially proved by induction on schedwde

Rewriting with this theorem is a critical move in code prowfsvhich explicit schedules
are constructed. For example, recall our top-level scleefituli f act .

(defun ifact-sched (n)
(append (repeat 0 2)
(i fact-1oop-sched n)))

A typical sequence of simplifications is

(run (ifact-sched n) s)
= {by def i f act - sched}
(run (append (repeat 0 2)
(i fact-1oop-sched n))
s)
= {by def r epeat }
(run (append * (0 0)
(i fact-1oop-sched n))
s)
= {by run-append}

24 Mechanized Operational Semantics: The M1 Story

(run (ifact-1oop-sched n)

(run (0 0) s))
= {by run-opener}
(run (ifact-I|oop-sched n)

(step (step s))).

Note that if we know enough about staebove to determine the first two instructions, we
can then expand thet eps (usingst ep- opener) to calculate the symbolic state upon
which we run the schedule f act - | oop- sched n).

Similarly, to prove something abo(t un (i fact-1oop-sched n) s),we might
inductively assume the conjecture farun (i fact-1oop-sched (- n 1)) &),for
non-zeron and some stat&, and prove the conjecture fér un (i fact-1| oop-sched
n) s).But

(run (ifact-1loop-sched n) s)
= {by i fact-1| oop-sched}
(run (append (repeat 0 11)
(i fact-1oop-sched (- n 1)))
s)

Then following the same pattern seen earlier, we use- append, r un- opener, and
st ep- opener to runs symbolically for eleven steps to g&t reducing the term above to

(run (ifact-1oop-sched (- n 1)) &)

which matches the un in our induction hypothesis (if we chose tkein our induction
hypothesis wisely).

Resuming our discussion of useful lemmas for M1 code prawésalso must deal with
how the local variables are accessed and updated. The fodwo lemmas are sufficient to
force ACL2 to eliminate anyt h orupdat e- nt h expression in which the first argument is
a specific natural number. standard lemmas.

(deft hm nt h- add1!
(inplies (natp n)
(equal (nth (+ 1 n) list)
(nth n (cdr list)))))

(deft hm updat e- nt h- add1!
(inplies (natp n)
(equal (update-nth (+ 1 n) v x)
(cons (car x) (update-nth n v (cdr x))))))

For example, suppose the expresqiont h 2 x) arises. Because ACL2 can mat2twith
(+ 1 n) (bybindingn to 1) and becausg# is a natural(nt h 2 x) is rewritten to(nt h
1 (cdr x)).This process repeats and we get h O (cdr (cdr x))) which then
becomeq car (cdr (cdr x))) becausé® is the base case fart h. While this same
expansion might be done by ACL2’s heuristic use of the reeardefinitions ofnt h and
updat e- nt h, these rules ensure faster elimination of the functions.

With these basic lemmas we can begin automatic code prootg &l code.

Mechanized Operational Semantics: The M1 Story 25

9 Proving Theorems about M1 Code
9.1 General Strategy and Terminology

In our first approach to code proofs we illustrate a methoagioed by the Boyer-Moore
community and first used extensively in [1]. It is sometimal$eal theclock functiorapproach
or simply thedirectapproach.

A total correctness theorembout a program in some statesays that there exists some
schedule or number of stepssuch that, from am satisfying thepre-condition v, the pro-
gram terminates itk steps and produces a state satisfyinggbst-condition¢, relating the
initial and final states. Given an operational semanticsaehdal in a function-un, the direct
expression of a total correctness theorem is something like

k(Y (s) — (haltedp(run(k,s)) A ¢(s, run(k, s))))

Often, to prove such a formula, one exhibits the constraatioca suitable:. That is, one
proves instead

(¥(s) — (haltedp(run(k(s),s)) A ¢(s, run(k(s), s))))

where thée: above is é&kolem functionf s witnessing the existence of a suitable schedule or
clock to drives to termination. Since ACL2 does not have an existential jfian our direct
total correctness theorems take this latter form and théeSkéunctionk is often called a
clock functiorbecause it tells us how many steps it takes tostmcompletion. It is defined

by the user.

How do we prove such theorems? The first step is to define a matfel function,
independent of the programming language, that expreseesldgbrithm used. We call this
function thealgorithm Often the programmer had this function in mind before thegpam
was coded.

By making the algorithm explicit one can decompose the ctmess proof into two big
steps: (a) prove that the code implements the algorithm(langrove that the algorithm sat-
isfies the correctness condition. Good programmers oftey oat step (b) in some informal
form first, although there are situations where it is advgebas to be able to experiment with
code’s performance and behavior before investing any tims¢eps (a) or (b).

Typically every loop in the program corresponds to a reger&inction in the algorithm.
So step (a) breaks down into proving that each loop is coamtthen composing the results.

The beauty of this approach is that step (a) is generallyg$tifarward because the code
and the algorithm operate in lock-stiey constructionBut step (b) does not involve the code
or the operational semantics — they have been factored dudramis left with a mathematical
problem.

Of course, the devil is in the details. So we use the technjigtedescribed to prove that
x| fact - progr ant is correct.

9.2 Direct Total Correctness

Recall

26 Mechanized Operational Semantics: The M1 Story

(defconst =ifact-program

; ML ML
; code pc
"((PUSH 1) ; 0
(STORE 1) ; 1
(LCAD 0) ; 2
(1 FLE 10) ; 3
(LOAD 0) ; 4
(LOAD 1) ; 5
(MJL) , 6
(STORE 1) ; 7
(LCAD 0) ; 8
(PUSH 1) ; 9
(SuB) ;10
(STORE 0) ;11
(G010 -10) ;12
(LOCAD 1) ;13
(RETURN) ;14

))

Our goal is to prove

(defthmifact-correct
(inplies (natp n)
(equal (run (ifact-sched n)
(make-state O
(cons n (cons a nil))
st ack
x| fact - progrant))
(make-state 14

(cons 0 (cons (fact n) nil))

(push (fact n) stack)

i fact-program))))

This can be seen as being in the schematic form of a totalatogss theorem where the
initial states is the firstmake- st at e above. Thus, pre-condition checks that the pc of
s is 0, the locals are» anda, the program isi f act - pr ogr am (all of which are true
by construction ofs) andn is a natural number (which is the only part ©fchecked ex-
plicitly). The post-condition) above is that final state is some quite particular state, yame
the secondrake- st at e above. In that state, the pc i3} (pointing to theRETURN) in
x| fact - programe, local0 has been cleared and locahas the valué f act n), and
the stack of the initial state hg$ act n) pushed upon it. We do not state thal t edp
condition explicitly here because og#imakes it obvious (the instruction at 14RETURN).
What is the algorithm behin€li f act - pr ogr am? Perhaps surprisingly, it isot the
functionf act ! The algorithm behind i f act - pr ogr anx is

Mechanized Operational Semantics: The M1 Story 27

(defun ifact (n a)
(if (zp n)
a
(ifact (- nl1) (» na))))

Technically, this recursive function corresponds to theplérom pcs2 — 12. The program
itself corresponds to the expressipnf act n 0) . We are using a loose notion of “corre-
sponds.” The algorithm just describes the result of the codethe entire transformation on
the state.

To prove the loop correct, we prove

(defthmifact-Ioop-1lenm
(inmplies (and (natp n)
(natp a))
(equal (run (ifact-1oop-sched n)
(make-state 2
(cons n (cons a nil))
stack
i fact-progrant))
(make-state 14
(cons O (cons (ifact na) nil))
(push (ifact n a) stack)
i fact-progranr))))

This lemma states the total “correctness” of the loop in Bydlbe same way the main theo-
rem states the total correctness of the entire program -pekeee it phrased in terms of the
algorithmi f act instead of the “more abstract” specification functfaact . This lemma is
proved automatically by ACL2. The key to that automatiorhsttthe tern(i fact n a)
suggests the right induction.

To move up from the loop to the whole program, we prove

(defthmifact-1emm
(inplies (natp n)
(equal (run (ifact-sched n)
(make-state O
(cons n (cons a nil))
stack
i fact-progrant))
(make-state 14
(cons 0 (cons (ifact n 1) nil))
(push (ifact n 1) stack)
i fact-progranr))))

This is trivial becauséi f act - sched n) opens into amppend, we user un- append
as previously discussedun the program on the first two steps, initializiago 1, and find
ourselves at p@ prepared to un the schedul¢i f act -1 oop- sched n) . But thatr un
is correct byi f act - | oop- | emma.
We can now disablef act - sched so that we never run the bytecode again in proofs.

28 Mechanized Operational Semantics: The M1 Story

(in-theory (disable ifact-sched))

We have completed step (a) of our proof methodology. We wbeldone had our original
specification been interms ¢f f act n 1) instead of f act n) . Step (b) is to establish
the relation between these two different mathematicalrg@gins of the same idea.

(defthmifact-is-factori al
(inmplies (and (natp n)
(natp a))
(equal (ifact n a)

(» (fact n) a))))

Note that to prove thati fact n 1) is(fact n) we have to prove a more general
mathematical relation. This is just a fact of life when deglwith induction.

Given this theorem and the arithmetic theorem thas the multiplicative identity, our
main theorem follows.

(defthmifact-correct
(inplies (natp n)
(equal (run (ifact-sched n)
(make-state O
(cons n (cons a nil))
st ack
i fact-progranx))
(make-state 14

(cons 0 (cons (fact n) nil))

(push (fact n) stack)

i fact-program))))

The beautiful thing about this theorem is that if one is ewsked tor un the particular
initial state with the f act - sched one need not actually do the step-by-step computation.
One may simply set the pc 34, adjust the locals, and pugth act n) on the stack.

This makes this style of theorem compositional. Given agdgmgpgram we can prove the
correctness of pieces of it, each with their own scheduld,then derive the correctness of
the whole run (with a schedule obtained by concatenatingqtheidual schedules) — without
re-inspecting the pieces. Similar comments apply if we rektine computational model to
include procedure call and return.

Fromi f act - corr ect we can also prove two simple, weaker, corollaries. Oftesghe
two facts are enough to satisfy the “user” of the program iesfjon. First, the program
terminates.

(defthmifact-correct-corollary-1
(inplies (natp n)
(haltedp (run (ifact-sched n)
(make-state O
(cons n (cons a nil))
stack
i fact-progrant)))))

Mechanized Operational Semantics: The M1 Story 29

It is important to prove this theorem. To see why, look at Apgie B in which we show a
universal M1 prograntapable of computingnyfunction into the naturals — if we ignore the
hal t edp condition!

Second, the program leavgebact n) on top of the stack.

(defthmifact-correct-corollary-2
(inplies (natp n)
(equal (top
(stack
(run (ifact-sched n)
(make-state O

(cons n (cons a nil))
st ack
i fact-program))))

(fact n))))

These weaker corollaries do not safnat else the program doeBor all we know from
these lemmas, execution of the program might do arbitraryadge to our machine’s state.
| fact-correct,above, istruly @otal specification of the program and in many situations,
especially regarding security, such specifications arelyidesirable.

We could re-phrase all our lemmas by replacing act - pr ogr amx by a call of the
compiler, e.g., we could state the previous corollary imeeof a J1 program:

(defthmifact-correct-corollary-3
(inmplies (natp n)
(equal (top
(stack
(run (ifact-sched n)
(make-state O
(cons n (cons a nil))
st ack
(conpil e
()
((a = 1)
(while (n > 0)
(a =(n* a))
(n=1(n-1)))
(return a)))))))
(fact n))))

This is trivial to prove because tleonpi | e expression evaluates to the same constant as
i fact-progrank.

Note that our theorem is still phrased in terms of the statéseolower level machine,
M1, because we do not have a J1 machine. We can imagine dedidihghachine in terms of
M1 and the compiler. But we would then have to decide whicbueses of the M1 machine
matter to the J1 programmer. Is it just the bindings of theabdes? Just the return value?
Both? And if we hide resources can we still state the key lowpriants in terms of visible

30 Mechanized Operational Semantics: The M1 Story

resources? Finally, what do we do about the clock? Coulddhgder be modified to produce
a proposed clock function?

These questions cast doubt on the viability of the idea afgigicompiler to give meaning
to programs. And yet, that is how the world’s programmersajgetoday! Indeed, without
admitting the intimate link between high-level languagegsams and their compiled coun-
terparts it is virtually impossible to explain or reasoreefively about many systems because
they mix languages. In many situations, a program in a higél lprogramming language
should be viewed simply as an abbreviation for its machimtkecas we are doing here.

9.3 Inductive Assertion Style Proofs

A more common way to argue the correctness of code ignihéctive assertiomethod in-
troduced by Floyd [5] and formalized vidoare logicor program logicby Hoare in [9]. The
basic idea is to annotate the code with assertions, indualinrassertion at the top of the code
characterizing the pre-condition. Then one derives foamtating that if the assertion at
some program location holds then the next assertion reaaload any program path from
that location also holds. These formulas are calledfication conditions (VCsdr simply
proof obligationsand the software that generates them is calledrdication condition gen-
erator (VCG) Finally, these VCs are proved with a mechanical theoreregordf they are
all theorems, then it can be concluded that if the pre-cais true, then every assertion is
true every time it is reached in program execution. In pal&ic any post-condition assertions
at the program exits are true when (and if) reached.

Generally, this method of code proof requires either thdeémgntation of a VCG to give
semantics to the programming language or else a Hoare sesantl a mechanization of it
that derives proof obligations to submit to a theorem prolveeither case, one also needs a
theorem prover.

Though it is not widely appreciated — and had apparentlymasen published until 2003
[19] —itis possible to do mechanized inductive assertiglesiroofs without a VCG or Hoare
logic. All that is needed is an operational semantics anearém prover.

We briefly illustrate the technique on f act - pr ogr am. It is convenient to define
functionsn anda to return the current values (in some stajef localsO andl.

(defun n (s) (nth 0 (locals s)))
(defun a (s) (nth 1 (locals s)))

Recall, again,

(def const =*ifact-program

; ML ML
; code pc
"((PUSH 1) ; 0
(STORE 1) ; 1
(LOAD 0) ; 2
(1 FLE 10) ;3
(LOAD 0) ; 4

Mechanized Operational Semantics: The M1 Story 31

(LOAD 1) .5
(MJL) , 6
(STORE 1) L7
(LOAD 0) .8
(PUSH 1) .9
(SUB) 10
(STORE 0) C11
(GOTO - 10) L 12
(LOAD 1) 13
(RETURN) .14
))

and the fact that there is a loop from s 12.
Now consider the following command.

(defspec ifact ifact-program (nO a0) 0 14
((0 (and (equal nO (n s))
(natp n0)))
(2 (and (natp n0)
(natp (n s))
(natp (a s))
(<= (n s) n0)
(equal (fact n0) (* (fact (ns)) (a s)))))
(14 (equal (top (stack s)) (fact n0)))))

This is actually just an abbreviation for a sequencel®f un, def t hm and other events.
Surprisingly perhapgjef spec is not part of the ACL2 system. It is just a macro, defined
by the author of M1, to hide a standard sequence of definismalslemmas generated from
the expressions in thef spec command above.

The successive “arguments” in thef spec expression above are: a symbiof,act ,
used to generate names of functions and lemmas, the progmden-¢ f act - pr ogr anx,
to be verified, the names to use for the initial values of th@atées, the initial and final pcs,
and an annotation that associates assertions with cedsirbpok at those assertions.

e 0 —the pre-conditionthe current value af is n0, which is some natural number

e 2 —loop invariant bothn0 and the current value of are naturalsn is smaller thamO
and(fact nO) isthe productof fact n) and the current value @f

e 14 —post-conditionthe top of the stack i6f act nO0)

If we were to verify the VCs generated from this annotationceeld conclude that if the
program were called on a naturdd and ever reaches (el then the top of the stack contains
the correct answer. But how do we do this without a VCG or Heareantics?

The trick is that thelef spec command above defines the partial functidract - i nv.

(defp ifact-inv (n0 a0 s)
(if (menber (pc s) '(0 2 14))
(and (equal (programs) =*ifact-program)
(if (equal (pc s) 0)

32 Mechanized Operational Semantics: The M1 Story

(and (equal nO (n s)) (natp n0))
(i1f (equal (pc s) 2)
(and (natp n0)
(natp (n s))
(natp (a s))
(<= (n s) nO)
(equal (fact nO)
(» (fact (ns)) (as))))
(if (equal (pc s) 14)
(equal (top (stack s)) (fact n0))

nil))))
(ifact-inv n0O a0 (step s))))

The suffix “ i nv” indicates that this predicate is allegedly an invariaief p” stands for
“define partial function.” See [16] for the details of how AZhkllows the sound axiomatiza-
tion of some possibly non-terminating tail-recursive ftimgs.Def p is an extension by Matt
Kaufmann that allows for multiple tail-recursive calls dadupported by the standard ACL2
book" m sc/ defp.lisp".

Def spec automatically generates a variety of lemmas abdwtct - i nv, including the
following key lemma.

(defthmifact-inv-step
(inplies (ifact-inv n0O a0 s)
(ifact-inv n0O a0 (step s))))

The reader may confirm that tipeoof of i f act - i nv- st ep generates and proves the
VCd

The basic idea of the proof is that the case analysis on theapsed by expanding
I fact -1 nv in the hypothesis splits the proof into four cases accortinghether the pc
is 0, 2, 14, or otherwise. Given one of these initial pcs and the definibfi f act -i nv
the expansionofi fact-inv n0 a0 (step s)) simplyforces the system to symbol-
ically execute forward from the given pc, building up a syinbstate, until it encounters
one of the annotated locations, at which peihact - i nv simplifies to the properly instan-
tiated assertion for that symbolic state. The system, ofsgwsimplifies the evolving VCs
as they are produced. See [19] for detdilsact - i nv is partial since the user may write
adef spec in which some loop is not “cut” with an assertion. In that ¢abe attempt to
provei f act - i nv- st ep will run indefinitely.

This establishes that the assertionsfract - i nv hold for every state reachable byn
from a state satisfying the starting state. That in turni@staes that if the pre-condition holds
the post-condition holds when (and if) fid is ever reached. The lemmas generated by the
def spec command allow all these theorems to be proved automatidgaZ L2 can prove
the VCs.

From the final theorem generated by thef spec it is trivial to prove:

(defthm partial -correctness-of -programifact-corollary
(inplies (and (natp nO)
(equal (pc s0) 0)
(equal (Il ocals s0)

Mechanized Operational Semantics: The M1 Story 33

(cons nO (cons a0 nil)))
(equal (program s0) =*ifact-program)
(equal sk (run sched s0))
(equal (pc sk) 14))
(equal (top (stack sk))
(fact n0)))
“hints ..)

The first four hypotheses require thel is a natural number angl0 is an initial state with
pcO, locals,n0 andaO, and program i f act - pr ogr amx. The fifth hypothesis saysK is
the statg r un sched s0), thatis,sk is anarbitrary reachable state becausehed is
unconstrained. The sixth hypothesis supposes that thegk i3f14, the terminal state.

Then the conclusion states that the top of the stackaok (f act nO).

This theorem states the partial correctnessfodct . It does not establish thatf act
halts. It just establishes that if it halts, the right ansiseromputed.

We could, as usual, replaee f act - pr ogr anx with a call of the compiler. But the
earlier problem rears its head: our theorems — in partidghiatocations of the assertions in
the code — are stated in terms of the lower level languagecéproject would be to augment
the compiler to allow the assertions to be embedded in thes@ode and have the compiler
generate thdef spec automatically.

9.4 On Alternative Proof Styles

The inductive assertion method as implemented here mayalssed to prove total correct-
ness, by incorporating an ordinal measure into the asssraad proving that the measure
decreases between cut points.

It may appear that using inductive assertions with meagorestablish total correctness
involves less work than the clock function approach. Buuihs out that the clock func-
tion approach and the inductive assertion approach to¢ota¢ctness are equally powerful.
If you can prove a program correct by one method you can piolg the other, entirely
automatically.

Indeed, there is an ACL2 book that allows the user to swit¢tvéen proof styles, trading
theorems proved in one style for those in another and comdpithiem at will.

For details of these and other meta-logical results aboertredtive proof styles, see [23].

10 Boyer-Moore Fast String Searching

We conclude our demonstration of code proofs by considehiagBoyer-Moore fast string
searching algorithm [2].

Recall our description of how to prove code correct by theaimethod: Step (a) is to
prove the code implements a certain algorithm and step ({o) jgove the algorithm satis-
fies the specification. In this section we address step (§) Step (b) has been carried out
independently of this work. See [21].

To apply our proof methodology to the Boyer-Moore algoritive must have a formal
expression of the algorithm. That was actually developdeépendently when step (b) was
carried out. Oddly, it is not actually necessary for the ezad understand what an algorithm
is intended to do while carrying out step (a)! It is sufficiémtprove merely that the code

34 Mechanized Operational Semantics: The M1 Story

does whatever the algorithm does. But for the reader’s ediidic (and sanity) we explain the
Boyer-Moore algorithm informally and then exhibit its foairdefinition in ACL2.

The next steps in our methodology are then: write the M1 codéke algorithm, define
the schedule or “clock” function for that code (togetherthis case, with another function
used in the specification), state and prove a general theal®ut the loop in the code,
and state and prove that the top-level entry to the code ctespgbe same answer as the
algorithm and terminates. By combining this work with stepye get the final theorem that
the computed answer is correct. We follow his methodologh@&subsequent subsections.

The main lesson of this entire section is that the methododrgady presented allows us
to prove interesting code correct.

In the presentation we use the following additional ACL 2isr

(decl are (xargs ...)) pragmatic advice associated with the admission of a fungctio
e.g., the measure to use to justify its termination, the ebtguetypes of its arguments, etc.

(cond (p1 z1) (p2 z2) ... (t z)) anabbreviationfofif p; =1 (if py xo (if
Tr))) -

(1 engt h z) if zisa string, then the numbers of charactersinit,{.een (coerce =x
"list));else(len x).

(list z; zo ... x;) anabbreviationfo(cons z; (cons z, (cons ... (cons

zp Nil)))).

10.1 The Algorithm

The Boyer-Moore fast string algorithm looks for the first eixenatch of one string, called
the patternin another, called théext Given a proposed alignment of the two strings, the
algorithm compares them character by charasti@nting at the right-hand endf the pattern.
Consider two corresponding characters, sayom the pattern at index and v from the
text at the corresponding indexIf v = v, the algorithm backs up, decrementipgnd:.
If w # v, the algorithm has “discovered” a substring in the text.sT$ubstring isalmost
a terminal substring of the pattern startingjaexcept the discovered string starts with
instead ofu. The pattern can be realigned with the text by shifting torigat. The next
possible exact match of the pattern and the text must alignligcovered substring with its
rightmost occurrence in the pattern. But there are only &efinumber of such substrings:
one for each choice af and terminal substring of the pattern. Therefore, we caprpoess
the pattern to compute a 2-dimensional array indexed dyd the position;, of the unequal
character of the pattern. We store in this array the distaneee advance upon discovering
thatv fails to match the character at positipm the pattern.

Here is an example. Find the first occurrence of the indicaégtbrn pat) in the text (xt)
below. We show a trace of the algorithm below and then we @xplach step.

1. pat: aBCdBC
t xt: xxxaBCxxGxaBCdBCxxxx

T I =5

2. pat: aBCdBC

Mechanized Operational Semantics:

10.

11.

12.

txt:

pat :
txt:

pat :
t xt:

pat:
txt:

pat:
t xt:

pat :
txt:

pat :
t xt:

pat:
txt:

pat:
t xt:

pat :
txt:

pat :
t xt:

xXXaBCxx GxaBCdBCxxxx
1

aBCdBC
xXXaBCxx GxaBCdBCxxxx

fr

aBCdBC
XXXaBCxx GxaBCdBCx xxx

fr

aBCdBC
XXXaBCxx GxaBCdBCx xxx

fr

aBCdBC
xXXaBCxx GxaBCdBCxxxx

T

aBCdBC
xXXaBCxx GxaBCdBCxxxx

fr

aBCdBC
XXXaBCxx GxaBCdBCx xxx

fr

aBCdBC
XXXaBCxx GxaBCdBCx xxx

T

aBCdBC
xXXaBCxx GxaBCdBCxxxx

fr

aBCdBC
xXXaBCxx GxaBCdBCxxxx

fr

aBCdBC
XXXaBCxx GxaBCdBCx xxx

fr

The M1 Story 35

i =15

=11

i =9

Note on linel, we start by reading and matching th& at text positioni =5 with the ‘C at
the end of the pattern. We back up. We match ®8ie."We back up. On lin@ we read the
‘a’ ati =3 and it fails to match thed’ (at positionj =3)’ in the pattern. So we skip ahead by
some precomputed amount as a function of the charagtest read from the texta’, and

36 Mechanized Operational Semantics: The M1 Story

the index of the matched terminal substrif@®C") of the patternj(=4). It turns out that the
precomputed amouiitis 5. So we add toi and get the new=8 of line 4. What is special
about 5? Note that on ling, after adding to ¢ and shifting the pattern rightwards to that
position, the discoveretlaBC' of the text aligns with its last occurrence in the pattern.

On line4, we read G. It does not match its counterpart in the pattern. The prgmated
table (for ‘G and the empty substring) says we can incremety § = 6. This is because
there is nd G in the patterth So we can slide the pattern forward by its length to get elytir
past the G,

Onli ne 5, we read B'. Following the same routine, we use the precomputed table t
shift the pattern to align the ladB* in the pattern with the discoverdsi

On lines6 through11 we just back up confirming each character.

On line12, we have “walked off the left end of the pattern.” That mearesmatched all
the characters. The match starts &f., or position10 in the text.

Here is a more realistic example.

pat: pattern
txt: we can preprocess the pattern to

o i =6
pat : pattern
txt: we can preprocess the pattern to
i) i =13
pat: pattern
txt: we can preprocess the pattern to
A i =20
pat: pattern
txt: we can preprocess the pattern to
1 i =22
pat : pattern
txt: we can preprocess the pattern to
o i =28
pat : pattern
txt: we can preprocess the pattern to
A i =27

etc.

Here we see the algorithm skipping through the text in stegggrtional to the length of the
pattern. This illustrates the key advantage of the Boyepi#ddast string searching algorithm:
it advances through the text without reading all the chagestand in steps that are often
nearly as big as the pattern is long

In this paper we do not discuss the preprocessing. HoweM@1], we defing pr epr o-
cess pat) toproduce a 2-dimensional array, i.e., a list of lists, whi# following property.

Mechanized Operational Semantics: The M1 Story 37

(deft hm preprocess-correct
(inplies (and (stringp pat)
(characterp v)
(natp j)
(<j (length pat)))
(equal (index2 (preprocess pat) (char-code v) j)
(delta v j pat))))

where

(defun index2 (array c j)
(nth j (nth c array)))

Here(delta v j pat) is the amount by which we are to incrementupon reading
character from text and finding it is unequal to the corresponding ctigraat position in
pat .

We then define the Boyer-Moore algorithm as shown below.

(defun fast-loop (pat j txt i)
(declare (xargs ...))
(cond
((not (and (stringp pat) (integerp j)
(stringp txt) (integerp i)
(<=-1j) (<j (length pat))

(<=7 1)))
nil)
((<] 0)
(+11i))
((<= (length txt) i)
nil)

((equal (char pat j) (char txt i))
(fast-loop pat (- j 1) txt (- i 1)))
(t (fast-loop pat

(- (length pat) 1)

t xt

(+ 1 (delta (char txt i)

J
pat))))))

(defun fast (pat txt)
(declare (xargs ...))
(if (equal pat "")
(if (equal txt "")
ni |
0)
(fast-1oop pat
(- (length pat) 1)
t xt
(- (length pat) 1))))

38 Mechanized Operational Semantics: The M1 Story

As noted, we have already carried out step (b): an ACL2 prbdiecorrectness of this
algorithm [21]. In particular, we prove théff ast pat txt) is equivalent to the naive,
obviously correct algorithm which tests, successivelghdacation int xt to see whether the
pattern matches the text at that location. We call the olslotorrect algorithnf cor r ect
pat txt).

But in the course of completing step (b) we proved thast - | oop terminates (using
a measure not shown in tijelecl are (xargs ...)) above), we defined the (inefficient
but correct) preprocessing algorith(mr epr ocess pat) to compute a list of lists, and
we proved that indexing into that list of lists with two suss&ent hs produceg del t a
v | pat) asindicated above. It turns out this is all we need to cartystep (a) given the
methodology already described here.

10.2 The Code

In the M1 code for the algorithm we use eight local variables.

local symbolic name general use initial value

0 pat the pattern string pat

1] current index into pattern (- (length pat) 1)
2 t xt the text string t xt

3 i current index into text (- (length pat) 1)
4 pmax length of pattern (length pat)

5 t max length of text (length txt)

6 array 2-dimensional array (preprocess pat)

7 Y last character read from textnitial value irrelevant

Here is the M1 code for the Boyer-Moore fast string searclalyprithm. In the left
column, with capitalized opcodes, we exhibit the M1 codetHha comment columns we
exhibit the code with symbolic variable names and some pseode to explain the various
code fragments.

(def const =ml- boyer - noor e- progr am

" (

(LOAD 0) ;0 (load pat)
(PUSH "") ; 1 (push "")
(IFANE 5) ; 2 (ifane loop) ; if pat/="", goto |oop
(LOAD 2) ;3 (load txt)
(PUSH "") ; 4 (push "")
(IPFANE 40) ; 5 (ifane win) ; if txt/="", goto win
(GOTO 43) ; 6 (goto |ose)
; |l oop:
(LOAD 1) ;7 (load j)
(IFLT 37) ; 8 (iflt win)) ; if j<0, goto win
(LOAD 5) ;9 (load tmax)
(LOAD 3) ; 10 (load i)
(SuUB) ; 11 (sub)

(IFLE 37) ; 12 (ifle lose) ; if |txt|-i<=0, goto |ose

Mechanized Operational Semantics: The M1 Story 39

(LOAD 0) ; 13 (| oad pat)
(LOAD 1) ; 14 (load j)
(ALOAD) ; 15 (al oad) ; pat[j]
(LOAD 2) ; 16 (load txt)
(LOAD 3) ; 17 (load i)
(ALOAD) ; 18 (al oad) ;otxt[i]
(STORE 7) ; 19 (store v) ; (store into v)
(LOAD 7) ; 20 (load v)
(SUB) ; 21 (sub)
(IFNE 10) ; 22 (ifne skip) ; if pat[j]#txt[i],goto skip
(LOAD 1) ; 23 (load j)
(PUSH 1) ; 24 (push 1)
(SuUB) ; 25 (sub)
(STORE 1) ; 26 (store j) o I B
(LOAD 3) ; 27 (load 1)
(PUSH 1) ; 28 (push 1)
(SuUB) ;29 (sub)
(STORE 3) ; 30 (store i) ;i =i-1
(GOTO -24) ; 31 (goto loop) ; goto |Ioop
ski p:
(LOAD 3) ; 32 (load i)
(LOAD 6) ; 33 (load array)
(LOAD 7) ; 34 (load v)
(ALOGAD) ; 35 (al oad)
(LOAD 1) ; 36 (load j)
(ALQAD) ; 37 (al oad)
(ADD) ; 38 (add)
(STORE 3) ; 39 (store i) ;1 = i+array[c][])]
(LOAD 4) ; 40 (| oad pmax)
(PUSH 1) ; 41 (push 1)
(SuUB) ; 42 (sub)
(STORE 1) ; 43 (store j) ;] = |pat]-1
(GOTO -37) ; 44 (goto | oop)
W n:
(LOAD 3) ; 45 (load 1)
(PUSH 1) ; 46 (push 1)
(ADD) ; 47 (add)
(RETURN) ; 48 (return)
| ose:
(PUSH nil) ; 49 (push nil)
(RETURN) ; 50 (return))

)

A few highlights of this code are worth noting. The loop frompthrough pc44 does
not necessarily terminate if an arbitrary array is storeld@al variable6. Theal oad at pc
35 indexes into the array and pulls out another array, repteggtine row for character code

40 Mechanized Operational Semantics: The M1 Story

v. Theal oad at pc37 indexes into that row gt and pulls ou{ del ta v j pat), by
the theorem abouir epr ocess. Finally, note that at pc82 — 39 we first increment by
(delta v j pat) andthen from pcd0 -43 weresef to(- (length pat) 1).
It would have been “natural” to do this in the other orderfi(st and then) but that would
be incorrect since the old value jofis to be used in the computationiof

10.3 The Schedule

Following the methodology previously sketched fdract we next define the function that
determines how long the algorithm runs for a giyest andt xt . But recall that we are

not looking for a closed form or a general worse case analyg@gust want to know how

many steps the algorithm takes for specific inputs. We cato#tpe fact that the algorithm

is supposed to compufeast and simply define a version dfast (and its sub-function

f ast - | oop) thatcountsthe steps!

We start by counting the steps from the top of the loop af po the exits. That is done
by ml- boyer - noor e- | oop- sched. Inspection of the following definition reveals that it
has exactly the same case analysis and recursive strustuasa- | oop. However, on each
recursive call weappend the schedules for the corresponding paths through the ddde.
path lengths, namel§, 8, 25 and29, are just obtained by counting the instructions on the
four paths starting at the top of the loop atfhacnamely (a) the path leading v n, (b) the
path leading td ose, (c) the path that discoveexjual characters, backs up and returns to
pc7, and (d) the path that discovers unequal characters, imsrebydel t a, and returns to
pc7. The termination argument for this schedule functioexactly the samas used to admit
fast -1 oop. No work need be done to admit this function. We then definduhetion that
counts the steps from the top-level entry atqqausing the previously defined function to
count the passage through the loop.

(defun nil- boyer - noore-1 oop-sched (pat j txt i)
(declare (xargs ...))
(cond
((not (and (stringp pat) (integerp j)
(stringp txt) (integerp i)
(<=-1j) (<j (length pat))

(<=1 1)))
nil)
((<]j 0)
(repeat 0 6)) ; path (a)
((<= (length txt) i)
(repeat 0 8)) ; path (b)

((equal (char-code (char pat j))
(char-code (char txt i)))
(append (repeat 0 25) ; path (c)
(- boyer - noor e- 1 oop- sched
pat (- j 1) txt (-1 1))))
(t (append (repeat 0 29) ; path (d)
(ml- boyer - noor e- | oop- sched
pat

Mechanized Operational Semantics: The M1 Story 41

(- (length pat) 1)

t xt

(+ 1 (delta (char txt i)
]
pat)))))))

(defun nil- boyer - noor e-sched (pat txt)
(if (equal pat "")
(if (equal txt "")
(repeat 0 9)
(repeat 0 10))
(append (repeat 0 3)
(- boyer - noor e- | oop- sched
pat
(- (length pat) 1)
t xt
(- (length pat) 1)))))

The definition of these schedules may look complex. But we thg reader to compare
them to their algorithmic counterpartisast - | oop andf ast, to understand how simple
and straightforward they are. A mistake people often makenaeviewing ACL2 input is
to confuse theexpressiorof an idea with the complexity afreatingit. In the case of these
schedule functions, it probably took the author a minuteatanbtate” (edit with Emacs) the
definitions of two pre-existing functions to produce thesémitions.

We are almost done. But this problem introduces a comptinatiith our methodology
not exposed by f act . We wish to prove the lemma that executing loop fronvpeturns a
particular state as a functionbést - | oop. That state will have the value ¢f ast - | oop
pat j txt i) on top of its stack and will terminate at either $8 or 50 accordingly.
But what are the final values of the local variables?

Inthei f act example, the final value of the localwasO0. But what is the final value of
j (the indexintgpat), i (the index inta xt) andv (the last character read fronxt)?

Rather than try to figure out the answers is some closed foerjust define a function
that returns the final values of the local variables, repgdiie same computation done by
f ast -1 oop. That function is defined below and returns a list of threenelets. The &
element of the answer is the final valuejafthe ¥’ is the final value of and the 27 is
the final value olv. Again, no work has to be done to create or admit this defmifidis is
probably another minute’s work. Note that unlike the defamioff ast - | oop, the function
below tracks the value of with added formal. This might be calledyaost variableand the
definition below explains it. Again, we see the definitiorf afst - | oop, except at the exits
weseglist j i v).

(defun nil- boyer-noore-|1oop-vars (pat j txt i v)
(declare (xargs ...))
(cond
((not (and (stringp pat) (integerp j)
(stringp txt) (integerp i)
(<=-1j) (<j (length pat))

42 Mechanized Operational Semantics: The M1 Story

(<=7 1)))
(list j i v))
((<] 0)
(list j i v))
((<= (length txt) i)
(list j i v))

((equal (char-code (char pat j))
(char-code (char txt i)))
(- boyer - noor e-| oop-vars

pat
(-1 1
t xt
(-1 1)

(char-code (char txt i1))))
(t (nl-boyer-noore-| oop-vars
pat
(- (length pat) 1)
t xt
(+ 1 (delta (char txt i)

J

pat))
(char-code (char txt i))))))

10.4 The Theorems

Following the methodology, we now state the correctnessi®@idop. This formula is long
but should be self-explanatory. It says that if we start doglat pc/7 — with the appropriate
values in local variable8 — 7 — and run according to the loop schedule, we either end up at
pc 48 or 50 with the appropriate values in the locals and on the stack.

(deft hm mi- boyer - noor e-1 oop-i s-fast-1oop
(inplies
(and (stringp pat) (integerp j)
(stringp txt) (integerp i)
(<=-17j) (<j (length pat))
(<=7 1))
(equal
(run (- boyer-noore-|oop-sched pat j txt i)
(make-state 7
(list pat
j
t xt
[
(1 ength pat)
(length txt)
(preprocess pat)

Mechanized Operational Semantics: The M1 Story 43

V)
ni
*mL- boyer - noor e- program))
(if (fast-loop pat j txt i)
(make-state
48
(list
pat
(nth O (ml-boyer-noore-loop-vars pat | txt i v))
t xt
(nth 1 (ml-boyer-noore-loop-vars pat j txt i v))
(I ength pat)
(length txt)
(preprocess pat)
(nth 2 (ml-boyer-noore-loop-vars pat j txt i v)))
(push (fast-loop pat j txt i) nil)
*ml- boyer - noor e- pr ogr anx)
(make-state
50
(1ist
pat
(nth O (ml-boyer-noore-|loop-vars pat j txt i v))
t xt
(nth 1 (ml-boyer-noore-|loop-vars pat | txt i v))
(1 ength pat)
(length txt)
(preprocess pat)
(nth 2 (ml-boyer-noore-|loop-vars pat j txt i v)))
(push nil nil)
*ML- boyer - noor e- progrant))))
chints (("Goal" :in-theory (enable preprocess))))

This is proved entirely automatically, using just the lensmge introduced to provief act
and the lemmas used to establish step{b).

Following the methodology, we conclude by proving that if @rer the code at p@ —
with appropriate values in the local variables — and run abog to the top-level schedule,
we get a state in whichf ast pat txt) is pushed on the stack and the computation has
terminated.

(deft hm mi- boyer - noor e-i s-f ast
(inmplies (and (stringp pat)
(stringp txt))

3We had to enablpr epr ocess; it was left disabled by our step (b) work because it was asnagcessed
via thei ndex?2 abstraction, where as in our code it is accessed by two ssiceed hs. For a similar reason
in our actual script at this point we disaldlengt h, because the lemma just proved usengt h in the
(make-state 7 ...) expression which is part of the left-hand side of the rewnitie generated by the
lemma. The ACL2 user must realize that thésngt h expressions will open up tbl en (coerce ...
"1ist)) and either rephrase the lemma in those canonical termsabldisengt h.

44 Mechanized Operational Semantics: The M1 Story

(equal
(top
(stack
(run (mi-boyer-noore-sched pat txt)
(rmake-state
0
(l'ist pat
(- (length pat) 1)
t xt
(- (length pat) 1)
(I ength pat)
(length txt)
(preprocess pat)
0)
ni |
*ml- boyer - noor e-progranx))))
(fast pat txt))))

(def t hm ml- boyer - noore-halts
(inmplies (and (stringp pat)
(stringp txt))
(hal tedp
(run (ml-boyer-noore-sched pat txt)
(make-state
0
(list pat
(- (length pat) 1)
t xt
(- (length pat) 1)
(I ength pat)
(length txt)
(preprocess pat)
0)
ni |
*ml- boyer - noore-program)))))

Since we have carried out step (b) elsewhere and know fhe$t pat t xt) isequal
to(correct pat txt),we cannow trivially establish that the M1 code shown absve i
a correct string searching algorithm.

(deft hm miL- boyer - noore-i s-correct
(inplies (and (stringp pat)
(stringp txt))
(equal
(top
(stack

Mechanized Operational Semantics: The M1 Story 45

(run (ml-boyer-noore-sched pat txt)
(rmake-state
0
(list pat
(- (length pat) 1)
t xt
(- (length pat) 1)
(1 ength pat)
(length txt)
(preprocess pat)
0)
ni
*ml- boyer - noor e- program))))
(correct pat txt))))

10.5 Summary

We can summarize this section by saying that the methodalegy to prove a trivial pro-
gram likei f act scales up to interesting programs. The clock function magdoeplicated
looking, but it is easy to generate if one has formally defitiedalgorithm being computed:
just modify the algorithm to assemble the counts of each gmthexecutes. The only novelty
above was the introduction of the functio.- boyer - noor e- | oop- var s to character-
ize the final values of the various machine resources. Agfagfunction looks hard to define
but is not: just modify the algorithm to return a vector of tlaiables it changes.

It may seem awkward that interesting programs have “irexié\side-effects that must be
characterized to apply this method of proof, but itis somes useful to specify all the effects
and it is not difficult given the need to formalize the algonit used. Furthermore, for many
applications, especially where security is at risk, it isatageous to specifyompletelythe
transformation caused by execution of a piece of code.

11 Conclusion

We have shown some of the techniques involved in using a mextoperational semantics.
Why might one want to use an operational semantics?

¢ It has dual use: one can use it as a simulation engine for aiteyggand as the basis of a
code proof methodology.

e We have hinted that it may be practical to reason about hilglret languages by reason-
ing operationally about the object code produced by an uffegicompiler.

e By casting the entire problem into a traditional mathenadticgic, it is easier to under-
stand the semantics and to relate it to an actual implementat

¢ In addition, it is possible to support alternative prooflesyand investigate their logical
connections [23].

46 Mechanized Operational Semantics: The M1 Story

e Itis possible to use the theorem prover to prove theoremstahe semantics instead of
just about code. Consider thein- append theorem, an interesting fact about M1 that
has nothing to do with any particular code.

e One can move up and down the abstraction stack. We have siagfeeiM1 level, with a
hint of how to move up to J1. We could also move down and proatgh implementation
of M1 on a more conventional machine is correct. See [1, 18].

12 Acknowledgements

This work could not have been done without the support of titeeeBoyer-Moore commu-
nity. It has taken years to develop the basic techniquesisheve and to engineeer a theorem
prover capable of carrying them out at scale. | would paldity like to thank Bob Boyer,
Warren Hunt, Matt Kaufmann, and Sandip Ray. But the list goeand on and includes the
people who did the CLI Stack in the 1980s and the many machodels and code proofs
since then.

This material is based upon work supported by DARPA and th@Nal Science Foun-
dation under Grant No. CNS-0429591, by the National Sci&meadation under Grant No.
ISS-0417413, and by DARPA under Contract No. NBCH30390004.

A Appendix: TheJ1 Compiler

In this six page Appendix we define the J1 compiler to M1, exp&very part of it, and
illustrate it on our factorial example.

A.1 Allocating Variables to Locals

We first define a functiongol | ect - var s-i n- st nt *, that sweeps over a list of state-
ments and collects all the variables it finds. The positioa @riable in the resulting list will
determine which local we allocate to the variable.

The sweep function adds the variables to the end of a runmitignaulator. That accumu-
lator will be initialized to the list of formals of the metheee are compiling. Thus, declared
formals will be allocated the lowest indices among the lecdariables in the program that
are not declared among the formals will be allocated to higitieces, as they are encountered
in the sweep.

The next function adds as an element to the right endxlff e is not already a member
of X.

(defun collect-at-end (x e)
(if (nmenber e x)
X
(append x (cons e nil))))

We usecol | ect - at - end in the next function, which collects all the variable synsol
used in a J1 expression, in “print order,” modulo the predeiteed formals.

(defun col l ect-vars-in-expr (vars expr)

Mechanized Operational Semantics: The M1 Story 47

(if (atom expr)
(if (synbol p expr)
(coll ect-at-end vars expr)
vars)
(col |l ect-vars-in-expr
(col l ect-vars-in-expr vars
(nth O expr))
(nth 2 expr))))

Note that ifexpr is not an atom, it is of the form

(<expr> + <expr>) or
(<expr> - <expr>) or
(<expr> x» <expr>).

Hence,(nth 0 expr) is the first subexpression affcht h 2 expr) is the second.
Col | ect -vars-i n-expr can be proved to terminate because of the previously men-
tioned properties ofacl 2-count (nth n x)).

Now we collect the variables in a J1 statement. This is defmedually recursively
with the variables in a list of statements. In ACL2, we mustldes our intention to de-
fine a clique of mutually recursive functions by wrappingithgéef un commands in a
mut ual - r ecur si on form

(rmut ual -recursion

(defun collect-vars-in-stnmt* (vars stnt-1|ist)
(if (endp stnt-1list)
vars
(collect-vars-in-stntx*
(collect-vars-in-stm vars (car stnt-list))
(cdr stnt-list))))

(defun collect-vars-in-stnt (vars stnt)
(if (equal (nth 1 stnt) =)
(col l ect-vars-in-expr
(collect-at-end vars (nth 0 stnt))
(nth 2 stnt))

(if (equal (nth O stnt) *VWH LE)
(collect-vars-in-stntx
(collect-vars-in-expr vars (nth 1 stnt))
(cdr (cdr stnt)))

(if (equal (nth O stnt) ' RETURN)
(collect-vars-in-expr vars (nth 1 stnt))
vars))))
)

For example(col | ect-vars-in-stnt "(n) "(a = (a * (b + n)))) evalu-
atesto(N A B).

48 Mechanized Operational Semantics: The M1 Story

Given alistyvar s, of all the variables (in order of their allocation among kbeals), we
compute the index of a given variable as follows.

(defun index (vars var)
(if (endp vars)
0
(if (equal var (car vars))
0
(+ 1 (index (cdr vars) var)))))

A.2 Code Generation

To compile an expression we will sweep through it recurgiaeld concatenate the code gen-
erated for each subexpression, with suitable “glue” irtdiouns between the various sections.
For example, to compile an expression suckiyas+ y) we will generate code that pushes
the values ok onto the operand stack, concatenate that with the code tisaep the value
of y onto the operand stack and then append@D instruction to the list of instructions.
This function generates the appropriate M1 arithmeticéglgiven a J1 arithmetic oper-
ator. (All of our code generation functions have names thdiveth an exclamation point.)

(defun OP! (op)
(if (equal op '+)
" ((ADD))
(i1f (equal op '-)
1 ((SuUB))
(1f (equal op ')
“((ML))
"((I'LLEGAL))))))

Note that the output above is an M1 program, i.e., a list of Mstructions (in this case, always
a trivial list of length 1). All our functions for generatirgpde in fact generate programs so
we can combine them with concatenation.

Here is the generator for the bytecode program to put theevafia J1 variablear on
the stack, given the list of variablesr s determining allocation of the locals.

(defun LOAD! (vars var)
(cons (cons 'LOAD (cons (index vars var) nil))

nil))

For example(LOAD! ' (n a) ' a) evaluatestd (LOAD 1)).
Here is the generator for the bytecode program to put theevaflia J1 constant on the
stack.

(defun PUSH' (n)
(cons (cons "PUSH (cons n nil))

nil))

Mechanized Operational Semantics: The M1 Story 49

Using the above three functions, we now define the compilea fil expression. Execu-
tion of the generated code leaves the value of the expreesitime stack.

(defun expr! (vars expr)
(if (atom expr)
(if (synbolp expr)
(LOAD! vars expr)
(PUSH expr))
(append (expr! vars (nth 0 expr))
(append (expr! vars (nth 2 expr))
(OGPt (nth 1 expr))))))

For example(expr! "(a b c) "((a + (b + 3)) * c)) produces

((LOAD 0)
(LOAD 1)
(PUSH 3)
(ADD)

(ADD)
(LOAD 2)
(ML))

Next we deal with branches. The generator for the bytecoolgram to test the top of the
stack and branch byf f set ifitis less than or equal t0 is defined as follows.

(defun | FLE! (offset)
(cons (cons 'IFLE (cons offset nil))

nil))

Here is the generator for the bytecode program to jumpfldyset .

(defun GOTO (offset)
(cons (cons " GOTO (cons offset nil))

nil))

To compile(whi l e p s;...s,) we will first compile code that leaves a positive on
the stack if the test is true and a non-positive on the stackiis false. Leta; . . . a; be the
code forp. Then we compile the statementsin the body. Let, ... b, be the code for the
body. Note that the length of the test codé iand the length of the body coderis We use
those offsets in thée FLE andGOT O instructions below. The compiled code for thii | e
statement above is:

(

a ; top of WH LE
ay, ; value of test is on the stack
(I FLE 2+ n) ; 1f test false, junp past body code

b

50 Mechanized Operational Semantics: The M1 Story

by,
(GOTO —(n+1+k)) ; go back to top of WH LE
) . we’'re done with the WHI LE

And so now we can define the generator for a while statemergnghe M1 programs
for the test expression and the list of statements in the.body

(defun while! (test-code body-code)
(append test-code
(append (I FLE! (+ 2 (len body-code)))
(append body- code
(GOTA (- (+ (len test-code)
1
(I'en body-code))))))))

The bytecode program to leave a positive on the stack if $estie and a non-positive
otherwise is generated lbyest ! . The argument est must be of the fornf x > y) where
x andy are expressions.

(defun test! (vars test)
(if (equal (nth 1 test) ’'>)
(if (equal (nth 2 test) 0)
(expr! vars (nth O test))
(append (expr! vars (nth O test))
(append (expr! vars (nth 2 test))

" ((SUB)))))
"((ILLEGAL))))

To generate the bytecode program to pop the stack into tlaéaddlocated for var we use
STORE! .

(defun STORE! (vars var)
(cons (cons ' STORE (cons (index vars var) nil))

nil))

We use mutual recursion again to define how to compile a listatEments and how to
compile a single statement.

(mut ual -recursion

(defun stntx! (vars stnt-list)
(if (endp stnt-list)
ni |l
(append (stnt! vars (car stnt-list))
(stnmt*! vars (cdr stnt-list)))))

(defun stnt! (vars stnt)

Mechanized Operational Semantics: The M1 Story 51

(if (equal (nth 1 stnt) ' =)
(append (expr! vars (nth 2 stnt))
(STORE! vars (nth 0 stnt)))
(if (equal (nth O stnt) *VWH LE)
(whi | e!
(test! vars (nth 1 stnt))
(stmt+! vars (cdr (cdr stnt))))
(if (equal (nth O stnt) ' RETURN)
(append (expr! vars (nth 1 stnt))
' ((RETURN)))
"((ILLEGAL))))))

Finally, we can define the compiler to take a list of formalgmeters and a list of state-
ments and return the M1 code.

(defun conpile (formals stnt-Ilist)
(stnmt+! (collect-vars-in-stm=* formals stnt-list)
stnt-list))

Here is an example call @fonpi | e, on ourf act program. We exhibit this as a theorem,;
its proof is trivial by computation.

(deft hm exanpl e-conpi l ation-1
(equal (conpile ’(n)
((a =1)
(while (n > 0)
(a =(n~ a))
(n=1(n-1)))
(return a)))
"((PUSH 1)
(STORE 1)
(LOAD 0)
(1 FLE 10)
(LOAD 0)
(LOAD 1)
(MJL)
(STORE 1)
(LOAD 0)
(PUSH 1)
(SUB)
(STORE 0)
(GOTO -10)
(LOAD 1)
(RETURN)))
:rul e-classes nil)

52 Mechanized Operational Semantics: The M1 Story

B Appendix: The Universal M1 Program

In this appendix we illustrate the importance of addressivgquestion of whether the pro-
gram has halted when doing clock-style total correctnessfpr We also show that it is
possible to prove that M1 programs do not halt. This fact gomes surprises newcomers to
ACL2, since ACL2 requires that allef uns terminate.

Here is an amazing (and ambiguous) claim:

It is possible to define a single, universal, M1 program tlaat c
be used to compute every numeric function.

Consider the following M1 program:

(def const *uni versal - progrank
"((PUSH 0)
(PUSH 1)
(ADD)
(GOTO -2)))

Notice that on successive arrivals at pcthe top of the stack is successively each of the
naturals. That is, with the appropriate schedule this gnogcan be made to compute any
natural — provided it does not have to terminate upon theuymtooh of that natural!

Here is a suitable schedule function.

(defun universal -sched-1oop (k)
(if (zp k)
ni |
(append (repeat 0 3)
(uni versal -sched-loop (- k 1)))))

(defun universal -sched (k)
(append (repeat 0 1)
(uni versal - sched-1 oop k)))

We will prove that running the program according(toni ver sal - sched n) will leave
n on top of the stack.

We have to prove the loop behaves as expected. We use ouastanhalck proof method-
ology, by defining the algorithm and proving that the loop démeh the top-level program
compute according to the algorithm.

(defun universal -al gorithm (k n)
(if (zp k)
n
(universal-algorithm (- k 1) (+ 1 n))))

(defthm st ep-a-run-uni versal - | oop
(inmplies (and (natp k)
(natp n))
(equal (run (universal-sched-1oop k)
(make-state 1

Mechanized Operational Semantics: The M1 Story 53

| ocal s
(push n stack)
*uni ver sal - progrant))
(make-state 1
| ocal s
(push (universal -al gorithmk n)
st ack)
*uni versal - progrant))))

(defthm st ep-a-run-universal
(inplies (natp k)
(equal (run (universal-sched k)
(make-state O
| ocal s
st ack
*uni ver sal - progranx))
(make-state 1
| ocal s
(push (universal -algorithmk 0)
st ack)
*uni versal -progranx))))

Then, in step (b), we prove the “universal algorithm” is jadtlition.

(defthm step-b
(inmplies (and (natp k)
(natp n))
(equal (universal-algorithmk n)

(+ kn)j))

So now we know that if the uni ver sal - progr ant is run according tq uni ver -
sal - sched k) it pushex on the stack.

From this it is trivial to prove that there exists a schedblgt tauses uni ver sal - -
program to push(fact n)!Whatis the appropriate schedule? Obviously it is:

(defun newfact-sched (n)
(uni versal -sched (fact n)))

And with that we can prove a theorem that looks very much likect - correct - -
corol | ary- 2, except that it seems to say thatni ver sal - pr ogr am: is a correct
factorial program!

(deft hm uni ver sal - conput es-f act
(equal (top
(stack
(run (newfact-sched n)
(make-state O
| ocal s
stack

54 Mechanized Operational Semantics: The M1 Story

*uni ver sal - progranm))))
(fact n)))

The only thing we have not proved about the universal progsahmt it halts. In the case
of the factorial proof, we do not havef act - correct-corol | ary- 1. Of course, we
are not able to prove that because the universal programnioésilt.

Indeed, we can prove thatini ver sal - pr ogr am+ never halts. Here is the key lemma.

(deft hm uni ver sal - never-hal ts-| emma
(inmplies (and (nenber (pc s) (0 1 2 3))
(equal (program s) =*universal-progrant))
(not (haltedp (run sched s)))))

from which it is trivial to prove:

(deft hm uni versal - never-halts
(not
(hal tedp
(run sched
(make-state O

| ocal s
st ack
*uni versal -progranx)))))

References

[1] W.R. Bevier, W.A. Hunt, J S. Moore, and W.D. Young. Spé@aue on system verificatiordournal of
Automated Reasonin§(4):409-530, 1989.

[2] R.S.BoyerandJS. Moore. A fast string searching algaritComm. ACM20(10):762—-772,1977.

[3] R.S.Boyerand Y. Yu. Automated proofs of object code favidely used microprocessafournal of the
ACM, 43(1):166-192, January 1996.

[4] A.D. Flatau. A verified implementation of an applicatiemguage with dynamic storage allocation. Ph.d.
thesis, University of Texas at Austin, 1992.

[5] R. Floyd. Assigning meanings to programs. Nfathematical Aspects of Computer Science, Proceed-
ings of Symposia in Applied Mathematigslume XIX, pages 19-32. American Mathematical Society,
Providence, Rhode Island, 1967.

[6] G. Gentzen. New version of the consistency proof for eatary number theory. In M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzpages 132—-213. North-Holland Publishing Company, Amster
dam, 1969.

[7] J. Goldberg, W. Kautz, P. M. Mellear-Smith, M. Green, keuitt, R. Schwartz, and C. Weinstock. Devel-
opment and analysis of the software implemented faultdolee (sift) computer. Technical Report NASA
Contractor Report 172146, NASA Langley Research Centangtan, VA, 1984.

[8] David A. Greve. Symbolic simulation of the JEM1 micropassor. In G. Gopalakrishnan and P. Windley,
editors,Formal Methods in Computer-Aided Design — FMCADICS 1522, Heidelberg, 1998. Springer-
Verlag.

[9] C. A. R. Hoare. An axiomatic basis for computer programgiComm. ACM12(10):576-583, 1969.

Mechanized Operational Semantics: The M1 Story 55

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

(24]

[25]

(26]

M. Kaufmann, P. Manolios, and J S. Moofeomputer-Aided Reasoning: An Approatuwer Academic
Press, Boston, MA., 2000.

M. Kaufmannand J S. Moore. A precise description of ti & logic. Inht t p: / / www. cs. ut exas.
edu/ user s/ moor e/ publ i cati ons/ knB7a. ps. gz. Dept. of Computer Sciences, University of
Texas at Austin, 1997.

M. Kaufmann and J S. Moore. The ACL2 home pagehtr p: / / www. ¢s. ut exas. edu/ user s/
nmoor e/ acl 2/ . Dept. of Computer Sciences, University of Texas at Augi8.

T. Lindholdm and F. Yellin.The Java Virtual Machine Specification, 2nd editi®rentice Hall, 1999.

H.Liuand J S. Moore. Java program verification via a jweepd embedding in acl2. In K. Slind, A. Bunker,
and G. Gopalakrishnan, editofs/th International Conference on Theorem Proving in HigBeder Log-
ics: TPHOLs 2004volume 3223 of_ecture Notes in Computer Scienpages 184—-200. Springer, 2004.

Hanbing Liu. Formal Specification and Verification of a JVM and its Bytezdgtrifier PhD thesis,
University of Texas at Austin, 2006.

P. Manolios and J S. Moore. Partial functions in ACLIBurnal of Automated Reasonifif(2):107-127,
2003.

P. Manolios and D. Vroon. Ordinal arithmetic in acl2. ACL2 Workshop 20Q3Boulder, Colorado, July
2003.ht t p: / / www. cs. ut exas. edu/ user s/ noor e/ acl 2/ wor kshop- 2003/ .

J S. Moore. Piton: A Mechanically Verified Assembly-Level Languadeitomated Reasoning Series,
Kluwer Academic Publishers, 1996.

J S. Moore. Inductive assertions and operational séicgrin D. Geist, editofProceedings of CHARME
2003 volume 2860 of_ecture Notes in Computer Scienpages 289-303. Springer Verlag, 2003.

J S. Moore. Proving theorems about Java and the JVM withA In M. Broy and M. Pizka, edi-
tors,Models, Algebras and Logic of Engineering Softwarages 227-290. IOS Press, Amsterdam, 2003.
http://www.cs.utexas.edu/users/moore/publicatioaskioberdorf-03.

J S. Moore and M. Matrtinez. An acl2 proof of the correstmef the boyer-moore string searching algo-
rithm. Technical report, Department of Computer Sciendesyersity of Texas at Austin, 2008.

G. D. Plotkin. A Structural Approach to Operational Sartics. Technical Report DAIMI FN-19, Uni-
versity of Aarhus, 1981.

Sandip Ray, Warren A. Hunt Jr., John Matthews, and Xis¢rdVioore. A mechanical analysis of program
verification strategiesJournal of Automated Reasonimf)(4):245-269, May 2008.

D. Russinoff. A mechanically checked proof of IEEE cdiapce of a register-transfer-level spec-
ification of the AMD-K7 floating-point multiplication, digion, and square root instructionsLon-
don Mathematical Society Journal of Computation and Math@gy 1:148—-200, December 1998.
http://mwww.onr.com/user/russ/david/k7-div-sqrt.html

D. M. Russinoff and A. Flatau. Rtl verification: A floatirpoint multiplier. In M. Kaufmann, P. Manolios,
and J S. Moore, editor§omputer-Aided Reasoning: ACL2 Case Studiagies 201-232, Boston, MA.,
2000. Kluwer Academic Press.

W. D. Young. A verified code generator for a subset of Gypkechnical Report 33, Comp. Logic. Inc.,
Austin, Texas, 1988.

