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1 Abstract

In this paper we explain how to formalize an “operational” or“state-transition” semantics of a
von Neumann programming language in a functional programming language. By adopting an
“interpretive” style, one can execute the model in the functional language to “run” programs
in the von Neumann language. Given the ability to reason about the functional language, one
can use the model to reason about programs in the von Neumann language.

In theory at least, such a formal semantics thus has a dual use: as a simulation engine and
as an axiomatic basis for code proofs.

The beauty of this approach is that no more logical machineryis needed than to support
execution and proof in a functional language: no new programlogics and no new meta-logical
tools like “verification condition generators” are needed.

In this paper we will illustrate the techniques by formalizing a simple programming lan-
guage called “M1,” for “Machine (or Model) 1.” It is loosely based on the Java Virtual Ma-
chine but has been simplified for pedagogical purposes. We will demonstrate the executability
of M1 models. We will develop several styles of code proofs, including direct (symbolic sim-
ulation) proofs based on Boyer-Moore “clock functions” andFloyd-Hoare inductive assertion
proofs. We construct proofs only for the the simplest of programs, namely an iterative facto-
rial example. But to illustrate a more realistic use of the model, we discuss the correctness
proof for an M1 implementation of the Boyer-Moore fast string searching algorithm.

We also define a compiler for a higher level language called “J1” and show how to do
proofs about J1 code without benefit of a formal semantics forthat code. Throughout we use
the ACL2 logic and theorem proving system.

2 Preface

The most widely accepted meaning of “operational semantics” today is Plotkin’s “Structural
Operational Semantics” (SOS) [22] in which the semantics ispresented as a set of inference
rules on syntax and “configurations” (states) defining the valid transitions.
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But in these lectures I take an older approach perhaps best called “interpretive semantics,”
in which the semantics of a piece of code is given by a recursively defined interpreter on the
syntax and a state.

I suspect the older approach came from McCarthy who wrote “the meaning of a program
is defined by its effect on the state vector,” in his seminal paper,“Towards a Mathematical
Science of Computation” (1962).

The interpretive approach was used with mechanized supportin A Computational Logic
(Boyer and Moore, 1979) to specify and verify an expression compiler. The low level machine
was defined as a recursive function on programs (sequence of instructions) against a state
consisting of a push down stack and an environment assigningvalues to variables. We also
used the approach to formalize the semantics of the instruction set of the BDX 930 flight
control computer as part of the SIFT project at SRI [7] – an exercise that ultimately failed
because our theorem prover at the time was not capable of representing states as large and
complex as arose in the BDX 930. That motivated us to introduce quote and “executable
counterparts,” in the late 1970s, but that is another story.

Plotkin rightly states that the interpretive approach tends to produce large and possibly
unweildy states. Procedure call and non-determinism make things even worse. But this is
mitigated by the presence of a mechanized reasoning system.Interpretive semantics also
confer certan advantages I will discuss herein.

The Boyer-Moore community has used operational semantics (in the “interpretive” sense)
with great success since the mid-1970s, including, for example, the verification of the CLI
Stack [1], the verification of the Berkeley C String Library via compilation to MC68020
machine code withgcc, and proofs about JVM bytecode [14].

3 Introduction

In this paper we explain how to formalize the semantics of a von Neumann programming
language in a functional programming language.

The entire project will be carried out in a mechanized logic,namely, with the ACL2 the-
orem proving system. “ACL2” stands for “A Computational Logic for Applicative Common
Lisp.” The programming language supported by ACL2 is a very large, functional (or “applica-
tive”) subset of ANSI Standard Common Lisp. The semantics ofthat programming language
is formalized via axioms and definitions within a first-ordermathematical logic with induc-
tion. A mechanized theorem proving environment supports the discovery of proofs in the
theory. We use the name ACL2 for all three of these aspects: the programming language, the
logical theory, and the theorem prover.

ACL2 is distributed under the Gnu General Public License andis fully documented online
[12]. To learn how to use ACL2, see [10].

The von Neumann language used to illustrate this will be a very simplified version of
the Sun Java Virtual Machine we call “M1.” M1 is the first in a series of models of the
JVM culminating in M6: an elaborate and accurate model of theJVM supporting multiple
threads, class loading, exceptions, etc. The formalization and proof techniques used in M1
were the guiding principles in the construction of the M6 model. But M6 is over 160 pages of
ACL2 formalism (not counting another 500 pages representing the M6 translation of the 672
methods and 87 classes in the Sun CLDC API library). In contrast, M1 is less than 3 pages.

This paper is very similar to the author’s “Proving Theoremsabout Java and the JVM with
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ACL2” [20]. But the earlier paper discussed a fairly complicated JVM model, M5, whereas
this one uses M1. The differences made by exploring a simplermodel are sufficiently startling
to bear the creation of this near repetition of the earlier paper.

Unlike the former paper, we also model a compiler and we explore inductive assertion
style proofs here.

Associated with this paper is an ACL2 script that contains exactly the definitions and
theorems shown here, in the same sequence. With a few minor exceptions the paper is a
complete description of what must be presented to ACL2 Version 3.3 to construct the proofs.
The exceptions concern the precise definition of the “M1 symbol package” (a Common Lisp
construct used to avoid name conflicts) and the correctness proof for the Boyer-Moore fast
string searching implementation. The missing definitions and theorems are in the associated
ACL2 script (and the ACL2 “books” it loads).

With regard to the string searching proof, it may be broken down into two steps: prove
that the M1 code implements the Boyer-Moore algorithm and then prove that the Boyer-
Moore algorithm is a correct string searching algorithm. Both parts have been done with
ACL2. But in this paper, we only discuss the first part. In particular, we use the direct (“clock
function”) approach to prove that certain M1 code implements a new and improved variant of
the Boyer-Moore fast string searching algorithm. The proofassumesthat the preprocessing
of the pattern has been performed to set up a correctly initialized 2-dimensional array. The
code we analyze does not do the preprocesssing. We can combine the M1 code proof with the
algorithm correctness proof to show that the M1 code is a correct string searching program
(assuming the proper preprocessing has been done).

4 The ACL2 Programming Language

ACL2 is a functional programming language, a mathematical logic, and an automatic theorem
prover. For the moment, we will focus entirely on the functional programming language.

4.1 Syntax

The syntax of ACL2 is that of Lisp. Here is how the user introduces a new function, in this
case, the factorial function:

(defun fact (n)
(if (zp n)

1
(* n (fact (- n 1)))))

We write

(* n (fact (- n 1)))

where more traditionally one would write

n ∗ fact(n− 1).

Thedefun command above definesfact to be a function of one argument,n, whose value
is determined by theif-expression.
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The 3-argument functionif is Lisp’s if-then-else; (if x y z) is y if x is non-nil,
and isz if x is nil. The Lisp convention of “testing againstnil” treats the objectnil as
“false” and treats all other objects as “true.” When we say “x is true” we actually mean “x
is non-nil.” When we say “x is false” we mean “x is nil.” Using this circumlocution, we
can say(if x y z) is y if x is true andz if x is false, acting likex has some conventional
Boolean value when in fact it can be any object.

4.2 Data Types

ACL2 supports five data types.

• numbers: The most common numbers in this document will be naturals, written0, 1, 2,
. . .. ACL2 also supports negative integers, rationals, and complex rationals. We only use
the integers here.

• characters: There are 256 character objects, e.g.,#\A,#\a, and#\Space. To each char-
acter there corresponds an ASCII code, i.e., an integer between 0 and 255.

• strings: A string is a finite sequence of character objects, e.g.,"Hello World!".

• symbols: A symbol may be thought of as an object representinganame, e.g., of a function,
variable, opcode, or theorem. For example,fact, n, STORE, andassociativity--
of-append are all symbols. For our purposes, case is unimportant:fact, Fact, and
FACT all denote the same symbol. Symbols containing “unusual” characters like spaces,
parentheses, etc., must be written with special delimitersbut we do not use such symbols
here.

• pairs: A pair is an object containing two arbitrary objects.We call the left component of
a pair itscar and the right component itscdr. Typically we use nested pairs to construct
lists. For example, the list(RED BLUE GREEN) is thought of as a list of three symbols
but it is “really” an ordered pair whose car is the symbolRED and whose cdr is a list of
the two symbols(BLUE GREEN). That list is an ordered pair whose car is the symbol
BLUE and whose cdr is a list of one symbol(GREEN). That list is an ordered pair whose
car is the symbolGREEN and whose cdr is the symbolNIL. Note that thesymbolnil
plays the role of the empty “list!”

Objects of different types are different. Thus, the strings"HELLO" and the symbol
HELLO are different.

Because Lisp tests againstnil, there is no unique truth value denoting true. For exam-
ple,0, 1, "HELLO", and(HELLO WORLD) are all non-nil. If the test of an if-then-else
expression returned one of these values, the if-then-else would evaluate to the true branch.
By convention when we need to return an object denoting “true” we tend to use the symbol
t.

When we say a function isBooleanwe mean it returnst ornil. When we say a Boolean
function recognizesa type of object we mean that it returnst or nil according to whether
its argument is in the type.

Lisp terms are written in the same parenthetical notation used to write Lisp objects. In-
deed, though it is beyond the scope of this paper, Lisp termsare Lisp objects! When we see
(- n 1) how do we know whether we mean the difference between the values ofn and
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1 or the list of length three containing the symbol-, the symboln, and the integer1? The
answer is that when we mean to use an expression as a value, we write a “single quote” mark
in front of it. Thus, the term(- n 1) denotes the difference ofn and1 and the term’(- n
1) denotes a constant list of length three. The termn is a variable; the term’n is a constant
whose value is the symboln.

The key notion to keep in mind is whether we are displaying an expression as aterm
to be evaluatedor as avalue. For example, we might say “(car (cdr ’(fact (- n
1)))) evaluates to(- n 1).” The first parenthesized expression is being used as a term to
be evaluated and the second is its value.

4.3 Primitive Functions

All that remains is to list the available primitive functionsymbols. We use a small subset
of ACL2 in this paper and we document only that subset here. For this reason, the set of
primitives documented below may seem arbitrary.

(if x y z) the if-then-else operator; ifx is true, theny, elsez.

(and x1 x2 . . . xn) logical conjunction; if allxi are true, then the value is the last one,
xn; otherwise the value isnil.

(or x1 x2 . . . xn) logical disjunction; if there is ani such thatxi is true, then the value
is the first suchxi; otherwisenil.

(not x) logical negation;t if x is nil; nil otherwise.

(implies x1 x2) logical implication; ifx1 is true, then the result ist or nil depending
on whetherx2 is true; ifx1 is nil, the result ist.

(cons x1 x2) ordered pair constructor; the value is the ordered pair whose left component
is x1 and whose right component isx2.

(consp x) Boolean recognizer for ordered pairs.

(car x) left component of ordered pairx; nil if x not a pair.

(cdr x) right component of ordered pairx; nil if x not a pair.

(endp x) Boolean recognizer for non-pairs (esp.nil).

(atom x) Boolean recognizer for non-pairs.

(symbolp x) Boolean recognizer for symbols.

(stringp x) Boolean recognizer for strings.

(coerce x ’list) the list of characters corresponding to the stringx

(characterp x) Boolean recognizer for characters.

(char-code c) ASCII code for characterc.
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(integerp x) Boolean recognizer for integers.

(natp x) Boolean recognizer for integers such that0 ≤ x.

(equal x1 x2) t or nil according to whetherx1 andx2 are the same object.

(+ x1 ... xn) sum:x1 + . . .+ xn; non-numeric arguments are treated as0.

(- x1 x2) difference:x1 − x2; non-numeric arguments are treated as0.

(* x1 ... xn) product:x1 × . . .× xn; non-numeric arguments are treated as0.

(/ x1 x2) quotient:x1/x2; if x1 is non-numeric, it is treated as

(< x1 x2) less than:t or nil according tox1 < x2; non-numeric arguments are treated
as0.

(<= x1 x2) less than or equal:t or nil according tox1 ≤ x2; non-numeric arguments
are treated as0.

(> x1 x2) greater than:t ornil according tox1 > x2; non-numeric arguments are treated
as0.

(>= x1 x2) greater than or equal:t ornil according tox1 ≥ x2; non-numeric arguments
are treated as0.

(zp x) if x is 0, the value ist, if x is a positive natural, the value isnil; otherwise the
value ist.

The talk above about non-numeric arguments highlights the fact that ACL2 is an untyped
language. It is legal to write(+ T 3) and(<= -2 ’MONDAY). According to the descrip-
tions above, the first evaluates to3 and the second evaluates tonil, because non-numeric
arguments are treated as0.

The definition ofzp is oddly complicated but convenient. Consider the idiom

(if (zp n) <base> <recursion>)

and inspect the definition ofzp. If n is 0, the<base> case is taken. Ifn is a non-0 natural
number, the<recursion> case is taken. But what ifn is something else, like-1 or a
non-integer rational or even a list? In all such cases, the<base> case is taken, i.e.,zp treats
non-naturals as it does0.

The following three functions are not used explicitly in themodel or theorems shown
below. But they play crucial roles behind-the-scenes rolesin both the definitional principle
and the induction principle, and they appear often in proofs. We discuss ordinals andǫ0 further
in subsection 8.1 below.

(o-p x) t or nil according to whetherx is an ordinal belowǫ0.

(o< x1 x2) t ornil according to whetherx1 a smaller ordinal thanx2 (provided both are
ordinals belowǫ0).
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(acl2-count x) a natural number measure of the “size” of objectx; for objects com-
posed entirely of pairs and natural numbers it, for example,the sum of number of pairs
plus the sum of all the natural numbers.

The syntax of ACL2 can be extended with macros. Through macros we can eliminate
much repetitive syntax. We avoid macros in what follows for pedagogical purposes. When
you see the same patterns of terms emerging again and again think “That could be eliminated,
but I’d have to master macros to understand it.”

4.4 A Few Pre-Defined Functions

With these few primitives we can define a wide variety of useful functions. In fact, many such
functions come already defined in ACL2. Below we show definitions for the ones we use in
this paper. Sometimes are definitions differ from those of the built-in ACL2 functions, but not
in ways that are exposed by their usage in this paper.1

The following function determines the length of a list.

(defun len (x)
(if (endp x)

0
(+ 1 (len (cdr x)))))

Thus,(len ’(A B C D E)) evaluates to5. If applied to a non-listx, len behaves as
thoughx werenil (because of the definition ofendp), e.g.,(len 7) evaluates to0.

This function concatenates two lists.

(defun append (x y)
(if (endp x)

y
(cons (car x)

(append (cdr x) y))))

Thus,(append ’(A B C) ’(D E)) evaluates to(A B C D E).
Here is the function that returns thenth element of a list.

(defun nth (n x)
(if (zp n)

(car x)
(nth (- n 1) (cdr x))))

For example,(nth 3 ’(A B C D E)) evaluates toD. The functionnth “inherits” from
the primitives the treatment of “inappropriate” arguments. For example,(nth 3 ’(A B
C)) evaluates tonil becausecar andcdr returnnil onnil. (Nth -3 ’(A B C))
evaluates to the symbolA because the-3 is treated as0 by zp. (Nth 2 ’ABC) evaluates
to nil by the above properties ofcar andcdr.

Two properties ofnth are shown below. The first says thatnth returnsnil when its
second argument isnil (regardless of its first argument). This follows from the properties of

1For example, ACL2 permits functions to haveguardsspecifying expected pre-conditions and we omit them.
Also, some “functions” here are actually macros in ACL2 permitting optional arguments. But in all cases the
expressions used in the paper have exactly the meanings given by the function definitions here.
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car andcdr noted above. The second theorem says that whenx is an ordered pair, the size
of (nth n x) is smaller than that ofx, regardless ofn. By “size” we mean the previously
mentionedacl2-count.

(defthm nth-nil
(equal (nth n nil) nil))

(defthm acl2-count-nth
(implies (consp x)

(< (acl2-count (nth n x))
(acl2-count x)))

:rule-classes :linear)

The defthm commands above direct ACL2 to prove the indicated formulas and, if suc-
cessful, store them as theorems with the namesnth-nil andacl2-count-nth. The
rule-classes argument, when provided, tells ACL2 how to use the theorem insubse-
quent proofs. ACL2 proves these two lemmas automatically, by induction onn.

We do not discuss how ACL2 proves these properties, but theirtruth should be self-
evident. The reason we need them is that we will later define some functions that recur on
substructures ofx obtained by applyingnth to x. These theorems allow ACL2 to prove that
such recursion terminates.

The functionchar is likenth but takes a string and an index and returns the correspond-
ing character from the string. Logically speaking it is defined in terms ofnth.

(defun char (s n)
(nth n (coerce s ’list)))

Thus,(char "Hello" 1) evaluates to#\e, the lowercase character ‘e’.
Here is another useful definition.

(defun update-nth (n v x)
(if (zp n)

(cons v (cdr x))
(cons (car x)

(update-nth (- n 1) v (cdr x)))))

This function “changes”x by setting thenth element tov. Actually, of course, it copiesx.
(update-nth 3 ’X ’(A B C D E)) evaluates to(A B C X E). Interestingly, it
extendsx on the right as necessary to “make room” for annth element.(update-nth 4
’Z ’(A B C)) evaluates to(A B C NIL Z).

Finally, here is a useful “predicate.”

(defun member (e x)
(if (endp x)

nil
(if (equal e (car x))

x
(member e (cdr x)))))

Note its non-Boolean nature.(Member ’C ’(A B C D E)) evaluates to(C D E),
which is non-nil and can thus be used as “true” in tests;(member ’G ’(A B C D E))
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evaluates tonil. Member is defined the way it is so that the programmer can discover not
just whethere occurs inx but where.

5 An Operational Semantics for a Toy JVM

We now define the operational or state-transition semanticsof a simple programming lan-
guage. The language (and the machine it runs on) is called M1.2

5.1 Basic State Manipulation Functions

We define functions that let us pretend that lists are stacks.Push takes an object and a stack
and returns the stack with that object on top.Top takes a stack and returns the top item.Pop
takes a stack and returns the stack obtained by removing the top item.

(defun push (obj stack) (cons obj stack))
(defun top (stack) (car stack))
(defun pop (stack) (cdr stack))

Thus,(push 3 (push 2 (push 1 nil))) evaluates to the “stack”(3 2 1)whose
top is 3 and which yields the “stack”(2 1) whenpop is applied to it.

We will represent M1 instructions as lists.Opcode returns the operation code of the in-
structioninst andarg1 returns its first operand. For example,(GOTO -10) and(STORE
2) are instructions. The instruction(GOTO -10) has opcodeGOTO andarg1 -10.

(defun opcode (inst) (nth 0 inst))
(defun arg1 (inst) (nth 1 inst))

An M1 program is just a list of instructions accessed positionally with nth.
The core of our semantics is the notion of astate. The states of the M1 machine consist

of 4-tuples containing a program counter (pc), a vector of local variable values accessed by
0-based indexing, a stack of intermediate results (the “operand stack”), and a program. Here
are the functions to construct a state and return the variouscomponents of a state.

(defun make-state (pc locals stack program)
(cons pc

(cons locals
(cons stack

(cons program
nil)))))

(defun pc (s) (nth 0 s))
(defun locals (s) (nth 1 s))
(defun stack (s) (nth 2 s))
(defun program (s) (nth 3 s))

2The precise instruction set we attribute to M1 varies with different publications, but the M1 architecture
remains as described here. We include here just those instructions needed to do the examples shown. Our code
proof techniques are immune to the presence of unused instructions in the instruction set. To actually carry
out the definitions shown below it is necessary to be in a symbol package called"M1" where certain pre-
defined Common Lisp symbols, e.g.,push andstep, are undefined. See the associated script for the package
definition.
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The functionnext-inst takes a state and returns the instruction indicated by the pc.

(defun next-inst (s)
(nth (pc s) (program s)))

5.2 The Semantics of Each Instruction

We define the semantics of an M1 instruction by defining a function that takes an instruction
of a given class and a state and returns the next state. Our convention will be that the semantics
of the opcodeop will be given by an ACL2 function with the nameexecute-op. All of the
instructions defined below are modeled closely on actual JVMinstructions. We discuss the
relationship between M1 and the JVM in subsection 5.4.

The(PUSH k) instruction increments the pc by1, pushesk on the operand stack, and
leaves the locals and program unchanged.

(defun execute-PUSH (inst s)
(make-state (+ 1 (pc s))

(locals s)
(push (arg1 inst) (stack s))
(program s)))

The(LOAD n) instruction increments the pc by1 and pushes the value of local variable
n onto the operand stack.

(defun execute-LOAD (inst s)
(make-state (+ 1 (pc s))

(locals s)
(push (nth (arg1 inst)

(locals s))
(stack s))

(program s)))

The(ADD) instruction increments the pc, pops two items off the stack,adds them, and
pushes the result.

(defun execute-ADD (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))

(locals s)
(push (+ (top (pop (stack s)))

(top (stack s)))
(pop (pop (stack s))))

(program s)))
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The(STORE n) instruction increments the pc, pops one item off the operandstack, and
deposits it into local variablen.

(defun execute-STORE (inst s)
(make-state (+ 1 (pc s))

(update-nth (arg1 inst)
(top (stack s))
(locals s))

(pop (stack s))
(program s)))

The(SUB) instruction is likeADD but pushes the difference of the top two items.

(defun execute-SUB (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))

(locals s)
(push (- (top (pop (stack s)))

(top (stack s)))
(pop (pop (stack s))))

(program s)))

The(MUL) instruction is likeADD but pushes the product of the top two items.

(defun execute-MUL (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))

(locals s)
(push (* (top (pop (stack s)))

(top (stack s)))
(pop (pop (stack s))))

(program s)))

The(GOTO k) instruction increments the pc byk (which may be negative).

(defun execute-GOTO (inst s)
(make-state (+ (arg1 inst) (pc s))

(locals s)
(stack s)
(program s)))

The(IFLE k) instruction pops one item off the operand stack. If that itemis less than
or equal to0, it increments the pc byk (which may be negative); otherwise, it increments the
pc by1.

(defun execute-IFLE (inst s)
(make-state (if (<= (top (stack s)) 0)

(+ (arg1 inst) (pc s))
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(+ 1 (pc s)))
(locals s)
(pop (stack s))
(program s)))

The next two instructions,(IFLT k) and(IFNE k) are analogous toIFLE except test
the top of the stack with “less than” or with “not equal” 0 instead. When the test succeeds,
they increment the pc byk.

(defun execute-IFLT (inst s)
(make-state (if (< (top (stack s)) 0)

(+ (arg1 inst) (pc s))
(+ 1 (pc s)))

(locals s)
(pop (stack s))
(program s)))

(defun execute-IFNE (inst s)
(make-state (if (not (equal (top (stack s)) 0))

(+ (arg1 inst) (pc s))
(+ 1 (pc s)))

(locals s)
(pop (stack s))
(program s)))

The(IFANE k) pops two items off the stack and increments the pc byk if the two are
equal.

(defun execute-IFANE (inst s)
(make-state (if (not (equal (top (pop (stack s)))

(top (stack s))))
(+ (arg1 inst) (pc s))

(+ 1 (pc s)))
(locals s)
(pop (pop (stack s)))
(program s)))

Finally, the last instruction on M1 is(ALOAD). It finds two items on the stack, an “array”
a and indexi (with the index on top of the stack). In our model, the array may be either a list
or a string. The instruction popsa andi off the stack and pushes either theith element ofa or
the ASCII code of that element, depending on whethera is a list or a string.

(defun execute-ALOAD (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))

(locals s)
(push
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(if (stringp (top (pop (stack s))))
(char-code (char (top (pop (stack s)))

(top (stack s))))
(nth (top (stack s))

(top (pop (stack s)))))
(pop (pop (stack s))))

(program s)))

For example, the following sequence of instructions:

(PUSH "HAT")
(PUSH 1)
(ALOAD)

would leave65 (the ASCII code for uppercase ‘A’) on the stack. If local3 contains the
“array” of strings("Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun") and local
4 contains the integer 5, then

(LOAD 3)
(LOAD 4)
(ALOAD)

would leave the string"Sat" on the stack.

5.3 Putting It All Together

Now we put it all together by defining a “big switch” function that takes an M1 instruction
and dispatches on its opcode to invoke the appropriate state-transition function.

(defun do-inst (inst s)
(if (equal (opcode inst) ’PUSH)

(execute-PUSH inst s)
(if (equal (opcode inst) ’LOAD)

(execute-LOAD inst s)
(if (equal (opcode inst) ’STORE)

(execute-STORE inst s)
(if (equal (opcode inst) ’ADD)

(execute-ADD inst s)
(if (equal (opcode inst) ’SUB)

(execute-SUB inst s)
(if (equal (opcode inst) ’MUL)

(execute-MUL inst s)
(if (equal (opcode inst) ’GOTO)

(execute-GOTO inst s)
(if (equal (opcode inst) ’IFLE)

(execute-IFLE inst s)
(if (equal (opcode inst) ’IFLT)

(execute-IFLT inst s)
(if (equal (opcode inst) ’IFNE)

(execute-IFNE inst s)
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(if (equal (opcode inst) ’IFANE)
(execute-IFANE inst s)

(if (equal (opcode inst) ’ALOAD)
(execute-ALOAD inst s)

s)))))))))))))

Note that any opcode other than the dozen tested above is a no-op: applyingdo-inst to an
unknown instruction returns the state,s, unchanged.

To step an M1 state, we simply fetch the next instruction and execute it against the current
state.

(defun step (s)
(do-inst (next-inst s) s))

Note that if the next instruction has an unknown opcode,step is a no-op. Hence, if the pc
points to an unknown instruction, then it points to that sameinstruction after astep is taken.
Repeatedly stepping such a state causes no change. That is, execution on an unknown opcode
halts the machine! It is convenient to define the notion of when the machine is halted.

(defun haltedp (s)
(equal s (step s)))

To run the M1 machine repeatedly from some states, we step it once for every element
in a schedulesched.

(defun run (sched s)
(if (endp sched)

s
(run (cdr sched) (step s))))

We comment below on why we definerun to take a list and ignore all aspects of it but its
length.

5.4 Comparing M1 to the JVM

To bring home the spiritual similarity of M1 to the JVM, we comment on the differences.
Recall the first instruction we defined.

(defun execute-PUSH (inst s)
(make-state (+ 1 (pc s))

(locals s)
(push (arg1 inst) (stack s))
(program s)))

The Sun JVM specification [13] describes a close relative of this instruction as follows:

bipush
Operation

Push int constant
Format
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bipush byte
Form (actual byte code)
bipush = 16 (0x10)

Operand Stack
. . .⇒ . . . , value

Description
The immediatebyte is sign-extended to anint value. That
value is pushed onto the operand stack.

All JVM instructions are described in this format.
Among the differences between M1’sPUSH and the JVM’sbipush are the following.

First, a program on the JVM is a stream of bytes, so the operandto bipush is just the byte
after the opcode in the stream; on M1, a program is a list of instructions and each instruction
is an object (list) containing its operands. Second, thebipush instruction can only push
a 32-bitint; the M1 PUSH instruction can push any ACL2 object. Third, the names of
the instructions are different! JVM instructions almost always have names beginning with a
one- or two-letter prefix indicating the type of data they operate on; the “bi” indicates the
instruction converts a byte into anint. M1 instructions carry no type information in their
names.

The next M1 instruction was(LOAD n). The JVM contains four analogous “load” in-
structions:dload, fload, iload, andaload, to be used according to the type of data in
the indicated local variable: double, float, 32-bit integer, or address (reference), respectively.
The JVM versions of these instructions each consume two bytes in the instruction stream:
one for the opcode and one for the number of the local. Becauseit is very common to load
from locals0, 1, 2, and3, there are one-byte versions of these opcodes with mnemonics like
dload 0, dload 1, dload 2, anddload 3, etc. M1 avoids this duplication too.

The M1’sADD, SUB, andMUL arithmetic instructions do unbound arithmetic. The JVM’s
instructions implement bounded arithmetic of various types, e.g.,iadd, isub, andimul
operate on and return to 32-bit twos-complement (“int”) representation. The JVM supports
doubles and floats as well. In our more sophisticated models of the JVM, we describe bounded
arithmetic accurately.

The(IFANE k) instruction on M1 is modeled after the JVM’sif acmpne instruction.
It pops two items off the stack and increments the pc byk if the two are equal. On the JVM,
the two items are expected to be addresses.

The M1’s(ALOAD) is based on the JVM familybaload,caload,daload,faload,
iaload, laload, aaload, andsaload, for pushing onto the stack a datum of type byte,
char, double, float, 32-bit integer, long, address, and short (respectively) obtained by indexing
into an array. Both the array,a, and the index,i, are found on the stack, popped off, and
replaced bya[i] as in M1.

However, our genericALOAD instruction differs in a more fundamental way from those
on the JVM. The JVM finds on the stack, in place ofa, an address into the JVM heap. The
corresponding JVM instructions de-reference that addressand obtain the array object into
which they index. But M1 does not model a heap. What M1 finds on the stack fora is either
an ACL2 string or an ACL2 list.

By omitting the heap and having M1 traffic in ACL2 objects we greatly simplify M1
proofs. But we also make it impossible to model the destructive modification of Java objects.
In more sophisticated models we model the heap as a finite map from addresses to ACL2
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objects. Bytecode instructions which “operate on Java Objects” actually expect to find ad-
dresses on the stack, just as in the JVM. The modification of a Java Object in the heap is then
modeled by associating a different ACL2 object with the JavaObject’s heap address in the
model of the heap.

Aside from the heap, the most glaring omission from M1 is support for procedure call and
return, called “method invocation” and return on the JVM. Tosupport it, imagine changing
the state so that it is really a stack of M1-like states. Each element of thiscall stackis called
a frame and corresponds to the activation of some method. Thebasic method invocation
instruction on the JVM,invokevirtual obtains an object from the operand stack, uses it
(via method resolution) to obtain some bytecode, and constructs a new frame (“M1 state”) to
run that code with the actuals loaded into the locals.Returninstructions of various types pop
the frame off the call stack and push the computed value(s) onto the callers operand stack.

As to why we definerun to take a “schedule” and then ignore all but its length, the reason
is that this keeps M1 similar to our more sophisticated JVM models. In those models (e.g.,
M5 [20] and M6 [14, 15]), we elaborate the state considerablyto include a thread table, a
heap, and a class table. In these models, the state consists of a thread table, a heap (modeled
as described above), and a class table. We model the class table as a finite map from class
names to class descriptions, which include the names and types of the fields and methods of
the class, including the bytecode for each defined method.

Each thread in the thread table has a thread identifier and a call stack as described above.
To step this multi-threaded state, one must specify the thread to be stepped. In these models,
the schedule is a list of “thread identifiers” andrun passes each successive thread identifier
to thestep function so that the appropriate thread state is stepped.

The reader ought to be able at least to imagine growing M1 intoa “real” JVM. For peda-
gogical purposes, we keep M1 very simple.

6 An Example Program

Consider the following simple Java program defining an iterative factorial method,ifact.

public static int ifact(int n){
int a = 1;
while (n>0) {a = n*a; n = n-1;}
return a;

}

In this section we will show the M1 program corresponding to this and we show how to
use the operational semantics model to execute (“simulate”) this program on concrete data.

6.1 The Program

If one compiles theifact program with Sun’sjavac compiler, one obtains JVM bytecode.
Below we define a constant, named*fact-program*, whose value is the corresponding
program on M1. In Lisp, comments are preceded by a semi-colonand everything to the right
of the semi-colon on a line is ignored. Thus,*ifact-program* is just the list shown to
the left of the column of semi-colons.
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The variablen in the Java code is local variable0 in the bytecode. The variablea is local
variable1. Thus, to run this program on some valuen we must first putn into local variable
0.

Consider the display below and note the five columns. The column labeled “M1 code”
is the list of instructions on our machine. The column labeled “M1 pc” is the location in the
list of each successive instruction; the numbers are sequential starting from0. The column
labeled “JVM pc” is the actual byte address of the corresponding JVM bytecode instruction.
The bytecode instructions are shown in the column labeled “bytecode.” Finally, the column
labeled “Java” contains the Java statements that gave rise to the corresponding bytecode.

(defconst *ifact-program*

; M1 M1 JVM JVM Java
; code pc pc bytecode

’((PUSH 1) ; 0 0 bipush 1
(STORE 1) ; 1 1 istore 1 a = 1;
(LOAD 0) ; 2 2 iload 0 while (n>0){
(IFLE 10) ; 3 3 ifle 17
(LOAD 0) ; 4 6 iload 0
(LOAD 1) ; 5 7 iload 1
(MUL) ; 6 8 imul
(STORE 1) ; 7 9 istore 1 a = n*a;
(LOAD 0) ; 8 10 iload 0
(PUSH 1) ; 9 11 bipush 1
(SUB) ; 10 12 isub
(STORE 0) ; 11 13 istore 0 n = n-1;
(GOTO -10) ; 12 14 goto 2 }
(LOAD 1) ; 13 17 iload 1
(RETURN) ; 14 18 ireturn return a;
))

Note that the JVM pcs generally increase by1 on successive lines. That indicates that the
bytecode instruction on that line takes up one byte. But theifle andgoto instructions take
3 bytes each; thus the JVM pc column jumps by three on those lines. On M1, we address the
locations in the program by instruction counts, not byte counts.

Also note that the M1IFLE andGOTO instructions contain operands used as offsets to
the current pc. But the numbers shown in the corresponding JVM instructions at JVM pcs3
and14 are the absolute byte addresses of the branch targets. This is just an artifact of how
bytecode is printed by the Sunjavac utility. In fact, the JVM instructionsifle andgoto
really do operate on offsets.

With the exceptions noted above, and our convention of dropping the type-specify prefixes
on the instruction opcodes, the constant*ifact-program* is just what the Sunjavac
compiler produces. Of course, the semantics of our instructions are actually somewhat sim-
pler than those of the JVM, even for this subset.



18 Mechanized Operational Semantics: The M1 Story

Note that the M1 program above uses the undefined instructionRETURN. It effectively
halts the machine. Given the(LOAD 1) at our pc13, when the machine halts the value of
a is on the stack.

6.2 Running the Program

To run the program we must have a schedule. The length of the schedule should be the number
of steps to takes to run*ifact-program* from the first instruction to the last. To define
the schedule we need a utility functions,repeat, which returns a list of a given length.

(defun repeat (th n)
(if (zp n)

nil
(cons th (repeat th (- n 1)))))

For example,(repeat 0 4) evaluates to(0 0 0 0).
To define a schedule for*ifact-program* we first consider the loop that starts at

M1 pc2. Inspection of*ifact-program* reveals that ifn is 0 when the pc is2, then it
takes four steps to reach the terminatingRETURN instruction at our pc14. In particular, the
machine will execute these four instructions: theLOAD at 2, theIFLE at 3, and then, because
local variable0 is equal to0, theLOAD at M1 pc13 ( = 3 + 10), and theRETURN. If, on the
other hand,n is non-0, the program will execute the 11 instructions between M1 pc2 and the
GOTO and be back at pc2 with n− 1 in local0.

Thus, a suitable schedule to run the program from M1 pc2 to termination is given as a
function ofn as follows.

(defun ifact-loop-sched (n)
(if (zp n)

(repeat 0 4)
(append (repeat 0 11)

(ifact-loop-sched (- n 1)))))

Since it takes 2 instructions to get from the top of the program to the top of the loop, a
schedule to run*ifact-program* to completion is constructed by the following function.

(defun ifact-sched (n)
(append (repeat 0 2)

(ifact-loop-sched n)))

With this schedule we can, in principle, run*ifact-program* on any natural number
n. To do it, construct a state,s, with program component being*ifact-program* such
that the pc is0, the locals is a list containingn as its0th element, and the stack isnil. Use
run to steps according to the schedule(ifact-sched n). This produces some other
states′. Finally, get the operand stack froms′ and take its top item. We claim the result will
be(fact n).

For any natural constantn we can phrase this as a theorem. Below is an example run for
n = 5.



Mechanized Operational Semantics: The M1 Story 19

(defthm factorial-5-example
(equal (top

(stack
(run
(ifact-sched 5)
(make-state
0
’(5 0)
nil

*ifact-program*))))
(fact 5))

:rule-classes nil)

This theorem is trivial to prove: we just execute the model. In the case ofn = 5 the schedule
is of length 61, which meansrun takes 61 steps.

We can run the M1 model on larger examples. For example, if we replace5 above by
1000, M1 steps 11,006 times and computes1000!, a number with 2,568 decimal digits. Our
little M1 inherits a lot of power from its parent language, ACL2. We can execute these eleven
thousand instructions in less than 0.03 seconds on a 2.4 GHz Intel Core 2 Duo Mac OS X
laptop. That is about 360,000 instructions per second.

This supports the claim that an operational model formalized in a functional language
can be used as a simulation engine. At AMD, where ACL2 is used to verify floating point
hardware designs for all AMD processors from the Athlon onwards, ACL2 models have been
run on over 80 million floating point test cases as part of the process of validating the models
against more conventional simulators [24, 25]. Researchers at Rockwell Collins, where ACL2
is used to explore security properties of hardware and software artifacts, report that ACL2
models run at 50% to 90% the speed of their C models [8].

While ACL2 models are not as fast as conventional industrialsimulators, they are not
mere toys.

7 Another Programming Language

To help solidify intuitions about M1, we develop a compiler for a simple language with
assignment and while statements. We call the language “J1.”The compiler will transform a
well-formed J1 program into an M1 program. J1 is not very rich. It is a language of arithmetic,
assignment, and while statements, with the only test being astrict “greater than.” It does not
support arrays or string data. So it does not illustrate use of theALOAD instruction and some
of theIFxx instructions. But it suits our purposes.

7.1 Grammar of J1

<expr> := <var>|<int-constant>|( <expr> <op> <expr> )
<op> := + | - | *
<test> := ( <expr> > <expr>)
<stmt> := ( <var> = <expr> ) |

( while <test> <stmt*>) |
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( return <expr> )
<stmt*> := <stmt> | <stmt> <stmt*>
<program> := ( <stmt*> )
<var> := any ACL2 symbol
<int-constant> := any ACL2 integer

Thus, an example J1 program is:

((a = 1)
(while (n > 0)
(a = (n * a))
(n = (n - 1)))

(return a))

For the purposes of this exercise, we will assume that every program we wish to compile
is syntactically well-formed. We also assume every J1 program is implicitly paired with a list
of formal parameters. In the J1 program above, the only formal parameter isn. In a more
sophisticated language, programs are given names and theirlocals are explicitly declared, as
in the first line of a Java method.

We show the complete compiler in Appendix A. It takes six pages to define, explain, and
illustrate the compiler. But if one evaluates

(compile ’(n)
’((a = 1)

(while (n > 0)
(a = (n * a))
(n = (n - 1)))

(return a)))

the result is the M1 program shown above.
At this point, we have a choice. One “natural” activity wouldbe to prove that the J1 to

M1 compiler is correct. The other is to prove some M1 programscorrect, using the compiler
merely as a means to obtain some interesting programs.

To prove the compiler correct we would need to define the semantics of J1. Semantics of
higher level languages have been repeatedly defined in systems like ACL2 and compilers for
them have been proved correct [18, 26, 4]. As with M1, we woulduse an operational seman-
tics for J1 and the state would be the bindings of the variables mentioned in the program.

But we prefer not to formalize the semantics of J1. The reasonis that this better re-
flects the situation we find today in the software industry. The semantics of widely used
programming languages are most often given only by their compilers! For example, C and
C++ actually have platform-specific semantics. Java’s semantics is made precise and nearly
platform-independent by virtue of a very well-designed andspecified virtual machine.

So we proceed now to prove J1 programs correct – by proving their M1 counterparts cor-
rect. This work, too, has been carried out with very large models. For example, Yuan Yu used
the earlier Boyer-Moore theorem prover, NQTHM, to verify the Berkeley C String Library by
compiling it withgcc -o to obtain Motorola MC68020 binary and then verified the binary
with respect to a formal model of the MC68020 [3]. Sandip Ray [private communication]
used the M5 model of the JVM to verify the invertibility of AES-128 encryption/decryption.
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8 Proving Theorems with ACL2

8.1 The ACL2 Logic and Theorem Prover

ACL2 is a first-order mathematical logic that includes a principle of recursive definition and a
principle of mathematical induction. Key to both principles are the ordinals belowǫ0 = ωωω

...

and the well-founded relationo< on them. The ordinals, recognized byo-p, are constructed
from ordered pairs and natural numbers along the lines of theconcrete representation pro-
posed by Gentzen [6]. See [17].

The principle of definition requires that every recursive function definition be “proved
to terminate” by exhibiting an ordinal measure of the arguments that is proved to decrease
in every recursive call. The principle of induction allows one to assume inductive instances
of the conjecture being proved, provided there is an ordinalmeasure of the variables being
instantiated that can be proved to decrease under the instantiating substitutions.

To this logic we add axioms characterizing the primitive function symbols. For example,
one of those axioms is

(defaxiom car-cons
(equal (car (cons x y)) x))

We leave the other axioms to the reader’s imagination [11].
The ACL2 theorem prover attempts to prove conjectures submitted by the user. To a

first approximation, the theorem prover works as follows: Each subgoal is attacked first
by exhaustive simplification, applying axioms, definitions, and previously proved lemmas
a rewrite rules. Whenif-expressions are introduced by rewriting, the resulting subgoals are
split into cases and exhaustive simplification continues oneach case. Any subgoal that fails to
be proved this way is attacked with induction. Inductive arguments are formulated based on
the recursions of the functions involved. Of course, there are many more heuristics, dozens
of uses for previously proved lemmas besides rewriting, integrated decision procedures, ac-
commodations for user-supplied hints, and many other features [10].

But the salient feature of the above description is that the theorem prover’s behavior is
determined by the theorems previously proved. Thus, to makethe system capable of auto-
matically proving many theorems in some particular problemdomain the user’s task is to
formula lemmas about the function symbols in that domain, typically with the aim of making
the simplifier canonicalize expressions over those function symbols.

8.2 The M1 Problem Domain

With that in mind, we now present the theorems about M1 that are involved in virtually every
M1 code proof.

Since M1 involves arithmetic, we include a standard set of arithmetic theorems, called
"arithmetic/top-with-meta" that is distributed with ACL2. Such sets of definitions
and theorems in ACL2 are calledbooks. The standard ACL2 distribution comes with over 200
books supporting formal reasoning in various domains. We would use other arithmetic books,
for example, if M1 supported 32-bitint arithmetic.

To support our pretense that certain ordered pairs are stacks, we have the following rewrite
rules.
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(defthm stacks
(and (equal (top (push x s)) x)

(equal (pop (push x s)) s)

(equal (top (cons x s)) x)
(equal (pop (cons x s)) s)))

We then instruct the rewriternot to expand the definitions ofpush, top, andpop.

(in-theory (disable push top pop))

This way, we do not seecons, car, andcdr in our proofs where we expect to seepush,
top, andpop.

One might wonder why we need the odd rules about(top (cons x s)) and(pop
(cons x s)), given thatpush is disabled. The reason is that even whenpush is disabled
ACL2 will compute(push 3 (push 2 (push 1 nil))) to the constant expression
’(3 2 1), which unifies with(cons x s); so we need rules for taking thetop andpop
of explicit “stack” constants.

We treat M1 states analogously

(defthm states
(and (equal (pc (make-state pc locals stack program)) pc)

(equal (locals
(make-state pc locals stack program))

locals)
(equal (stack

(make-state pc locals stack program))
stack)

(equal (program
(make-state pc locals stack program))

program)

(equal (pc (cons pc x)) pc)
(equal (locals (cons pc (cons locals x))) locals)
(equal (stack

(cons pc (cons locals (cons stack x))))
stack)

(equal (program
(cons pc
(cons locals (cons stack (cons program x)))))

program)))

(in-theory (disable make-state pc locals stack program))

We next arrange for the M1 state transition function,step, to expand only if we can
determine that the next instruction is an ordered pair. Notethat the right-hand side of the
concluding equality below is just the body of the definition of step. The theorem is trivial
to prove. But after proving it, we disablestep.
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(defthm step-opener
(implies (consp (next-inst s))

(equal (step s)
(do-inst (next-inst s) s))))

(in-theory (disable step))

The effect is that if we have deeply nestedstep expression, e.g.,(step (step (step
(step s)))) then we will not expand any of thesteps unless we know the corresponding
instruction to be executed. Typically, that will force onlythe innermoststep to expand – and
only if enough is known abouts to resolve the instruction, e.g., the specific pc and program.
Allowing the theorem prover to expandstep prematurely is disastrous: eachstep above
would expand to a case analysis on all possible M1 instructions.

We also control the expansion ofrun. First we prove

(defthm run-opener
(and (equal (run nil s) s)

(equal (run (cons th sched) s)
(run sched (step s)))))

to forcerun open only when the schedule is an explicit pair ornil. Our goal is to disable
run.

But first we prove a most important and beautiful theorem about M1.

(defthm run-append
(equal (run (append a b) s)

(run b (run a s))))
(in-theory (disable run))

Recall that schedules are lists. This theorem considers a schedule created by concatenating
two schedules. It tells us that we can determine the final state by running the second part of
the schedule on the state produced by running the first part. This is “sequential composition”
and is trivially proved by induction on schedulea.

Rewriting with this theorem is a critical move in code proofsin which explicit schedules
are constructed. For example, recall our top-level schedule forifact.

(defun ifact-sched (n)
(append (repeat 0 2)

(ifact-loop-sched n)))

A typical sequence of simplifications is

(run (ifact-sched n) s)
= {by def ifact-sched}
(run (append (repeat 0 2)

(ifact-loop-sched n))
s)

= {by def repeat}
(run (append ’(0 0)

(ifact-loop-sched n))
s)

= {by run-append}
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(run (ifact-loop-sched n)
(run ’(0 0) s))

= {by run-opener}
(run (ifact-loop-sched n)

(step (step s))).

Note that if we know enough about states above to determine the first two instructions, we
can then expand thesteps (usingstep-opener) to calculate the symbolic state upon
which we run the schedule(ifact-loop-sched n).

Similarly, to prove something about(run (ifact-loop-sched n) s), we might
inductively assume the conjecture for(run (ifact-loop-sched (- n 1)) s′), for
non-zeron and some states′, and prove the conjecture for(run (ifact-loop-sched
n) s). But

(run (ifact-loop-sched n) s)
= {by ifact-loop-sched}
(run (append (repeat 0 11)

(ifact-loop-sched (- n 1)))
s)

Then following the same pattern seen earlier, we userun-append, run-opener, and
step-opener to runs symbolically for eleven steps to gets′, reducing the term above to

(run (ifact-loop-sched (- n 1)) s′)

which matches therun in our induction hypothesis (if we chose thes′ in our induction
hypothesis wisely).

Resuming our discussion of useful lemmas for M1 code proofs,we also must deal with
how the local variables are accessed and updated. The following two lemmas are sufficient to
force ACL2 to eliminate anynth orupdate-nth expression in which the first argument is
a specific natural number. standard lemmas.

(defthm nth-add1!
(implies (natp n)

(equal (nth (+ 1 n) list)
(nth n (cdr list)))))

(defthm update-nth-add1!
(implies (natp n)

(equal (update-nth (+ 1 n) v x)
(cons (car x) (update-nth n v (cdr x))))))

For example, suppose the expression(nth 2 x) arises. Because ACL2 can match2 with
(+ 1 n) (by bindingn to 1) and because1 is a natural,(nth 2 x) is rewritten to(nth
1 (cdr x)). This process repeats and we get(nth 0 (cdr (cdr x))) which then
becomes(car (cdr (cdr x))) because0 is the base case fornth. While this same
expansion might be done by ACL2’s heuristic use of the recursive definitions ofnth and
update-nth, these rules ensure faster elimination of the functions.

With these basic lemmas we can begin automatic code proofs about M1 code.
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9 Proving Theorems about M1 Code

9.1 General Strategy and Terminology

In our first approach to code proofs we illustrate a method pioneered by the Boyer-Moore
community and first used extensively in [1]. It is sometimes called theclock functionapproach
or simply thedirectapproach.

A total correctness theoremabout a program in some states says that there exists some
schedule or number of stepsk such that, from ans satisfying thepre-condition, ψ, the pro-
gram terminates ink steps and produces a state satisfying thepost-condition, φ, relating the
initial and final states. Given an operational semantics embodied in a functionrun, the direct
expression of a total correctness theorem is something like:

∃k(ψ(s) → (haltedp(run(k, s)) ∧ φ(s, run(k, s))))

.
Often, to prove such a formula, one exhibits the construction of a suitablek. That is, one

proves instead

(ψ(s) → (haltedp(run(k(s), s)) ∧ φ(s, run(k(s), s))))

where thek above is aSkolem functionof s witnessing the existence of a suitable schedule or
clock to drives to termination. Since ACL2 does not have an existential quantifier, our direct
total correctness theorems take this latter form and the Skolem functionk is often called a
clock functionbecause it tells us how many steps it takes to runs to completion. It is defined
by the user.

How do we prove such theorems? The first step is to define a mathematical function,
independent of the programming language, that expresses the algorithm used. We call this
function thealgorithm. Often the programmer had this function in mind before the program
was coded.

By making the algorithm explicit one can decompose the correctness proof into two big
steps: (a) prove that the code implements the algorithm, and(b) prove that the algorithm sat-
isfies the correctness condition. Good programmers often carry out step (b) in some informal
form first, although there are situations where it is advantageous to be able to experiment with
code’s performance and behavior before investing any time in steps (a) or (b).

Typically every loop in the program corresponds to a recursive function in the algorithm.
So step (a) breaks down into proving that each loop is correctand then composing the results.

The beauty of this approach is that step (a) is generally straightforward because the code
and the algorithm operate in lock-stepby construction. But step (b) does not involve the code
or the operational semantics – they have been factored out and one is left with a mathematical
problem.

Of course, the devil is in the details. So we use the techniquejust described to prove that
*ifact-program* is correct.

9.2 Direct Total Correctness

Recall
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(defconst *ifact-program*

; M1 M1
; code pc

’((PUSH 1) ; 0
(STORE 1) ; 1
(LOAD 0) ; 2
(IFLE 10) ; 3
(LOAD 0) ; 4
(LOAD 1) ; 5
(MUL) ; 6
(STORE 1) ; 7
(LOAD 0) ; 8
(PUSH 1) ; 9
(SUB) ; 10
(STORE 0) ; 11
(GOTO -10) ; 12
(LOAD 1) ; 13
(RETURN) ; 14
))

Our goal is to prove

(defthm ifact-correct
(implies (natp n)

(equal (run (ifact-sched n)
(make-state 0

(cons n (cons a nil))
stack

*ifact-program*))
(make-state 14

(cons 0 (cons (fact n) nil))
(push (fact n) stack)

*ifact-program*))))

This can be seen as being in the schematic form of a total correctness theorem where the
initial states is the firstmake-state above. Thus, pre-conditionψ checks that the pc of
s is 0, the locals aren anda, the program is*ifact-program* (all of which are true
by construction ofs) andn is a natural number (which is the only part ofψ checked ex-
plicitly). The post-conditionφ above is that final state is some quite particular state, namely
the secondmake-state above. In that state, the pc is14 (pointing to theRETURN) in
*ifact-program*, local0 has been cleared and local1 has the value(fact n), and
the stack of the initial state has(fact n) pushed upon it. We do not state thehaltedp
condition explicitly here because ourφ makes it obvious (the instruction at 14 isRETURN).

What is the algorithm behind*ifact-program*? Perhaps surprisingly, it isnot the
functionfact! The algorithm behind*ifact-program* is
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(defun ifact (n a)
(if (zp n)

a
(ifact (- n 1) (* n a))))

Technically, this recursive function corresponds to the loop from pcs2 – 12. The program
itself corresponds to the expression(ifact n 0). We are using a loose notion of “corre-
sponds.” The algorithm just describes the result of the code, not the entire transformation on
the state.

To prove the loop correct, we prove

(defthm ifact-loop-lemma
(implies (and (natp n)

(natp a))
(equal (run (ifact-loop-sched n)

(make-state 2
(cons n (cons a nil))
stack

*ifact-program*))
(make-state 14

(cons 0 (cons (ifact n a) nil))
(push (ifact n a) stack)

*ifact-program*))))

This lemma states the total “correctness” of the loop in exactly the same way the main theo-
rem states the total correctness of the entire program – except here it phrased in terms of the
algorithmifact instead of the “more abstract” specification functionfact. This lemma is
proved automatically by ACL2. The key to that automation is that the term(ifact n a)
suggests the right induction.

To move up from the loop to the whole program, we prove

(defthm ifact-lemma
(implies (natp n)

(equal (run (ifact-sched n)
(make-state 0

(cons n (cons a nil))
stack

*ifact-program*))
(make-state 14

(cons 0 (cons (ifact n 1) nil))
(push (ifact n 1) stack)

*ifact-program*))))

This is trivial because(ifact-sched n) opens into anappend, we userun-append
as previously discussed,run the program on the first two steps, initializinga to 1, and find
ourselves at pc2 prepared torun the schedule(ifact-loop-sched n). But thatrun
is correct byifact-loop-lemma.

We can now disableifact-sched so that we never run the bytecode again in proofs.
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(in-theory (disable ifact-sched))

We have completed step (a) of our proof methodology. We wouldbe done had our original
specification been in terms of(ifact n 1) instead of(fact n). Step (b) is to establish
the relation between these two different mathematical descriptions of the same idea.

(defthm ifact-is-factorial
(implies (and (natp n)

(natp a))
(equal (ifact n a)

(* (fact n) a))))

Note that to prove that(ifact n 1) is (fact n) we have to prove a more general
mathematical relation. This is just a fact of life when dealing with induction.

Given this theorem and the arithmetic theorem that1 is the multiplicative identity, our
main theorem follows.

(defthm ifact-correct
(implies (natp n)

(equal (run (ifact-sched n)
(make-state 0

(cons n (cons a nil))
stack

*ifact-program*))
(make-state 14

(cons 0 (cons (fact n) nil))
(push (fact n) stack)

*ifact-program*))))

The beautiful thing about this theorem is that if one is ever asked torun the particular
initial state with theifact-sched one need not actually do the step-by-step computation.
One may simply set the pc to14, adjust the locals, and push(fact n) on the stack.

This makes this style of theorem compositional. Given a large program we can prove the
correctness of pieces of it, each with their own schedule, and then derive the correctness of
the whole run (with a schedule obtained by concatenating theindividual schedules) – without
re-inspecting the pieces. Similar comments apply if we extend the computational model to
include procedure call and return.

Fromifact-correct we can also prove two simple, weaker, corollaries. Often these
two facts are enough to satisfy the “user” of the program in question. First, the program
terminates.

(defthm ifact-correct-corollary-1
(implies (natp n)

(haltedp (run (ifact-sched n)
(make-state 0

(cons n (cons a nil))
stack

*ifact-program*)))))
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It is important to prove this theorem. To see why, look at Appendix B in which we show a
universal M1 programcapable of computinganyfunction into the naturals – if we ignore the
haltedp condition!

Second, the program leaves(fact n) on top of the stack.

(defthm ifact-correct-corollary-2
(implies (natp n)

(equal (top
(stack
(run (ifact-sched n)

(make-state 0
(cons n (cons a nil))
stack

*ifact-program*))))
(fact n))))

These weaker corollaries do not saywhat else the program does! For all we know from
these lemmas, execution of the program might do arbitrary damage to our machine’s state.
Ifact-correct, above, is truly atotalspecification of the program and in many situations,
especially regarding security, such specifications are highly desirable.

We could re-phrase all our lemmas by replacing*ifact-program* by a call of the
compiler, e.g., we could state the previous corollary in terms of a J1 program:

(defthm ifact-correct-corollary-3
(implies (natp n)

(equal (top
(stack
(run (ifact-sched n)

(make-state 0
(cons n (cons a nil))
stack
(compile
’(n)
’((a = 1)
(while (n > 0)

(a = (n * a))
(n = (n - 1)))

(return a)))))))
(fact n))))

This is trivial to prove because thecompile expression evaluates to the same constant as
*ifact-program*.

Note that our theorem is still phrased in terms of the states of the lower level machine,
M1, because we do not have a J1 machine. We can imagine defininga J1 machine in terms of
M1 and the compiler. But we would then have to decide which resources of the M1 machine
matter to the J1 programmer. Is it just the bindings of the variables? Just the return value?
Both? And if we hide resources can we still state the key loop invariants in terms of visible
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resources? Finally, what do we do about the clock? Could the compiler be modified to produce
a proposed clock function?

These questions cast doubt on the viability of the idea of using a compiler to give meaning
to programs. And yet, that is how the world’s programmers operate today! Indeed, without
admitting the intimate link between high-level language programs and their compiled coun-
terparts it is virtually impossible to explain or reason effectively about many systems because
they mix languages. In many situations, a program in a high level programming language
should be viewed simply as an abbreviation for its machine code, as we are doing here.

9.3 Inductive Assertion Style Proofs

A more common way to argue the correctness of code is theinductive assertionmethod in-
troduced by Floyd [5] and formalized viaHoare logicor program logicby Hoare in [9]. The
basic idea is to annotate the code with assertions, including an assertion at the top of the code
characterizing the pre-condition. Then one derives formulas stating that if the assertion at
some program location holds then the next assertion reachedalong any program path from
that location also holds. These formulas are calledverification conditions (VCs)or simply
proof obligationsand the software that generates them is called averification condition gen-
erator (VCG). Finally, these VCs are proved with a mechanical theorem prover. If they are
all theorems, then it can be concluded that if the pre-condition is true, then every assertion is
true every time it is reached in program execution. In particular, any post-condition assertions
at the program exits are true when (and if) reached.

Generally, this method of code proof requires either the implementation of a VCG to give
semantics to the programming language or else a Hoare semantics and a mechanization of it
that derives proof obligations to submit to a theorem prover. In either case, one also needs a
theorem prover.

Though it is not widely appreciated – and had apparently never been published until 2003
[19] – it is possible to do mechanized inductive assertion style proofs without a VCG or Hoare
logic. All that is needed is an operational semantics and a theorem prover.

We briefly illustrate the technique on*ifact-program*. It is convenient to define
functionsn anda to return the current values (in some states) of locals0 and1.

(defun n (s) (nth 0 (locals s)))
(defun a (s) (nth 1 (locals s)))

Recall, again,

(defconst *ifact-program*

; M1 M1
; code pc

’((PUSH 1) ; 0
(STORE 1) ; 1
(LOAD 0) ; 2
(IFLE 10) ; 3
(LOAD 0) ; 4
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(LOAD 1) ; 5
(MUL) ; 6
(STORE 1) ; 7
(LOAD 0) ; 8
(PUSH 1) ; 9
(SUB) ; 10
(STORE 0) ; 11
(GOTO -10) ; 12
(LOAD 1) ; 13
(RETURN) ; 14
))

and the fact that there is a loop from pcs2 – 12.
Now consider the following command.

(defspec ifact *ifact-program* (n0 a0) 0 14
((0 (and (equal n0 (n s))

(natp n0)))
(2 (and (natp n0)

(natp (n s))
(natp (a s))
(<= (n s) n0)
(equal (fact n0) (* (fact (n s)) (a s)))))

(14 (equal (top (stack s)) (fact n0)))))

This is actually just an abbreviation for a sequence ofdefun, defthm, and other events.
Surprisingly perhaps,defspec is not part of the ACL2 system. It is just a macro, defined
by the author of M1, to hide a standard sequence of definitionsand lemmas generated from
the expressions in thedefspec command above.

The successive “arguments” in thedefspec expression above are: a symbol,ifact,
used to generate names of functions and lemmas, the program code,*ifact-program*,
to be verified, the names to use for the initial values of the variables, the initial and final pcs,
and an annotation that associates assertions with certain pcs. Look at those assertions.

• 0 – the pre-condition: the current value ofn is n0, which is some natural number

• 2 – loop invariant: bothn0 and the current value ofn are naturals,n is smaller thann0
and(fact n0) is the product of(fact n) and the current value ofa

• 14 – post-condition: the top of the stack is(fact n0)

If we were to verify the VCs generated from this annotation wecould conclude that if the
program were called on a naturaln0 and ever reaches pc14 then the top of the stack contains
the correct answer. But how do we do this without a VCG or Hoaresemantics?

The trick is that thedefspec command above defines the partial functionifact-inv.

(defp ifact-inv (n0 a0 s)
(if (member (pc s) ’(0 2 14))

(and (equal (program s) *ifact-program*)
(if (equal (pc s) 0)
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(and (equal n0 (n s)) (natp n0))
(if (equal (pc s) 2)

(and (natp n0)
(natp (n s))
(natp (a s))
(<= (n s) n0)
(equal (fact n0)

(* (fact (n s)) (a s))))
(if (equal (pc s) 14)

(equal (top (stack s)) (fact n0))
nil))))

(ifact-inv n0 a0 (step s))))

The suffix “-inv” indicates that this predicate is allegedly an invariant. “Defp” stands for
“define partial function.” See [16] for the details of how ACL2 allows the sound axiomatiza-
tion of some possibly non-terminating tail-recursive functions.Defp is an extension by Matt
Kaufmann that allows for multiple tail-recursive calls andis supported by the standard ACL2
book"misc/defp.lisp".

Defspec automatically generates a variety of lemmas aboutifact-inv, including the
following key lemma.

(defthm ifact-inv-step
(implies (ifact-inv n0 a0 s)

(ifact-inv n0 a0 (step s))))

The reader may confirm that theproof of ifact-inv-step generates and proves the
VCs!

The basic idea of the proof is that the case analysis on the pc caused by expanding
ifact-inv in the hypothesis splits the proof into four cases accordingto whether the pc
is 0, 2, 14, or otherwise. Given one of these initial pcs and the definition of ifact-inv
the expansion of(ifact-inv n0 a0 (step s)) simply forces the system to symbol-
ically execute forward from the given pc, building up a symbolic state, until it encounters
one of the annotated locations, at which pointifact-inv simplifies to the properly instan-
tiated assertion for that symbolic state. The system, of course, simplifies the evolving VCs
as they are produced. See [19] for details.Ifact-inv is partial since the user may write
a defspec in which some loop is not “cut” with an assertion. In that case, the attempt to
proveifact-inv-step will run indefinitely.

This establishes that the assertions inifact-inv hold for every state reachable byrun
from a state satisfying the starting state. That in turn establishes that if the pre-condition holds
the post-condition holds when (and if) pc14 is ever reached. The lemmas generated by the
defspec command allow all these theorems to be proved automatically, if ACL2 can prove
the VCs.

From the final theorem generated by thedefspec it is trivial to prove:

(defthm partial-correctness-of-program-ifact-corollary
(implies (and (natp n0)

(equal (pc s0) 0)
(equal (locals s0)
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(cons n0 (cons a0 nil)))
(equal (program s0) *ifact-program*)
(equal sk (run sched s0))
(equal (pc sk) 14))

(equal (top (stack sk))
(fact n0)))

:hints . . .)

The first four hypotheses require thatn0 is a natural number ands0 is an initial state with
pc0, locals,n0 anda0, and program*ifact-program*. The fifth hypothesis sayssk is
the state(run sched s0), that is,sk is anarbitrary reachable state becausesched is
unconstrained. The sixth hypothesis supposes that the pc ofsk is 14, the terminal state.

Then the conclusion states that the top of the stack ofsk is (fact n0).
This theorem states the partial correctness ofifact. It does not establish thatifact

halts. It just establishes that if it halts, the right answeris computed.
We could, as usual, replace*ifact-program* with a call of the compiler. But the

earlier problem rears its head: our theorems – in particularthe locations of the assertions in
the code – are stated in terms of the lower level language. A nice project would be to augment
the compiler to allow the assertions to be embedded in the source code and have the compiler
generate thedefspec automatically.

9.4 On Alternative Proof Styles

The inductive assertion method as implemented here may alsobe used to prove total correct-
ness, by incorporating an ordinal measure into the assertions and proving that the measure
decreases between cut points.

It may appear that using inductive assertions with measuresto establish total correctness
involves less work than the clock function approach. But it turns out that the clock func-
tion approach and the inductive assertion approach to totalcorrectness are equally powerful.
If you can prove a program correct by one method you can prove it by the other, entirely
automatically.

Indeed, there is an ACL2 book that allows the user to switch between proof styles, trading
theorems proved in one style for those in another and combining them at will.

For details of these and other meta-logical results about alternative proof styles, see [23].

10 Boyer-Moore Fast String Searching

We conclude our demonstration of code proofs by consideringthe Boyer-Moore fast string
searching algorithm [2].

Recall our description of how to prove code correct by the direct method: Step (a) is to
prove the code implements a certain algorithm and step (b) isto prove the algorithm satis-
fies the specification. In this section we address step (a) only. Step (b) has been carried out
independently of this work. See [21].

To apply our proof methodology to the Boyer-Moore algorithmwe must have a formal
expression of the algorithm. That was actually developed independently when step (b) was
carried out. Oddly, it is not actually necessary for the reader to understand what an algorithm
is intended to do while carrying out step (a)! It is sufficientto prove merely that the code
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does whatever the algorithm does. But for the reader’s edification (and sanity) we explain the
Boyer-Moore algorithm informally and then exhibit its formal definition in ACL2.

The next steps in our methodology are then: write the M1 code for the algorithm, define
the schedule or “clock” function for that code (together, inthis case, with another function
used in the specification), state and prove a general theoremabout the loop in the code,
and state and prove that the top-level entry to the code computes the same answer as the
algorithm and terminates. By combining this work with step (b) we get the final theorem that
the computed answer is correct. We follow his methodology inthe subsequent subsections.

The main lesson of this entire section is that the methodology already presented allows us
to prove interesting code correct.

In the presentation we use the following additional ACL2 forms:

(declare (xargs . . .)) pragmatic advice associated with the admission of a function,
e.g., the measure to use to justify its termination, the expected types of its arguments, etc.

(cond (p1 x1) (p2 x2) . . . (t xk)) an abbreviation for(if p1 x1 (if p2 x2 (if
... xk))).

(length x) if x is a string, then the numbers of characters in it, i.e.,(len (coerce x
’list)); else,(len x).

(list x1 x2 . . . xk) an abbreviation for(cons x1 (cons x2 (cons . . . (cons
xk nil)))).

10.1 The Algorithm

The Boyer-Moore fast string algorithm looks for the first exact match of one string, called
the pattern in another, called thetext. Given a proposed alignment of the two strings, the
algorithm compares them character by characterstarting at the right-hand endof the pattern.
Consider two corresponding characters, sayu from the pattern at indexj and v from the
text at the corresponding indexi. If u = v, the algorithm backs up, decrementingj andi.
If u 6= v, the algorithm has “discovered” a substring in the text. This substring isalmost
a terminal substring of the pattern starting atj, except the discovered string starts withv
instead ofu. The pattern can be realigned with the text by shifting to theright. The next
possible exact match of the pattern and the text must align the discovered substring with its
rightmost occurrence in the pattern. But there are only a finite number of such substrings:
one for each choice ofv and terminal substring of the pattern. Therefore, we can preprocess
the pattern to compute a 2-dimensional array indexed byv and the position,j, of the unequal
character of the pattern. We store in this array the distance, δ, we advancei upon discovering
thatv fails to match the character at positionj in the pattern.

Here is an example. Find the first occurrence of the indicatedpattern (pat) in the text (txt)
below. We show a trace of the algorithm below and then we explain each step.

1. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=5

2. pat: aBCdBC
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txt: xxxaBCxxGxaBCdBCxxxx
⇑ i=4

3. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=3

4. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=8

5. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=14

6. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=15

7. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=14

8. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=13

9. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=12

10. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=11

11. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=10

12. pat: aBCdBC
txt: xxxaBCxxGxaBCdBCxxxx

⇑ i=9

Note on line1, we start by reading and matching the ‘C’ at text positioni=5 with the ‘C’ at
the end of the pattern. We back up. We match the ‘B’s. We back up. On line3 we read the
‘a’ at i=3 and it fails to match the ‘d’ (at positionj=3)’ in the pattern. So we skip ahead by
some precomputed amount as a function of the characterv just read from the text, ‘a’, and
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the index of the matched terminal substring ("BC") of the pattern (j=4). It turns out that the
precomputed amountδ is 5. So we addδ to i and get the newi=8 of line 4. What is special
about 5? Note that on line4, after addingδ to i and shifting the pattern rightwards to that
position, the discovered"aBC" of the text aligns with its last occurrence in the pattern.

On line4, we read ‘G’. It does not match its counterpart in the pattern. The precomputed
table (for ‘G’ and the empty substring) says we can incrementi by δ = 6. This is because
there is no‘G’ in the pattern! So we can slide the pattern forward by its length to get entirely
past the ‘G’,

On line 5, we read ‘B’. Following the same routine, we use the precomputed table to
shift the pattern to align the last ‘B’ in the pattern with the discoveredB.

On lines6 through11 we just back up confirming each character.
On line12, we have “walked off the left end of the pattern.” That means we matched all

the characters. The match starts ati+1, or position10 in the text.
Here is a more realistic example.

pat: pattern
txt: we can preprocess the pattern to

⇑ i=6

pat: pattern
txt: we can preprocess the pattern to

⇑ i=13

pat: pattern
txt: we can preprocess the pattern to

⇑ i=20

pat: pattern
txt: we can preprocess the pattern to

⇑ i=22

pat: pattern
txt: we can preprocess the pattern to

⇑ i=28

pat: pattern
txt: we can preprocess the pattern to

⇑ i=27

etc.

Here we see the algorithm skipping through the text in steps proportional to the length of the
pattern. This illustrates the key advantage of the Boyer-Moore fast string searching algorithm:
it advances through the text without reading all the characters and in steps that are often
nearly as big as the pattern is long.

In this paper we do not discuss the preprocessing. However, in [21], we define(prepro-
cess pat) to produce a 2-dimensional array, i.e., a list of lists, withthe following property.
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(defthm preprocess-correct
(implies (and (stringp pat)

(characterp v)
(natp j)
(< j (length pat)))

(equal (index2 (preprocess pat) (char-code v) j)
(delta v j pat))))

where

(defun index2 (array c j)
(nth j (nth c array)))

Here(delta v j pat) is the amount by which we are to incrementi upon reading
characterv from text and finding it is unequal to the corresponding character at positionj in
pat.

We then define the Boyer-Moore algorithm as shown below.

(defun fast-loop (pat j txt i)
(declare (xargs . . .))
(cond
((not (and (stringp pat) (integerp j)

(stringp txt) (integerp i)
(<= -1 j) (< j (length pat))
(<= j i)))

nil)
((< j 0)
(+ 1 i))

((<= (length txt) i)
nil)

((equal (char pat j) (char txt i))
(fast-loop pat (- j 1) txt (- i 1)))

(t (fast-loop pat
(- (length pat) 1)
txt
(+ i (delta (char txt i)

j
pat))))))

(defun fast (pat txt)
(declare (xargs . . .))
(if (equal pat "")

(if (equal txt "")
nil

0)
(fast-loop pat

(- (length pat) 1)
txt
(- (length pat) 1))))
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As noted, we have already carried out step (b): an ACL2 proof of the correctness of this
algorithm [21]. In particular, we prove that(fast pat txt) is equivalent to the naive,
obviously correct algorithm which tests, successively, each location intxt to see whether the
pattern matches the text at that location. We call the obviously correct algorithm(correct
pat txt).

But in the course of completing step (b) we proved thatfast-loop terminates (using
a measure not shown in the(declare (xargs . . .)) above), we defined the (inefficient
but correct) preprocessing algorithm,(preprocess pat) to compute a list of lists, and
we proved that indexing into that list of lists with two successivenths produces(delta
v j pat) as indicated above. It turns out this is all we need to carry out step (a) given the
methodology already described here.

10.2 The Code

In the M1 code for the algorithm we use eight local variables.
local symbolic name general use initial value
0 pat the pattern string pat
1 j current index into pattern (- (length pat) 1)
2 txt the text string txt
3 i current index into text (- (length pat) 1)
4 pmax length of pattern (length pat)
5 tmax length of text (length txt)
6 array 2-dimensional array (preprocess pat)
7 v last character read from textinitial value irrelevant

Here is the M1 code for the Boyer-Moore fast string searchingalgorithm. In the left
column, with capitalized opcodes, we exhibit the M1 code. Inthe comment columns we
exhibit the code with symbolic variable names and some pseudo-code to explain the various
code fragments.

(defconst *m1-boyer-moore-program*
’(
(LOAD 0) ; 0 (load pat)
(PUSH "") ; 1 (push "")
(IFANE 5) ; 2 (ifane loop) ; if pat/="", goto loop
(LOAD 2) ; 3 (load txt)
(PUSH "") ; 4 (push "")
(IFANE 40) ; 5 (ifane win) ; if txt/="", goto win
(GOTO 43) ; 6 (goto lose)

; loop:
(LOAD 1) ; 7 (load j)
(IFLT 37) ; 8 (iflt win)) ; if j<0, goto win
(LOAD 5) ; 9 (load tmax)
(LOAD 3) ; 10 (load i)
(SUB) ; 11 (sub)
(IFLE 37) ; 12 (ifle lose) ; if |txt|-i<=0, goto lose
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(LOAD 0) ; 13 (load pat)
(LOAD 1) ; 14 (load j)
(ALOAD) ; 15 (aload) ; pat[j]
(LOAD 2) ; 16 (load txt)
(LOAD 3) ; 17 (load i)
(ALOAD) ; 18 (aload) ; txt[i]
(STORE 7) ; 19 (store v) ; (store into v)
(LOAD 7) ; 20 (load v)
(SUB) ; 21 (sub)
(IFNE 10) ; 22 (ifne skip) ; if pat[j] 6=txt[i],goto skip
(LOAD 1) ; 23 (load j)
(PUSH 1) ; 24 (push 1)
(SUB) ; 25 (sub)
(STORE 1) ; 26 (store j) ; j=j-1
(LOAD 3) ; 27 (load i)
(PUSH 1) ; 28 (push 1)
(SUB) ; 29 (sub)
(STORE 3) ; 30 (store i) ; i=i-1
(GOTO -24) ; 31 (goto loop) ; goto loop

; skip:
(LOAD 3) ; 32 (load i)
(LOAD 6) ; 33 (load array)
(LOAD 7) ; 34 (load v)
(ALOAD) ; 35 (aload)
(LOAD 1) ; 36 (load j)
(ALOAD) ; 37 (aload)
(ADD) ; 38 (add)
(STORE 3) ; 39 (store i) ; i := i+array[c][j]
(LOAD 4) ; 40 (load pmax)
(PUSH 1) ; 41 (push 1)
(SUB) ; 42 (sub)
(STORE 1) ; 43 (store j) ; j := |pat|-1
(GOTO -37) ; 44 (goto loop)

; win:
(LOAD 3) ; 45 (load i)
(PUSH 1) ; 46 (push 1)
(ADD) ; 47 (add)
(RETURN) ; 48 (return)

; lose:
(PUSH nil) ; 49 (push nil)
(RETURN) ; 50 (return))

)

A few highlights of this code are worth noting. The loop from pc 7 through pc44 does
not necessarily terminate if an arbitrary array is stored inlocal variable6. Theaload at pc
35 indexes into the array and pulls out another array, representing the row for character code
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v. Theaload at pc37 indexes into that row atj and pulls out(delta v j pat), by
the theorem aboutpreprocess. Finally, note that at pcs32 – 39 we first incrementi by
(delta v j pat) and then from pcs40 – 43 we resetj to (- (length pat) 1).
It would have been “natural” to do this in the other order (j first and theni) but that would
be incorrect since the old value ofj is to be used in the computation ofi.

10.3 The Schedule

Following the methodology previously sketched forifact we next define the function that
determines how long the algorithm runs for a givenpat andtxt. But recall that we are
not looking for a closed form or a general worse case analysis, we just want to know how
many steps the algorithm takes for specific inputs. We can exploit the fact that the algorithm
is supposed to computefast and simply define a version offast (and its sub-function
fast-loop) thatcountsthe steps!

We start by counting the steps from the top of the loop at pc7 to the exits. That is done
bym1-boyer-moore-loop-sched. Inspection of the following definition reveals that it
has exactly the same case analysis and recursive structure asfast-loop. However, on each
recursive call weappend the schedules for the corresponding paths through the code.The
path lengths, namely6, 8, 25 and29, are just obtained by counting the instructions on the
four paths starting at the top of the loop at pc7, namely (a) the path leading towin, (b) the
path leading tolose, (c) the path that discoversequal characters, backs up and returns to
pc7, and (d) the path that discovers unequal characters, increments bydelta, and returns to
pc7. The termination argument for this schedule function isexactly the sameas used to admit
fast-loop. No work need be done to admit this function. We then define thefunction that
counts the steps from the top-level entry at pc0, using the previously defined function to
count the passage through the loop.

(defun m1-boyer-moore-loop-sched (pat j txt i)
(declare (xargs . . .))
(cond
((not (and (stringp pat) (integerp j)

(stringp txt) (integerp i)
(<= -1 j) (< j (length pat))
(<= j i)))

nil)
((< j 0)
(repeat 0 6)) ; path (a)

((<= (length txt) i)
(repeat 0 8)) ; path (b)

((equal (char-code (char pat j))
(char-code (char txt i)))

(append (repeat 0 25) ; path (c)
(m1-boyer-moore-loop-sched
pat (- j 1) txt (- i 1))))

(t (append (repeat 0 29) ; path (d)
(m1-boyer-moore-loop-sched
pat
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(- (length pat) 1)
txt
(+ i (delta (char txt i)

j
pat)))))))

(defun m1-boyer-moore-sched (pat txt)
(if (equal pat "")

(if (equal txt "")
(repeat 0 9)

(repeat 0 10))
(append (repeat 0 3)

(m1-boyer-moore-loop-sched
pat
(- (length pat) 1)
txt
(- (length pat) 1)))))

The definition of these schedules may look complex. But we urge the reader to compare
them to their algorithmic counterparts,fast-loop andfast, to understand how simple
and straightforward they are. A mistake people often make when reviewing ACL2 input is
to confuse theexpressionof an idea with the complexity ofcreating it. In the case of these
schedule functions, it probably took the author a minute to “annotate” (edit with Emacs) the
definitions of two pre-existing functions to produce these definitions.

We are almost done. But this problem introduces a complication with our methodology
not exposed byifact. We wish to prove the lemma that executing loop from pc7 returns a
particular state as a function offast-loop. That state will have the value of(fast-loop
pat j txt i) on top of its stack and will terminate at either pc48 or 50 accordingly.
But what are the final values of the local variables?

In theifact example, the final value of the localn was0. But what is the final value of
j (the index intopat), i (the index intotxt) andv (the last character read fromtxt)?

Rather than try to figure out the answers is some closed form, we just define a function
that returns the final values of the local variables, repeating the same computation done by
fast-loop. That function is defined below and returns a list of three elements. The 0th

element of the answer is the final value ofj, the 1st is the final value ofi and the 2nd is
the final value ofv. Again, no work has to be done to create or admit this definition. This is
probably another minute’s work. Note that unlike the definition offast-loop, the function
below tracks the value ofv with added formal. This might be called aghost variableand the
definition below explains it. Again, we see the definition offast-loop, except at the exits
we see(list j i v).

(defun m1-boyer-moore-loop-vars (pat j txt i v)
(declare (xargs . . .))
(cond
((not (and (stringp pat) (integerp j)

(stringp txt) (integerp i)
(<= -1 j) (< j (length pat))
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(<= j i)))
(list j i v))

((< j 0)
(list j i v))

((<= (length txt) i)
(list j i v))

((equal (char-code (char pat j))
(char-code (char txt i)))

(m1-boyer-moore-loop-vars
pat
(- j 1)
txt
(- i 1)
(char-code (char txt i))))

(t (m1-boyer-moore-loop-vars
pat
(- (length pat) 1)
txt
(+ i (delta (char txt i)

j
pat))

(char-code (char txt i))))))

10.4 The Theorems

Following the methodology, we now state the correctness of the loop. This formula is long
but should be self-explanatory. It says that if we start the loop at pc7 – with the appropriate
values in local variables0 – 7 – and run according to the loop schedule, we either end up at
pc48 or 50 with the appropriate values in the locals and on the stack.

(defthm m1-boyer-moore-loop-is-fast-loop
(implies
(and (stringp pat) (integerp j)

(stringp txt) (integerp i)
(<= -1 j) (< j (length pat))
(<= j i))

(equal
(run (m1-boyer-moore-loop-sched pat j txt i)

(make-state 7
(list pat

j
txt
i
(length pat)
(length txt)
(preprocess pat)
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v)
nil

*m1-boyer-moore-program*))
(if (fast-loop pat j txt i)

(make-state
48
(list
pat
(nth 0 (m1-boyer-moore-loop-vars pat j txt i v))
txt
(nth 1 (m1-boyer-moore-loop-vars pat j txt i v))
(length pat)
(length txt)
(preprocess pat)
(nth 2 (m1-boyer-moore-loop-vars pat j txt i v)))

(push (fast-loop pat j txt i) nil)

*m1-boyer-moore-program*)
(make-state
50
(list
pat
(nth 0 (m1-boyer-moore-loop-vars pat j txt i v))
txt
(nth 1 (m1-boyer-moore-loop-vars pat j txt i v))
(length pat)
(length txt)
(preprocess pat)
(nth 2 (m1-boyer-moore-loop-vars pat j txt i v)))

(push nil nil)

*m1-boyer-moore-program*))))
:hints (("Goal" :in-theory (enable preprocess))))

This is proved entirely automatically, using just the lemmas we introduced to proveifact
and the lemmas used to establish step (b).3

Following the methodology, we conclude by proving that if weenter the code at pc0 –
with appropriate values in the local variables – and run according to the top-level schedule,
we get a state in which(fast pat txt) is pushed on the stack and the computation has
terminated.

(defthm m1-boyer-moore-is-fast
(implies (and (stringp pat)

(stringp txt))

3We had to enablepreprocess; it was left disabled by our step (b) work because it was always accessed
via theindex2 abstraction, where as in our code it is accessed by two successivenths. For a similar reason
in our actual script at this point we disablelength, because the lemma just proved useslength in the
(make-state 7 . . .) expression which is part of the left-hand side of the rewriterule generated by the
lemma. The ACL2 user must realize that theselength expressions will open up to(len (coerce . . .

’list)) and either rephrase the lemma in those canonical terms or disablelength.
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(equal
(top
(stack
(run (m1-boyer-moore-sched pat txt)

(make-state
0
(list pat

(- (length pat) 1)
txt
(- (length pat) 1)
(length pat)
(length txt)
(preprocess pat)
0)

nil

*m1-boyer-moore-program*))))
(fast pat txt))))

(defthm m1-boyer-moore-halts
(implies (and (stringp pat)

(stringp txt))
(haltedp
(run (m1-boyer-moore-sched pat txt)

(make-state
0
(list pat

(- (length pat) 1)
txt
(- (length pat) 1)
(length pat)
(length txt)
(preprocess pat)
0)

nil

*m1-boyer-moore-program*)))))

Since we have carried out step (b) elsewhere and know that(fast pat txt) is equal
to (correct pat txt), we can now trivially establish that the M1 code shown above is
a correct string searching algorithm.

(defthm m1-boyer-moore-is-correct
(implies (and (stringp pat)

(stringp txt))
(equal
(top
(stack
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(run (m1-boyer-moore-sched pat txt)
(make-state
0
(list pat

(- (length pat) 1)
txt
(- (length pat) 1)
(length pat)
(length txt)
(preprocess pat)
0)

nil

*m1-boyer-moore-program*))))
(correct pat txt))))

10.5 Summary

We can summarize this section by saying that the methodologyused to prove a trivial pro-
gram likeifact scales up to interesting programs. The clock function may becomplicated
looking, but it is easy to generate if one has formally definedthe algorithm being computed:
just modify the algorithm to assemble the counts of each pathas it executes. The only novelty
above was the introduction of the functionm1-boyer-moore-loop-vars to character-
ize the final values of the various machine resources. Again,the function looks hard to define
but is not: just modify the algorithm to return a vector of thevariables it changes.

It may seem awkward that interesting programs have “irrelevant” side-effects that must be
characterized to apply this method of proof, but it is sometimes useful to specify all the effects
and it is not difficult given the need to formalize the algorithm used. Furthermore, for many
applications, especially where security is at risk, it is advantageous to specifycompletelythe
transformation caused by execution of a piece of code.

11 Conclusion

We have shown some of the techniques involved in using a mechanized operational semantics.
Why might one want to use an operational semantics?

• It has dual use: one can use it as a simulation engine for a language and as the basis of a
code proof methodology.

• We have hinted that it may be practical to reason about higherlevel languages by reason-
ing operationally about the object code produced by an unverified compiler.

• By casting the entire problem into a traditional mathematical logic, it is easier to under-
stand the semantics and to relate it to an actual implementation.

• In addition, it is possible to support alternative proof styles and investigate their logical
connections [23].



46 Mechanized Operational Semantics: The M1 Story

• It is possible to use the theorem prover to prove theorems about the semantics instead of
just about code. Consider therun-append theorem, an interesting fact about M1 that
has nothing to do with any particular code.

• One can move up and down the abstraction stack. We have stayedat the M1 level, with a
hint of how to move up to J1. We could also move down and prove that an implementation
of M1 on a more conventional machine is correct. See [1, 18].
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A Appendix: The J1 Compiler

In this six page Appendix we define the J1 compiler to M1, explain every part of it, and
illustrate it on our factorial example.

A.1 Allocating Variables to Locals

We first define a function,collect-vars-in-stmt*, that sweeps over a list of state-
ments and collects all the variables it finds. The position ofa variable in the resulting list will
determine which local we allocate to the variable.

The sweep function adds the variables to the end of a running accumulator. That accumu-
lator will be initialized to the list of formals of the methodwe are compiling. Thus, declared
formals will be allocated the lowest indices among the locals. Variables in the program that
are not declared among the formals will be allocated to higher indices, as they are encountered
in the sweep.

The next function addse as an element to the right end ofx if e is not already a member
of x.

(defun collect-at-end (x e)
(if (member e x)

x
(append x (cons e nil))))

We usecollect-at-end in the next function, which collects all the variable symbols
used in a J1 expression, in “print order,” modulo the predetermined formals.

(defun collect-vars-in-expr (vars expr)
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(if (atom expr)
(if (symbolp expr)

(collect-at-end vars expr)
vars)

(collect-vars-in-expr
(collect-vars-in-expr vars

(nth 0 expr))
(nth 2 expr))))

Note that ifexpr is not an atom, it is of the form

( <expr> + <expr> ) or
( <expr> - <expr> ) or
( <expr> * <expr> ).

Hence,(nth 0 expr) is the first subexpression and(nth 2 expr) is the second.
Collect-vars-in-expr can be proved to terminate because of the previously men-
tioned properties of(acl2-count (nth n x)).

Now we collect the variables in a J1 statement. This is definedmutually recursively
with the variables in a list of statements. In ACL2, we must declare our intention to de-
fine a clique of mutually recursive functions by wrapping their defun commands in a
mutual-recursion form.

(mutual-recursion

(defun collect-vars-in-stmt* (vars stmt-list)
(if (endp stmt-list)

vars
(collect-vars-in-stmt*
(collect-vars-in-stmt vars (car stmt-list))
(cdr stmt-list))))

(defun collect-vars-in-stmt (vars stmt)
(if (equal (nth 1 stmt) ’=)

(collect-vars-in-expr
(collect-at-end vars (nth 0 stmt))
(nth 2 stmt))

(if (equal (nth 0 stmt) ’WHILE)
(collect-vars-in-stmt*
(collect-vars-in-expr vars (nth 1 stmt))
(cdr (cdr stmt)))

(if (equal (nth 0 stmt) ’RETURN)
(collect-vars-in-expr vars (nth 1 stmt))

vars))))
)

For example,(collect-vars-in-stmt ’(n) ’(a = (a * (b + n)))) evalu-
ates to(N A B).
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Given a list,vars, of all the variables (in order of their allocation among thelocals), we
compute the index of a given variable as follows.

(defun index (vars var)
(if (endp vars)

0
(if (equal var (car vars))

0
(+ 1 (index (cdr vars) var)))))

A.2 Code Generation

To compile an expression we will sweep through it recursively and concatenate the code gen-
erated for each subexpression, with suitable “glue” instructions between the various sections.
For example, to compile an expression such as(x + y) we will generate code that pushes
the values ofx onto the operand stack, concatenate that with the code that pushes the value
of y onto the operand stack and then append anADD instruction to the list of instructions.

This function generates the appropriate M1 arithmetic “glue” given a J1 arithmetic oper-
ator. (All of our code generation functions have names that end with an exclamation point.)

(defun OP! (op)
(if (equal op ’+)

’((ADD))
(if (equal op ’-)

’((SUB))
(if (equal op ’*)

’((MUL))
’((ILLEGAL))))))

Note that the output above is an M1 program, i.e., a list of M1 instructions (in this case, always
a trivial list of length 1). All our functions for generatingcode in fact generate programs so
we can combine them with concatenation.

Here is the generator for the bytecode program to put the value of a J1 variablevar on
the stack, given the list of variablesvars determining allocation of the locals.

(defun LOAD! (vars var)
(cons (cons ’LOAD (cons (index vars var) nil))

nil))

For example,(LOAD! ’(n a) ’a) evaluates to((LOAD 1)).
Here is the generator for the bytecode program to put the value of a J1 constant on the

stack.

(defun PUSH! (n)
(cons (cons ’PUSH (cons n nil))

nil))
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Using the above three functions, we now define the compiler for a J1 expression. Execu-
tion of the generated code leaves the value of the expressionon the stack.

(defun expr! (vars expr)
(if (atom expr)

(if (symbolp expr)
(LOAD! vars expr)

(PUSH! expr))
(append (expr! vars (nth 0 expr))

(append (expr! vars (nth 2 expr))
(OP! (nth 1 expr))))))

For example,(expr! ’(a b c) ’((a + (b + 3)) * c)) produces

((LOAD 0)
(LOAD 1)
(PUSH 3)
(ADD)
(ADD)
(LOAD 2)
(MUL))

Next we deal with branches. The generator for the bytecode program to test the top of the
stack and branch byoffset if it is less than or equal to0 is defined as follows.

(defun IFLE! (offset)
(cons (cons ’IFLE (cons offset nil))

nil))

Here is the generator for the bytecode program to jump byoffset.

(defun GOTO! (offset)
(cons (cons ’GOTO (cons offset nil))

nil))

To compile(while p s1 . . . sn) we will first compile code that leaves a positive on
the stack if the testp is true and a non-positive on the stack ifp is false. Leta1 . . . ak be the
code forp. Then we compile the statementssi in the body. Letb1 . . . bn be the code for the
body. Note that the length of the test code isk and the length of the body code isn. We use
those offsets in theIFLE andGOTO instructions below. The compiled code for thewhile
statement above is:

(
a1 ; top of WHILE
...
ak ; value of test is on the stack
(IFLE 2 + n) ; if test false, jump past body code
b1
...
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bn
(GOTO −(n + 1 + k)) ; go back to top of WHILE
) ; we’re done with the WHILE

And so now we can define the generator for a while statement, given the M1 programs
for the test expression and the list of statements in the body.

(defun while! (test-code body-code)
(append test-code

(append (IFLE! (+ 2 (len body-code)))
(append body-code

(GOTO! (- (+ (len test-code)
1
(len body-code))))))))

The bytecode program to leave a positive on the stack if test is true and a non-positive
otherwise is generated bytest!. The argumenttest must be of the form(x > y) where
x andy are expressions.

(defun test! (vars test)
(if (equal (nth 1 test) ’>)

(if (equal (nth 2 test) 0)
(expr! vars (nth 0 test))

(append (expr! vars (nth 0 test))
(append (expr! vars (nth 2 test))

’((SUB)))))
’((ILLEGAL))))

To generate the bytecode program to pop the stack into the local allocated for var we use
STORE!.

(defun STORE! (vars var)
(cons (cons ’STORE (cons (index vars var) nil))

nil))

We use mutual recursion again to define how to compile a list ofstatements and how to
compile a single statement.

(mutual-recursion

(defun stmt*! (vars stmt-list)
(if (endp stmt-list)

nil
(append (stmt! vars (car stmt-list))

(stmt*! vars (cdr stmt-list)))))

(defun stmt! (vars stmt)
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(if (equal (nth 1 stmt) ’=)
(append (expr! vars (nth 2 stmt))

(STORE! vars (nth 0 stmt)))
(if (equal (nth 0 stmt) ’WHILE)

(while!
(test! vars (nth 1 stmt))
(stmt*! vars (cdr (cdr stmt))))

(if (equal (nth 0 stmt) ’RETURN)
(append (expr! vars (nth 1 stmt))

’((RETURN)))
’((ILLEGAL))))))

)

Finally, we can define the compiler to take a list of formal parameters and a list of state-
ments and return the M1 code.

(defun compile (formals stmt-list)
(stmt*! (collect-vars-in-stmt* formals stmt-list)

stmt-list))

Here is an example call ofcompile, on ourfact program. We exhibit this as a theorem;
its proof is trivial by computation.

(defthm example-compilation-1
(equal (compile ’(n)

’((a = 1)
(while (n > 0)
(a = (n * a))
(n = (n - 1)))

(return a)))
’((PUSH 1)

(STORE 1)
(LOAD 0)
(IFLE 10)
(LOAD 0)
(LOAD 1)
(MUL)
(STORE 1)
(LOAD 0)
(PUSH 1)
(SUB)
(STORE 0)
(GOTO -10)
(LOAD 1)
(RETURN)))

:rule-classes nil)
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B Appendix: The Universal M1 Program

In this appendix we illustrate the importance of addressingthe question of whether the pro-
gram has halted when doing clock-style total correctness proofs. We also show that it is
possible to prove that M1 programs do not halt. This fact sometimes surprises newcomers to
ACL2, since ACL2 requires that alldefuns terminate.

Here is an amazing (and ambiguous) claim:

It is possible to define a single, universal, M1 program that can
be used to compute every numeric function.

Consider the following M1 program:

(defconst *universal-program*
’((PUSH 0)
(PUSH 1)
(ADD)
(GOTO -2)))

Notice that on successive arrivals at pc1, the top of the stack is successively each of the
naturals. That is, with the appropriate schedule this program can be made to compute any
natural – provided it does not have to terminate upon the production of that natural!

Here is a suitable schedule function.

(defun universal-sched-loop (k)
(if (zp k)

nil
(append (repeat 0 3)

(universal-sched-loop (- k 1)))))

(defun universal-sched (k)
(append (repeat 0 1)

(universal-sched-loop k)))

We will prove that running the program according to(universal-sched n) will leave
n on top of the stack.

We have to prove the loop behaves as expected. We use our standard clock proof method-
ology, by defining the algorithm and proving that the loop andthen the top-level program
compute according to the algorithm.

(defun universal-algorithm (k n)
(if (zp k)

n
(universal-algorithm (- k 1) (+ 1 n))))

(defthm step-a-run-universal-loop
(implies (and (natp k)

(natp n))
(equal (run (universal-sched-loop k)

(make-state 1
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locals
(push n stack)

*universal-program*))
(make-state 1

locals
(push (universal-algorithm k n)

stack)

*universal-program*))))

(defthm step-a-run-universal
(implies (natp k)

(equal (run (universal-sched k)
(make-state 0

locals
stack

*universal-program*))
(make-state 1

locals
(push (universal-algorithm k 0)

stack)

*universal-program*))))

Then, in step (b), we prove the “universal algorithm” is justaddition.

(defthm step-b
(implies (and (natp k)

(natp n))
(equal (universal-algorithm k n)

(+ k n))))

So now we know that if the*universal-program* is run according to(univer-
sal-sched k) it pushesk on the stack.

From this it is trivial to prove that there exists a schedule that causes*universal--
program* to push(fact n)! What is the appropriate schedule? Obviously it is:

(defun new-fact-sched (n)
(universal-sched (fact n)))

And with that we can prove a theorem that looks very much likeifact-correct--
corollary-2, except that it seems to say that*universal-program* is a correct
factorial program!

(defthm universal-computes-fact
(equal (top

(stack
(run (new-fact-sched n)

(make-state 0
locals
stack
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*universal-program*))))
(fact n)))

The only thing we have not proved about the universal programis that it halts. In the case
of the factorial proof, we do not haveifact-correct-corollary-1. Of course, we
are not able to prove that because the universal program doesnot halt.

Indeed, we can prove that*universal-program*never halts. Here is the key lemma.

(defthm universal-never-halts-lemma
(implies (and (member (pc s) ’(0 1 2 3))

(equal (program s) *universal-program*))
(not (haltedp (run sched s)))))

from which it is trivial to prove:

(defthm universal-never-halts
(not
(haltedp

(run sched
(make-state 0

locals
stack

*universal-program*)))))
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