
Indu
tive Assertions and Operational Semanti
sJ Strother MooreDepartment of Computer S
ien
esUniversity of Texas at AustinTaylor Hall 2.124Austin, Texas 78712moore�
s.utexas.eduAbstra
t. This paper shows how 
lassi
 indu
tive assertions 
an be used in 
onjun
tion withan operational semanti
s to prove partial 
orre
tness properties of programs, without the in-trodu
tion of a veri�
ation 
ondition generator. In parti
ular, we show how a formal statementabout the operational semanti
s 
an be dedu
ed more or less dire
tly from veri�
ation 
on-ditions. Both iterative and re
ursive programs are 
onsidered. Assertions are atta
hed to theprogram by de�ning a predi
ate on states. This predi
ate is then \
ompleted" to an allegedinvariant by the de�nition of a tail-re
ursive partial fun
tion de�ned in terms of the statetransition fun
tion of the operational semanti
s. If this alleged invariant 
an be proved to bean invariant under the state transition fun
tion, it follows that the assertions are true everytime they are en
ountered in exe
ution and thus that the post-
ondition is true if rea
hed froma state satisfying the pre-
ondition. But be
ause of the manner in whi
h the alleged invariantis de�ned, the veri�
ation 
onditions are suÆ
ient to prove invarian
e. The fa
t that the asser-tions are 
ompleted via tail-re
ursion means that it is unne
essary to prove that the 
ompletionpro
ess terminates. Indeed, the invariant fun
tion may be thought of as a state-based veri�
a-tion 
ondition generator built in a single fun
tion de�nition from the state transition fun
tionof the operational semanti
s. The method allows standard indu
tive assertion style proofs tobe 
onstru
ted dire
tly in an operational semanti
s setting. To demonstrate the te
hnique, apre-existing model of the Java Virtual Ma
hine is used as the operational semanti
s. Partial
orre
tness theorems about several simple Java methods are presented. These theorems are
ontrasted total 
orre
tness results proved by de�ning \
lo
k fun
tions" that 
hara
terize howmany steps are to be exe
uted.1 SummaryA formal operational semanti
s 
onsists of a representation of a ma
hine state (in
luding someprogram to be run) as some obje
t in a formal logi
, together with the formal de�nition of a statetransition fun
tion, step. The ACL2 [6℄ logi
 is used here. Fun
tion appli
ation is denoted as inLisp. Hen
e, (step s) denotes the state obtained by applying the state transition fun
tion to s.The expression (run k s) is de�ned to be the state obtained by stepping s k times.A typi
al total 
orre
tness theorem in this setting is a formula of the form(implies (P n0 s)(Q n0 (run (
lo
k n0) s)))Here, P is the pre-
ondition for the program in s with initial inputs n0. For simpli
ity, suppose thatthe pre-
ondition in
ludes the requirement that the program 
ounter (p
) of s be some single entrypoint, hentryi. Q is the post-
ondition. Suppose it in
ludes the requirement that the p
 be at asingle exit point hexiti. (Clo
k n0) is de�ned to return the number of steps ne
essary to drive theprogram from the entry to the exit when the pre-
ondition is true. This is a strong total 
orre
tness



2theorem be
ause it not only guarantees termination but spe
i�es how long the program runs. Manysu
h examples may be found in [12℄.Suppose a \partial 
orre
tness" theorem is desired. Su
h a theorem might take the form:(implies (and (P n0 s)(equal (p
 (run k s)) hexiti))(Q n0 (run k s)))The theorem may be read as \if s satis�es the pre-
ondition and a run of arbitrary length k produ
esa state where 
ontrol has rea
hed hexiti, then the post-
ondition is true."Su
h theorems are typi
ally proved by the indu
tive assertion method. This is not new. Whatis new is how the indu
tive assertion method is formally embedded into an operational semanti
smodel.The �rst step is to atta
h assertions at sele
ted 
ut-points by de�ning a fun
tion su
h as:(defun assert (n0 s)(
ond ((equal (p
 s) hentryi) (P n0 s))((equal (p
 s) hloopi) (I n0 s)): : :((equal (p
 s) hexiti) (Q n0 s))(t nil)))Next, this assertion is 
ompleted to an alleged invariant on states by de�ning the partial fun
tion:(defpun invariant (n0 s)(if (member (p
 s) '(hentryi hloopi : : : hexiti))(assert n0 s)(invariant n0 (step s))))This tail-re
ursive de�nition 
an be admitted to the ACL2 logi
 soundly sin
e Manolios and Moore[9℄ proved that every tail-re
ursive equation has an admissible total fun
tion as a witness. (Theinvariant fun
tion will not terminate if every loop is not 
ut.) To members of the Boyer-Moore
ommunity, the only novel idea in this paper is the observation that the assertion 
an be 
ompletedto an invariant in a tail-re
ursive way without in
urring a termination proof.The third step is to prove that invariant is, indeed, invariant under stepping.(implies (invariant n0 s)(invariant n0 (step s)))When invariant is de�ned as shown here, this generates the same proof obligations as a 
onventional\veri�
ation 
ondition generator" (VCG) would.The fourth step is to observe, by a trivial indu
tion whi
h is automati
 for ACL2, that theinvariant holds for arbitrary runs.(implies (invariant n0 s)(invariant n0 (run k s)))The desired partial 
orre
tness result follows from the invarian
e above: if a state at hentryisati�es the pre-
ondition and a run rea
hes a state at hexiti then the post-
ondition holds.The indu
tive assertion method for proving programs 
orre
t is among the oldest su
h methods.The idea was impli
itly used by von Neumann and Goldstine in [3℄ and made expli
it in the 
lassi
papers by Floyd [2℄ and Hoare [4℄. The �rst me
hanized veri�
ation 
ondition generator, whi
hgenerates proof obligations from 
ode and atta
hed assertions, was written by King [7℄. M
Carthy [10℄



3made expli
it an alternative approa
h, operational semanti
s, in whi
h \the meaning of a programis de�ned by its e�e
t on the state ve
tor."This paper 
on
erns the 
ombination of the two, namely, the use of indu
tive assertions to provetheorems about programs modeled with an operational semanti
s. Indu
tive assertions, and moregenerally, the establishment of state invariants, is essential in verifying partial 
orre
tness, safety,and other properties in an operational setting. Another view of this work is that it proposes a methodof de�ning state invariants by 
ompleting assertions provided for sele
ted 
ut points in a program.The use of indu
tive assertions in 
onjun
tion with a formal operational semanti
s to provepartial 
orre
tness results me
hani
ally is not new. Robert S. Boyer and the author developed itfor their Analysis of Programs 
ourse at the University of Texas at Austin as early as 1983. Inthat 
lass, an operational semanti
s for a simple pro
edural language in Nqthm [1℄ was de�ned andthe 
ourse explored program 
orre
tness proofs that 
ombined operational semanti
s with indu
tiveassertions. These proofs motivated the exploration of total versus partial 
orre
tness, Hoare logi
s,and veri�
ation 
ondition generation. For an Nqthm proof s
ript illustrating the use of indu
tiveassertions in an operational semanti
s setting, see [11℄.A re
ent example of the use of assertions to prove theorems about a program modeled opera-tionally may be found in [13℄, where a safety property of a non-terminating multi-threaded Javasystem is proved with respe
t to an operational semanti
s for the Java Virtual Ma
hine [12℄.So what is new? A 
areful look at the earlier work reveals that the invariant expli
itly in
ludedan assertion for every value of the p
. (The invariant must re
ognize every rea
hable state and somust handle every p
; the issue is whether it does so expli
itly or impli
itly.) The 
lassi
 Floyd-Hoare indu
tive assertion method requires an assertion only for sele
ted 
ut points; a VCG is usedto produ
e the proof obligations by propagating the assertions through the 
ode.An alternative way to 
ombine indu
tive assertions at sele
ted 
ut points with an operationalsemanti
s in a 
ompletely formal setting is to formalize and verify a VCG with respe
t to theoperational semanti
s. In [5℄, for example, an HOL proof of the 
orre
tness of a VCG for a simplepro
edural language is des
ribed. The work in
ludes support for mutually re
ursive pro
edures.Formal proofs of the veri�
ation 
onditions 
ould, in prin
iple, be used with the theorem stating the
orre
tness of the VCG, to derive a property stated operationally. But the method des
ribed heredoes not require the de�nition of a VCG mu
h less a proof of its 
orre
tness.1Another way to use indu
tive assertions to prove theorems in an operational setting is admitinvariant under the de�nitional prin
iple. The admission would require proving termination of there
ursion, whi
h would, in turn, require de�ning a measure of the distan
e to the next 
ut point andproving that it de
reased under step. That would represent a proof burden not generally in
urredby the user of a VCG.The te
hnique used here exploits the observation that invariant is tail-re
ursive and hen
eadmissible without proof obligation, given the work of Manolios and Moore [9℄ in whi
h it wasproved that every tail-re
ursive equation may be witnessed by a total fun
tion. The tail-re
ursivefun
tion may not be uniquely de�ned by the equation | this o

urs if insuÆ
ient 
ut points are
hosen. Su
h a failure is manifested by an in�nite loop in the pro
ess of generating/proving the stepinvarian
e. This is the same behavior a VCG user would experien
e in the analogous situation.The observation that the assertions at the 
ut points 
an be 
ompleted to an alleged invariantwithout in
urring proof obligations beyond those of the 
lassi
 method immediately opens the doorto indu
tive assertion-style proofs in an operational semanti
s setting.1 One 
ould regard invariant, above, as a VCG. But if so it di�ers from 
lassi
 VCGs in two senses. First,it is state based. Se
ond, it is trivial by 
omparison to 
onventional VCGs, be
ause it leverages the formalde�nition of operational semanti
s.



4 The te
hnique here is similar in spirit to one used by Pete Manolios [private 
ommuni
ation℄ toatta
k the 2-Job version of the Apprenti
e problem [13℄. There, he de�ned the rea
hable states ofthe Apprenti
e problem as all the states that 
ould be rea
hed from 
ertain states by the exe
utionof a �xed maximum number of steps.To illustrate the te
hnique an operational semanti
s must be introdu
ed. In this paper a pre-existing operational semanti
s for a signi�
ant fragment of the JVM [8℄ is used. The model is 
alledM5 [12℄. The semanti
s of the JVM are of no spe
ial interest in this paper. M5 was 
hosen be
auseit was available and it was realisti
. Writing a VCG for JVM byte
ode is a serious and error-proneundertaking. The semanti
s of the byte
ode may be gathered from [8℄ or by inspe
tion of the formalmodel. In this paper, 
omments in displayed byte
ode explain the language. Roughly speaking, theJVM is a sta
k ma
hine in whi
h ea
h method invo
ation allo
ates a new sta
k frame whi
h ispopped upon return. Ea
h frame 
ontains a sta
k for the 
omputation of intermediate results by thebyte
ode of the method. The most primitive native arithmeti
 is 32-bit twos 
omplement, here 
alled\int arithmeti
" after the Java term for su
h integers. In int arithmeti
, over
ow is not signaled;adding one to the most positive integer produ
es the most negative integer. M5 models this and manyother aspe
ts of Java, in
luding the 
reation of instan
e obje
ts in the heap, the invo
ation of stati
,spe
ial, and virtual methods, the 
reation of multiple threads, and syn
hronization via monitors.The later details are not exposed in this paper, with one ex
eption: the step fun
tion for M5 takestwo arguments instead of just one: (step th s) is the state obtained by stepping thread th in states. The run fun
tion, instead of taking the number of steps, takes a list of thread identi�ers, 
alleda s
hedule, and steps those threads sequentially. In this setting, the \
lo
k fun
tions" mentionedearlier be
ome \s
hedule fun
tions" spe
ifying exa
tly how to step the various threads to rea
h thedesired state.The paper des
ribes partial 
orre
tness proofs of several simple M5 programs via the indu
tiveassertion method. See the supporting material for te
hni
al details, in
luding some lemmas notmentioned here. In the theorems displayed below, the hints and other pragmati
 advi
e sometimesprovided to the theorem prover by the author have been omitted. Readers interested in getting theseformulas proved with ACL2 should see the supporting s
ripts. The paper fo
uses on the basi
 ideaof indu
tive assertions in an operational semanti
s, not on how to get a parti
ular theorem proverto prove the veri�
ation 
onditions.2 An Iterative ProgramBelow is an M5 program that de
rements its �rst lo
al, informally 
alled n, by 2 and iterates until theresult is 0. On ea
h iteration it adds 1 to its se
ond lo
al variable, here 
alled a, whi
h is initializedto 0. Thus, the method 
omputes (/ n 2), when n is even. It does not terminate when n is odd.The program is slightly simpler to deal with if it is assumed that n is a non-negative int. Theprogram a
tually terminates for even negative ints, be
ause Java's int arithmeti
 wraps around:the most negative int, -2147483648, is even and when it is de
remented by 2 it be
omes the mostpositive even, 2147483646. For simpli
ity, the program 
on
ludes with the �
titious HALT instru
tion,whi
h stops the ma
hine. The program 
onstant below is named *flat-prog* be
ause it does notreturn to a 
aller but stops the ma
hine. Method invo
ation is dis
ussed later in the paper.(def
onst *flat-prog*'((ICONST 0) ; 0(ISTORE 1) ; 1 a := 0(ILOAD 0) ; 2 top of loop:(IFEQ 14) ; 3 if n=0, goto 17



5(ILOAD 1) ; 6(ICONST 1) ; 7(IADD) ; 8(ISTORE 1) ; 9 a := a+1(ILOAD 0) ;10(ICONST 2) ;11(ISUB) ;12(ISTORE 0) ;13 n := n-2(GOTO -12) ;14 goto top of loop(ILOAD 1) ;17 push a(HALT))) ;18Let the initial value of n be n0. The goal is to prove that if n0 is a non-negative int and
ontrol rea
hes p
 18, then n0 is even and (/ n 2) is on the sta
k. That is, if the program halts theinitial input must have been even and the �nal answer is half that input. The proof is done withoutde�ning a s
hedule or 
lo
k fun
tion and without 
ounting or 
aring about how many instru
tionsare exe
uted and without in
urring any more proof overhead than had a VCG for the JVM beenused.Rather than deal with integer division during the 
ode proof, the following fun
tion is introdu
ed.The de
ision to use this fun
tion rather than algebrai
 expressions to express the properties of the
ode is independent of the de
ision to express the properties with indu
tive assertions.(defun halfa (n a)(if (zp n)a(halfa (- n 2) (int-fix (+ a 1)))))Here, int-fix returns the integer represented by the low-order 32-bits of its argument and thusimplements int wrap-around. The indu
tive assertion method will be used to establish that if theprogram terminates it will leave (halfa n0 0) on the sta
k. A se
ond theorem, independent of the
ode, establishes that (halfa n0 0) is (/ n 2) under 
ertain 
onditions. Su
h de
omposition of
ode proofs into \algorithm" and \requirements" is standard in the ACL2 
ommunity and indepen-dent of whether indu
tive assertions are being used. It is possible, of 
ourse, to mix the two viaindu
tive assertions about division or multipli
ation by two.3 The Assertions at the Three Cut PointsThe 
ut points, to whi
h assertions will be atta
hed, are at p
s 0 (entry), 2 (loop), and 18 (exit). Theassertions themselves are 
aptured by the following fun
tion de�nitions. The names of the fun
tionsare, of 
ourse, irrelevant but indi
ate how they will be used.(defun flat-pre-
ondition (n0 n)(and (equal n n0)(intp n0)(<= 0 n0)))(defun flat-loop-invariant (n0 n a)(and (intp n0)(<= 0 n0)(intp n)



6 (if (and (<= 0 n)(evenp n))(equal (halfa n a)(halfa n0 0))(not (evenp n)))(iff (evenp n0) (evenp n))))(defun flat-post-
ondition (n0 value)(and (evenp n0)(equal value (halfa n0 0))))The details of the assertions are not germane to this paper. The assertions are typi
al indu
tiveassertions for su
h a program. They are 
ompli
ated primarily be
ause of Java's int arithmeti
.Halfa tra
ks the behavior of the program only as long as n stays non-negative. Things would besimpler if the pre-
ondition required that n0 be even. Under that more restri
tive pre-
ondition itwould be easy to de�ne a 
lo
k fun
tion and prove total 
orre
tness. The pre-
ondition used heredoes not require n0 to be even. Instead, it will be proved that if the program terminates then n0is even: the post-
ondition asserts that n0 is even. In addition the post-
ondition asserts that thevalue 
omputed is (halfa n0 0).4 Veri�
ation ConditionsGiven *flat-prog*, the informal atta
hment of the three assertions to the 
hosen 
ut points, anda VCG for the JVM, the following veri�
ation 
onditions would be produ
ed.(defthm VC1 ; entry to loop(implies (flat-pre-
ondition n0 n)(flat-loop-invariant n0 n 0)))(defthm VC2 ; loop to loop(implies (and (flat-loop-invariant n0 n a)(not (equal n 0)))(flat-loop-invariant n0 (int-fix (- n 2)) (int-fix (+ 1 a)))))(defthm VC3 ; loop to exit(implies (and (flat-loop-invariant n0 n a)(equal n 0))(flat-post-
ondition n0 a)))These are easily proved. The 
hallenge is: how 
an these three theorems be used to verify a partial
orre
tness result for *flat-prog*?5 Atta
hing the Assertions to the CodeThe assertions are atta
hed to the 
ode by de�ning the following predi
ate.(defun flat-assertion (n0 th s)(let ((n (nth 0 (lo
als (top-frame th s))))(a (nth 1 (lo
als (top-frame th s)))))(and (equal (program (top-frame th s)) *flat-prog*)



7(
ase (p
 (top-frame th s))(0 (flat-pre-
ondition n0 n))(2 (flat-loop-invariant n0 n a))(18 (let ((value (top (sta
k (top-frame th s)))))(flat-post-
ondition n0 value)))(otherwise nil)))))The let identi�es parts of the JVM state of interest: the 0th lo
al of thread th, 
alled n, andthe 1st lo
al of thread th, 
alled a. It requires that the program being exe
uted by the thread be*flat-prog*. It then 
ase splits on the p
 of thread th and for ea
h of p
s 0, 2, and 18 makes anassertion about n, a, and n0. The variable symbol value at the post-
ondition is bound to the valueon top of the sta
k at the 
on
lusion of the program.6 The Nugget: De�ning the InvariantThe nugget in this paper is how the assertions, atta
hed to sele
ted 
ut points, are 
ompleted intoan invariant on states.This is a

omplished by using a tail-re
ursive \de�nition" introdu
ed without a termination proofobligation under the defpun utility of [9℄. The assertions are tested at the three 
ut points and allother statements inherit the invariant of the next statement.(defpun flat-inv (n0 th s)(if (or (equal (p
 (top-frame th s)) 0)(equal (p
 (top-frame th s)) 2)(equal (p
 (top-frame th s)) 18))(flat-assertion n0 th s)(flat-inv n0 th (step th s))))Had defun been used instead of defpun, a termination proof would be required. An appropriatemeasure would be the distan
e to the next 
ut point. The termination proof would be tantamountto proving that all loops were 
ut | a proof obligation not in
urred by the user of a VCG.After de�ning flat-inv above a te
hni
al lemma is proved that for
es ACL2 to expand 
alls offlat-inv if the state is poised at some p
 other than 0, 2, or 18. See flat-inv-make-state-openerin the s
ript for the details. If all the loops have been 
ut, this opening will stop and a \veri�
ation
ondition" will emerge. If some loop is not 
ut, the ACL2 rewriter will not terminate | a situationexa
tly 
omparable to what would happen in the 
lassi
 approa
h.7 ProofsHere is the key theorem. It is proved without further guidan
e given the three veri�
ation 
onditionsVC1, VC2, and VC3.(defthm flat-inv-step(implies (flat-inv n0 th s)(flat-inv n0 th (step th s))))The proof is given below. However, it is des
ribed in terms of the pro
ess that generates it: theme
hani
al manipulation of the de�nitions and goal above.



8Proof. Expand the de�nition of flat-inv in the hypothesis. This produ
es four subgoals: the p
 isat 0, 2, 18, or somewhere else. In the last 
ase, the hypothesis be
omes the 
on
lusion and there isnothing more to prove. In the 
ase where the p
 is 18, the step is a no-op be
ause the instru
tionexe
uted is HALT so the 
on
lusion be
omes the hypothesis. There are thus two non-trivial 
ases.Case: p
 = 0. Then the hypothesis be
omes (flat-pre-
ondition n0 n). The step in the 
on
lu-sion expands, symboli
ally exe
uting the �rst instru
tion, and produ
es a state with p
 1 and with 0on top of the sta
k. There is no assertion atta
hed to p
 1 and so flat-inv performs another step,exe
utes another instru
tion symboli
ally, deposits the 0 into the 1st lo
al, and produ
es a statewith p
 2. There is an assertion here. When applied to the state it be
omes (flat-loop-invariantn0 n 0). This is VC1 and is thus proved.Case: p
 = 2. The hypothesis be
omes (flat-loop-invariant n0 n a). The step produ
es a statewith p
 3. Sin
e no assertion is found there, another step is taken, symboli
ally exe
uting the IFEQinstru
tion. This produ
es two possible su

essor states, depending on whether n is 0. Symboli
stepping 
ontinues on both paths until an assertion is rea
hed. One of the paths produ
es VC2 andthe other produ
es VC3.Q.E.D.Note that the proof pro
ess des
ribed above a
tually generates the veri�
ation 
onditions. Thus,it is not a
tually ne
essary to identify and prove them separately. De�ning flat-assertion andflat-inv as shown, and then atta
king flat-inv-step, is exa
tly equivalent to generating andproving the veri�
ation 
onditions but produ
es a theorem about the operational semanti
s.Having proved the invarian
e of flat-inv under step the next theorem in the \methodology"is trivial. The theorem states that flat-inv is invariant under arbitrarily long runs of the thread inquestion.(defthm flat-inv-run(implies (and (mono-threadedp th s
hed)(flat-inv n0 th s))(flat-inv n0 th (run s
hed s))))where(defun mono-threadedp (th s
hed)(if (endp s
hed)t(and (equal th (
ar s
hed))(mono-threadedp th (
dr s
hed))))).Proof of flat-inv-run is trivial by indu
tion and appeal to flat-inv-step.Thus, if the initial state has p
 0 and satis�es the pre-
ondition, and, after some arbitrary mono-threaded run, a state with p
 18 is rea
hed, then it satis�es the post-
ondition, namely, n0 is evenand the answer is (halfa n0 0). Formally this 
an be written as follows.(defthm flat-main(let ((s1 (run s
hed s0)))(implies (and (intp n0)(<= 0 n0)(equal (p
 (top-frame th s0)) 0)(equal (lo
als (top-frame th s0)) (list n0 any))(equal (program (top-frame th s0)) *flat-prog*)(mono-threadedp th s
hed)



9(equal (p
 (top-frame th s1)) 18))(and (evenp n0)(equal (top (sta
k (top-frame th s1)))(halfa n0 0))))))This is proved by using the instan
e of flat-inv-run obtained by letting s be s0.Flat-main is essentially the goal, ex
ept it 
hara
terizes the answer as (halfa n0 0). If (/ n02) were preferred, either a separate proof relating (halfa n0 0) to (/ n0 2) 
ould be performed,or the assertions 
ould be stated in terms of division in the �rst pla
e. In any 
ase, this issue isindependent of the use of indu
tive assertions.Noti
e what has been a

omplished. Flat-main is a partial 
orre
tness theorem about a JVMprogram, formalized with an operational semanti
s. The 
reative part of the proof 
onsisted of thede�nition of the three assertions. The proof of the key lemma, flat-inv-step, generated (andrequires the proof of) the 
lassi
 veri�
ation 
onditions just as though a VCG for the JVM wereavailable. But no VCG was de�ned. The proof does not establish termination of the 
ode underthe pre-
onditions but does 
hara
terize ne
essary 
onditions to rea
h the HALT statement. Finally,neither the theorem nor the proof involved 
ounting instru
tions or de�ning a 
lo
k fun
tion.8 Method Invo
ation and ReturnThe HALT instru
tion in the previous program is �
titious but handy. Stepping the ma
hine whileon a HALT leaves the ma
hine at the HALT. Thus, the invarian
e of the exit assertion is easy to proveon
e the exit is rea
hed. In realisti
 
ode, the ma
hine does not halt but returns 
ontrol to the 
allerand non-trivial stepping 
ontinues. A useful indu
tive assertion methodology must deal with 
alland return.On the JVM, method invo
ation pushes a new sta
k frame on the invo
ation sta
k. Abstra
tly,that frame may be thought of as 
ontaining the byte
ode for the newly invoked method with initialp
 0. The new frame 
ontains an initially empty \operand sta
k" for intermediate results. When
ertain return instru
tions are exe
uted, the topmost item, v, on the operand sta
k is removed, theinvo
ation sta
k is popped, and v is pushed onto the operand sta
k of the 
aller.2To prevent the ma
hine from running \past" the return of interest, de�ne(defun run-to-return (s
hed th d0 s)(
ond ((endp s
hed) s)((<= d0 (sdepth (
all-sta
k th s)))(run-to-return (
dr s
hed) th d0 (step (
ar s
hed) s)))(t s)))whi
h runs a state s with s
hedule s
hed until the depth of the invo
ation sta
k of thread th is lessthan d0. If that 
ondition is never satis�ed, the state is run until the s
hedule is exhausted. Thisfun
tion is easily related to run.Using run-to-return instead of run in the main theorem, returns 
an be dealt with via indu
tiveassertions. Let *half-prog* be the byte
ode that results from repla
ing the last instru
tion in*flat-prog* by (IRETURN), whi
h returns one int value to the 
aller.Here is the assertion fun
tion for *half-program*. It is 
omparable to flat-assertion in itsprogram-spe
i�
 
ontent but 
ontains supplementary material to handle features of the JVM, in-
luding the invo
ation sta
k.2 Some forms of return implement void methods and return no v to the 
aller.



10(defun half-assertion (n0 d0 th s)(
ond((< (sdepth (
all-sta
k th s)) d0) ; See note 1.(let ((value (top (sta
k (top-frame th s)))))(flat-post-
ondition n0 value)))(t(let ((n (nth 0 (lo
als (top-frame th s))))(a (nth 1 (lo
als (top-frame th s))))(sta
k (sta
k (top-frame th s))))(and (equal (sdepth (
all-sta
k th s)) d0) ; See note 2.(equal (program (top-frame th s)) *half-prog*)(equal (syn
-flg (top-frame th s)) 'UNLOCKED) ; See note 3.(
ase (p
 (top-frame th s))(0 (flat-pre-
ondition n0 n)) ; See note 0.(2 (flat-loop-invariant n0 n a))(18 (let ((value (top (sta
k (top-frame th s)))))(flat-post-
ondition n0 value)))(otherwise nil)))))))Note 0: The assertions are exa
tly those used in the 
at example. Note 1: This 
lause asserts thatwhen 
ontrol returns from depth d0, the exit assertion (also found for p
 18) is true. Think of d0as the depth of the 
all sta
k while 
ontrol is in the program in question. Note 2: This 
onjun
tasserts that when 
ontrol is in *half-prog* the 
all sta
k has length d0. Re
ursive methods requirean inequality here and that is illustrated later. Note 3: Return from \syn
hronized" methods on theJVM release the monitor on a 
ertain instan
e obje
t in the heap. The 
onjun
t here asserts that the*half-prog* method is not syn
hronized and thus the heap is not a�e
ted by return. Otherwise,this fun
tion is flat-assertion.The invariant for *half-prog* is exa
tly analogous to what was shown for *flat-prog*, withone more 
ase to handle the return from the method.(defpun half-inv (n0 d0 th s)(if (or (< (sdepth (
all-sta
k th s)) d0)(equal (p
 (top-frame th s)) 0)(equal (p
 (top-frame th s)) 2)(equal (p
 (top-frame th s)) 18))(half-assertion n0 d0 th s)(half-inv n0 d0 th (step th s))))The invarian
e theorem is also analogous:(defthm half-inv-step(implies (and (integerp d0)(< 1 d0)(<= d0 (sdepth (
all-sta
k th s)))(half-inv n0 d0 th s))(half-inv n0 d0 th (step th s))))However it requires that d0 a positive integer (guaranteeing that a 
all frame is below that for theprogram in question { this is the frame to whi
h 
ontrol will return when the IRETURN is exe
uted)and that d0 not ex
eed the depth of the 
all sta
k. The proof of this theorem pro
eeds exa
tly as



11before, with one additional but trivial veri�
ation 
ondition: the assertion at the IRETURN insuresthe assertion for the 
aller's frame.3From the invarian
e theorem it follows trivially that:(defthm half-inv-run-to-return(implies (and (mono-threadedp th s
hed)(integerp d0)(< 1 d0)(half-inv n0 d0 th s))(half-inv n0 d0 th (run-to-return s
hed th d0 s))))and hen
e(defthm half-main(let ((s1 (run-to-return s
hed th (sdepth (
all-sta
k th s0)) s0)))(implies (and (intp n0)(<= 0 n0)(equal (p
 (top-frame th s0)) 0)(equal (lo
als (top-frame th s0)) (list n0 any))(equal (program (top-frame th s0)) *half-prog*)(equal (syn
-flg (top-frame th s0)) 'unlo
ked)(< 1 (sdepth (
all-sta
k th s0)))(mono-threadedp th s
hed)(< (sdepth (
all-sta
k th s1))(sdepth (
all-sta
k th s0))))(and (evenp n0)(equal (top (sta
k (top-frame th s1)))(halfa n0 0))))))The �nal theorem 
aptures partial 
orre
tness for *half-prog*: Suppose thread th of state s0satis�es the pre-
ondition for *half-prog*, namely, n0 is a positive int, the p
 is 0, the �rst lo
alis n0, the program is *half-prog*, the frame is not syn
hronized, and the 
all sta
k depth ex
eeds1. Su
h a frame might be produ
ed by 
alling a method whose body 
onsists of the byte
odes in*half-prog*. Suppose s
hed is an mono-threaded s
hedule on th and is of arbitrary length. Let s1be the result of running s0 with s
hed \until" the return from depth d0. There is no guarantee thatsu
h a return o

urs. However, the last hypothesis above supposes that it does.Then the 
on
lusion is that n0 is even and the top item on the 
aller's operand sta
k is (halfan0 0) (aka (/ n0 2)).9 Re
ursive MethodsTo handle re
ursive methods the assertion must in
lude a des
ription of the invo
ation sta
k downto the external 
aller. To illustrate the elaborations ne
essary to handle this, 
onsider the byte
odegenerated for the following Java by the Sun java
 
ompiler.publi
 stati
 int fa
t(int n)fif (n>0)freturn n*fa
t(n-1);g3 The assertion at the IRETURN may be eliminated entirely but this presentation makes the assertion more
losely resemble that for *flat-prog*.



12 else return 1;gThat byte
ode, in M5 notation, is(def
onst *fa
t-def*'("fa
t" (INT) NIL(ILOAD 0) ;;; 0(IFLE 12) ;;; 1(ILOAD 0) ;;; 4(ILOAD 0) ;;; 5(ICONST 1) ;;; 6(ISUB) ;;; 7(INVOKESTATIC "Demo" "fa
t" 1) ;;; 8(IMUL) ;;; 11(IRETURN) ;;; 12(ICONST 1) ;;; 13(IRETURN))) ;;; 14Note that the 
onstant above in
ludes the byte
ode for fa
t but also in
ludes other informationfrom the 
lass table entry for fa
t. The body of fa
t is a
tually the 
dddr of this 
onstant.The following fun
tion 
hara
terizes an invo
ation sta
k of internal 
alls of fa
t. Note that whenthe INVOKESTATIC instru
tion at p
 8 is exe
uted, the p
 is advan
ed to 11 in the 
aller's frame and\then" the new frame is pushed.(defun fa
t-
aller-framesp (
s n0 k)(
ond ((zp k) t)((and (equal (p
 (top 
s)) 11)(equal (program (top 
s)) (
dddr *fa
t-def*))(equal (syn
-flg (top 
s)) 'UNLOCKED)(intp (nth 0 (lo
als (top 
s))))(equal (+ n0 (- k)) (- (nth 0 (lo
als (top 
s))) 1))(equal (nth 0 (lo
als (top 
s)))(top (sta
k (top 
s)))))(fa
t-
aller-framesp (pop 
s) n0 (- k 1)))(t nil)))This predi
ate 
he
ks that the top k frames on the invo
ation sta
k 
s (\
all sta
k") are internal
alls of fa
t. Namely, the p
 is 11, the program is that for fa
t, the frames are unsyn
hronized,the �rst lo
al is an int, the �rst lo
al is related to n0 appropriately given its depth in the 
all sta
k,and the �rst lo
al is also on top of the operand sta
k.The assertion for fa
t is then written as follows. This looks 
ompli
ated but 
ontains a lot of\boilerplate" 
ommon to all re
ursive JVM methods. The expression (! n) below denotes the math-emati
al fa
torial fun
tion applied to n and is unbounded (unlike fa
t, whi
h uses int arithmeti
).(defun fa
t-assertion (n0 d0 th s)(
ond((< (sdepth (
all-sta
k th s)) d0)(equal (top (sta
k (top-frame th s)))(int-fix (! n0))))(t(let ((n (nth 0 (lo
als (top-frame th s)))))



13(and (equal (program (top-frame th s)) (
dddr *fa
t-def*))(equal (lookup-method "fa
t" "Demo" (
lass-table s))*fa
t-def*)(equal (syn
-flg (top-frame th s)) 'UNLOCKED)(intp n0)(intp n)(<= 0 n)(<= n n0)(equal (sdepth (
all-sta
k th s)) (+ d0 (- n0 n)))(fa
t-
aller-framesp (pop (
all-sta
k th s)) n0 (- n0 n))(
ase (p
 (top-frame th s))(0 t)((12 14) (equal (top (sta
k (top-frame th s)))(int-fix (! n))))(otherwise nil)))))))When 
ontrol exits from depth d0, the assertion is that the top item on the operand sta
k of the
aller is the int-fix of (! n0) (the twos-
omplement integer denoted by the low-order 32 bitsof the mathemati
al fa
torial of the input). While in the fa
t method, the assertion 
he
ks thatthe program is that for fa
t, the byte
ode 
ontinues to be found in the 
lass table, the frame isunsyn
hronized, n0 and n (the �rst lo
al) are ints su
h that 0 � n � n0, the 
all sta
k depthis appropriately related to d0, n0 and n, and the appropriate number of frames below this one areinternal 
alls of fa
t. Finally, the spe
i�
 
ut points 
hosen for fa
t are the entry, p
 0, and the twoexits, p
s 12 and 14. The pre-
ondition is va
uous (all has already been said). The post-
onditionis that the top of the sta
k 
ontains the int-fix of (! n).It is not ne
essary to introdu
e expli
itly su
h fun
tions as pre-
ondition, loop-invariant,and post-
ondition. The assertions may be written \inline" in the fa
t-assertion fun
tion, asdone above.The invariant is de�ned with defpun exa
tly analogously to previous examples. The invarian
etheorem is also analogous.(defthm fa
t-inv-step(implies (and (integerp d0)(< 1 d0)(<= d0 (sdepth (
all-sta
k th s)))(fa
t-inv n0 d0 th s))(fa
t-inv n0 d0 th (step th s))))The four veri�
ation 
onditions proved are interesting. The �rst 
onsiders the path from the entran
eat p
 0 through the \base 
ase" exit at p
 14. The se
ond 
onsiders the path from the entran
e atp
 0 through the INVOKESTATIC instru
tion at p
 8, to the re
ursive entran
e in the frame pushedby the INVOKESTATIC. The third and fourth 
onsider the paths from the two exits (at p
s 12 and 14)to the exits in 
aller's frame. That is, one 
ondition stays in the 
urrent frame, one 
ondition relatesthe 
urrent frame to the newly pushed one upon re
ursive method invo
ation, and the other tworelate (both exits from) the 
urrent frame to the 
aller's frame. The proof a
tually generates morethan four 
ases be
ause the assertions are inlined and 
ause 
ase splits. This is akin to optimizationand simpli�
ation built into the VCG.The run-to-return theorem is exa
tly analogous to that shown for *half-prog* and is provedautomati
ally.(defthm fa
t-inv-run-to-return



14(implies (and (mono-threadedp th s
hed)(integerp d0)(< 1 d0)(fa
t-inv n0 d0 th s))(fa
t-inv n0 d0 th (run-to-return s
hed th d0 s))))Finally, the main theorem is the desired partial 
orre
tness theorem for an int valued re
ursivefa
t method.(defthm fa
t-main(let ((s1 (run-to-return s
hed th (sdepth (
all-sta
k th s0)) s0)))(implies (and (intp n0)(<= 0 n0)(equal (p
 (top-frame th s0)) 0)(equal (lo
als (top-frame th s0)) (list n0))(equal (program (top-frame th s0))(
dddr *fa
t-def*))(equal (syn
-flg (top-frame th s0)) 'unlo
ked)(equal (lookup-method "fa
t" "Demo" (
lass-table s0))*fa
t-def*)(< 1 (sdepth (
all-sta
k th s0)))(mono-threadedp th s
hed)(< (sdepth (
all-sta
k th s1))(sdepth (
all-sta
k th s0))))(equal (top (sta
k (top-frame th s1)))(int-fix (! n0))))))It may be read as follows. Let thread th of state s0 satisfy the pre-
onditions of the fa
t method.Suppose the depth of the 
all sta
k ex
eeds 1 so that a 
aller is known to be below the 
urrent frame.Run s0 with an arbitrary mono-threaded s
hedule until it returns or the s
hedule is exhausted; 
allthe �nal state s1. Suppose a return a
tually happened. Then the top of the operand sta
k in the
aller's frame will 
ontain (int-fix (! n0)).Again, no instru
tions were 
ounted and termination was not proved.10 Con
lusionThis paper has demonstrated that indu
tive assertion style proofs 
an be 
arried out in an opera-tional semanti
s framework, without produ
ing a veri�
ation 
ondition generator or in
urring proofobligations beyond those produ
ed by su
h a tool. The key insight is that assertions atta
hed to 
utpoints in a program 
an be propagated by a tail-re
ursive fun
tion to 
reate an alleged invariant.The proof that the alleged invariant is invariant under the state transition fun
tion produ
es thestandard veri�
ation 
onditions. The invarian
e result 
an then be traded in for a partial 
orre
tnessresult stated in terms of the operational semanti
s, without requiring the 
onstru
tion of 
lo
ks orthe 
ounting of instru
tions.



15Referen
es1. R. S. Boyer and J S. Moore. A Computational Logi
 Handbook, Se
ond Edition. A
ademi
 Press, NewYork, 1997.2. R. Floyd. Assigning meanings to programs. In Mathemati
al Aspe
ts of Computer S
ien
e, Pro
eed-ings of Symposia in Applied Mathemati
s, volume XIX, pages 19{32. Ameri
an Mathemati
al So
iety,Providen
e, Rhode Island, 1967.3. H. H. Goldstine and J von Neumann. Planning and Coding Problems for an Ele
troni
 ComputingInstrument. Pergamon Press, Oxford, 1961.4. C. A. R. Hoare. An axiomati
 basis for 
omputer programming. Comm. ACM, 12(10):576{583, 1969.5. P. Homeier and D. Martin. A me
hani
ally veri�ed veri�
ation 
ondition generator. The ComputerJournal, 38(2):131{141, July 1995.6. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An Approa
h. Kluwer A
ademi
Press, Boston, MA., 2000.7. J. C. King. A Program Veri�er. PhD thesis, Carnegie-Mellon University, 1969.8. T. Lindholm and F. Yellin. The Java Virtual Ma
hine Spe
i�
ation (Se
ond Edition). Addison-Wesley,Boston, MA., 1999.9. P. Manolios and J S. Moore. Partial fun
tions in a
l2. Te
hni
al Report http://www.
s.utexas.edu/-users/moore/publi
ations/defpun/% -index.html, Computer S
ien
es, University of Texas at Austin,2001.10. John M
Carthy. Towards a mathemati
al s
ien
e of 
omputation. In Pro
eedings of the InformationPro
essing Cong. 62, pages 21{28, Muni
h, West Germany, August 1962. North-Holland.11. J S. Moore. An nqthm formalization of a small ma
hine. Te
hni
al Report ftp://ftp.
s.utexas.edu/-pub/boyer/nqthm/nqthm-1992/examples/basi
/small-ma
hine.events, Computational Logi
, In
., May1991.12. J S. Moore. Proving theorems about Java and the JVM with ACL2. In M. Broy,editor, Le
ture Notes of the Marktoberdorf 2002 Summer S
hool. Springer, LNCS, 2003.http://www.
s.utexas.edu/users/moore/publi
ations/marktoberdorf-03.13. J S. Moore and G. Porter. The apprenti
e 
hallenge. ACM TOPLAS, 24(3):1{24, May 2002.


