
Indu
tive Assertions and Operational Semanti
sJ Strother MooreDepartment of Computer S
ien
esUniversity of Texas at AustinAustin, TX 78712-1188, USAE-mail: moore�
s.utexas.eduAbstra
t. This paper shows how 
lassi
 indu
tive assertions 
an beused in 
onjun
tion with an operational semanti
s to prove partial 
or-re
tness properties of programs. The method imposes only the proof obli-gations that would be produ
ed by a veri�
ation 
ondition generator butdoes not require the de�nition of a veri�
ation 
ondition generation. Thepaper fo
uses on iterative programs but re
ursive programs are brie
ydis
ussed. Assertions are atta
hed to the program by de�ning a predi
ateon states. This predi
ate is then \
ompleted" to an alleged invariant bythe de�nition of a partial fun
tion de�ned in terms of the state transi-tion fun
tion of the operational semanti
s. If this alleged invariant 
an beproved to be an invariant under the state transition fun
tion, it followsthat the assertions are true every time they are en
ountered in exe
utionand thus that the post-
ondition is true if rea
hed from a state satisfy-ing the pre-
ondition. But be
ause of the manner in whi
h the allegedinvariant is de�ned, the veri�
ation 
onditions are suÆ
ient to prove in-varian
e. Indeed, the \natural" proof generates as subgoals the 
lassi
alveri�
ation 
onditions. The invariant fun
tion may be thought of as astate-based veri�
ation 
ondition generator for the annotated program.The method allows standard indu
tive assertion style proofs to be 
on-stru
ted dire
tly in an operational semanti
s setting. The te
hnique isdemonstrated by proving the partial 
orre
tness of a simple byte
odeprogram with respe
t to a pre-existing operational model of the JavaVirtual Ma
hine.1 SummaryThis paper 
onne
ts two well-known approa
hes to program veri�
ation: opera-tional semanti
s and indu
tive assertions. The paper shows how one 
an adoptthe 
larity and 
on
reteness of a formal operational semanti
s while in
urringjust the proof obligations of the indu
tive assertion method, without writinga veri�
ation 
ondition generator or other extra-logi
al tool. In parti
ular, theformal de�nition of the state transition fun
tion 
an be used dire
tly to generateveri�
ation 
onditions for annotated programs.In this se
tion the idea is presented in the abstra
t. Some details are skippedand a deliberate 
onfusion of states with formulas is perpetrated to 
onvey thebasi
 idea. Subsequently, the method is applied to a parti
ular formal operational



semanti
s, program, annotation, me
hani
al theorem prover, et
., to demon-strate that the basi
 idea is pra
ti
al.Consider a simple one loop program � (Figure 1) that 
on
ludes with a HALTinstru
tion. Assume instru
tions are addressed sequentially, with � being theaddress or label of the �rst instru
tion and 
 being the address or label of theHALT. Let the pre- and post-
onditions of the program be P and Q respe
tively.The arrows of Figure 1 indi
ate the 
ontrol 
ow; fun
tions f , g, and h indi
atethe 
ompound state transitions along the ar
s and t is the test for staying in theloop. R is the loop invariant and \
uts" the only loop. The partial 
orre
tness
hallenge is to prove that if P holds at � then Q holds whenever (if) 
ontrolrea
hes 
.

HALT

program π
pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γFig. 1. The One-Loop Program � with AnnotationsTo give meaning to su
h programs with an operational semanti
s, one for-malizes the abstra
t ma
hine state and the e�e
t of ea
h instru
tion on the state.Typi
ally the state, s, is a ve
tor or n-tuple des
ribing available 
omputationalresour
es su
h as environments, sta
ks, 
ags, et
. It is assumed here that thestate in
ludes a program 
ounter, p
 (s), and the 
urrent program, prog (s)),whi
h are used to determine the next instru
tion. Instru
tions are given mean-ing by de�ning a state transition fun
tion step. Typi
ally, step (s) is de�ned by
onsidering the next instru
tion and transforming the state 
omponents a

ord-ingly. For example, a LOAD instru
tion might advan
e the program 
ounter andpush onto some sta
k the 
ontents of some spe
i�ed variable. More 
ompli
atedinstru
tions, su
h as method invo
ation, may a�e
t many parts of the state. TheHALT instru
tion is parti
ularly simple; it is a no-op.It is 
onvenient to de�ne an iterated step fun
tion:run (k; s) = �s if k = 0run (k � 1; step (s)) otherwise2



and to make the 
onvention that sk = run (k; s).Given this operational semanti
s, the formalization of the partial 
orre
tnessresult isTheorem: Corre
tness of Program �.p
 (s) = � ^ prog (s) = � ^ P (s) ^ p
 (sk) = 
 ! Q (sk):Proof. In an operational semanti
s setting, theorems su
h as the Corre
tness ofProgram � are proved by establishing an invarian
e Inv (s) with the followingthree properties:1. Inv (s)! Inv (step (s)),2. p
 (s) = � ^ prog (s) = � ^ P (s)! Inv (s), and3. p
 (s) = 
 ^ prog (s) = � ^ Inv (s)! Q (s).The main theorem is then proved as follows. The indu
tive appli
ation ofproperty 1 produ
es4. Inv (s)! Inv (sk).Furthermore, instantiation of the s in property 3 with sk produ
es5. p
 (sk) = 
 ^ prog (sk) = � ^ Inv (sk)! Q (sk).We assume no instru
tion in � 
hanges the program; hen
e prog (s) = prog (sk).The Corre
tness of Program � then follows immediately from 2, 4, and 5. 2Property 1, above, is problemati
; it for
es the user of the methodology to
hara
terize all the states rea
hable from the 
hosen initial state. Contrast thissituation with that enjoyed by the user of the indu
tive assertion method, whereassertions are atta
hed only to 
ertain user-
hosen 
ut-points, as in Figure 1. Anextra-logi
al pro
ess, whi
h en
odes the language semanti
s as formula trans-formations, is then applied to the annotated program text to generate proofobligations or veri�
ation 
onditionsVC1. P (s)! R (f (s)),VC2. R (s) ^ t! R (g (s)), andVC3. R (s) ^ :t! Q (h(s)).If these formulas are proved, the user is then assured that if P holds initiallythen Q holds when (if) the program terminates.To render this assuran
e formal, i.e., write it as a formula, one must adoptsome logi
 of programs, i.e., a logi
 that allows the 
ombination of 
lassi
almathemati
al expressions about numbers, sequen
es, ve
tors, et
., with programtext and terminology. The resulting programming language semanti
s is extra-logi
al in the sense that it is expressed as rules of inferen
e in a metalanguageand is not dire
tly subje
t to formal analysis within the logi
. In 
ontrast, in theoperational approa
h, the semanti
s is expressed within the language (typi
allyas de�ned fun
tions or relations on states), programs are obje
ts in the logi
al3



universe, and the properties of both | programs and the semanti
 fun
tions andrelations { are subje
t to proof within the logi
.The 
entral question of this paper is whether it is possible to have the bestof both worlds: the 
on
reteness and 
larity of an operational semanti
s in a
lassi
al logi
al setting but the elegan
e and simpli
ity of an indu
tive assertion-style proof. The 
entral question may be put bluntly as \Is it possible to provethe formula named `Corre
tness of Program �,' above, dire
tly from VC1{VC3?"The answer is \yes."Re
all that the proof of `Corre
tness of Program �' required the de�nitionof Inv (s) satisfying properties 1{3 above. The key to 
onstru
ting an indu
-tive assertion-style proof in an operational setting is the following de�nition ofInv (s). Inv (s) �8>><>>:prog (s) = � ^ P (s) if p
 (s) = �prog (s) = � ^ R (s) if p
 (s) = �prog (s) = � ^Q (s) if p
 (s) = 
Inv (step (s)) otherwiseThe logi
ian will immediately ask whether there exists a predi
ate satisfyingthis equivalen
e. The aÆrmative answer is provided in [8℄. The logi
al 
rux of thematter is that Inv (s) is de�ned with tail-re
ursion and there exists a satisfyingand total witness for every tail-re
ursive equivalen
e. If some loop in the programis not 
ut, the equivalen
e may not uniquely de�ne a predi
ate, but at least onewitness exists.Inv (s) 
learly has properties 2 and 3. It therefore remains only to proveproperty 1. As will be
ome apparent, the proof that Inv (s) has property 1 willgenerate the veri�
ation 
onditions as subgoals. To drive this home, we des
ribethe pro
ess by whi
h the proof is 
onstru
ted rather than merely the formulasprodu
ed. Re
all Figure 1. Su

essive steps from a state s with p
 � eventuallyprodu
e the state f (s) with p
 �. Similarly, if t, then su

essive steps from astate s with p
 � produ
e g (s) with p
 �, and if :t, then su

essive steps froma state s with p
 � produ
e h (s) with p
 
. Furthermore, repeated symboli
expansion and simpli�
ation of the step fun
tion produ
e the transformationsdes
ribed by f, g, and h.Theorem: Property 1. Inv (s)! Inv (step (s))Proof. Consider the 
ases on p
 (s) as used in the de�nition of Inv.Case: p
 (s) = �. The hypothesis, Inv (s) may be simpli�ed to prog (s) = � ^P (s). Consider the 
on
lusion, Inv (step(s)). Symboli
 simpli�
ation of step (s),given p
 (s) = � and prog (s) = �, produ
es a symboli
 state s0 with p
 (s0) =� + 1. For program � either � + 1 is � or it is none of the 
ut points �, �or 
. In the latter 
ase, Inv (step (s)) � Inv (s0) � Inv (step (s0)) and stepping
ontinues until � is rea
hed at state f (s). Hen
e, Inv (step (s)) � R (f (s0)) (sin
eprog (f (s)) = �). Thus, this 
ase simpli�es to the goalp
 (s) = � ^ prog (s) = � ^ P (s)! R (f (s)):4



This is just VC1 (with two now-irrelevant hypotheses, given traditional assertionsP and R).Case: p
 (s) = �. The hypothesis Inv (s) simpli�es to prog (s) = � ^R (s). Thenthe symboli
 simpli�
ation of step (s) in the 
on
lusion produ
es a bifur
atedsymboli
 state whose program 
ounter depends on test t. Repeated expansionsof the de�nition of Inv on both bran
hes of the state eventually rea
h states g (s)and h (s) at whi
h Inv is de�ned. The results are VC2 and VC3, respe
tively.Case: p
 (s) = 
. The hypothesis Inv (s) simpli�es to prog (s) = � ^ Q (s).But the step (s) in the 
on
lusion simpli�es to s be
ause the instru
tion at 
in � is the no-op HALT. Hen
e, Inv (s) � Inv (step(s)) and this 
ase is trivial(propositionally true independent of the assertions).Case: otherwise. Sin
e p
 (s) is not one of the 
ut-points, Inv (s) � Inv (step(s))by de�nition of Inv and this 
ase is also trivial.2 Hen
e, if the veri�
ation 
onditions VC1{VC3 have been proved, the proofof property 1, the step-wise invarian
e of Inv, involves no assertion-spe
i�
 rea-soning. More interestingly, given the de�nition of Inv, the proof generates theveri�
ation 
onditions by symboli
 expansion of the operational semanti
s' statetransition fun
tion.Pra
ti
ally speaking this means that with a me
hani
al theorem prover and aformal operational semanti
s one 
an enjoy the bene�ts of the indu
tive assertionmethod without writing a veri�
ation 
ondition generator or other extra-logi
altools to do formula transformations.Another pra
ti
al rami�
ation of this paper is that it provides a simple meansto de�ne a step-wise invariant given only the assertions at the 
ut points. Step-wise invariants are frequently needed in operational semanti
s-based proofs ofsafety and liveness properties.2 Related Work and Dis
ussionM
Carthy [9℄ made expli
it the notion of operational semanti
s, in whi
h \themeaning of a program is de�ned by its e�e
t on the state ve
tor."The indu
tive assertion method for proving programs 
orre
t was impli
itlyused by von Neumann and Goldstine in [3℄ and made expli
it in the 
lassi
 papersby Floyd [2℄ and Hoare [4℄. The �rst me
hanized veri�
ation 
ondition generator,whi
h generates proof obligations from 
ode and atta
hed assertions, was writtenby King [6℄. Hoare, of 
ourse, rendered the indu
tive assertion method formal byintrodu
ing a logi
 of programs. From the pra
ti
al perspe
tive most programlogi
s are me
hanized with two trusted tools, a formula generator, here 
alled aVCG, and a theorem prover. It is not un
ommon for the VCG to in
lude not justlanguage semanti
s as formula transformers but also some logi
al simpli�
ation(i.e., theorem proving) to keep the generated proof obligations manageable.This paper 
ontains one apparently novel idea: a step-wise invariant 
an bede�ned from the indu
tive assertions using the state-transition fun
tion. One5



may think of this as a methodology for obtaining a state-based veri�
ation 
on-dition generator from an operational semanti
s. By doing it on a per programbasis the method avoids the need to generate or trust extra-logi
al tools.The use of indu
tive assertions in 
onjun
tion with a formal operationalsemanti
s to prove partial 
orre
tness results me
hani
ally is not new. RobertS. Boyer and the author developed it for their Analysis of Programs 
ourse atthe University of Texas at Austin as early as 1983. In that 
lass, an operationalsemanti
s for a simple pro
edural language in Nqthm [1℄ was de�ned and the
ourse explored program 
orre
tness proofs that 
ombined operational semanti
swith indu
tive assertions. These proofs motivated the exploration of total versuspartial 
orre
tness, Hoare logi
s, and veri�
ation 
ondition generation. For anNqthm proof s
ript illustrating the use of indu
tive assertions in an operationalsemanti
s setting, see [10℄.A re
ent example of the use of assertions to prove theorems about a programmodeled operationally may be found in [13℄, where a safety property of a non-terminating multi-threaded Java system is proved with respe
t to an operationalsemanti
s for the Java Virtual Ma
hine [12℄.However, in the earlier work the invariant expli
itly in
luded an assertion forevery value of the p
. (The invariant must re
ognize every rea
hable state andso must handle every p
; the issue is whether it does so expli
itly or impli
itly.)An alternative way to 
ombine indu
tive assertions at sele
ted 
ut pointswith an operational semanti
s in a 
lassi
al formal setting is to formalize andverify a VCG with respe
t to the operational semanti
s. In [5℄, for example,an HOL proof of the 
orre
tness of a VCG for a simple pro
edural language isdes
ribed. The work in
ludes support for mutually re
ursive pro
edures. Formalproofs of the veri�
ation 
onditions 
ould, in prin
iple, be used with the theoremstating the 
orre
tness of the VCG, to derive a property stated operationally.But the method des
ribed here does not require the de�nition of a VCG mu
hless a proof of its 
orre
tness.Logi
ally speaking, a 
ru
ial aspe
t of the novel idea here is that the step-wise invariant is de�ned using tail re
ursion. The admission of a new fun
tion orpredi
ate symbol via re
ursive de�nition is generally handled by a de�nitionalprin
iple that insures the existen
e (and often the uniqueness) of the de�ned 
on-
ept. In many logi
s, this requires a termination proof. Admitting Inv under su
ha de�nitional prin
iple would require a measure of the distan
e to the next 
utpoint and a proof that the distan
e de
reases under step. That imposes a proofburden not generally in
urred by the user of the indu
tive assertion method.(Every loop must be 
ut for the indu
tive assertion method to be e�e
tive; thequestion is whether that must be proved formally or merely demonstrated bythe su

essful generation of the veri�
ation 
onditions.)The te
hnique used here exploits the observation that Inv is tail-re
ursiveand hen
e admissible without proof obligation, given the work of Manolios andMoore [8℄ in whi
h it was proved that every tail-re
ursive equation may bewitnessed by a total fun
tion. The tail-re
ursive fun
tion may not be uniquelyde�ned by the equation | this o

urs if insuÆ
ient 
ut points are 
hosen. Su
h6



a failure is manifested by an in�nite loop in the pro
ess of generating/provingthe step invarian
e. This is the same behavior a VCG user would experien
e inthe analogous situation.The te
hnique here is similar in spirit to one used by Pete Manolios [private
ommuni
ation℄ to atta
k the 2-Job version of the Apprenti
e problem [13℄.There, he de�ned the rea
hable states of the Apprenti
e problem as all the statesthat 
ould be rea
hed from 
ertain states by the exe
ution of a �xed maximumnumber of steps.3 A Demonstration of the MethodTo illustrate the te
hnique a me
hanized formal logi
 and an operational seman-ti
s must be introdu
ed. In this paper we use the ACL2 logi
 [?℄. In this logi
,fun
tion appli
ation is denoted as in Lisp, e.g., run (k; s) is written (run k s).For the demonstration we 
hoose a pre-existing operational semanti
s for asigni�
ant fragment of the JVM [7℄ is used. The model is 
alled M5 [12℄ andit was 
hosen simply be
ause it was available and it was realisti
. The JVMis a good example of an abstra
t ma
hine that is suÆ
iently 
ompli
ated thatwriting a VCG for it a serious and error-prone undertaking.The semanti
s of the JVM byte
ode may be gathered from [7℄ or by inspe
-tion of the formal model. In this paper, 
omments in our byte
ode explain thelanguage. Roughly speaking, the JVM is a sta
k ma
hine in whi
h ea
h methodinvo
ation allo
ates a new sta
k frame whi
h is popped upon return. Ea
h frame
ontains a sta
k for the 
omputation of intermediate results by the byte
ode ofthe method. The most primitive native arithmeti
 is 32-bit twos 
omplement,here 
alled \int arithmeti
" after the Java term for su
h integers. In int arith-meti
, over
ow is not signaled; adding one to the most positive integer produ
esthe most negative integer. M5 models this and many other aspe
ts of Java, in-
luding the 
reation of instan
e obje
ts in the heap, the invo
ation of stati
,spe
ial, and virtual methods, the 
reation of multiple threads, and syn
hroniza-tion via monitors. The later details are not exposed in this paper, with oneex
eption: the step fun
tion for M5 takes two arguments instead of just one:(step th s) is the state obtained by stepping thread th in state s. The runfun
tion, instead of taking the number of steps, takes a list of thread identi�ers,
alled a s
hedule, and steps those threads sequentially.The paper des
ribes a partial 
orre
tness proof of a simple M5 program viathe indu
tive assertion method. See [11℄ for a long version of the paper withother examples.4 An Iterative ProgramBelow is an M5 program that de
rements its �rst lo
al, informally 
alled n, by 2and iterates until the result is 0. On ea
h iteration it adds 1 to its se
ond lo
alvariable, here 
alled a, whi
h is initialized to 0. Thus, the method 
omputes n/2,7



hen
eforth written (/ n 2), when n is even. It does not terminate when n isodd.The program is slightly simpler to deal with if it is assumed that n is a non-negative int. The program a
tually terminates for even negative ints, be
auseJava's int arithmeti
 wraps around: the most negative int, -2147483648, is evenand when it is de
remented by 2 it be
omes the most positive even, 2147483646.For simpli
ity, the program 
on
ludes with the �
titious HALT instru
tion, whi
hstops the ma
hine. The program 
onstant below is named *flat-prog* be
auseit does not return to a 
aller but stops the ma
hine. Method invo
ation is dis-
ussed later in the paper.(def
onst *flat-prog*'((ICONST 0) ; 0(ISTORE 1) ; 1 a := 0(ILOAD 0) ; 2 top of loop:(IFEQ 14) ; 3 if n=0, goto 17(ILOAD 1) ; 6(ICONST 1) ; 7(IADD) ; 8(ISTORE 1) ; 9 a := a+1(ILOAD 0) ;10(ICONST 2) ;11(ISUB) ;12(ISTORE 0) ;13 n := n-2(GOTO -12) ;14 goto top of loop(ILOAD 1) ;17 push a(HALT))) ;18Let the initial value of n be n0. The goal is to prove that if n0 is a non-negative int and 
ontrol rea
hes p
 18, then n0 is even and (/ n 2) is on thesta
k. That is, if the program halts the initial input must have been even andthe �nal answer is half that input.Rather than deal with integer division during the 
ode proof, the followingfun
tion is introdu
ed. The de
ision to use this fun
tion rather than algebrai
expressions to express the properties of the 
ode is independent of the de
isionto express the properties with indu
tive assertions.(defun halfa (n a)(if (zp n)a(halfa (- n 2) (int-fix (+ a 1)))))Here, int-fix returns the integer represented by the low-order 32-bits of its ar-gument and thus implements int wrap-around. The indu
tive assertion methodwill be used to establish that if the program terminates it will leave (halfa n00) on the sta
k. A se
ond theorem, independent of the 
ode, establishes that(halfa n0 0) is (/ n 2) under 
ertain 
onditions. Su
h de
omposition of 
ode8



proofs into \algorithm" and \requirements" is standard in the ACL2 
ommunityand independent of whether indu
tive assertions are being used. It is possible, of
ourse, to mix the two via indu
tive assertions about division or multipli
ationby two.5 The Assertions at the Three Cut PointsThe 
ut points, to whi
h assertions will be atta
hed, are at program 
ounters0 (�), 2 (�), and 18 (
). The assertions themselves, 
alled P, R, and Q in theearlier treatment, are 
aptured by the following fun
tion de�nitions. The namesof the fun
tions are, of 
ourse, irrelevant but indi
ate how they will be used. Inthe earlier treatment it was 
onvenient to make these fun
tions of state; herethey are fun
tions of the initial input n0 and the relevant state 
omponents,namely n and a.(defun flat-pre-
ondition (n0 n)(and (equal n n0)(intp n0)(<= 0 n0)))(defun flat-loop-invariant (n0 n a)(and (intp n0)(<= 0 n0)(intp n)(if (and (<= 0 n)(evenp n))(equal (halfa n a)(halfa n0 0))(not (evenp n)))(iff (evenp n0) (evenp n))))(defun flat-post-
ondition (n0 value)(and (evenp n0)(equal value (halfa n0 0))))The details of the assertions are not germane to this paper. The assertions aretypi
al indu
tive assertions for su
h a program. They are 
ompli
ated primarilybe
ause of Java's int arithmeti
. Halfa tra
ks the behavior of the program onlyas long as n stays non-negative. Things would be simpler if the pre-
onditionrequired that n0 be even or if the post-
ondition did not assert that n0 is even.These assertions were 
hosen to illustrate that operational semanti
s 
ould beused to address partial 
orre
tness of non-terminating programs in
luding the
hara
terization of when termination o

urs.9



6 Veri�
ation ConditionsGiven *flat-prog*, the informal atta
hment of the three assertions to the 
ho-sen 
ut points, and a VCG for the JVM, the following veri�
ation 
onditionswould be produ
ed.(defthm VC1 ; entry to loop(implies (flat-pre-
ondition n0 n)(flat-loop-invariant n0 n 0)))(defthm VC2 ; loop to loop(implies (and (flat-loop-invariant n0 n a)(not (equal n 0)))(flat-loop-invariant n0(int-fix (- n 2))(int-fix (+ 1 a)))))(defthm VC3 ; loop to exit(implies (and (flat-loop-invariant n0 n a)(equal n 0))(flat-post-
ondition n0 a)))These are easily proved. The 
hallenge is: how 
an these three theorems beused to verify a partial 
orre
tness result for *flat-prog*?7 Atta
hing the Assertions to the CodeIn the earlier treatment of the method, the invariant 
onjoined ea
h assertionwith prog (s) = �. Here we introdu
e an intermediate fun
tion to do this andalso to name relevant 
omponents of the state.(defun flat-assertion (n0 th s)(let ((n (nth 0 (lo
als (top-frame th s))))(a (nth 1 (lo
als (top-frame th s)))))(and (equal (program (top-frame th s)) *flat-prog*)(
ase (p
 (top-frame th s))(0 (flat-pre-
ondition n0 n))(2 (flat-loop-invariant n0 n a))(18 (let ((value (top (sta
k (top-frame th s)))))(flat-post-
ondition n0 value)))(otherwise nil)))))The let identi�es parts of the JVM state of interest: the 0th lo
al of thread th,
alled n, and the 1st lo
al of thread th, 
alled a. It requires that the programbeing exe
uted by the thread be *flat-prog* (\�"). It then 
ase splits on thep
 of thread th and for program 
ounters 0, 2, and 18 makes an assertion aboutn, a, and n0. The variable symbol value at the post-
ondition is bound to thevalue on top of the operand sta
k of the relevant thread at the 
on
lusion of theprogram. 10



8 The Nugget: De�ning the InvariantThe nugget in this paper is how the assertions, atta
hed to sele
ted 
ut points,are 
ompleted into a step-wise invariant on states.The invariant is introdu
ed with the defpun (\de�ne partial fun
tion") utilityof [8℄. The assertions are tested at the three 
ut points and all other statementsinherit the invariant of the next statement. This de�nition is analogous to thatfor Inv in the abstra
t treatment, ex
ept that the invariant also takes the initialinput, n0, and the identi�er of the relevant thread, th.(defpun flat-inv (n0 th s)(if (or (equal (p
 (top-frame th s)) 0)(equal (p
 (top-frame th s)) 2)(equal (p
 (top-frame th s)) 18))(flat-assertion n0 th s)(flat-inv n0 th (step th s))))9 ProofsHere is the key theorem, 
alled \property 1 of Inv" or the step-wise invarianttheorem.(defthm flat-inv-step(implies (flat-inv n0 th s)(flat-inv n0 th (step th s))))As noted earlier, the proof attempt generates the veri�
ation 
onditions (witha few extra hypotheses about the program 
ounter and 
urrent program). IfACL2's data base already 
ontains the theorems VC1{VC3, those theorems areused to 
omplete the proof of flat-inv-step. If the veri�
ation 
onditions havenot already been proved, the proof attempt here generates and proves them.Central to the pro
ess is the symboli
 simpli�
ation of state expressions underthe state transition fun
tion step.Having proved the invarian
e of flat-inv under step the next theorem inthe me
hanized \methodology" 
orresponds to property 4 of the earlier proof ofthe Corre
tness of Program �. is trivial. The theorem states that flat-inv isinvariant under arbitrarily long runs of the thread in question.(defthm flat-inv-run(implies (and (mono-threadedp th s
hed)(flat-inv n0 th s))(flat-inv n0 th (run s
hed s))))where(defun mono-threadedp (th s
hed)(if (endp s
hed) 11



t(and (equal th (
ar s
hed))(mono-threadedp th (
dr s
hed))))).Proof of flat-inv-run is trivial by indu
tion and appeal to flat-inv-step.Thus, if the initial state has p
 0 and satis�es the pre-
ondition, and, aftersome arbitrary mono-threaded run, a state with p
 18 is rea
hed, then it satis�esthe post-
ondition, namely, n0 is even and the answer is (halfa n0 0). Formallythis 
an be written as follows.(defthm flat-main(let ((s1 (run s
hed s0)))(implies (and (intp n0)(<= 0 n0)(equal (p
 (top-frame th s0)) 0)(equal (lo
als (top-frame th s0)) (list n0 any))(equal (program (top-frame th s0)) *flat-prog*)(mono-threadedp th s
hed)(equal (p
 (top-frame th s1)) 18))(and (evenp n0)(equal (top (sta
k (top-frame th s1)))(halfa n0 0))))))This is proved by using the instan
e of flat-inv-run obtained by letting s bes0. Flat-main is essentially the goal, ex
ept it 
hara
terizes the answer as (halfan0 0). If (/ n0 2) were preferred, either a separate proof relating (halfa n00) to (/ n0 2) 
ould be performed, or the assertions 
ould be stated in termsof division in the �rst pla
e. In any 
ase, this issue is independent of the use ofindu
tive assertions.Noti
e what has been a

omplished. Flat-main is a partial 
orre
tness the-orem about a JVM program, formalized with an operational semanti
s. The
reative part of the proof 
onsisted of the de�nition of the three assertions. Theproof of the key lemma, flat-inv-step, generated (and requires the proof of)the 
lassi
 veri�
ation 
onditions just as though a VCG for the JVM were avail-able. But no VCG was de�ned. The proof does not establish termination of the
ode under the pre-
onditions but does 
hara
terize ne
essary 
onditions to rea
hthe HALT statement. Finally, neither the theorem nor the proof involved 
ount-ing instru
tions or de�ning what is 
alled a \
lo
k fun
tion" in the Boyer-Moore
ommunity.10 Method Invo
ation and ReturnThe HALT instru
tion in the previous program is �
titious but handy. Steppingthe ma
hine while on a HALT leaves the ma
hine at the HALT. Thus, the invarian
eof the exit assertion is easy to prove on
e the exit is rea
hed. In realisti
 
ode, thema
hine does not halt but returns 
ontrol to the 
aller and non-trivial stepping12




ontinues. A useful indu
tive assertion methodology must deal with 
all andreturn. This paper does not dis
uss 
all and return in detail; see [11℄.On the JVM, method invo
ation pushes a new sta
k frame on the invo
ationsta
k of the a
tive thread. Abstra
tly, that frame may be thought of as 
ontain-ing the byte
ode for the newly invoked method with initial p
 0. The new frame
ontains an initially empty \operand sta
k" for intermediate results. When 
er-tain return instru
tions are exe
uted, the topmost item, v, on the operand sta
kis removed, the invo
ation sta
k is popped, and v is pushed onto the operandsta
k of the 
aller.1To deal with 
all and return via indu
tive assertions, two 
hanges are made tothe \methodology" des
ribed above. First, instead of using run to run the statea 
ertain number of steps, the new fun
tion run-to-return is introdu
ed, whi
hruns a 
ertain number of steps or until the state returns from the 
all depth, d0,at whi
h the run was started. Se
ond, the assertion fun
tion is 
hanged so thatthe post-
ondition is asserted if the 
all depth is less than d0.To deal with re
ursive methods, one must 
hara
terize the sta
k of frames
reated by previous re
ursive 
alls so that returns produ
e states in whi
h
ontinued symboli
 evaluation is possible.11 Con
lusionThis paper has demonstrated that indu
tive assertion style proofs 
an be 
arriedout in an operational semanti
s framework, without produ
ing a veri�
ation 
on-dition generator or in
urring proof obligations beyond those produ
ed by su
h atool. The key insight is that assertions atta
hed to 
ut points in a program 
anbe propagated by a tail-re
ursive fun
tion to 
reate an alleged invariant. Theproof that the alleged invariant is invariant under the state transition fun
tionprodu
es the standard veri�
ation 
onditions. The invarian
e result 
an thenbe traded in for a partial 
orre
tness result stated in terms of the operationalsemanti
s, without requiring the 
onstru
tion of 
lo
ks or the 
ounting of in-stru
tions.No veri�
ation 
ondition generator need be 
onstru
ted. Given an operationalsemanti
s it is possible, more or less immediately, to perform indu
tive assertionstyle proofs of partial 
orre
tness theorems.The pro
ess of proving the step-wise invarian
e of the 
ompleted assertions\naturally" produ
es the veri�
ation 
onditions. To be more pre
ise, the proofobligations produ
ed 
orrespond exa
tly to the veri�
ation 
onditions with someadditional hypotheses about the lo
ation of the program 
ounter and the identityof the program being analyzed.This situation is attra
tive for three reasons. First, writing a veri�
ation
ondition generator for a realisti
 programming language like JVM byte
ode iserror-prone. For example, method invo
ation involves 
ompli
ated non-synta
ti
issues like method resolution with respe
t to the obje
t on whi
h the method is1 Some forms of return implement void methods and return no v to the 
aller.13



invoked, as well as side-e�e
ts to many parts of the state in
luding, possibly, the
all frames of both the 
aller and the 
allee, the thread table (in the event that athread is started), the heap (in the event of a syn
hronized method lo
king theobje
t upon whi
h it is invoked), and the 
lass table (in the event of dynami

lass loading). Coding this all in terms of formula transformation instead ofstate transformation is diÆ
ult. Se
ond, when 
ompleted, the semanti
s of thelanguage is en
oded in the VCG pro
ess rather than as senten
es in a logi
.This en
oding of the semanti
s makes it diÆ
ult to inspe
t. In our approa
h,the semanti
s is expressed expli
itly in the logi
 so that it 
an be inspe
ted.Indeed, it is possible to prove theorems about the semanti
s (not just theoremsabout programs under the semanti
s). Finally, realisti
 VCGs 
ontain simpli�ersused to keep the generated proof obligations simple. These simpli�ers are justtheorems provers and must be trusted. In our approa
h, only one theorem proveris involved. It must be trusted but that trusted engine derives the veri�
ation
onditions from the operational semanti
s and the user-supplied assertions.Referen
es1. R. S. Boyer and J S. Moore. A Computational Logi
 Handbook, Se
ond Edition.A
ademi
 Press, New York, 1997.2. R. Floyd. Assigning meanings to programs. In Mathemati
al Aspe
ts of ComputerS
ien
e, Pro
eedings of Symposia in Applied Mathemati
s, volume XIX, pages 19{32. Ameri
an Mathemati
al So
iety, Providen
e, Rhode Island, 1967.3. H. H. Goldstine and J von Neumann. Planning and Coding Problems for an Ele
-troni
 Computing Instrument. Pergamon Press, Oxford, 1961.4. C. A. R. Hoare. An axiomati
 basis for 
omputer programming. Comm. ACM,12(10):576{583, 1969.5. P. Homeier and D. Martin. A me
hani
ally veri�ed veri�
ation 
ondition generator.The Computer Journal, 38(2):131{141, July 1995.6. J. C. King. A Program Veri�er. PhD thesis, Carnegie-Mellon University, 1969.7. T. Lindholm and F. Yellin. The Java Virtual Ma
hine Spe
i�
ation (Se
ond Edi-tion). Addison-Wesley, Boston, MA., 1999.8. P. Manolios and J S. Moore. Partial fun
tions in a
l2. Te
hni
al Report http:/-/www.
s.utexas.edu/users/moore/publi
ations/defpun/% -index.html, Com-puter S
ien
es, University of Texas at Austin, 2001.9. John M
Carthy. Towards a mathemati
al s
ien
e of 
omputation. In Pro
eedingsof the Information Pro
essing Cong. 62, pages 21{28, Muni
h, West Germany,August 1962. North-Holland.10. J S. Moore. An nqthm formalization of a small ma
hine. Te
hni
alReport ftp://ftp.
s.utexas.edu/pub/boyer/nqthm/nqthm-1992/examples/basi
/-small-ma
hine.events, Computational Logi
, In
., May 1991.11. J S. Moore. Indu
tive assertions and operational semanti
s { long version. Te
h-ni
al report, Department of Computer S
ien
es, University of Texas at Austin,2003.12. J S. Moore. Proving theorems about Java and the JVM with ACL2. In M. Broy,editor, Le
ture Notes of the Marktoberdorf 2002 Summer S
hool. Springer, LNCS,2003. http://www.
s.utexas.edu/users/moore/publi
ations/marktoberdorf-03.13. J S. Moore and G. Porter. The apprenti
e 
hallenge. ACM TOPLAS, 24(3):1{24,May 2002. 14


