
‘A13—A070 905 SRI INTERNATIO NAL PEPtO PARK CA COMPUTER SCIENCE LAB FIG 9/2 
-

~ 
-
~~~

- A TI€OREN—PROVER FOR RECURSIVE FUNCTIONS: A USER’S MAMJAL. (LI P
.AM 79 R S BOYER. J S MOORE NOOO1le_ 75~C_Oe1c,

W CLASSIFIED SRI/CSI —91

OF

--

——N



. 

,

A THEOREM-PROVER
FOR RECURSIVE FUNCTIONS:
A USER’S MANUAL

Technical Report CSL-91
SRI Projects 4079/6494

Contract No. N00014-75-C-0816
Grant No. MCS-7681425

June 1979

~~~~ By: Robert S. Bayer, Senior Research Mathematician
J Strother Moore, Senior Research Mathematician
Computer Science Laboratory

(. . Computer Science and Technology Division

Prepared for:

Office of Naval Research
Department of the Navy
Arlington, Virginia 22217

and

National Science Foundation
Software Systems Science Program

0.., Washington , D.C. 20550

(..)
4

LJ..uij Reproduction ~ whole or in part is permitted for any
purpose of the United States Government.

F~1WJ1~1? ~ ~ I1) JU L 9 1919

•
0

SRI International
333 Ravenswood Avenue 

______________________________

Menlo Park , CalIfornia 94025 DISTRThUTION STATEMENT A.

_ _ _  

326~6200



_ _ _ _ _  
_ _ _ _ _  

*

t
I;~ . tt~!Pt ~~~~~~ ~JU~UL~~~

ECURiT~ SIFICATION OF THIS PAGE (Wh.n Data Ent.r.d )

REPORT DOCUMENTATION PAGE BE
D

C
I
O P ~~ T~~

I
G
ON

F
S
ORM

4i..fEPOR N BER 2. GOVT ACCESS ION NO. 3. RECIPIENT~S CATALOG NUMBER
/

CSL—91
4. TITLE (and Subtitli) . •r .... .,., ., . ~~ ~~~~~~~~~~~~ —

A Theorem—Prover for Recursive Functions : I 
~~
T
~~echnica1 J /C f,~ i~

’
~) A User ’s Manuali 

__________________________

tP5~~ 9,r,M!NG ORG . WEPORT NUMBER

7 L&f~ Di.~

pi~ 
;seurnA.T .n enAuT7R(s)

9 PERFORMING ORGANIZATION NAME A70 ADDRESS 10 r~Iuu t ,vr~ i~ , 
-,‘ .IECT TASK

AREA & WORK UNIT NUMBERS
Computer Science laboratory
SRI internat ional NR 049—378
Menlo Park, CA 94025

— 12. REPORT DATE 13. NO. OF PAGES
11. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research Software Systems Science k) Jun~~~~J iii+61
15. SECURITY CLASS. (of this r port)

Department of the Navy National Science Found .
Arlington , VA 22217 Washington, D.C. 20550 Unclassified
14. MONITORING AGENCY NAME & DORESS (If dlff . from ControllIng Offic.)

~~
—

~~~~~~~~~~~

- 
J ~—I

/ F) / ~~ ~ 
15a.

~L~i’~’ ~~ SCHEDULE

16. DISTRIBUTION STATEMENT (of this rsport)

Reproduction in whole or in part is permitted for any purpose of the
United States Government . It may be released to the general public.

17. DISTRIBUTION STATEMENT (of ths abstract .nt.rsd In Block 20. If dlff •r•nt from r.port)

18. SUPPLEMENTARY NOT ES

19. KEY WORDS (Continu , on r~varaa aid. If n.csa,ary and ld.ntify by bloc k numbsr )

Computer program verification, automatic theorem—proving , induction ,
INTE R LISP , LISP

~20. ABST RACT (Continua on rav.r.. aid, If n.ca.aary and ld.nt lfy by block num b.r)

A user ’s manual for an automatic theorem-proving computer program is presented.)
• (Both the theo,ry ot recursive functions and the proof ~~~~~~~~~~~~~~~~~~~~~~~~~~

theoreni—prove~ are presented in the forthcoming A Computationa l Logic, Academic
Press , l979.)~~We here describe how to use the program , which is written in

• the INTERLISP dialect of LISP. Matters covered include our syntactic conventions;
starting up the theorem-prover ; defining functions; proving and storing lemmas ;
undoing previous work; and examining and saving the theorem—prover ’s state.
More than 30 user commands are defined and described. Sim ple examples are given.~~

D D JAN 73 1473 IJNCEASSIHTh
EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (Wh,r Data Ent a



- .. .. .~~~~~~ .. ~~~~~~~~~~~~~~~~~~~~~~~~~

.~ 0+-’n~~ o c ~ 
.

0 t~ ~4’.
i

.1

• CONTENTS J~~H...• ~ ~~ I 
~~~~~~~~~~~~~

INTRODUCTION . . . . . . . . . . . . . 1

A. Teach ing the Theorem—Pr over . • . . . . . . . . 1

B. Events, Dependencies, and Commands . . . . . . . 3

C. Error Handling . . . . . . . . . . . . • 4

D . Output .  . . . . . . 6

E . Syntax . . . . . . . 7

II GETTING INTO M~1D OUT OF THE THEOREM—PROVER . . . . . . 10

A. Getting Into the Theorem—Prover . . . . . . . . 10

B. Saving the Knowledge Base . . . . 11

III REFERENCE GUIDE . . . . . . . . . . . . . 13
A. ADD.AXIOM(name lenuna.types term) . . . . . • . • 13

B. ADD.SHELL(shell.name btm.object recognizer
destructor.tuples) . . . . . . . . . . . 14

C. BOOT.STRAP() . . . . . • . . . . . . . 15
4 D. CHRONOLOGY . • . . • . . . . . . . . 16

E. DCL(name args) . . . . . . . • . . . . . 16

F. DEFN(name args body ) . . . . . . . . . . . . 16
G. DEPEND ENT.EVENTS(name ) . . . . . . . . . . . 18

H. EDITC(name) . . . . . . . . . . • . . 19

I. EDITEV(name) . . . . . . . . . . . . . 19

J. EDITV(name ) . . . . . . • . . . . . . 20

K. ELIM . . . . . . • . . . . . . 20

L. EVENTS.SINCE(event) . . . • . . . . . . . . 20

M. EVENT.FORN(x) . . . . . . • . . . . . . 21

N. FAILED .THM S . . . . . . . . . . . . . 21

0. FORMULA.OF(naiue) . . . . . . . . • . . . . 22

P. GENERALIZE . . . . . . • . . . . . . 22

Q. GROUND.ZERO . . . . . . . . . . . . . 22

R. INDUCTION . . . . . . . . . . . 22
S. INIT(fi le)  . . . . . • . . . . . . . 23

ii

_ _ _ _ _ _ _ _ _ _ _  
. .-

~~~~~~ I



~~~~~~~~~~~~~~~

T. LEGAL.NAZIE.C1IARS . . • . . . . . . . . . . 24

U .  LEMMAS(fns) . . . . . . . . . . . . . 24

V. LEMMA TYPES . . . . . . . . . . . . . 25

W. LIB.FILE . . . . . . . . . . • . . 25

X. LIB.PROPS . • . . . . . . . . . . . 25

7. MAKE.LIB(file) . . . . . . . . . . . . • 25

Z. MOVE .LEMMA(name iemma.types oidname ) . . . . . . 26

AA. NO .BUILT .IN.AR ITR. FLG . . . . . . . . . . . 27

AB. NOTE.FILE(file) . . . . . . . . . . . . . 28

AC. PPE (x) . . . . . . . . . . . . . 31
AD. PPR(fmla pprfile) . . . . . . . . . . . . . 32

AE . PPRIND(fmla leftmargin rparcnt ppr .macro.ist pprf lie) • 32

AF. PROVE(thm) . . . . . . . . . . . . . 33

AG. PROVE.FILE . . . . . . . . • . . . . 34

AR. PROVE.LEMMA (name lemma.types term) . . . . . • . 34

Al. PROVEALL(event.ist detach.flg filename sysoutfig) . . 35

AJ . PUBLISR(file title) . . . . . . . . . . . . 36

AK. REDO!(name ) . . . . . . . . . . . . . 37

AL. REDO.UNDONE.EVENTS(events ail.flg faliure.action
detactt.flg) . . . • . . . . . . . . . 37

All. RESTART(x) . . • . . . . . . . . , . 42

AN. REWRITE . . . . . . . . . . . . . 43
AO. TRANSLATE(term) . . . . . . . . . . . . . 44

AP. TTY : . . . . . . . . . . . . . 44

AQ. UNDO.BACK.THROUGH (name ) • . . . . . . . . . . 45

AR. UNDO.NAME (name) . . . . . . . . . . . . . 45

H IV REPORTING OF DIFFICULTIES . . . . . . . . . . . . 47

V EXTREMELY SIMPLE EXAMPLES . . . . . . . . . . . . 48
A. Example 1 . . . . . . . . . . . . . 48
B. Example 2 . . . . . . . . . . . . . 54

C. Example 3 . . . . . . . . . . . . . 58
D . Example 4 . . . . . . . . . • . . . 59

REFERENCES . . . . . . . . . . . . . 61

iii

- 
- ~~~~ —~~----,- --.~~~--—-~~~~~--,- --. - .--



~~~~~~~~

- .

~ 

=

~~~~~~~~~

- 

~~

—- - -

~~

-

• I INTRODUCT ION *

In our book A Conputat ional Logic (1] we describe a forma l logic

based on recursive functions , and we present a large number of

techniques for  discovering proofs of theorems in that theory . As noted

in A Con~utational Logic we have imp lemented our theorem—proving

techniques in an automatic theorem—prover. This document explains how

to use that automatic theorem—prover. We assume that the reader is

familiar with the motivation and orientation of our theorem—proving

research and completely understands the formal logic in which we are

proving theorems. The reader unfamiliar with these aspects of our work

should read the f i rs t  five chapters of A Con* utational Logic before

attemp t ing to use the theorem—prover seriously. Throughout the rest of

this manual we refer to Chapter n of A Con~,utational Logic as ACL n. We

• assume the reader is familiar with the DEC TOPS—20 operating system,

particularly with the file naming conventions , (see (2]). We also

assume the reader is familiar with INTERLISP (see (3]).

The theorem-prover is actually a set of INTERLISP programs . To use

the theorem-prover you log on to a computer , enter INT ERLISP , load the

appropriate theorem-prover files, and then call theorem-prover programs

to define new concepts, axiomatize new types of objects, and prove

theorems.

A. Teaching the Theorem-Prover

While using our program you will, spend most of your time teaching

the system about the concepts you define and their relationships to

other defined concepts. The system is taught by defining functions and

suggesting lemmas for it to prove and remember for future use.

* The development of our theorem—prover was supported in part by the
National Science Foundation under Grant MCS—7681425 and by the Office of
Naval Research under Contract N0014—75—C—0816.

•1 
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~ • ~~~~.. ~~~~~~~~~~~~~~~~~~~~~~~ 
._ .

~ 
-

.

The system uses axioms and previously proved lemmas in four

distinct ways. The system does not decide automatically how to use a

given theorem; whenever any new theorem is introduced , you must specify

how the lemma is to be used by providing the sys tem with a set of
tokens , INTERLISP literal atoms, called “lemma types,” ta!~en from the
set (REWRITE ELIM GENERALIZE INDUCTION).. REWRITE lemmas are used to

rewrite terms. ELDI lemmas are used to eliminate certain function

symbols by re—representing variables in the problem. GENERALIZE lemmas

are used to restrict the range of variables introduced by

generalizations. INDUCTION lemmas are used to justify new

induction/recursion schemes. Note that by introducing a lemma with the

empty list of lemma types you cause the system to name the formula and

save it, but to store it so that it will be used in no way (i.e., it Is

not used in future proofs) .

The theorem—prover is very sensitive to the syntactic form chosen

• by you to express each new fact. For example, a REWRITE lemma of the
form

(IMPLIES (AND p q) (EQUAL r s) )

is used to rewrite (instances of) r to s provided the system can first

establish p and then q. Note the asymmetry between hypothesis and

-: conclusion, and between left— and right—hand sides of the conclusion.

‘ I  In fac t, because the system must limit the resources it is willing to

spend establishing p and q, even the order of the hypotheses is
relevant. That is, the above REWRITE lemma causes different behavior

than any of the following logically equivalent formulas :

(IMPLIES (AND p q) (EQUAL s r))

(IMPLIES (AND p (NOT (EQUAL r s))) (NOT q))

(IMPLIES (AND q p) (EQUAL r s ) )

To become an effective user of the system you must understand how

your commands influence the behavior of the system. It is possible to

2



— ,—,. ., .‘.••—~~~~
, • •—~~~ • —

~~~~~~~
• .•-

~~~~~
---- -..t-—_

~~~~ 
-
~~- 

,-.—-- •.-•- 
~~~~~~. , , *

infer the meaning of the various lemma types af ter  enough hands—o n

experience with the sys tem. (It is also possible to infer  the structure

of a brick wall by battering it down with your head.) We highly

recommend that the serious user of the system read ~ Co~~utat iona l

Logic, paying special attent ion to the heuristics controlling lemmas and

definitions, and the carefully explained examples . For a brief

description of the syntact ic requirements on formulas of the various

lemma types , see the discussions under each lemma type name in the

REFERENCE GUIDE (Section III of this User ’s Manual).

B. Events, Dependencies, and Commands

Every definition and theorem knosin to the theorem—prover has a

name . The act of introducing a new definition or theorem to the system

is called an “event.” Some events, such as definitions, are naturally

associated with a name (e.g., the name of the function defined); others,

such as theorems, are given names by the user. See the subsection

Syntax below for the syntactic restrictions on names.

• The basic theorem-prover commands are those that create new events :

the addition of a new axiom, the introduction of a new type of object,

.4 the definition of a new function, and the proof and storage of a new

theorem. The INTERLISP functions that create new events are ADD.AXIOM,

ADD.SRELL, BOOT.STRAP, DCL, DEFN , PROVE .LEMMA , and MOVE.LEMMA. Some

events introduce several new axioms, each of which is assigned a name by
the system. These subevents are cons idered “satellites” of the “main

event.” For example, the introduction of a new shell type (e.g. CONS)

is one event that gives rise to many subevents (e.g., axioms about CONS,

CAR , CDR , and LISTP). Every theorem or funct ion name in the system is

either a main event or a satellite of a main event.

Events are related to each other by logical dependencies. For

example, the admission of a certain formula as a theorem depends upon

all of the functions and lemmas used in the proof of the theorem.

Similarly , the admission of a new recursive function def inition depends
not only upon all of the previously introduced concepts used in the

3 

. . . . .. .



~~ r-~

definition, but also upon the functions and lemmas used to prove that

the proposed “def init ion ” truly defines a funct ion.

Thus, the theorem—prover’s “state” or “knowledge base” is actually

a noncircular , directed graph of events. The theorem—pro~’er ’s

performance is largely determined by its knowledge base . For example,

there are  many theorems it can prove only af ter  it has proved certain

key lemmas. It is possible to dump the system’s knowledge base to c

“library file” to save the system’s state from one session to the next.

In addition to the basic commands , the sys tem provides many

commands for operating on the graph of events : obtaining the events

that depend upon a given event , undoing an event , or editing and re—

executing the command that created an event . Several functions delete

events from the graph. The graph is always kept cons is tent in the sense

that when an event is deleted all the events tha t are (directly or
indirectly) dependent upon the event being deleted are also deleted .

Thus, if after proving several theorems you find that one of your

earliest defined concepts was inconveniently or inappropriately defined,

• you can “undo” that definition and lose only those results whose meaning

or logical validity may depend upon that definition.

C. Error Handling

If you try to execute an inappropriate command (e.g., assign the

same name to two different  events , or at tempt to define a function in

terms of unknown concepts) self—explanatory error messages will be

printed . The system checks for  over 100 errors and has a sophisticated

error handling mech anism designed to keep the theorem-proving machine in

a consistent state. For example, when a new command is processed , all

possible errors are checked before the firs t change is made to the da ta

base, since an abortion midway through the update would leave the
machine in an unacceptable state.

Errors are grouped into three classes , warnings, sof t errors, and

fatal errors (distinguished by the headers WARNING , ERROR, and FATAL
ERROR in the message printed). Warnings arise when the system has

4



detected something unusual but not logically incorrect. For example,

the system prints a warning message if you def ine a function but do not
refer to one~of the formal parameters in the body of the funct ion.

Af ter printing a warning message , the system continues normal execution.

Soft errors are true errors in the sense that the system cannot

continue until the error is repaired , but they are the type of errors

that can be repaired by editing a formula or changing a name . When such

an error occurs the system prints an explanatory error message and then

calls the INTERLISP editor on the offending command if possible. If you

exit the editor normally (with OK) the command is re—executed. If you

exit abnormally (e.g., with STOP or CTRL—D), the theorem-proving machine

is lef t in the same clean state it was in before the of fending command
was encountered.

Fatal errors occur when sys tem resources are exhausted or when

internal checks indicate the presence of inconsistency in the data base

or bugs in the theorem—prover itself. It is usually not possible to

pr ceed past a fatal error. Such errors should be reported to Boyer and
-

• Moore. 
• 

H

Despite our precautions, there is a rela tively simple way for  you

to get the system into an illegal state: abort with control B , D , or E

while the system is in the process of updating its data base. For

example, if you interrupt the definition process while it is iteratively

computing the output type of the newly defined fun ct ion , the sys tc~m may
H appear to believe in an inaccurate charac teriza tion of the function’s

type. Such an illegal state will more usually manifest itself by

ultimately causing a fatal error or even an INTERLISP error (which is to

our system what a “trap at location n” is to INTERLISP). It is often

not possible to recover from such an interruption, even immediately
after the fact. For example if you abort a definition after the system

has begun to store facts about it, you cannot properly undo the aborted
definition because in8ufficient undo information was stored. Since you

cannot in general tell whether the system is in the process of updating

• the data base, the moral is: 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.‘

~~~
.
~~~~~

—•---.- . -- -- - -•
~~

-
~~~

-

NEVER ABORT ANY COMMAND THAT MI GHT BE UPDATING THE DATA BASE .

If you realize you typed a command incorrectly , wait until the system

detects an error in it (af ter  which you can abort f rom within the

editor) or until the system accepts it (after which you can undo it).

Eventually, we will invest the effort necessary to protect the
critical sections of our code. At the moment we assume the users to be

sophisticated and friendly —— and we don’t put our stamp of approval on
any proof except one constructed from an uninterrupted sequence of

BOOT.STRAP, ADD.AXIOM, ADD.SHELL, DCL, DEFN , PROVE.LEMMA and MOVE .LEMMA

commands.

D. Output

The theorem-prover print s an English description of what it is

doing as it proceeds. The values of the variab les PROVE .FI LE and TTY :

determine where its output is printed.

The system directs all of its output , including error messages, to

PROVE.FILE. Thus, if you are not interested in seeing the output from a

sequence of commands, you can set PROVE.FILE to the name of an open file

and look at the output later. This is part icularly useful when you want

to collect some proofs that you are confident the system can perform

(e.g., because it has done them before).

If PROVE.FILE is different from TTY:, the system also prints its

error messages to TTY:. Thus , if you wanted to write your proofs to a

disk file but would like to see any messages that arise, set PROVE.FILE

to the disk and TTY: to T. If you would like even error messages to be

directed to a disk file (i.e., you want the theorem-prover to print

nothing to the terminal), set TTY: to a disk file too. By setting TTY:

and PROVE.FILE to different disk files you will get a complete

t ranscript of the system’s output (possibly interleaved with error

messages) in PROVE.FILE , and a separate file containing just the error

messages in TTY:. This makes it easy to determine whether any messages

occurred. None should.

6

S. 

— - — — ‘ .— 

~

— — —

~~~

—

~~

— 

~~~~~~~~~~

— —

~~~~~~~ 

—,—

~~

—.-——

~~~~~~

—

~~

—— •— —— —

~~ 

. - J



S.. - -

Rigging the system to run without printing to the terminal is

useful when you are running the theorem-prover in a detached job. For

the details of how to run while detached, see REDO.UNDONE.EVENTS and

PROVEALL (in the REFERENCE GUIDE).

E. Syntax

As you are no doubt aware, all formulas in our logic are written in

a LISP—l ike prefix notation . Indeed , they are just INTERLISP 5—

expressions . We have no parser. We find this convenient since at the

command level in our sys tem you are typing to INTERLISP.

Certain rules must be obeyed in writing down names and S—

expressions in our language. All names (e.g. , function names, variable

names , event names) must be INTERLISP literal atoms . You may only form

names using the characters in the list LEGAL.NANE.CHARS. Currently that

list contains upper case A through Z , 0 through 9, ., — , I, \, > , < , = ,

@, +, *, &, % , $, 11, — , . Finally, every name must start with one of
the 26 alphabetic characters and must not end with a period , and must be

• more than one character long.

j T and F are acceptable abbreviations for the terms (TRUE) and

(FALSE). You may not use T and F as variables. 0 is an abbreviation

for the bottom object of type NtJMBERP: the constant term (ZERO). 1 is

an abbreviation for (ADD1 0), 2 for (ADD1 1), etc.

As noted in ACL III , LITATOMs in our theory are either the bottom—

most LITATOM (which is returned by the constant function NIL and written

(NIL) ) or are cons tructed by the unary funct ion PACK. Thus , (P ACK x)  is

a LITAT OM. NIL is an acceptab le abbreviation for (NIL).  (Because

INTERLISP does not allow NIL to have a property list, NIL is not used

internally as a function symbol; instead we use NIHIL ).  Recal l that in

our logic NIL is different f rom F , the false t ru th  valna .

In ACL III , we present a convent ion for naming LITATOMs using

quotation marks. Since ACt was written, we have abandoned that
convention and we have adopted another convention, using the syntax

7

... . . :v :  , - . .- - - — • s . z .r.-.,!--r .. . ——— —S—~ -.-, r;-r-—r— . .  - . ‘
_
~f 

-



S~~~ — ~~~~~~~~~~~~ 
-

- - -.5.., - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ ‘  -. . . s t

.
, f .  

-
.

(QUOTE . . . )  familiar to LISP programmers. That is, in our current

theorem—prover we write (QUOTE atm) instead of “atm ”. (QUOTE atm) ,

where atm is an INTERLISP literal atom is an acceptable abbreviation for

(PACK n), for some n; the n’s corresponding to different atm’s are
different. The system arbitrarily decides the correspondence.

(Currently, the correspondence is determinced by the order of firs t

use.) Thus you should never use PACK directly . (QUOTE NIL) is NIL.

(QUOTE T) is a LITA~F0M, and is not T, the true truth value. (QUOTE x),

where x is a nonnegative INTERLISP integer , is the same as x.

The reason that we abandoned the quotation mark convention for

denoting literal atoms used in Act was to obtain the ef fect that the

QUOTE in LISP has on “arguments” other than literal atoms. (QUOTE x),

where x is an INTERLISP list structure (car .cdr), is taken to mean the

term (CONS (QUOTE car) (QUOTE cdr)). Thus, (QUOTE (0 1)) is taken to

mean:

• (CONS 0 (CONS 1 N I L ) )

which is
• (CONS (ZERO )

• (CONS (ADD 1 (ZERO)) ( N I L ) ) ) .

Function symbols beginning with C , ending with R , contain ing only

A’s and D’s in between , and differ ing from CR , are abbreviations for

compositions of CAR’s and CUR ’s. For example, (CADDR X) means (CAR (CUR

(CDR X ) ) ) .

Before you mention a function symbol in an expression it must be

known to the system. Thus, if you misspell a function name (and the

resulting symbol is not in fact a known function) an error will occur .

If you wish to use a function symbol without defining or introducing it

via the shell principle, you must first use the program DCL to declare

the name to the system. (See DCL in the REFERENCE GUIDE.)

It is not permitted to apply a function to too few arguments. For

examp le, giving the theorem—prover an S—expression involving (CONS X)
will cause an error. Note that in INTERLISP, (CONS X) is an

• abbreviation for (CONS X NIL); but we do not support that convention in

8 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -,— —--.-
~~~

- -. —
~~~~

--
~~~



r”

- . our theory. It is also not permitted to give a function of 0 or 1

arguments too many arguments. For example , (CAR A B) will cause an

error. However we have a rather unusual handling of the case in which

you provide a function of 2 or more arguments with too many arguments.

(PLUS X Y Z U) means:
(PLUS Z

(PLUS Y
(PLUS Z ~J) ) )

For funct ions of 2 arguments this default right—associat ion in the

second argument position is quite convenient . For example , (AND P Q R)

is just what you would want , and (CONS A B C D NIL) is the same as

INTERLISP’s (LIST A B C D).

For functions of more than 2 arguments, e.g., BIGPLUS which takes

4, the second argument is right—associated and the trailing arguments

are duplicated , e.g.,

(BIGPLU S X Y U V BASE CARRY)

means

(BIGPLUS X
(BIGPLUS Y

(BIGPLUS U V BASE CARRY )
BASE

• CARRY)
BASE
CARRY).

• --—-

~

-

~

.. -



— 55----- . - - - - -- ~~~~~~~-.v-~.- —w’-~~•----.— ---. 
~~~~~~~~~~~~~~~~~~~ 

-

j

II GETTING INTO AND OUT OF THE THEOREM— PROVER

• A. Getti~~ Into the Theorem—Prover

1. 2a~~.i!.~.~~~L KL—1O

On SRI’s KL—1O, the theorem—prover resides on directory

c:MOORE>. To start the theorem-prover you should first inform the

operating system that you will be requiring files found on directory

<MOORE> by typing:

@DEFINE DSK: DSK: ,*IOORE>

to the TOPS—20 EXEC.

• Then start up a fresh INTERLISP and execute:

(LOAD ‘44OORE~CODE.INIT)

If the SYSOUT file <MOORE>THM.EXE exists, you can get the

effect of starting a fresh INTERLISP and loading CODE.INIT by typing:

@RUN 4IOORE> THM.EXE

to the TOPS—20 EXEC. When this SYSOUT file exists it is much faster to

• enter the system this way than by the sequence of LOADs.

To complete the initial loading of the system, you must call

the function INIT. As explained in the REFERENCE GUIDE secEion of this

document, INIT performs several functions, one of which is to initialize

• the theorem—prover’s knowl edge base . If you wish to init ialize the

theorem—prover’s knowledge base to the mest primitive one available

(described in ACL III), you should execute:

• 10 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~ •~~555- -.5-5 ,. —- ~~
• -

~~

- • .5

(INIT T)

If you wish to initialize the theorem-prover ’s knowledge base to some

• previously saved “library f i le” (see the user comma nd MAKE.LI B) , you

should execute:

• (INIT (QUOTE f i le))

where file is the name of the library file in question. The standard

library we use is *IOORE>PROVEALL.LIB and contains several hundred

definitions and previously proved theorems (including most of those

described in A Computat ional Logic) . You are welcome to use this fi le

for  early experimentat ion. However , if you intend to apply the theorem—

prover to some part icular and d i f f icu l t  problem you may prefer
eventually to cons truc t your own library from scratch .

Having called INIT with some non—NIL argument you are ready to

-

• 

go: your core image contains the latest “blessed” ve rsion of the

theorem-prover and a specified knowledge base. You may then use the

commands described in the REFERENCE GU IDE.

2. On Other TOPS—2 0 Systems

To move the theorem-prover to another TOPS—20 system, create a

directory <MOORE> and copy to it the files named in the file (SRI—

KL]4100RE>CODE.FILES. The files should be copied to files with the same

version numbers as the source files. The files may be obtained from

SRI—KL over the ARPANET.

If you cannot obtain the f iles via the ARPM~~, we will

provide a magnetic tape copy of the files for a nominal charge.

• B. Saving the Knowledge Base

When your session is over you may want to save the theorem-prover’s

knowledge base. There are two ways to do it. One is to use MAKE.LIB to

produce a library file suitable for giving to INIT when you next enter

• the theorem—prover. The other is to use EVENTS.SINCE to obtain a list

• 11

- 5  - 55~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~
• • • • - • - - - •



______________ _______________________ -

of all the axioms, definitions , and theorems you have added to the
system during this session, to save those formulas on some file, and to

reprocess those formulas wi th REDO.UN DONE .EVENT S as the f i r s t  official

act of your next ses sion .

The f i rs t  method may consume lots of disk space because the entire

• knowledge base (i.e. , the old one plus the extens ion performed during

the current session ) will have to be saved; but it only requires a few

CPU seconds. The second method of saving your work requires only the

disk space needed to write down the formulas you typed in; but it may

require a good deal of time to reprocess those formulas upon your next

entry. For examp le, to save the entire knowledge base after proving all

the theorems in our standard library requires 122 file pages and about

30 CPU seconds (total) coming and going. Saving the formulas themselves

only requires 22 pages but it takes about 2 CPU hours to prove all those

formulas again. We generally use the second method only when our

initial knowledge base is already very large and the extension performed
during the current session is no more than 10 or 20 simp le definitions

and lemman .

The usual INTERLISP method of saving state, using SYSOUT to produce

• a runnable EXE file with your current core image in it, should be used

with caution. See the discussion under NOTE.FILE in the REFERENCE

GUIDE .

12

-.55 S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• ‘-— .. —- - - --‘“ —“~ —•.—~~~~~ - 7T - 
- * ~~~~~~ 

-_ 
- 

I

III REFERENCE GUIDE

• Unless otherwise noted, all of our INTERLISP functions are “lambda—

spread” —— i.e., they take a f ixed number of arguments that are
evaluated by INTERLISP before the function is executed. Since most user

commands are typed directly to the INTERLISP top—level executive, we use

the “EVALQUOTE” syntax to i l lustrate the commands .

Each command that creates an event takes as its last argument a

comment. The comment argument to a command must be either NIL or a list

whose first element is the literal atom * (asterisk). The comment is

stored with the event. It is useful to comment your function

definitions and lemmas for  the same reason it is useful to comment your

programs . In the description of the event—c reating commands , we omit
the comment argument for typographic reasons.

This REFERENCE GUIDE lists, in alphabetical order, all of the user—
level functions, variables, and tokens in our system.

A. ADD .AXIOM(name lemma.types term)

ADD.AXIOM adds a new axiom to the system. The statement of the

axiom Is term, the name of the axiom is name, and the axiom is used in

each of the ways listed in lemma .types. Each element of lemma.types

must be a lemma type , •and the syntactic form of term must permit its use

In each of the ways specified . The restrictions on the members of

lemma.types are given un der the individual type names.

Here is a sample axiom about an undefined function APPLY (see DCL

for how to introduce new, undefined function symbols):
_ADD .AXIOM (APPLY.PLUS

(REWRITE)
(EQUAL (APPLY (QUOT E PLUS ) X Y)

• (PLUS X Y ) )
• (* This axiom, named APPLY.PLUS and

used as a rewrite rule only, says

13 

5 - - • • - - • • - - 5 5 - 5- • -5-



.5- 55-- -~~ ~~~~~~~~~~ __,_- -~~~ 
-
~~~~~— - . 5  • - - -. — ~••• -

that for all X and Y , the result
• • of APPLYIng the LITATOM

PLUS to X and Y is their Peano sum. ))

We provide a mechanism for adding axioms with extreme reluctance.

It is very easy and painless to beg the question with a mechanical

• theorem—prover by asking it to assume too much.

B. ADD.SEELL(shell.name btm.object recognizer destructor.tuples)

ADD.SHELL axiomatizes a new shell class. In our theory , shells

p lay the role that “data types” play in programming language. Shells

are typed ordered n—tuples , possibly with type res trictions on the

components. A shell class is ch aracterized by a “constructor” function

that takes n arguments and returns an n—t up le of a unique type; a

“recognizer” that returns T or F according to whether its argument is an

element of that type ; ii “des tructor ” (or “accessor”) funct ions that dig

out the component s of an n—tuple of tha t type ; and , optionally , a

“bottom object ” (i.e. , an object of that type but not an n—tuple). It

is possible to specify restrictions on the types of objects occupying

each slot of the n—tup le. It is also possib le to specify “def ault
• values” to be used when an object of the wrong type is supp lied for a

component or wh en an accessor is app lied to an object of the wrong type .

The constructor name for the type axiomatized by ADD.SHEL L is
• shell.name; the recognizer name is recognizer; and the destructors are

given in the list des tructor.tup les,  which is a list of n elements , each

of the form (ac tr dv). The ac’s are the destructor function names, the

tr’s are the type restrictions on each component in the n—tuple, and the

dv ’s are the corresponding default  va lues. If btm .obj ect is NIL , no

default object is supplied with the type ; otherwise, btm .object must be

a list of the form (b ) ,  where b is the name of the constant funct ion for

constructing the bottom object. The restrictions on shell.name,~
• recognizer, the ac ’s , t r ’s , dv’s, and btm.object are given in Act III .

The effec t of:

• _ADD.SHELL(conat
(b )

• • 14

55 

- 5.



— 55’ 5_S 
~~~~~~~~~~~~~~~~~~ . S~~~~

r~ 
~~~~~~~~~~~ T~~~~~~~

5 ”5

r
• ( (ad tn dvi ) ... (acn tm dvn)))

is the same as:
Add the shell const of n arguments
with (optionally, bottom object (b),)
recognizer r,
accessors ad , ..., acn,

• type restrictions tn , ..., tm , and
default values dvi, ... , dvn.

as described in Act III.

Recall that the most primitive version of the system’s knowledge

base includes the axioms for the nonnegative integers, LITATOMs, and
CONSes. These axioms are added by ADD.SHELL commands built into the

“boot strap” that occurs when INIT is called. The ADD.SHELL commands

used are:

_ADD.SHELL(ADD 1 (ZERO) NUMBERP ((SUB1 (NUMBERP Xi) (ZERO))))

ADD.SHELL(PACK (NIHIL) LITATOM ((UNPACK T (ZERO))))

_ADD.SHELL(CONS NIL LISTP ((CAR T (NIHIL))
(CDR T (NIHIL)) ) )

(We use (NIRIL) instead of (NIL ) because it is not possible to alter the

• property list of the literal atom NIL. )

C. BOOT.STRAP()

Act III describes the most primitive theory with which our system

~,ill operate. The theory includes the functions symbols TRUE, FALSE, IF

• and EQUAL; the shells ADD1, PACK, and CONS (i.e., the axioms and

functions for Peano arithmetic , LITATOMs, and CONSes); the standard
measure function COUNT; and the defined functions LESSP, ZEROP, FIX, and

PLUS. The command BOOT.STRAP initializes the system’s data base to the

theory descr ibed in 
~Qj~ 

III. All of the axioms and definitions added

are made dependent upon the BO~~.STRAP event, which has the event name

GROUND .ZERO . Thus every subseq uent event will be dependent upon

GROUND.ZERO. One method of obtaining a list of all of the events in a

• data base is to call DEPENDENT.EVE NTS on GROUND.ZERO. Similarly, one

15 

--•-.5• ~- -. -—-.-•--- --• -—~~~~ - - - -
~~~~

. • . • — •  - - •



! ~ 
~~~~ ~~~ -555~~ 5-5S~~~•.~ -•••- — •wS’••— ,•. •— -_S•_ .v••’•,S-w- 

~~~

method of completely erasing the system’s data base is to call UNDO.NAME

on GROUND.ZERO. Before BOOT.STRAP begins to add the initial axioms it

calls UNDO.NAME on GROUND.ZERO to erase the existing data base (if any).

D • CHRONOLOGY

• The value of the variable CHRONOLOGY is a list of the names of the

events in the current data base, in reverse chronological order. Thus,

the f irst  element of CHRONOLOGY is the name of the mos t recent event ,

and the last element is name of the oldest event , GROUND .ZERO . After

loading a library, you can print CHRONOLOGY to learn the names of the

events in it.

E. DCL(name angs)

DCL declares name to be an undef ined funct ion of 11 arguments , where

n is the length of args. args must be a list of distinct variab le

names . An undefined function, once DCLed, can be constrained by axioms,
but can never be defined. For example, to extend the syntax by adding

• APPLY as an undefined function of three arguments, one would make the

following declaration:
_DCL (APPLY (FN X Y ) )

F. DEFN(name args body)

DEFN defines a function named name, with forma l argument names as

listed in args, and with body body. Arg~ must be a list of distinct

variable names, and body must be a term. The system attempts to

establish that the restrictions on the definitional principle of Act III

are met before admitting the new function. The most severe restriction

is that there be a well—founded relation such that some measure of args

gets smaller in every recursive call of name in body. The system uses

INDUCTION lemmas to guide its search for a suitable measure and

• relation, and uses REWRITE lemmas to try to prove that the tests in the

f unction body governing each recursive call imply the hypotheses in the
INDUCTION lemmas used to justify each call. See Act III for the details

• 16

_ _ _ _ _ _ _ _ _ _ _ _ _  

1j4



I

of the definitional principle, and ACL XIV for the details of the search
for measures and well—founded relations.

Together with some trivial syntactic checks, the existence of a
measure and well—founded relation justifying a definitional equation is

sufficient to ensure that the equation of (name . arg.s) with body indeed

• defines a function and may be added to the theory without loss of

soundness. In addition, these measures and relations are used to invent

induction arguments for conjectures involving name. If the system is

• unable to establish the existence of a measure and well—founded function

it will ‘print a warning message explaining that it has assumed that such

a measure and well—founded relation exist and that the soundness of the

resulting theory rests entirely with the user.

It is to your advantage to teach the system enough about measures

and relations to allow it to find justifications of all of your

finctions. This teaching is accomplished by defining measures as

functions and having the system prove appropriate INDUCTION and REWRITE

lemmas. The system is much more flexible in inventing good inductions

when it is working with measures and relations it “unders tands” than
when it has only assumed their existence.

Here is a sample definition.

_DEFN (APPEND
(X Y)
(IF (LISTP X)

(CONS (CAR X) (APPEND (CDR X) Y ) )
• Y)

(* APPEND concatenates two lists. It is
a well—defined function because the
size of X, as measured by the function
COUNT, gets smaller according to LESSP
in the recursive call.))

Note the difference between the way DEFN takes its arguments and the way
INTERLISP’s DEPINEQ takes its. DEFINEQ takes a list, each element of
which is a triple of the form (name args body). DEFN takes just the

components of one such triple.

Af ter process ing the def inition, the system prints out an

• explanation of why the definition has been accepted (i.e., the measures 
•

17

- -- -- — -- - — - - 5 5- • —-----—• - —— •---—----—-— --••-—-.•--•—- —‘5. •-•- - - --- •—• — -— — -—--.55 ______-__••_5_•__ •___ ___•_ - •_ • .• __•_ __5 __•_ •~~~~ —.5- - 
— -



and well—founded relations jus t i fying i t) .  In addition the system
• attempts to determine the types (i.e. , shell classes) of ou tput returned

by the function and prints out th is informa t ion in the form of an

“observed” lemma that has also been stored as a REWRI TE rule. The

information printed by DEFN is directed to the fi le named by the va lue

of the variable PROVE .FI LE .

C. DEPENDENT.EVENTS(name)

DEPEND ENT.EVENTS t akes an event name (i.e. , a function name , axiom

name, or lemma name) and returns the list of events reachab le from it in

the dependency graph. The list of events returned by DEPENDENT .EVENT S

is a list of INTERLISP forms . The CAR of each form is the INT ERLISP

function that created the event name (e.g. , DEFN or PRO VE .L~14MA ) and the

CDR is a list of a rguments for  that command .

• For examp le , if you initialize the data base to our current
• PROVEALL.LIB file, the pret typr inted value of:

_DEPENDENT . E VENT S (L ES SP • LENGTH )

• is:

( (PROVE.L~~(MA LESSP.LENGTH
(INDUCTION )
(IMPLIES (LISTP L)

(LESSP (L ENGTH (DELETE (MAXIMUM L)
L))

(LENGTH L ) ) ) )
(DEFN DSORT

(L)
(IF (NLISTP L)

NIL
(CONS (MAXIMUM L)

(DSORT (DELETE (MAXIMUM L) L) ) ) ) )
(PROVE.LEMMA DSORT.SORT2

(REWRITE)
(EQUAL (DSORT X) (SORT2 X ) ) ) )

The definition of DSORT depends upon LESSP.LENGTH and in turn, the

statement and proof of DSORT.SORT2 depend s upon the definition of D SORT .

18

I~ 
-.5—--—~~~~~~~~••-- - - • - . - - —~~~~~~~—•~~~~~ • • -5 -~~~~~~~~~~—~~~~~~~~ • •



— 55 ~~~ -~~~ 55——
~~~~~~~~~~~~~~ — “ ‘  - . 

- -

Since all events can be reached from GROUND.ZERO, you will get a

total picture of the state of the theorem-prover ’s “acquired” knowledge

by prettyprinting the value of DEPEND ENT.EVE NT S (GROUND .ZERO). Looking

.‘t the dependents of GROUND .ZERO is one way to begin investiga t ing the

kind of requests that we type in and wh ich functions you can use in your

functions .

H. EDITC(name)

With EDITC you can edit the comment of the event name and not incur

the undoing (and redoing) that EDITEV entails.

I. EDITEV(name)

EDITEV allows you to edit the event name. If name is not an event

name, EDITEV prints an appropriate message and exits. Otherwise, EDITEV
obtains the list of all events dependent upon name (using

DEPENDENT .EVENTS), cop ies it , and then calls the INTERLISP editor on the

entire list of dependencies with the firs t event —— the one named name

• —— as the editor ’s “current expression.” You may edit that event or any

of the ones dependent upon it (it is often the case that wh en you change
• the definition of a function, f or example , you also wish to change the

“calls” of that function elsewhere). If you exit the editor abnormally

(e.g., with STOP or CTRL—D), even after making some tentative changes,

no part of the theorem—prover’s state is changed. However, if you exit

with OK, the system checks to see whether the edited list of events is

different from the original. If not, no part of the state is changed.

If the list of events is different, then event name is undone (and
consequently so are all the events dependent upon it), and each of the

events in the result of your edit are re—executed with

REDO .UNDONE . EVENTS.

EDITEV is the only saf e way for you to change a definition or lemma
• already added to the system. In particular , after a definition or lemma

has been processed and “built into” the system, trying to edit it by
• 

- 

destructively editing property lists or other parts of the actual

19

-- 5 •~~~~~~~~~ ••  - - ~~~~~~~~~~~~~~~~~ • —— - —-- -  -- ‘~~~~~~~~~~~~~~ — - -  -~ - ~~~~~~~~~~~~— -



-- _ ~~~~~~~~~~ W 
__•_ _S—••-•-_-,

representation of the theorem-prover’s state will almust certainly leave

the system in an unreliable state.

J. EDITV(name)

EDITV is the standard Interlisp function for editing variables. We

have redefined it so that it behaves differently on variables used in

the implementation of the theorem—prover. However, EDITV behaves
normally on any variable not used in the implementation of the theorem—

prover, with the exception that the message “Should you declare it?”

will be printed at the conclusion of the edit.

K. 
____

ELIM is one of the “lemma types” specifying how a lemma can be

used. Roughly speaking, an ELIM lemma is used to replace some variable

in the conjecture by a new term, so as to allow certain rewrites to

remove certain function symbols.

An ELIM lemma must have the form (IMPLIES hyp (EQUAL lhs var)),
where (1) var is a va riab le , (2)  there is at leas t one proper subterm of

lhs of the form (d vi ... vn), where d is a function symbol and the vi

:1 are distinct variables and are the only variables in the lemma, and (3)

var occurs in lhs only in such (d vi ... vn) terms. See ACL X for a

detailed description of how ELIM lemmas are used.

L. EVENTS.SINCE(event)

EVENTS.SINCE returns a list, in chronological order, of all the

events that have occurred since the event named event occurred . Each

event on the list is a form whose CAR is the name of the INTERLISP

function that created the event and whose CDR is the list of arguments

to that function (i.e., the events are in the same form as returned by

DEPENDENT.EVENTS). The list includes, as its first element, the event
named event.

20

:1 

- - • - -—•• 5_•  •• I



—- 5555~55 ~~~~~~~~~~~~~~~ 55 -~~ - ~~~~~~~~ ~~~~~~~

_ _ _ _ _ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A typical use of EVENTS.SINCE is to ascertain what you have

accomplished during a session (i.e.~, what you have done and not

subsequently undone). It is up to you to determine the name of the

first event of the session. It may be of use to know that the value of

the variable CHRONOLOGY is a list of all event names, in reverse

• chronological order (i.e., the first element of CHRONOLOGY is the name

of the last event created, and the last element is GROUND.ZERO).

One method of saving the system’s logical state is to save the
events since you last did an INIT or NOTE.FILE, and to bring the system

up next time by initializing to the same old data base and then using

REDO.UNDONE.EVENTS to re—execute the events saved.

• M. EVENT.FORM (x)

If x is an event name, EVENT.FORM returns the INTERLISP S—

expression representing the event that created it (e.g., DEFN CONSed

onto the list of arguments). If x is a satellite, EVENT.FORM returns

the S—expression for its main event. Otherwise, EVENT.FORM returns NIL.

N. FAILED.THMS

Roughly speaking; FAILED.TI1MS is a list of all the conjectures that
the system has failed to prove in the current session. FAILED.THMS is

maintained as follows. When you start up the system it is initialized

to NIL. Every time PROVE is entered it adds the conjecture to be proved

to the list of conjectures in FAILED.THMS (unless the conjecture is

already in FAILED.THMS). When PROVE terminates normally and has proved

the conjecture, it removes it from FAILED.THMS. Thus, if midway through

a proof you abort with CTRL—E , the conjecture PROVE was called on will

still be on FAILED.THMS.

FAILED.THNS is not part of the knowledge base. Thus, if you start

up a fresh copy of the system and initialize the knowledge base to some

previously saved library file, FAILED.TUMS is not restored to what it
was when the library file was created. The purpose of FAILED.TINS is to

help you remember theorems you were trying to prove (before you got

21

~

• - - — - - .- - • 55 • - • - •

~ 

- _



— ~~~~~~~~~~~~
• -.5- —- 55 -•~~~-- 55-.-- - - - •

-5---’- 5—~~~~- 5-- -S--S 
~

S
~

SSS-,- -~~ 5555 - 55*

a

distracted by trying to prove the necessary lemmas), and to save you the
trouble of having to type those theorems back in again.

0. FORMULA.OF(name)

This function returns the S—expression of the formula named name if

name was crea ted by ADD.AXIOM, PROVE.L~ fMA , or MOVE.LF~{M~, and NIL
otherwise. FORMTJLA.OF cannot find a formula for a satellite. Thus, if

you ask for the FORMULA.OF a lemma name created by ADD.SHELL, the result

will be NIL , since the axioms created during ADD.SHELL are mere

satellites of the ADD.SHELL event.

P • GENERAL IZE

GENERALIZE is one of the “lemma types” specifying how a lemma can

be used. Roughly speaking, a GENERALIZE lemma mentioning an instance of
the term t is used when the theorem-prover decides to generalize a

conjecture containing t by replacing it with a new variable v. The

- ‘ 
lemma is used to restrict v. There are no constraints on the form of

• . GENERJLIZE lemmas. See ACL XII for a detailed description of how such

lemmas are used.

Q. GROUND.ZERO

The name of the event created by BOOT.STRAP is GROUND.ZERO. All of

the axioms, definitions, and shells added by BOOT.STRAP are made

dependent upon GROUND.ZERO. Consequently , every event in any data base

can be reached from GROUND.ZERO.

R. INDUCTION

IND UCTION is one of the “lemma types” specifying how a lemma can be
used. Roughly speaking, INDUCTION lemmas inform the sys tem that a given
measure decreases under the well—founded function LESSP. An induction

lemma must be of the form:
(IMPLIES hyp

• (LESSP (in ti ... tn)
(m xl ... xn)))

22

I i . • _ _   
~~~~~~~ ~~~ • . • - - • — - - ---- • • • - ---—- • • — • - - -~~~~~~~~ - - -• - - • - - - •-



________________________________________________ - - -

where the xi are distinct variables, all the variables in hyp occur in
the conclusion, and in is a function - symbol.

The theorem—prover makes a special exception to the above rule for

a lemma of the form (IMPLIES hyp (LESSP ti xi)) when ti is a term that

always returns a number. In this case, it treats the lemma as though it

were:

(IMPLIES hyp
(LESSP (COUNT t i) (COUNT x i ) ) )

If hyp is a conjunction of terms, and one of the terms is of the form

(NOT (EQUAL (in ti ... tn) (in xl ... xn))), the lemma informs the

system that (ml ti ... tn) is less than or equal to (in xi ... xn)

under the hypotheses in hyp , except for the (NOT (EQUAL ——)) term. Such

a hypothesis is the only way to so inform the system (i.e., the system

• does not recognize a conclusion of the form (LESSEQP & &) or (OR (LESSP

& &) (EQUAL & &))) .

For a detailed discussion of how INDUCTION lemmas are used read ACL

XIV and XV.

j  

• 

S. INIT(file)

INIT performs the last step in the process of bringing up the
theorem—prover. INIT first loads some “patch files” that correct bugs

in or add new features to the system contained in the main files. If

f ile is T, INIT then loads a block compiled version of the simplifie,
and calls BOOT.STRAP to initialize the system’s data base to the formal

theory described in 
~~~ k 

III. If file is not T and not NIL, it is

assumed to be the name of a library file (produced by MAKE.LIB). In

this case, INIT loads the block compiled simplifier and then calls
NOTE.FILE on file to initialize the data base to that contained in file.

The option of calling INIT with file set to NIL is not useful to

the average user. The resulting system contains the patch files but

neither the block compiled simp lifier nor a data base. Because of the

lack of a data base none of the theorem-prover functions can be called •

• without causing errors (e.g., all function symbols are unknown). We use 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



the NIL option for development purposes (e.g., if all we want to do is
edit theorem-prover programs , it not necessary to have a data base
loaded).

T. LEGAL .NAME.CHARS

The list of characters permitted in event, function and variable
names is kept in the variable LEGAL.NAME.C}IARS. The character set is

restricted for two reasons. First, it is convenient for the theorem—

prover to know that no user variable has certain characters in it, so

that it can use such “illegal” variables for internal purposes. Second ,

PUBLISH can only distinguish English commentary from references to event -
•

names if event names are somehow restricted .

You should not change the setting of LEcAL.NAME.CHARS, as that will

not suffice to inform the theorem—prover that its internal names must be

changed. You may inspect the value of the list to see what characters

names may have.

• U. LEMMA S(fns )

The argument, ~~~~~~ is assumed to be a list of function symbols

(e.g., TAUTOLOGYP, GCD, MEMBER). LF}IMAS returns, as a list, the names
of all lemmas that mention all of the names in fns. LEMMA S is useful

when you know you proved a lemma about some f unction symbol but cannot
remember its name. For example, if you recalled that there was some

lemma involving both MEMBER and STRPOS and you wanted to know all such
lemmas you could execute:

• _LEMMAS ( (MEMBER STRPOS))
— Under the current PROVEALL.LIB data base the result would be:

- 

(DELTA1.LEMMA DELTA1 .LESSP. IFP.MEMBER STRPOS.LIST.APPEND)

24

- - — 5—•

~~~

— —, ——5-’ ~~~~~ — — .— ——.5 — - — - — - ——

~~~~~~

~—



- 5..- ~~~ - —‘n
— -•-- ----—--S 

* 
55

- - —

- 0

V. LEMMA TYPES

The lemma types are REWRITE, ELIN, G ENERALIZE , and IND UCTION .

W. LIBJILE

• 
- 

LIB.FILE is a variable whose value Is the name of the current

library file, If any. See the discussion under NOTE.FILE.

X. LIB.PROPS

LIB.PROPS is a list of the property list keys that the theorem-

prover uses. Property lists are where almost all the information

associated with events is stored. (However, see NOTE.FILE for important

information about our management of property lists.) The remaining

information is stored on the variables named in LIB.VARS.

Y. MAKE.LIB(file)

MAKE.LIB creates a new file, named file. The file contains the
• 5

. theorem—prover’s entire current knowledge base. Calling NOTE.FILE on

the created f ile will make the system’s knowledge base exactly what it
was when file was created with MAKE.LIB. For example, if you began your
session with the state contained in the file TP.DATA.l, then def ined
some functions and proved some lemmas, and then called :

_MAKE.LIB(TP.DATA)

the system would create a new version of TP.DATA, containing all of the

data in TP.DATA.1 plus your new functions and lemmas. In particular,

unless you undo some of the events in TP.DATA.i, the new file will be at

least as large as the data base you started with.

Library files (as these data base files are cal led) are text files.

By listing such a file on the line print’~r and inspecting it you can get

a good idea of what information the system extracts from each logical

• event and how it is represented internally.

See the discussion under NOTE.FILE for important implementation

information about library files.

- í  25



— — - ~~ r—.--* — —5---

I

Z. MOVE.LEMM~(name lemma.types oldname)

It is sometimes convenient (indeed, necessary) to cause the system

• - 
to “forget” a lemma or to use it in a way different from the ways

• - - specified when it was created. However, the logical nature of events

• prevents us from being able to change the way a lemma is stored after

the fact. MOVE.LE~MA is a way of achieving the desired effect by the

following slightly devious means. The first two arguments to MOVE.LEMMA

are identical to the first two arguments of PROVE.LEMMA , namely the name

of an event to be created and a list of lemma types. The third

argument, oldname, is the name of an existing axiom or lemma introduced

by ADD.AXIOM, PROVE.LEMMA,, or MOVE .LEMMA . M0VE.L~ {MA disables oldname

(i.e., prevents the lemma named from being used in any way whatsoever)

and then adds the formula associated with oldname as a new lemma, with

event name name, to be used in the ways specified by lemma.types. The

new event is made dependent upon the old, just as though the old had

been (the only lemma) used in the proof of the new.

Thus, if LEMMA 1 was stored as a REWRITE lemma and you now wish it

• were also a GENERALIZE lemma, you could execute:

MOVE.LENMA (LEMMA2 (REWRITE GENERALIZE) LEMMA 1
(* This creates a new event, named LEMMA 2,

that has exactly the same formula as
• LEMMA 1, and is stored as both a REWRITE

lemma and a GENERALIZE lemma.
In addition, LEMMA1 is disabled.))

The new event is named LENMA2 and adds three facts to the world : LEMMA1

cannot be used, the formula named LEMMA2 (which happens to be the same

as the formula named LEMMA1) may be used as a rewrite rule, and the

formula named LEMMA 2 may be used as a generalize lemma. Future proofs

might emp loy L~~MA2 in either of the two ways specified. If you later

used UNDO.NANE to undo the MOVE.LEMMA (i.e., the event named LEMMA2) the
9

system would undo those events that depended upon LEMMA 2 and erase the

three facts added to the world by the NOVE.LEMMA. Note in particular

• that undoing LEMMA2 permits LEMM 1 to be used again.

If you wished to prevent the system from using the fact expressed

by LEMMA 1 at all, you could execute:
_MOVE.LEMMA (LEMMA2 NIL LEMMAI)

26 

•



—----5 —5----- - 55 S-.5.5____
~~~~~~

_
~~~~~~w_Sw

~
_- -~-—~ -I’— —.5—-- 

- . •-“ -.-

which disables LEMMA 1, creates the event LEMMA2 with the same formula as
LEMMA1, and stores it so that it can not be used. Subsequently undoing

LEMMA2 will restore the potency of LEMMA1 .

Note the difference between using MOVE.LEMNA to disable LEMMA! and

using UNDO.NAZ4E to undo LEMMAl . The first does not disable results

• derived from LEMMA IS while the second eliminates LEMMA 1 and all of its

dependents. Also, the first is an event and can be undone, while the

second is not an event and leaves no trace of LEMMA1 .

AA. N0.BUILT.IN.ARITH.FLG

After we finished writing A Conputational Logic we implemented a

linear arithmetic subroutine in the simplifier. The theorem-prover on

<MOORE> includes this simplifier. The subroutine knows about 0, ADD!,
SUB 1, NUMBERP , LESSP, and PLUS and can determine for some sets of linear

inequalities that they are unsatisfiable. The implementation includes
• heuristics which instantiate and a- ’p ly REWRITE type lemmas, both as

rewrite rules and as additional inequalities. See the discussion of the

REWRITE lemma type for more details on which rewrite rules are used.

The linear arithmetic subroutine enables the system is able to

prove many facts of linear integer arithmetic very quickly. However, it

is sometimes instructive to see how those facts would be approached by

the version of the system that knows nothing of arithmetic beyond

Peano’s axioms. Therefore we provided a switch with which the
• subroutine could be turned on and off.

If N0.BUILT.IN.ARITH.FLG is set to NIL then the linear arithmetic

subroutine is turned on. enabled. REWRITE lemmas of a special form

(described under REWRITE) are stored in a special way and not as rewrite

rules. If the flag is set to T, then the subroutine is turned off.

While the flag is set to T, REWRITE lemmas of the special form are

stored as rewrite rules. Initially NO.BUILT.IN.ARITH.FLG is NIL.

• 27

-- -5- - -- -—--—~~—-- —------ • —-— —-•---- -• -- -~~----



- -5.- —5 — -v.5 - - — - — - - • • - • -
55- 5-- -5.55.- -5— —5- - -—5-—- 55 — 55-5.~.- ~~~~~~•p

* 5’ •

AB. NOTE.FILE(file)

This function initializes the system’s knowledge base to that

contained In the file file. It is assumed that file was produced by

• MAKE.LIB.

There must not be a knowledge base at the time of the NOTE.FILE;

attempting to bring in a second knowledge base will cause an error (and

your state will be not in fact have been changed). This restriction is

enforced because we have no means of ensuring that the facts in one

knowledge base are consistent with those in another. Thus, if you have

been proving theorems and wish to restore the system’s state to some

previously saved one, you must first erase your current knowledge base

by calling UNDO.NAME on GROUND.ZERO , upon which depend the initial

axioms (and , hence , all subsequent definit ions and proofs). After

undoing GROUND.ZERO the system will be in its virgin state (e.g., it

will not even recognize the function symbol IF) and you can then call

NOTE.PILE on the saved library file. (Alternat ively, and usually more

efficiently, you may start up an entirely fresh version of the theorem—

prover and INIT the desired file.)

Most of the system’s data is stored on the property lists of

function symbols and theorem names. Effectively , MAKE.LIB writes all

these properties out, and NOTE.FILE loads them in. However, to save

space, NOTE.FILE only stores the name of the file to be “loaded” in the
variable LIB.FILE and arranges for its propert ies to be loaded

incrementally , one property at a time, as they are called for. This is

done by hanging a note on each atom involved, pointing to the byte

address (implicitly in LIB.FILE) at which the properties for that atom

are stored. Instead of accessing properties with GETPROP and PUTPROP we

access them with our own special functions GETI and PUT1.

Thus, NOTE.FILE does not take very much time to “notice” a library
file. Furthermore , noticing a file does not take much space, even for a
very large library. But the ma in advantages of this implementation

accrue from the fact that properties are never brought in unless they

are asked for, and in a typical session, many properties never are. For

• 28

- •  ~~~~~~—--‘--- 5- -~~~~~~~~~~~--~~~~~~~~~~~~~~~~~~~~~~~ --~~~~ 
-



—.-•--—--- —•,•- -•—-•,--.,-•.•• , - ;~~ 
• — •

~~~ 
—•~~~~~~~ . - - -  - •, •-5—--5-5•5-—---’-— - - -

.5 -.- - --~~~ 
• - •

~ 
• •  *

55

example, unless you undo an event, the information indicating what must

be undone is never in main memory. Undo and dependency information

represents about 40% of the data in a library file. Another savings

comes from the observation that  lemmas about one clique of function

symbols may never be referenced in proof s about anothe r clique. For

• example, if you are proving theorems about list processing functions ,

you may never bring in the function symbols and lemmas about prime

numbers.

The theorem—prover actually uses MAKE.LIB and NOTE.FILE together to

swap out its data base when the total number of CONSes tied up in

property lists exceeds a certain number (the value of MAX.PROP.CNT,
initially set to 20000) . When this happens , the system calls !4AKE.LIB

to create a new library file with the name SWAPPEDLIB. Then it erases

all properties and calls NOTE.FILE on the SWAPPEDLIB file. The result

is that no property is in memory and the list space can be reclaimed.

GET1 will swap in the properties one by one as they are called for. For

example, when we drive the theorem-prover through the proofs of the
several hundred theorems in its standard data base, it runs out of
property list space twice and twice swaps the data base out and

-
~~~~ continues. Of course, af ter each swap subsequent processing brings back

in some of the old properties, but not all of them are brought back in

because the sys tem is also progres sing through cliques of function
• symbols and is not undoing events or inspecting dependencies of old

ones.

To keep your directory from being cluttered with SWAPPEDLIB files,

swapping destroys the old SWAPPEDLIB. The rule used is that if a swap

occurs while the current LIB.FILE is a SWAPPEDLIB file, the old file is

killed by smashing its length to 0 and deleting it. (This frees the

disk space without doing a TOPS—20 EXPUNGE.) Because of this behavior

you should never create a library f ile with main name SWAPPEDLIB, nor
should you ever intend to keep a SWAPPEDLIB file from one day to the

next. If for some reason you want to keep a SWAPPEDLIB file you should

rename it.

29 

- • - ---~~~~~~--- ------~~~~~~~~~~~~~~~~~~~~~-—



-5 — —-- -5-555 - 5 -  5

____ • . -

SI •

Because the theorem—prover may need to create a swapped library to

avoid running out of list space, you should not run the theorem—prover

unless you have several hundred free pages of disk space. If you will

not tolerate the creation of such a file, set the variable MAX.PROP .CNT

• to 300000.

• The use of swapped library files makes it inconvenient to use the

INTERLISP SYSOUT command to save the state of the theorem—prover. If

you insist on using SYSOUT, here is the recommended procedure. First

see what the value of LIB.FILE is. If it is NOBIND (which means there

is no library file and all properties are in memory) or anything other

than the name of a SWAPPEDLIB f ile, you are safe. You can do the

SYSOUT , creating an EXE file that can be restarted with the TOPS—20 RUN

command. However, at the time you run the EXE file, make sure that the

file named by a non—NOBIND LIB.FILE is on the connected directory under

exactly the same name (thus you must save both the EXE file and the file

named by LIB.FILE).* The LIB.FILE will be opened automatically the first

-~~ time it is referenced. If, when you want to call SYSOUT , LIB.FILE is a
-

- 
SWAPPEDLIB file you should f irs t rename it. Failure to do so will mean

that future sessions based on that EXE file may kill the swapped library

• upon which the EXE file was based and you will not be able to use the

EXE file a second time. To rename LIB.FILE proceed as follows: (CLOSEF

LIB.FILE) to close the file, CTRL-C up to the monitor; use the TOPS—20

-

- 
RENAME command to rename the file just closed to some new name, newlib;

CONTINUE back into INTERLISP, and (SETQ LIB.FILE (INPUT (INFILE

‘newlib))) to reset the value of LIB.FILE to the nsw name. Then you are

free to make and use the SYSOUT just as though you were not running with

• a swapped library.

* In connection with this problem, note that if at the time of your
SYSOUT LIB.FILE is set to <MOORE>PROVEALL.LIB, you are implicitly

• relying on us to keep that particular PROVEALL.LIB file around.
However , we cannot guarantee to do so, since we generally provide a new
library file every time we release a new version of the system. Thus,
you should take responsibility for saving that file by copying it to
your directory and renaming the tIB.FILE before the SYSOUT as described
below.

30

55

~~~~~~

•5 -— -—

~~~~ 

— •—

~~~~~ 

—

~~~~~~~~~~~~~~~~~~~~~~~~ 

— -



AC. PPE (x)

— PPE is an NLAMBDA—nospread INTERLISP function (it takes an

indefinite number of arguments that are not evaluated before the

• function is entered). The arguments should be names of events or

satellites (i.e., function, axiom, or lemma names). For each member of

• x, PPE prettyprints (to the primary output file) the corresponding

event. Here is an example:

_PPE(TIMES TIMES.ZERO PLUS POP.PUSH FOO)
(DEFN TIMES

(I J)
(IF (ZERO P I)

0
(PLUS J (TIME S (SUB 1 I)  J ) ) ) )

(PROVE.LEM14A TIMES.ZERO
(REWRITE)
(EQUAL (T IMES X 0) 0) )

(***** PLUS is a satellite of
(BOOT.STRAP))

(***** POP.PUSH is a satellite of
(ADD.SHELL PUSH NIL STACKP

• 
. 

• ( (TOP T 0) (POP T 0 ) ) ) )

(***** P00 is neither an event nor satellite)

4 No mechanical method is provided for obtaining the formula

corresponding to a satellite name. For example, as noted in the examp le

above, POP.PUSH is a satellite of a certain ADD.SHELL coimnand. In fact,

POP.PUSE is the system generated name of the rewrite rule (EQUAL (POP

(PUSH X Y)) Y). The only way a user can determine the formula

corresponding to a satellite is to consult A Conputational Logic.

Appendix C of the book gives, in schematic form, the axioms added by

ADD.SHELL and their names. All of the names introduced during the

initial boot strap (e.g., IF, TRUE, ADD 1, CONS, PLUS ) are considered
satellites of GROUND.ZERO. ~~~ III describes the formal theory

• “created” by the boot strap.

• 3!

- •  5— - - -  



________________ -5 —~~~~~5-
_ _ _ _ _ _ _ _ _ _

AD. PPR(fmla pprfile)

PPR is the common entry to our prettyprint routine. It takes a

term in our theory and a file open for output , and prettyprints the term

to the file. PPR returns NIL.

There are three advantages to using PPR instead of the INTERLISP

prettyprinter. First, PPR knows how to introduce the abbreviations

permitted by our theory. For example,

(APPLY (PACK (ADD1 (ZERO)))
(ADD1 (ADD1 (ZERO)))
(C AR (CDR X ) ) )

is printed as:
(APPLY (QUOTE PUSHV) 2 (CADR X))

(in the current PROVEALL.LIB data base where (QUOTE PUSHV) happens to be

assigned (PACK 1)). Second, PPR produces more readable output and

usually puts the formula on fewer lines than the INTERLISP prettyprinter

because PPR computes , rather that gue8ses at, the exact amount of space

a subexpression will require. Third, PPR is faster than the INTERLISP

• prettyprinter, especially on large expressions.

AE. PPRIND(fmla leftmargin rparcnt ppr.macro.lst pprfile)

PPRIND is the most flexible entry into our prettyprint routine. It

prettyprints fmla, in the columns between lef tma rgin and (LINELEN GTH ) of

file pprfile. PPRIND considers the leftmost character position on a

line to be column 0. Thus column leftmargin has leftma rgin characters

• to the left of it. PPRIND assumes that when called the “print head” (or
file pointer) is positioned at the point at which you want the first

character to come out. Thus, if you want the formula printed starting

in column 5, you should print 5 spaces and then call PPRIND with
leftmargin set to 5. Recognizing the occasional need to output

characters immediately after the last character printed , PPRIND will
guarantee to leave at least rparcnt spaces between the last character

• printed and (LINELENGTH) . Thus, if you wanted to prettyprint the

f ormula , but wanted to make sure there was at least enough space on the
last line to print a comma, you would call PPRIND with rparcnt set to 1.

32

- ;__ —5 - -~~ 
55 55 

•— •— ~~~- —~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • — 5-~~~~~~~~~



The list ppr .macro.lst provides a facility for  “macro expanding” forms

before they are printed . ppr.macro.lst is assumed to be a list of

ordered pairs of the form (hd . f n) .  When PPR IND encounters a form to

be printed that starts with an atom in the hd position of such a pa ir ,

it applies fn to the form and prettyprints the result instead of the
original form. It is with ppr .macro.lst that PPR introduces its

abbreviations (i.e., a “ppr macro” transforms (ADD1 (ADD! (ZERO))) to 2,
but leaves (ADD! (ADD1 X)) alone).

AF. PROVE(thin)

PROVE attempts to prove the conjecture ~~~~~~ using all the theorem- -

proving techniques at the sys tem’s disposal. PROVE prints an English
description of the proof attempt in real—time, so you can monitor the

progress of the attempt. The proof description is printed to the file

named by the value of the variable PROVE.PILE. Initially, PROVE.FILE is

set to T, so that proofs are printed to the terminal. By setting

PROVE.FILE to a disk file you can have a proof printed to a file so that

it can be inspected at your leisure.

It is often the case that you will decide the theorem—prover is

• failing before it decides that it is failing. If you decide the sys tem

is failing you should abort the proof by typing CTRL—E, get the system

to prove the neces sary lemmas, and then try to prove the “difficult”
theorem again . ~r t e  that it is permitted to abort PROVE with CTRL —E or

CTRL—D without risking messing up the sys tem’s state because PROVE does

not change the state .

You may abort the print ing of any formula, without aborting the

proof attempt , by typing CTRL—K.

The result of PROVE is either the INTERLISP literal atom PROVED or

a very large failure message string . When the failure message string is

returned, the most you are entitled to conclude is that the system was
incapable of finding a proof . In part icular , the failure message does

— 
not mean that the formula is not a theorem. It is often the case that

the failure message is precipitated by the sys tem’s discovery that it is 

_ _  _



~~~~~~~~~~~ -55•555 ~~~~~~~~~~~ 5- 55- • • -~~ -- - - -.

trying to prove a goal that is falsifiable. However, even in this case
you may not conclude that the input conjecture was a nontheorem since

• during the proof attemp t the system might have abandoned the original

• 

5 

formula in favor of a mechanically generated generalization (that might

not in fact be a theorem).

AG. PROVE.FILE

The value of the variable PROVE.FILE should be the name of an open

file to which you want proofs to be written. Both DEW and PROVE.LF21M~
direct their output to PROVE.FILE. Initially PROVE.FILE is set to T

(the terminal). If PROVE.FILE is set to a name other than T when DEW

or PROVE.LEMNA or REDO.UNDONE.EVENTS is called and the file named is

1 
closed, the system sets PROVE.FILE to T. For example a typical scenario
is to set PROVE.FILE to the name of a just opened file, call PROVE.LEMMA

to prove a theorem and write the proof to the disk, and then call
CLOSESALL or (CLOSEP PROVE.FILE) to close the disk file. The next time

you call one of the functions that writes to PROVE.FILE it will reset it

to the terminal.

AH • PROVE .L~~~(Mk (name lemma • types term)

PROVE.LEMMA attempts to prove the conjectur e term and remember it

as a lemma named name, available for  use in the way s specified by the

list of lemma types in lemma.types. PROVE.LE~4MA firs t ch ecks to see

whether term is acceptab le as a lemma of the types listed (so that such

an error can be reported before the sys tem has spent the time necessary

to prove term). Provided term is acceptable as a lemma of the types in

lemma.types, PROVE.LFMMA calls PROVE on term. If the result is PROVED,

PROVE.LEMMA creates a new event named name, associates the formula term

with name, and makes it available as a lemma to be used in the ways

specified by lemma.types. The event is made dep endent upon all of the

events used in the proo f of term.

Note that even though PROVE can be aborted safely wi th CTRL —E or
• CTRL —D, PROVE.LFIfMA cannot. The reason is tha t af ter calling PROVE to

34

-

~~~~ - 5 5  — — ~~~~~~~~~~~ - S S -~~~~~~~ -~~~ —-



—5- _ _ _ _  _ _ _ _

prove the formula, PROVE.LEMMA updates the state. It is possible

(though extreme ly unlikely) that you would decide that the proof is

failing and abort when in fact it had already proved the theorem and was

beginning to update the state while your terminal was still printing out

the formulas. The only approved way to abort PROVE.LEMMA is to type

CTRL—H and wait for a soft INTERLISP interrupt , use BT in the resulting

break to make sure that the system is still under the call to PROVE, and

if so to type STOP or CTRL—D to abort (and if not, type OK to continue

the final stages of the updating).

Al. PROVEALL(event.~~ t detach.flg filename sysoutflg)

PROVEALL is a convenient way to process a command sequence and

write the theorem—prover output to a file. PROVEALL executes

(REDO.UNDONE.EVENTS event .1st T ‘A detach.flg)

after obtaining 30000 free words of list space, setting the GC message
• 5 to “ .“ (which will be changed to the emp ty string if the job is to be

detached), setting PROVE.FILE to filename.PROOFS and TTY: to

file.name.TTY:. After the sequence of commands has been processed ,

PROVEALL closes both PROVE.FILE and TTY: and, if sysoutflg is non—NIL,

makes a SYSOUT file (called filename.EXE).

Thus , if you have a sequence of events, event.lst, to be executed

and you wish to watch the progress of the job from your terminal, but

have the proofs go to the file DEMO.PROOFS, you would execute (PROVE ALL

event.lst NIL ‘DEMO). During the proofs your terminal would display

only the successive event names as they were encountered during the

processing, separated by commas, and interspersed with dots indicating

the GCs. If you wished to have the events executed in a detached job

• and have a SYSOUT file produced afterwards so you could poke around if

t you wished (e.g., to pr oduce a library file), you should execute

(PROVEALL event .1st T ‘DEMO T). After seeing the detach message , you

could then turn off your terminal and walk away while the system

proceeded to do the proofs. You can re—attach your job at any time by

typing:
• @ATT user password jobno

35

____________________________ 
_____________ 

I I:
~~~~~~~~ - • •~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ t



~

to the TOPS—20 EXEC, where user is your user name, password is your
password, and jobno is the number of the job running the theorem-prover.

If you re—attach while the PROVEALL is still running, it will resume

printing out the successive event names separated by commas (but the

garbage collect message will be the empty string). If you re—attach

after the PROVEALL has terminated , INTERLISP will print the value of the

call to PROVEALL and you may proceed as usual. It is good practice

after a detached PROVEALL to inspect the value of the variable

FAILED.THMS to see if any proof failed. It is also good to remember

that no library file is made by PROVEALL; if you want to save the

system’s state you should do so after re—attaching.

See REDO.UNDONE.EVENTS for the details of the system’s behavior

during and after a detached run.

AJ. PUBLISH(file titlel

The file argument is assumed to be the name of a PROVE.FILE written

to the disk by PROVEALL (or, actually, by REDO.UNDONE.EVENTS when the

• two final flag arguments are both NIL). That is, the file should

consist of the header as printed by REDO.IJNDONE.EVENTS followed by a
• sequence of commands, theorem-prover output, and values, separated by

formfeeds. PUBLISH opens file for reading; creates a new version for

writing; and then writes in sequence a title page (with title centered

on it above the system identification header printed by

REDO.UNDONE.EVENTS), a table of contents listing each event name and the

page on which it became defined, each command and its output and value,

a cross—referenced index (listing, for each name mentioned in the file,

every page on which the name appears), and the summation of the time and

CONS usage statistics for the events. PUBLISH then closes both files.

1 . If you list the created file with the TOPS—20 LIST command the page

numbers printed will agree with with those in the table of contents and

• index. Events requiring several phys ical pages of output ar e LISTe d

with page numbers such as 7, 7:1, 7:2, 7:3 , ...

• 36

I I~

55—.-— — 55 -~ —5 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
5 5 —



— 

5-5- —

AK. REDO! (name)

REDO! uses UNDO.NAME to undo the event named name and then uses

REDO.UNDONE.EVENTS to reprocess each of the events returned. It is

• mainly used to cause the system to go through a proof that just flashed

by on the screen or that you have decided to repeat for  demonstration or

documentation purposes (e.g., between the first proof and the REDOI you

might have set PROVE.FILE to be a disk file so you could capture the

proof).

AL. REDO.UNDONE.EVENTS(events all.flg failure.action detach.flg)

REDO.UNDONE.EVENTS is used to process a list of theorem—prover

commands. The arguments allow you to select, interactively, the

commands to be executed , to specify the action to be taken should a

command fail, to have your job detached while the commands are being
executed, and to control the printing of certain header information.

The list events is assumed to be a list of events as returned by

UNDO.NANE. That is, each element of events is a form whose CAR is one

of the atoms BOOT.STRAP, ADD.AXIOM, ADD.SHELL, DCL, DEW , PROVE.LEMMA or

MOVE.LEMMA, and whose CDR is an appropriate list of arguments.

4 REDO.UNDONE.EVENTS applies the CAR of each event to the CDR. There are

three typical sources of commands for REDO.UNDONE .EVE NTS. The f i r s t is

the list of events returned by UNDO.NAME. For example, if after

escaping from several blind alleys you have finally gotten the syctem to

prove your “main theorem,” you might undo and redo a sequence of events
to write the entire sequence of proofs to a file for documentation

purposes. Because of the uncertainty surrounding the validity of the

theorem-prover’s state after aborted commands and the doubts about the

correctness of UNDO.NAME, we recommend such a final uninterrupted

“proveall” as the only sure evidence that your formulas are theorems.

The second typical source of input for REDO.UNDONE.EVENTS is a list
• of events on a disk file, written during a previous session (the result

of printing the value of EVENTS.SINCE, perhaps).

37

1’

‘A  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



~~~
“— ———

~~~ 
— ~ 5 - 5 - 5 -~~~~~~~~~5- •—,—••-••-.-5—

~~~~~~~~~~~~~~~ 
- 

The third typical source of events is a mechanical conjecture

generator, such as a verification condition generator. We find it

convenient for our vcg programs to produce a sequence of axioms,

definitions, declarations and conjectures to prove, and then to use

REDO.UNDONE.EVENTS to drive our sweep through the list.

Before the first command is executed , REDO.UNDONE.EVENTS prints a

header indicating the date and the versions of the LISP and theorem-

prover files in use.* This information is printed to PROVE .FILE. If

PROVE.FILE is T, the header is two lines of ~nformation. Otherwise, it

is centered on a page delimited by formfeeds.

As REDO.UNDONE.EVENTS sweeps through the list of events, it

indicates which event is being processed. To the file named by

PROVE.FILE, REDO.UNDONE.EVENTS prints a formfeed followed by the entire

form about to be executed**. After each command is executed ,

REDO.UNDONE.EVENTS prints the value of the event to PROVE.FILE. Thus,

PROVE.FILE will contain each command , the theorem—prover’s output in

response to the command, and the value returned by the command , with

formfeeds separating the commands. The command PUBLISH can be used to

process such a file to add a title page, table of contents, and cross—

referenced index.

If PROVE.FILE is not the terminal, but you are attached to the job,

then it is useful to get some indication as to how the job is

• progressing. In this case, REDO.UNDONE.EVENTS prints to the terminal

the name of each event (i.e., the CADR of the form) before the command

is processed and a comma after each event is processed . Thus, if you

* REDO.UNDONE.EVENTS actually has two additional arguments. The sixth
argument of REDO.UNDONE.EVENTS is don’t.print.date.line.flg; if it is T,
the printing of the header will b’ omitted.

** The fifth argument of REDO.UNDONE.EVENTS is
don’t .print.first.event.flg; if it is T, REDO.UNDONE.EVENTS does not
print the first command on events; this option is usec~ by EDITEV when it
calls REDO.UNDONE.EVENTS to reprocess an edited event and those events
depending on it. In this case, it is assumed that you know what the

• edited event is and would consider it an inconvenience to see the result
of your edit printed back out at you.

38 

- • - - - 5 — -~~~~~~~~~~~ -.--5-~~~~~~~ • - -~~~~~~ --_-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -55-5--



are dumping the proofs to a file, but have remained attached to your

• job, your terminal will slowly print a sequence of event names,
separated by commas, and interspersed with GC messages.

If one of the commands in events causes an error , the usual error

message will be printed and then (provided you are attached to the job)

• you will be put into the editor editing the tail of events starting at

the of fending event. Exiting the editor with STOP or CTRL—D will leave

~~u in the safe state the system was in before it encountered the

offending command. Exiting the editor with OK will cause resumption of

the command processing in the edited tail. The tail you edit is

physically that of the events you supply REDO.IJNDONE.EVENTS. Thus , when

REDO.UNDONE.EVENTS eventually terminates, the list of events supplied

will reflect any edits you performed during the processing.

The tail of events yet to be processed is kept in the variable

UNDONE.EVENTS. If you abort REDO.UNDONE.EVENTS you will find the list
• of events that have not been redone in UNDONE.EVENTS. However , many of

the theorem—prover commands call REDO.UNDONE.EVENTS internally —— in

• • 
fact all of the event creation commands such as DEW and PROVE.LEMNA

actually call REDO.UNDONE.EVENTS because of its error handling . Thus ,

• if after an aborted call to REDO.UNDONE .EVENTS you cal l one of the

standard theorem-prrwer commands like EDITEV or PROVE.LEMMA , you will
find that UNDONE.EVENTS has been reset and no longer contains the tail

of the events that was aborted . You should therefore save UNDONE.EVENTS

immediately a f ter  REDO .UNDO NE.EVENTS has been aborted if you wish to

save it.

Our usual protocol for getting a sequence of commands processed is
• to set XXX to the sequence and call RF.DO.UNDONE.EVENTS on XXX. When we

see a proof fail we abort REDO.IJNDONE.EVENTS and call EDITV on

UNDONE.EVENTS to either correct the offending event or precede it with

what we believe are the necessary lemmas, and then call RESTART. The

• advantage of this technique is that when we finally reach the end of the

original XXX it has been edited along the way to contain the

• unanticipated lemmas required .

• 39

•~~~ - - - - ~~~~~~~~~~~~~ • - • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ _______



: - 5 5 5 5 5

~~~~~~

5 -

~~

5 , - 5  

- — - -  -

The second argument to REDO.UNDONE.EVENTS, all.flg, determines

whether all or only some of the events in events are redone. If all.fl.g

is NIL , then when REDO.UNDONE.EVENTS encounters a non—DEW event in

events it asks you whether you wish to redo that event. If all.flg is

non—NIL, all events are redone. The all.flg option of

• REDO .UNDONE.EVENTS is used by EDITEV so that when you reconstruct the

sequence of events depending on an undon e , edi ted definition, the

functions that call the edited function as a “subroutine” are

automatically reprocessed and you have the freedom to specif y which

dependent lemmas the sys tem should try to prove again .

The third argument , failure.act ion, is used to specify the system’s

action should it fail  to prove some lemma in the seque nce of events.

The failure to prove a lemma deserves special attention because it may
be impossible for the system to prove the succeeding lemmas if it does

not have the failed lemma built in. If failure.action is the literal

atom Q (for “Quit ”), a failed proof causes REDO.UNDONE..EVENT to abort.

If failure.action is the atom C (for “Continue”) a failed proof is
1 ignored , in the sense that the rest of the events on events are

attempted as though nothing unusual had occurred . If failure.action is

the atom A (for  “ADD.AXIOM”) ,  the lemma is added as an axiom so that

subsequent proofs will not fail because of the absence of the single

lemma the system failed to re—establish. If failure.action is NIL, then

the system asks you (with ASKUS ER ) what failure.action should be; the

response “?“ typed to its question will prompt the system to list the

alternatives given above .

The fourth argument, detach.flg, if T , cau ses the system to detach

your job and then start processing events. However, the job will hang
if it ever tries to do input or output to the terminal while detached .

Thus , before running in detached mode the theorem—prover should be
-
~~ “rigged for silent running.” In particular, PROVE.FILE and TTY: must be

set to some file other than the terminal, and the INTERLISP garbage
collector must be “gagged” to prevent it from print ing its usual CC

• message. Thus, if detach.flg is T, REDO.UNDONE.EVENTS gags the garbage

• 40

- ,- - - - •_ _ _ • — -5 -  . - 

•



~~ _-TJ T T ~~~~~~~~ 

_ _~~~~~~~~~~~~~~~~~~~~~~ 55 _ _ _ _ _ _

collector and checks that PROVE.FILE and TTY: are appropriately set. If

they are not appropriately set, it asks you to specify the desired file

names. Once the sys tem has been rigged for silent running,

REDO.UNDONE.EVENTS automatically detaches the job and then begins to

process the commands as described ab ove . When you see the sys tem prin t

the message that your job has been detached , you are free to turn your

terminal off and wa lk away.

To enable you to monitor the progress of you r detached job, : -

REDO .UNDONE.EVENT S changes the name of the job f rom “LISP ” to a name of

the form “n/m ”, wh ere n is the number of events in events still  to be

processed, and m is the number of lemmas that the system has failed to
prove. The job name is updated every time REDO.JJNDONE.EVENTS steps to a

new entry in events. When the last event has been processed, the job

name is changed to DONE.

If at any time you want to see the job name, connect to the
• operating system (not necessarily logging in) and type:

~?sys user

j where user is your user name (or else the number of the job running the

theorem-prover).

You can re—attach your job at any time by typing:

@ATT user password jobno
to the TOPS—20 EXEC, where user is your user name, password is your
password, and jobno is the number of the job running the theorem-prover.
If you re—attach while REDO.UNDONE.EVENTS is still running, it will

resume printing out the successive event names separated by commas (but

the garbage collections will be silent). If you re—attach after

REDO.UNDONE.EVENTS has terminated , INTERLISP will print the value of the

call to REDO.UNDONE.EVENTS and you may proceed as usual. It is good

practice after re—attaching a detached REDO.UNDONE.EVENTS to inspect the
• value of the variable FAILED.T l~1S to see if any proofs failed . It is

also good to consider whether to save the sys tem’s state a f t e r  the

REDO • UNDONE • EVENTS

• 41

- - — --55 - - ~~~~~ --55 -- --



-5-5- ~~~~~--~~~~~~ •~~— - 5 -  ~~~~,

-• -----‘--- 

~~~~~
-:

~~~~
‘
~~~~~~~ 

•

~ 

55

If an error arises during a detached run , the system prints the
• appropriate message to the TTY: f ile, changes the job name to ERROR, and

sleeps until the job is re—attached . When you re—attach the job you

should type CTRL—E (to signal to the sleeping job that you are now there

• to field the error). The system then reprints the message to the

terminal and enters the usual interactive break. (Sleeping is subtly

different from the “hanging” that occurs should the job try to read from

or write to the terminal; a job that is so hung is automatically logged

out by the system after a certain grace period. The sleep induced by an
- - error permits the job to avoid the inactive job reaper indefinitely.)

It is usually the case that when the system crashes, you lose all
files created but not closed before the crash. This happens because the

directory entry for a file being written is usually not updated until

the file is closed. Since it is not unusual for REDO.UNDONE.EVENTS to

run for a long time compared to the mean time between SRI—KL crashes

(e.g., reprocessing all of the events in our PROVEALL.LIB library

requires about 2 CPU hours) REDO.UNDONE.EVENTS uses JSYS calls to update

• the directory entries for PROVE.FILE and TTY: every time it steps to the

next event. Thus, if the system crashes while you are running a

detached job, you will lose the state but you will at least have the
system output up to the proof during which the system crashed.

- 
- AM. RESTART(x)

(RESTART X) is just (REDO.UNDONE.EVENTS (OR X UNDONE.EVENTS) T ‘Q) .
This function is a handy way to continue an interrupted

REDO .UNDONE.EVE NTS . Recall that when REDO.UNDONE.EVENTS terminates the

variable UNDONE.EVENTS is set to the tail of the event list still to be

processed. RESTART just calls REDO.UNDONE.EVENTS again , giving it

UNDONE.EVENTS as the event list. However, note that UNDONE.EVEN TS is
• liable to be reset by any command that creates an event (e.g., DEW or

PROVE.LE?QfA).

Our usual protocol for using REDO.UNDONE.EVENTS and RESTART is to

• abort REDO.UNDONE.EVENTS when we see a proof fail, to call EDITV on

42

--5_~~~-~~~~~~~~~~~~~~~~~~ -~~~~~~~— 5 5- 5  —-—~~~-—- — •  ~~~~~~~~~~~~ ~~~~~~
—-  -5—•- - -

~~~ 
•-—

~~
-
~~~ 

-5-- - ••••—
~~~ 

-• -S



-
5

-

UNDONE.EVENTS to either correct the offending event or precede it with

what we believe are the necessary lemmas, and then to call RESTART. The

advantage of this technique is that when you finally reach the end of

the original events it has been edited along the way to contain the

unanticipated lemmas required .

AN. REWRITE

REWRITE is one of the “lemma types” that specifies how a lemma may
be used. Roughly speaking, R EWRITE lemmas ar e used by the simplifier to

rewrite terms conditionally. Let the lemma in question be term. If

term is of the form (IMPLIES hyp concl), concl is used as a rewrite rule
when the system can establish hyp; otherwise, term is treated as though

it were (IMPLIES T term). If the conclusion is (EQUAL r s), instances

of r are rewritten to s. A conclusion of the form (NOT r) is used just

• as though it were (EQUAL r 7). A conclusion of the form r, where the

function symbol is neither EQUAL, NOT, nor LESSP is used to establish

that instances of r are non—FALSE. See ACL VII for complete details of

how REWRITE lemmas are used.

We have recently added a linear arithmetic package to the

simplifier. This package causes certain lemmas with a conclusion of the

form (LESSP a b) or (NOT (LESSP a b ) )  to be treated specially. Here is

the restriction on a and b. Consider a and b as PLUS—trees (i.e., trees

of non—PLUS terms connected by the function symbol PLUS). Then at least

one of the non—PLUS tips of one of the two trees must  be a term that

includes every variable in the lemma. Thus, if X and Y are the only

variables in a lemma and the conclusion is (LESSP X (TIMES X Y) ) ,  the
lemma meets the above res triction . A conclusion of (LESSP (FN X) (FN

Y ) )  or (LESSP X (PLUS (FN X) (FN Y ) ) )  does not meet the restriction.

This restriction is present because such “maximal adde nds” are keyed on

by the linear arithmetic package and trigger the instantiation of the

lema. (instantiat ing all its variab les ) and the addition of the instance

to the “pot ” of linear inequalities being processed .

43

-5555 - -- - •- -5•• ---~~~~- -~ • • - - -—-- •—• - • - -- •-——-— -5— —5 5 -~~~~
.5- ----5-5••- - - 5 S _ S_ i



p ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To disable the linear arithmetic package and to prevent future

REWRITE lemmas from being stored in it, set NO.BUILT.IN.ARITH.FLG to T.

Note that this will not sudde nly cause previously stored linear lemmas

to be used as rewrite rules. To get a lemma with a LESSP conclusion

stored and used as a rewrite rule while the linear package is still

enabled you can hide the LESSP by writing the conclusion as (EQUAL

(LESSP a b) T) or (EQUAL (LESSP a b) F) as appropriate.

ItO • TRANSlATE (term)

TRANSLAT E is the program that checks for syntax errors in S—

expressions and removes the abbreviations permitted in our theory. For

example,

_TRANSLATE((A PPLY (QUOTE PUSHy ) 2 (CADR X)) )
returns the value -

(APPLY (PACK (ADD1 (ZERO)))
(ADD 1 (ADD1 (ZERO)))

• (CAR (CDR X)))
• (provided (QUOTE PUSHV) is the abbreviation for  the literal atom (PACK

1)). TRANSLATE causes errors when it finds illegal syntax such as too

few arguments or unknown function symbols.

All of the event creating routines in our system (e.g., DEW and
PROVE.LEMMA) call TRAN SLATE on user—supplied terms. None of the

internal routines in the system know about abbreviations (e.g., if you

type in a term involving 99, it is expanded to a nest of 99 ADD1’s).

AP. TTY:

The value of the variable TTY: is supposed to be the name of an

open file to which error and warning messages are printed . Initially

TTY: is set to T (the terminal).

Each error message is first printed to PROVE.FILE. Then, if

PROVE.FILE and TTY: are set to different file names, the error message
is printed to TTY: as well. Thus, by setting PROVE.FILE to a disk file

and TTY: to the terminal you can have a complete record of the system’s

• 44

_ _ _ _ _ _  - _ _



-• -55---- —- —— w—-- -~~’--- ~~~~~~~~ 
— —- 

- -

~~~~~~~~~~
- - --- —-

~~~~
-

~~~~~~~~
-

~~~~~~~ 
- - •: • - ‘- -

—-5

output on the disk and have error messages (also) printed to your

terminal. By setting TTY: and PROVE.FILE to two different disk files

you can have no output to the terminal and should inspect TTY: later to

see whether any errors occurred.

AQ. UNDO.BACK.THROUGH (name)

This command “rolls back” the theorem-prover’s st~ate to the one

that existed just before the event named name was created . It wo rk s by

undoing , in reverse chronological order , name and every event created

af te r  name.

AR. UNDO.NANE(name)

UNDO.NAME removes f r o m  the event graph eve ry event reachable from

the one named name. (If name is a satellite, its main event is used

instead.) Roughly speaking, this puts you into the state you would have

been in now had you done all the events except the event being undone

and those events tha t depend upo n it • UNDO.NANE undoes exactly the
events listed by DEPENDENT.EVENTS, so you can use DEPENDENT.EVENTS to

ascertain the amount of damage that would be caused by undoing a given

event . UNDO.NAME returns exactly the same list that DEPENDENT.EVENTS

-
• does; such a list can be given to REDO.UNDONE.EVENTS to attempt to

reconstruct the undone events.

UNDO.NAME is not like the INTERL ISP undo facility in several

respects . The main difference is that UNDO.NANE is a quasi—logical act :

not only are the effects of the named event erased but the effects of

all subsequent events that depended on it are erased. A second

important difference is that af te r  an UNDO.NANE all traces of the undone

events are complet~-ly wiped out: it is not possible to undo an UNDO.NAME

(except by reprocessing the original events, e.g., rediscovering the

proofs of the lemmas killed).

WARN ING —— We believe, but have not yet proved, that
UNDO.NAME is implemented as specified above. It is difficult
to ascertain all of the events that are logically dependent

• 45

_ _ _  -5 - -• 5 5-~~~~~~~~ S55-555-55



-

upon a given event because, for efficiency reasons, the
theorem-prover does not record uses of rewrite rules stored as

• type prescriptions. When UNDO.NAME traces the dependencies of
• such a rewrite rule, it must determine which events might have
• 

- 
- appealed to that lemma. We believe that our implementation of

DEPENDENT.EVENTS is correct in the sense that it returns a
superset of the logical dependent s of its argument ; h owever ,
we have not yet entirely convinced ourselves that the

• computation is correct. Therefore, if you have constructed a
sequence of def initions and proofs , and have availed yourself
of UNDO.NAME to undo your missteps along the way , you should
have the system reproduce the final sequence of events (with

• REDO!, REDO.UNDONE.EVENTS or PROVEALL) without any UNDO.NAMEs.
Until we prove UNDO.NANE satisfies the above specifications,
the careful user must consider it (and the commands that
depend upon it such as EDITEV ) as a mere “programmer’s
assistant” command , rather than a “logician’s assistan t”
command.

UNDO.NAME is definit ~ly correct when the event undone is the last

event created. Thus, undoing all of the events back through a giv~n
one, in reverse chronological order , is guaranteed to have the specified
effec t .  The funct ion UNDO.BACK.THROU CH provides such a chronological

undoing. Note however the difference between undoing backwards fr om the
fringe reachable from a node (which is what UNDO.NAME does) and undoing

all events since a node was added (which is what UNDO.BACK.THROUCH

does).

- 46

p

- --—-- 5 5 --  - -~~~~~~~~
- — -rn

~~~
—-



-
~~

-
~~~~: 

~~~~~~~ -~~~~~~~
-

~~~~~~~~
.

—‘~~~~~~~~~~~ ‘ ~~~~~~

-

IV REPORTING OF DIFFICULTIES

F ~1 If you have difficulties getting the theorem-prover to prove a

theorem and you wish to obtain our advice, p lease provide the following
information to help us reproduce your situation:

* A description of how you INITed the theorem—prover, in
particular which library file, if any you are using.

* A description of any UNDO.NANEs or EDITEVs that changed the
state described by that library file.

* A disk file containing a list of the event producing
commands that you have executed after the INIT. Such a
list can be obtained by calling EVENTS.SINCE on the name of
the first event created after the INIT.

* An informal sketch of why your conjecture is a theorem
(e.g., “This conjec ture follows immediately from the
previously proved REWRITE rules foo & bar.”)

47
p 

-~~---~ —
• --_ _•-•-— -- --- •-- --- - - -  —_ •--—-5—_ _ — _-5— — —--5—-•- _ --55- - --5 - --- ---— --_•S-



V EXTREMELY SIMPLE EXAMPLES

The first time you use a new computing system is usually painful.

One reason for this difficulty is the arbitrariness of the syntax of

most operating system command languages, which are among the most poorly

designed of computer programming languages. TOPS—20 is no exception.

Another reason is that even the simp lest use of a system may require

saving and retrieving information from a permanent storage facility such

as a disk file; but 10 is the most complex aspect of any computing

language. To help you get started , we present four extremely simple

• example sessions with the theorem-prover.

We underline those characters that are typed by the user. We

demark comments lines that are not part of the session by beginning the

lines with semicolons . To increase legibility, we have added some blank

lines. Some user—typed carriage returns that may not be obvious are

writ ten “<cr> ”.

A. Example 1

SRI—EL , TOPS—2 0 Monitor 1O1B( 120)
System shutdown scheduled for Wed 1 1—Apr—79 23:00:00,
Up again at Thu 12—Apr—79 04:00:00
There are 17+10 jobs and the load av. is 0.80

~LOG USERNANE(unechoed password)ACCOUNT <cr>

Job 18 on TTY25O 9—Apr—79 07:21
Previous login: 9—Apr—79 06:42 from TTY131

@DEF DSK : DSK : , *IOORE) <cr>

@T HM<cr>

• (4IOORE>THM.EXE.1 . .cLISP>LISP.EXE. 128)

48 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

2..INIT(T)

• compiled on 7-Apr—79 22:54:15
FILE CREATED 7—Apr—79 22:54:12

• FILE CREATED 7—Apr—79 18:09:07
• DATA1COMS

• 
I compiled on 7—Apr—79 17:56:06

(GROUND . ZERO)

3
~
DEFN(APPEND (X Y) (IF (LISTP Y) (CONS (CAR) (APPEND

(CDR X) Y)) Y]

ERROR : CAR is a reserved abbreviat ion for  a CAR/CDR nest and
must be given exactly one argument.

t ty :

1*PP(cr>

;We are thrown into the INTERLISP Editor. The command lines
;co’~taining the asterisk prompt character are editor commands.

(DEFN APPEND (X Y)
• (IF (LISTP Y)

(CON S (CAR)
• (APPEND (CDR X)

Y ) )
Y)

NIL)

1*(R (CAR) (CAR X))

;We replace “(C AR)”  with “ (CAR X ) ” .

2~~K<cr>

;And proceed.

WARNING: The admissibility of APPEND has not been
established. We will assume the function to be
well—defined. This may render the theory inconsistent. An
induction princip le for this function has been assumed,
corresponding to the obvious subgoal induction for the
function.

Observe that (OR (LISTP (APPEND X Y ) )  (EQUAL (APPEND X Y)
Y ) )  is a theorem.

*** ***
*** F A I L E D !  ***

* ******************************************************************
49

p

- s

I  
_ _ _ _ _  

_ _ _ _ _ _ _ _

—55-- 55-- —55---- —55--— - ——55-- — .-— -— •~-- .55 - 
— 

--5—-



. 
- 

. 

-~~~~~~~~~—~~~--- -————-- --—~~~~~~~~~~~~~~ - -—~~ 
~~
‘
~~~~i.:: ____________

Load average during proof: 1.097168
Elapsed time: 7.162 seconds
CPU time (devoted to theorem proving): 1.016 seconds
CC time: .322 seconds
10 time: 0.0 seconds
CONSes consumed: 855

(,,

***************************** **************************************
F A I L E D !

• ***

*******************************************************************

4._EDITEV(APPEND )

t ty :

3*~~

• (DEFN APPEND (X Y)
(IF (LISTP Y)

(CONS (CAR X) •

(APPEND (CDR X)
Y ) )

Y ) )

;We should have made sure X was a LISTP before CDRing it
;in recursion. Instead , we checked Y.

3*(R (LIST P Y) (LISTP X))

4~~ K

The lemma CDR.LESSP establishes that (COUNT X)
decreases according to the well—founded function LESSP in
each recursive call. Hence, APPEND is accepted under the
definitional principle. Observe that:

(OR (LISTP (APPEND X Y ) )
(EQUAL (APPEND X Y) Y))

is a theorem.

Load average during definition: 1.074789
• Elapsed time: 4.271 seconds

• CPU time (devoted to theorem proving): .665 seconds

• 50

55— ~-—--•- ----—- 
~~~~~~~~~~~~~~~~~~~~~~ 

— —-- — 5 5-  
— 

t 
-~~~~



- - - - •

-~~~~~~ .

L

CC t ime: .348 seconds
• 10 time: 0.0 seconds

CONSes consumed: 504

APPEND

5,_DEFN(PLISTP (X) (IF (LISTP X) (PLISTP (CDR X)) (EQUAL X NIL ]

• Th e lemma CDR.LESSP can be used to establish that
(COUNT X) decreases according to the well—founded function

• LESSP in each recursive call. Hence, PLISTP is accepted
under the definitional principle. Observe that:

(OR (FALSEP (PLISTP X) )
(TRUEP (PLISTP X ) ) )

is a theorem .

Load average during definition: 1.046235
Elapsed time: 2.998 seconds
CPU time (devoted to theorem proving): .579 seconds
CC time: .342 seconds

• 10 time: 0.0 seconds
CONSes consumed : 435

PLISTP

~~DEFN(REVERSE (X) (IF (LISTP X) (APPEND (REVERSE (CDR X))
(CONS (CAR X) NIL)) NIL ]

The lemma CDR.LESSP est ab lishes that (COUNT X)
decreases according to the well—founded function LESSP in
each recursive call. Hence, REVERSE is accepted under the
definitional principle. Observe that :

(OR (L ITATOM (REVERSE X))
(LISTP (REVERSE X ) ) )

is a theorem.

-
~~~ Load average during def inition: 1.022781

Elapsed time: 5.0 seconds
CPU time (devoted to theorem proving): .777 seconds
GC time: .316 seconds

• 10 time: 0.0 seconds
CONSes consumed: 538

REVERSE

7...PPE(APPEND PLISTP REVERSE)

V •

• 51

- •~5 5 . ~ma.55 ~~~~ - _•- - _ ~~~ 
• • •

~
‘••

~
—•  

~~~~~~~~~~~~~~ 
• • •

~~~



(DEFN APPEND
(X Y)
(IF (LISTP X)

(CONS (CAR X) (APPEND (CDR X) Y) )
Y ) )

(DEFN PLISTP
(X)
(IF (LISTP X)

(PLISTP (CDR X ) )
(EQUAL X NIL)))

(DEFN REVERSE
(X)
(IF (LISTP X)

(APPEND (REVERSE (CDR X ) )
(CON S (CAR X) NIL) )

NIL) )

NIL

8,.PROVE.LEMMA(REVERSE.REVERSE (REWRITE) (IMPLIES (PLISTP X)
(EQUAL (RFVERSE (REVERSE X)) Xj

Name the conjecture *1.

Let us appeal to the induction principle.

L ;We omit the meat of the proof.

• That finishes the proof of *1.1, which, consequently,
f inishes the proof of *1. Q.E.D.

Load average during proof: 1.165718
• Elapsed time: 58.373 seconds

CPU time (devoted to theorem proving):  6.372 seconds
CC time: 4.403 seconds
10 time : 2.571 seconds
CONSes consumed: 7781

PROVED

9jSETQ P00 (EVENTS.SINCE ‘APPEND))

((DEFN APPEND (X Y) (IF (LISTP X) (CONS (CAR X) (APPEND (CDR
X) Y ) )  Y ) )  (DEFN PLISTP (X) (IF (LISTP X ) (PLISTP (CDR X ) )
(EQUAL X NIL))) (DEFN REVERSE (X) (IF (LISTP X) (APPEND
(REVERSE (CDR X)) (CONS (CAR X) NIL)) NIL)) (PROVE .LEMMA
REVERSE.REVERSE (REWRITE ) (IMPLIES (PLISTP X) (EQUAL

- 

. 
(REVERSE (REVERSE X)) X))))

• 52

- -  _ _ _



___  

I
— - 1

;Here is a very simple procedure for saving FOO on a TOPS—20
;disk file.

1O,_(SETQ REVCOMS ‘{(VAR S P00) ))

( (VARS P00))

11 MAKEFILE(REV)

<USERNAME>REV ..1

@DIR REV<cr>

• ;We note that the file REV. . 1 has been created .

<USERNAME>
REV..1

;Just to make sure, we now type the file on the terminal.

@TYPE REV..1<cr>

(FILECREATED “ 9-Apr—79 06:52: 29” <IJSERNAME>REV. .1 648

• changes to: REVCO}IS P00)

• (PRETTYCOMPRINT REVC(~4S)

(RPAQQ REVCCJMS ( (VARS P00)))

(RPAQQ P00 ( (DEPN APPEND (X Y)
(IF (LISTP X)

(CON S (CAR X)
• (APPEND (CDR X)

Y))
f l)

(DEFN PLISTP (X)
(IF (LISTP X)

(PLISTP (CDR X ) )
(EQUAL X N I L ) ) )

(DEPN REVERSE (X)
(IF (LIST? X)

(APPEND (REVERSE (CDR X))

NIL) ) ~~- •~~~~

NIL) ) - --

(PROVE.LEMMA REVERSE.REVERSE (REWRITE)
(IMPLIES (PLISTP X)

• 
(EQUAL (REVERSE (REVERSE X))

53



~~~~~~~~~~~~~
-- 

~~~~~~~~~~~~~~~~~~ 
- - •

1,

DECLARE: DONTCOPY
(FILEMAP (NIL)))

STOP

• B. Example 2

Having created the disk f i le  REV. .1, we can redo the list of events

thus saved in anothe r theorem proving session .

~~HM<cr>
( 4IOORE>T HM .EXE .1 . .cLISP>LISP.EXE.128)

24N 1T(T)

compiled on 7-Apr—79 22:54: 15
FILE CREATED 7—Apr—79 22:54:12
CODE 1COMS
FILE CREATED 7—Apr—79 18:09:07
DATA ICOMS
compiled on 7—Apr—79 17:56:06
(GROUND .ZERO )

• 3..LOAD(REV)

FILE CREATED 9-Apr—79 06:52: 29
• REVCOMS

<USE RNAME >REV.. 1

4J P(FOO )

((DEFN APPEND (X Y)
(IF (LIST? X)

(CONS (CAR X)
(APPEND (CDR X)

Y ) )
Y ) )

(DEFN PLISTP (X)
(IF (LISTP X)

(PLISTP (CDR X ) )
(EQUAL X NIL)))

(DEFN REVERSE (X)
(IF (L ISTP X)

(APPEND (REVERSE (CDR X ) )
(CONS (CAR X)

NIL) )
NIL) )

• (PROVE.LEMMA REVE RSE.REVERSE (REWRITE )

• (IMPLIES (PLISTP X)

54



——- —-- ‘~~~~~~~~~~~~ “
—-5,- 

- 

I

I

• (EQUAL (REVERSE (REVERSE X))
X)) ) )

• (P00 )

;Here is a method for getting proofs printed to a file.

5,.. (SETQ PROVE.FILE (OUTPUT (OUTFILE ‘REV.PROOFS]

• (PROVE.FILE reset)

<USERNANE>REV. PROOFS. 1

6...(REDO.UNDONE.EVENTS P00)

What should be done if a proof fails? ?<cr>

one of:
Quit
Continue
Add as axiom

What should be done if a proof fails? Q~iit<cr>

APPEND ,PLISTP,REVERSE ,REVERSE .REVERSE

Do you want to redo this event? Yes<cr>

(APPEND PLISTP REVERSE PROVED)

7,-(CLOSEF PROVE .FI LE )

• 
<USERNANE> REV. PROOFS. 1

;The f i le  REV .PROOFS . 1 now contains all of the theorem-prover
;output in response to the event list FOO . Here is what
;the f i le  looks like:

@TYPE REV .PROOFS. 1<c r>

‘LISP>LISP.EXE .128

cMOORE>CODE. .3

.MOORE>CODE1 • .4

*IOORE>DATA..3

*(OORE>DATAI..3

55

_ _



! ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

Monday , April 9 , 1979 6 :55A}t—PST~~~L

_DEFN(APPEND (X Y)
(IF (LISTP X)

(CONS (CAR X) (APPEND (CDR X) Y ) )
Y ) )

‘1 The lemma CDR.LESSP establishes that (COUNT X)
• 

- 
decreases according to the well—founded function LESSP in
each recursive call. Hence, APPE ND is accepted unde r the
definitional principle . Note that:

(OR (L IST? (APPEND X Y ) )
(EQUAL (APPEND X Y) Y))

is a theorem.

Load average during definition : 1.478143
Elapsed time: 4.332 seconds
CPU time (devoted to theorem proving): .781 seconds
CC time: .254 seconds
10 time: 0.0 seconds
CONSes consumed : 615

APPEND

_DEFN(PLISTP (X)
-1 (IF (LISTP X)

(PLISTP (CDR X ))
H • 

(EQUAL X NIL )))

The lemma CDR.LESSP informs us tha t (COUNT X) goes down
according to the well—founded function LESSP in each
recursive call. Hence, PLISTP is accepted under the
definitional principle. Observe that:

(OR (FALSEP (PLISTP X))
(TRUEP (PLISTP X) ))

is a theorem.

Load average during definition : 1.4781 43
Elapsed time: 1.109 seconds
CPU t ime (devot ed to theorem proving): .541 seconds
CC time : .175 seconds
10 time: 0.0 seconds
CONSes consumed: 436

• 56 

55 55 

55 —-—ii



_ _  

1~~

PLISTP

_DEPN(REVERSE (X)
(IF (L ISTP X)

(APPEND (REVERSE (CDR X))
(CONS (CAR X) NIL) )

NIL) )

The lemma CDR.LESSP establishes that (COUNT X) goes
down according to the well—founded function LESSP in each

• recursive call. Hence, REVERSE is ac cepted under the
principle of definition. Observe that:

(OR (L ITATOM (REVERSE X))
(LISTP (REVERSE X ) ) )

is a theorem.

Load average during definition: 1.478143
Elapsed time : .999 seconds
CPU time (devoted to theorem proving): .607 seconds
GC time: .178 seconds
10 t ime: 0.0 seconds
CONSes consumed : 538

REVERSE

_PROVE.LEMMA (REVERSE.REVERSE (REWRITE)
• (IMPLIES (PLISTP X)

(EQUAL (REVERSE (REVERSE X ) )  X ) ) )
-

~~ Name the conjecture *1.

We will try to prove it by induction.

H ;We again omit most of the proof.

That finishes the proof of *1.1, wh ich, consequently ,
also finishes the proof of *j .  Q.E . D.

Load average during proof: 1.503348
Elapsed time : 22.516 seconds
CPU time (devoted to theorem proving) :  6.309 seconds

• GC time: 3.032 seconds
10 time : 2.49 seconds
CONSes consumed: 7781

PROVED

• 

. 57

~ 1~



- ~~~~~~~ 
— • t  ~~~~~~~~~~~~~~ - ‘ ‘ 

~~~~~~~~~
- -

~~ T - - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ -- - •

C. Example 3
—

Suppose that in Example 1, immediately af ter  the proof of the

REVERSE .REVERSE theorem , we had typed

9,..!4AKE.LIB (REV.L TB)

and the system returned

<USERNANE>REV .LIB . 1

Then the entire state of the theorem-prover would have been written to

the new file <USERNAI4E )REV.LIB .1. Using that f i le  we could start

another session from that state , without having to reprocess the

definitions of APPE ND , PLISTP or REVERSE , or prove REVERSE.REVE RSE

again:

@rHM< cr>
(*(OORE>THM.EXE.1 . .cLISP>LISP .EXE.128)

2 ..INIT(REV .LIB)

• REVERSE.RE VERSE

3JPE(APPEND REVERSE.REV ERSE)

(DEYN APPEND
(X Y)
(IF (L ISTP X)

(CONS (CAR X) (APPE ND (CDR X) Y))
Y ) )

(PROVE.LEMMA REVERSE .REVERSE (REWRITE)
(IMPLIES (PLISTP X)

(EQUAL (REVERSE (REVERSE X) )
X )))

NIL

• ;Note that APPEND and REVERSE .REVERSE are events in the
;current data base. So are PLISTP and REVERSE . In fact ,
;the theorem—prover is in the same state it was ~n right
;after we proved REVERSE.REVERS E In Exaii~~le 1. For example,
;it now knows that (REVERSE (REVERSE X ))  is X when (PLISTP X )
;is true and it will use it as a rewr ite rule.

. 5 5  ••• • — --~~--•---~~~~~~~---~~~~~~~~~



- 
-

~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

-• - -  I

D. Example 4

We conclude with some light humor.

• 4...DEFN(PP (X) (PP X))

WARNING : The admissibility of PP has not been established .
We will assume the function to be well—def ined. This may
render the theory inconsistent . An induction principle for
this function has been assumed, corresponding to the obvious
subgoal induction for the function.

Note that F is a theorem.

;Pretty smart theorem—prover, eh? Do you see a proof of F?

***
*** F A I L E D !  ***

*******************************************************************
Load average during proof: 1.399432
Elapsed time: 4.0 16 seconds
CPU time (devoted to theorem proving): .238 seconds
GC time : .315 seconds
10 time : 0.0 seconds

• CONSes consumed: 110

(
ft

*** F A I L E D !
***

*******************************~
t c*********************************

;Here ’s a hint .

5P...PROVE.LEMMA(PP .NON SENSE (REWRITE ) (IMPLIES (NOT (PP X)) (PP X]

Name the conjec ture *1.

We will try to prove it by induction. Two inductions
are suggested by terms in the conjecture. Howeve r , they
merge into one likely candidate induction . We will induct
according to the following scheme (AND) . This scheme is

59 

--~~~~~~~~~~~~~ ~~~~~~~-~- - • - - • ~~~~~~~~~~~~~~
_5 5 ___ 5 5

55 55 - - - ——-~~ -—- 55-— --55-55--—--- -— - ---5



justified by the assumption that PP is total . This
produces :

(TRUE) .

That finishes the proof of *1. Q.E.D.

Load average during proof: 2.536146
Elapsed time: 12.445 seconds
CPU time (devoted to theorem proving): .571 seconds
CC tIme: .576 seconds

L 
10 time: 0.0 seconds
CONSes consumed: 348

PROVED

• _C
@LOGOUT

System shutdown scheduled for Wed 11—Apr—79 23:00: 00,
Up again at Thu 12—Apr—79 O-~:00:00

Logout Job 18, User USERNAME, Account ACCOUNT, TTY 250, at
9-Apr—79 07:24:08 Used 0:0:5 in 0:2:50

• 60



- - 
~~~~~~~~~~~~~~~~ -~~~~~~~~~ -~~~ - ~~~ 

~~~~ 
• -  

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~
L---—--- ~~

L 

H

REFERENCES

• 1. Robert S. Boyer and J Strother Moore, A Coi~,utational Logic, to
appear , approximately in October 1979, in the ACM Monograph Series
(Academic Pr ess , New Yo rk , 1979).

2. Digital Equipment Corpo rat ion , “DECSYSTEM—20 Users’s Gu ide,” Order
Nos. AD—4 179B—T 1, AA—4 179B—TM , First Printing (Updated), Maynard ,
Massachusetts (January 1978).

3. Warren Teitelma n, “INTERLISP Refere nce Ma nual ,” Xerox Palo Alto
Research Center , 3333 Coyote Hill Road , Pa lo Alto, California ,
94304 (1978).

/

!~i !-

I

— 

61 

~~~~~~~~~~~~~~~~~~~~~~~~ 

j



55 _ _ _

DISTRIBUTION LIST

The below listing is the official distribution list for the technical
reports for Contract N000l4—75—C—0816.

Defense Documentation Center 12 copies Office of Naval Research 1 copy
Cameron Station Code 455
Alexandria, VA. 22314 Arlington, VA. 22217

Office of Naval Research 2 copies Office of Naval Research 1 copy
• Information Systems Program Code 458

Code 437 Arlington, VA. 22217
Arlington, VA. 22217

- 

• 

Naval Elec. Laboratory Center 1 copy

Office of Naval Research 1 copy Advanced Software Tech. Div.

Branch Office, Boston Code 5200
495 Sumser Street San Diego, CA. 92152

Boston, MASS. 02210
Mr. E. H. Gleissner ~. copy

Office of Naval Research 1. copy Naval Ship Res. & Dcv. Center

Branch Office, Chicago Computation 6 Math. Dept.

536 South Clark Street Bethesda, MD. 20084
Chicago, ILL. 60605

Captain Grace M. Hopper 1 copy

Office of Naval Research 1 copy NAICOM/MIS Planning Branch
Branch Office, Pasadena (0~~916D)
1030 East Green Street Office of Chief of Naval

• 
• Pasadena, CA. 91106 operations

-

55 

Washington, D.C. 20350
New York Area Office 1 copy
715 Broadway — 5th Floor Officer—in—Charge 1 copy

• 
• New York, N.Y. 10003 Naval Surface Weapons Center

Dahigren Laboratory
Assistant Chief for 1 copy Dahigren, VA. 22448

• Technology Attn : Code KP
Off ice of Naval Research
Code 200
Arlington, VA. 22217

Naval Research Laboratory 6 copies
Technical Information Div.,
Code 2627
Washington, D.C. 20375

Dr. A. L. Slafkosky 1 copy
Scientific Advisor
Comeandant of the Marine

Corps (Code RD—i)
Washington, D.C. 20380

_ _ _ _ _ _  _ _ _  55 - 


