
An ACL2 Proof of Write Invalidate CacheCoherenceJ Strother Moore1Department of Computer SciencesThe University of Texas at AustinAustin, TX 78712-1188moore@cs.utexas.eduAbstract. As a pedagogical exercise in ACL2, we formalize and provethe correctness of a write invalidate cache scheme. In our formalization,an arbitrary number of processors, each with its own local cache, interactwith a global memory via a bus which is snooped by the caches.1 Ongoing Industrial Applications of ACL2The ACL2 theorem proving system is �nding use in industrial-scale veri�cationprojects. Two signi�cant projects which have been reported previously are{ the mechanical veri�cation of the oating-point division microcode for theAMD-K5TM[6], and{ the ACL2 modeling of the Motorola CAP digital signal processor and itsuse to prove that a pipeline hazard detection predicate was correct and thatseveral DSP microcode applications were correct [1].The abstract of a recent talk given by David Russino� of Advanced MicroDevices, Inc., summarizes the current AMD work with ACL2:Formal design veri�cation at AMD has focused on the elementaryarithmetic oating point operations, beginning with the FDIV and FSQRTinstructions of the AMD-K5TM processor, and continuing with the FADD,FSUB, FMUL, FDIV, and FSQRT instructions of the AMD-K7TM processor,which is currently under development.Design-level mathematical models of all of these operations have beenrigorously proved to comply with behavioral speci�cations derived fromIEEE Standard 754 and the Intel Pentium Family User's Manual. Everystep of each proof (with one minor exception in the case of FSQRT) hasbeen formally encoded in the logic of ACL2 and mechanically checkedwith the ACL2 prover.In this talk, we shall briey describe the results of this project:{ a reusable general theory of oating point representation, rounding,and logical operations on bit vectors;{ an automatic translator from AMD's RTL language (essentially asubset of Verilog) to ACL2;



{ several design aws that were exposed by our analysis and ultimatelycorrected after surviving extensive testing;{ the proofs of correctness of the operations listed above.This monumental work is reported in [8]. To corroborate the ACL2 RTL trans-lation, AMD executed the ACL2 translation on a test suite of 80 million oatingpoint problems and compared the results to their standard RTL simulation. Thebugs found by Russino�'s proofs were not uncovered by this extensive test suite.ACL2 is being used to model microprocessors at several industrial sites. Forexample, at Rockwell-Collins, Inc., ACL2 is being used experimentally to providean executable model of JEM1, the world's �rst silicon Java Virtual Machine [2].In addition, [9] describes an ACL2 model of a microprocessor with multiple,out-of-order instruction issue with a reorder bu�er, speculative execution andexceptions. Proofs are being done to relate this model to a more conventionalISA model. While this work is not industrial scale, the microprocessor is morecomplicated than many academic models studied.Finally, ACL2 is being used at EDS, Inc., in the veri�cation of \renovationrules" used in COGEN 2000TM, an in-house, proprietary suite of tools used atEDS CIO Services to renovate legacy COBOL code that is not \Year 2000 com-pliant." Roughly speaking, the problem is how to use given �xed-width data�elds to encode the dates in a 100-year window so that commonly used relationsare correctly and e�ciently implemented. Matt Kaufmann, in [4], describes howhe used ACL2 to verify that certain rules were correct. In fact, he describes anenvironment in ACL2 that can be used conveniently to verify newly proposedtransformation rules and to simplify date manipulation expressions.2 What is ACL2?\ACL2" stands for \A Computational Logic for Applicative Common Lisp." Thelogic is both an applicative programming language and a �rst order mathemat-ical logic[5]. Technically, the programming language is an extension of a subsetof applicative Common Lisp. In addition, \ACL2" is the name we use for theimplemented system[1]. The system provides an execution environment for theprogramming language and a theorem proving environment for the logic.The theorem prover's behavior is determined by rules in its data base. Therules are determined by the theorems the system has proved already. The usercan guide the system to deep proofs by presenting it with an appropriate se-quence of lemmas to prove. The user is not responsible for soundness, since norule can be entered into the system's data base until it (or more accurately, itscorresponding formula) has been proved as a theorem.Collections of de�nitions and theorems can be assembled into \books." Theuser can instruct the system to include a book into the data base, thereby addingall the (non-local) rules contained in the book. Books thus provide both a scopingmechanism and a way to take advantage of the work of others.



3 A Write Invalidate Cache ExampleIn the rest of this paper we present a formal model of a write invalidate cachescheme and prove it correct. Write invalidate schemes are known not to scalee�ciently to large numbers of processors. But this is a simple problem that isfamiliar to many readers. Furthermore, at �rst sight, it may not seem to lenditself to Common Lisp modeling. By choosing this example, we hope to arosethe reader's curiosity while illustrating ACL2.Our model is based on the discussion on page 658 of [3]. Our model includesan arbitrary number of processors, each with its own local cache connected via abus to one global memory. Fundamentally, a cache is a table of \cache lines", eachof which is associated with an address and contains a value and a ag indicatingwhether the cache line is valid { i.e., whether the value for the given addressis consistent with the value assigned by the global memory. Each processor cansend its cache read and write requests, receiving some response. The cache'sbehavior on a read request depends on whether it contains a valid cache line forthe requested address. If it does, it responds with the associated value. If it doesnot, the cache sends a read request on the bus, waits for the reply, constructs anew cache line containing the resulting value, and then responds to the processorwith the value obtained from memory. The cache's behavior on a write request isto update (or create) the appropriate cache line, send a write request on the bus,and respond to the processor with the value written. All caches snoop the bus.Read requests are ignored. Write requests cause the other caches to invalidatethe corresponding cache line, if any. We model the read/write actions of theindividual processors as interleaved atomic actions.To specify this system we construct a cache-free model in which the inter-leaved actions are played directly against the global memory. We prove that theresponse to every read/write action is the same in the two models. The proofrequires less than 10 seconds on a Sun Ultra 2 (177 MHz).For pedagogical purposes, we have divided our work on this problem intothree books, discussed in turn below. These books are available at http://www.-cs.utexas.edu/users/moore/publications/write-invalidate-cache/index.html.4 UtilitiesIn the "utilities" book we de�ne some generic functions and predicates fordealing with problems of this sort. Fundamental to our formalization is thenotion of an association list. Each element in an association list (or alist) is apair consisting of a key and a datum. The key is said to be bound to the datum. Ifno key in an alist is bound twice, we say the alist has unique keys. The functionfetch fetches the datum associated with a key in an alist. The function depositbinds a given key to a given datum in a given alist.A memory is an alist binding addresses to values.A cache is an alist binding addresses to pairs of the form (value flag). Suchpairs are called lines. A line is said to be valid if flag is on. A cache is ok with



respect to a memory if every valid cache line has as its value the value of thecorresponding address in the memory.A named cache is a processor identi�er and a cache. In a slight abuse ofterminology, we call a list of such pairs simply a caches list. Note that a cacheslist is itself an alist in which each key is a processor identi�er and each datum acache.An event is a pair consisting of a processor identi�er and an action. We callthe processor identi�er of an event the agent. An action is a list either of theform (READ addr) or (WRITE addr val). A list of events is appropriate withrespect to a caches list if each agent has an associated cache, i.e., if the set ofagents of the events is a subset of the keys of the caches list.The concepts mentioned above are formalized with functions named appro-priately. To save space we do not exhibit those de�nitions here.The "utilities" book contains �fteen theorems relating these concepts invarious ways. Most of the theorems tell us how the various concepts are a�ectedby deposits. For example,(defthm cache-okp-deposit2(implies (and (cache-okp cache mem)(unique-keysp cache))(cache-okp (deposit addr (list any nil) cache)(deposit addr val mem)))) .Informally, this theorem tells us that if cache is ok with respect to mem (i.e.,every line with a true ag contains the correct value), and the cache has uniquekeys, then invalidating the (�rst) line for addr produces a cache that is ok withrespect to a memory in which addr has been changed. We do not mention theothers but they are stated entirely in terms of the concepts enumerated above,plus ACL2 primitives.ACL2 requires less than 4 seconds to admit all the de�nitions and prove allthe theorems in the "utilities" book. This is called certifying the book. Nohints are required, but the order in which the theorems are proved is important.5 Cache SystemIn the "system" book, we de�ne our model of the write invalidate cache system.A cache system state, csys, is a pair consisting of a caches list and a memory.We say that p is a processor of csys if p is bound in the caches list of csys. Wede�ne a good cache system state with(defun good-csysp (csys)(and (unique-keysp (caches csys))(every-cache-unique-keysp (caches csys))(every-cache-okp (caches csys) (mem csys)))) .The semantics of an action by a processor on its cache and the memory isformalized by



(defun do-action (action cache mem)(let ((op (car action))(addr (cadr action))(val (caddr action)))(case op(READ(let* ((line (fetch addr cache))(oldval (car line))(validp (cadr line)))(cond((and line validp)(mv oldval cache nil))(t (let ((memval (fetch addr mem)))(mv memval(deposit addr (list memval t) cache)(list 'READ addr)))))))(otherwise ; WRITE(mv val(deposit addr (list val t) cache)(list 'WRITE addr val))))))This function returns three results packaged together using ACL2's \multiplevalues" facility. The �rst of the three values is the response to the processor.The second is the new version of the local cache. The third is the message sentto the bus. We now paraphrase the de�nition above. Recall that an action isof the form (READ addr) or (WRITE addr val). Consider �rst the case wherethe operation is READ. If the cache has the corresponding line and it is valid,then respond with the value, do not change the cache, and send no message.Otherwise, respond with the value from memory, change the cache accordingly,and send the READ request on the bus. (In an implementation, they are done inthe opposite temporal order, but that is not relevant here.) In the case wherethe operation is a WRITE, respond with the written value, change the cacheaccordingly and send the WRITE request on the bus.Here is how a cache snoops the bus:(defun snoop (msg cache)(cond((null msg) cache)(t (let ((op (car msg))(addr (cadr msg)))(case op(READ cache)(otherwise ; WRITE(let* ((line (fetch addr cache))(val (car line))(validp (cadr line)))(cond ((and line validp)(deposit addr(list val nil)



cache))(t cache))))))))) .We can paraphrase this: If there is no message on the bus, do not change thecache. If the message is a READ, do not change the cache. Otherwise (the messageis a WRITE), if the cache contains a lined marked valid, invalidate it.We similarly de�ne (new-mem msg mem) to describe how memory changesin response to a message on the bus.Here is how the system state, csys, is changed by a single action performedby a processor p.(defun step-csys (p action csys)(let ((cache (fetch p (caches csys))))(mv-let (response cache' msg)(do-action action cache (mem csys))(mv response(csys (deposit pcache'(snoop-others pmsg(caches csys)))(new-mem msg (mem csys)))))))This function returns two values. The �rst is the response of p's cache to theaction. The second is a modi�ed system state. We compute this as follows.First, do the action on p's cache, obtaining three results which are bound tothe variables response, cache' and msg, respectively.1 The �rst is the responseof the cache to the action, the second is the new cache for p, and the third is themessage sent to the bus. The modi�ed system state is then built with csys froma modi�ed list of caches and a modi�ed memory. The modi�ed list of caches isobtained by letting the other caches snoop the message and then depositing p'snew cache into the p slot. The modi�ed memory is obtained via new-mem. Weleave the simple subroutine snoop-others to the reader; it calls snoop on everycache in the caches except p's.Finally, here is how we run a sequence of events.(defun run-csys (events csys)(cond ((endp events) nil)(t (let ((p (car (car events)))(action (cadr (car events))))(mv-let (response csys')(step-csys p action csys)(cons (cons p response)(run-csys (cdr events) csys')))))))Recall than an event consists of a processor identi�er and an action. The functionabove returns a history of every processor that performed an action and the1 In this paper we sometimes use primed variable names, as in cache'. ACL2 does notpermit such names. Our actual text uses a caret instead of a prime.



response to the action. It should be obvious how this is done: If the list ofevents is empty, return the empty list. Otherwise, step the system once with theindicated processor and action. Obtain two values, a response and a new state.Pair the processor and its response and cons that pair onto the result of runningthe rest of the events on the new state.Also in this book we prove two key theorems. Both are invariants about thestate, say csys', produced as the second value by step-csys on some state csys.The �rst invariant is that if csys is a good state then so is csys'. The secondinvariant is that if events is appropriate with respect to the caches in csys, it isappropriate with respect to those in csys'. One can regard our formalization andproof of these invariants as simple discipline: if a system is thought to enjoy aninvariant, say so and prove it. In fact, we use both invariants in our correctnessproof below.ACL2 requires the user to state seven lemmas to lead it to the proofs of thesetwo invariants. ACL2 uses less than 4 seconds to certify the "system" book.6 CorrectnessTo specify what it is for the cache system to be correct, we de�ne a modelin which the processors interact directly with the memory. In this cache-freemodel, the state is simply the memory. An action evokes a response from memoryand possibly changes memory, as described by the two values returned by thefollowing function.(defun step-mem (action mem)(let ((op (car action))(addr (cadr action))(val (caddr action)))(case op(READ (mv (fetch addr mem) mem))(otherwise ; WRITE(mv val (deposit addr val mem))))))If the action is a READ, the response is the associated value in the memory andno change is visited upon the memory. If the action is a WRITE, the response isthe value written and the memory is changed by depositing that value at theassociated address.To run a sequence of events against a memory we use:(defun run-mem (events mem)(cond ((endp events) nil)(t (let ((p (car (car events)))(action (cadr (car events))))(mv-let (response mem')(step-mem action mem)(cons (cons p response)(run-mem (cdr events) mem'))))))) .



The correctness of the cache system is given by(defthm cache-system-correct(implies (and (good-csysp csys)(appropriate-eventsp events (caches csys)))(equal (run-csys events csys)(run-mem events (mem csys))))) ,which may be paraphrased as follows. Suppose csys is a good cache system stateand every agent in events is a processor in the system. Then running eventsin the cache system csys produces the same history of processor/responses asrunning the same events in the simple shared memory model, starting from theinitial memory in csys.We now illustrate how to interact with ACL2 to lead it to interesting proofs.The main idea is to use ACL2 to help us decide how to proceed. We start byasking it to prove the conjecture above, without actually expecting it to succeed!However, it is helpful when trying prove theorems about functions like run-csysand run-mem to \disable" the two step functions, step-csys and step-mem, be-cause they introduce case analysis and make the failed proof attempt hard todecipher. By \disable" we mean to attempt the proof without using the de�ni-tions of those two functions. This will help us identify what we need to proveabout them. We similarly disable good-csysp during the proof attempt.The proof attempt proceeds by an induction on the structure of events.In the inductive step, the variable csys above is replaced by the cache systemstate returned as the second value of step-csys. The two previously mentionedinvariants in the "system" book are su�cient to relieve the good-csysp andappropriate-eventsphypotheses of the induction hypothesis. Nevertheless, theproof attempt runs on for many seconds and eventually starts causing a lot ofgarbage collections. We abort the proof attempt and really look at the outputfor the �rst time.A subgoal near the beginning of the aborted proof attempt reads2(IMPLIES (AND :::(GOOD-CSYSP CSYS)(BOUND P (CACHES CSYS)):::)(EQUAL (MV-NTH 0 (STEP-CSYS P ACTION CSYS))(MV-NTH 0 (STEP-MEM ACTION (MEM CSYS))))) .A little further down is another subgoal with similar hypotheses and the conclu-sion: (EQUAL (RUN-MEM EVENTS(MEM (MV-NTH 1 (STEP-CSYS P ACTION CSYS))))(RUN-MEM EVENTS(MV-NTH 1 (STEP-MEM ACTION (MEM CSYS))))) .2 In the actual output, the variable EVENTS3 is used for P and EVENTS5 is used forACTION. We have changed the names to make the formulas more suggestive.



These two subgoals suggest the need for the following two lemmas.(defthm mv-nth-0-step-csys(implies (and (good-csysp csys)(bound p (caches csys)))(equal (mv-nth 0 (step-csys p action csys))(mv-nth 0 (step-mem action (mem csys)))))) .and(defthm mv-nth-1-step-csys(implies (and (good-csysp csys)(bound p (caches csys)))(equal (mem (mv-nth 1 (step-csys p action csys)))(mv-nth 1 (step-mem action (mem csys)))))) .What do these two formidable looking conjectures say? The �rst hypothesisof each lemma requires that csys be a good cache system state. The secondhypothesis requires that p be one of the processors in csys. The two lemmasequate a left-hand side term with a right-hand side term. To read the left-handsides, it is helpful to know that mv-nth is the ACL2 function used to retrievea value from a \multiple values" tuple. Also, recall that step-csys returns twovalues, the response of the processor's cache to an action and a new cache systemstate, while step-mem returns the cache-free response and the new memory. Butnow it is easy to interpret the two lemmas. The �rst says that the response ofprocessor p's cache to an action is the same as memory's response. The secondsays that the memory produced by the cache system is that of the simple system.These two lemmas are easy to prove, by expanding the de�nitions of the twostep functions and using the results in the "utilities" book.With these two lemmas in the data base, ACL2 proves the correctness theo-rem. ACL2 requires less than 2 seconds to certify the "correctness" book. Thetotal time to certify all three books is 9.05 seconds.7 ConclusionsThe simplicity of this example hides several important observations. First, weare talking here about an \in�nite state" system: there are an arbitrary numberof processors, a cache can be arbitrarily large, addresses and data values arearbitrarily large, and the memory is arbitrarily large. The proof is made easierby these in�nities, not harder.Second, interaction with the theorem prover helps the informed user �ndproofs. Here is some advice for the new user. Simple theorems are usually provedquickly. Keep ACL2 on a \short leash." Either it succeeds within a few secondsor it should be aborted. Treat the �rst response as \yes, I believe the fact youjust told me." Treat the second as \no, I don't believe it." In the case of a \no,"look at the output to determine what obvious fact you know that ACL2 doesnot. Sometimes you will think \But I've already told it this fact!" Most likely,



you did, but it is unable to use that \old" fact because some hypothesis couldnot be relieved or some term does not actually match. Given what you've toldit, what is it missing? Once you realize what ACL2 is missing, formulate the newfact as a lemma and get ACL2 to say \yes" by continuing this dialog. When thesystem says \yes" to the lemma, return to the original conjecture again and seeif ACL2 agrees with it now. Unfortunately, the ACL2 interface does not makeit at all obvious that such a structured dialog is being conducted. We illustratethis dialog approach in the source �les for these books, available on the web.Third, the proof described here takes virtually no time. The \bottleneck," ifthere is one, is the time it takes the user to model the cache system and explainwhy it is correct. To the extent that the explanation is simple, the proof is simpleand quick. In this case, the explanation is simple: The cache system is alwaysin a good state with appropriate events. These are the two invariants in the"system" book. Furthermore, in such a state, the response and new memoryproduced by an action in the cache system are the same as those producedby the simple system. These are the two lemmas noted in the "correctness"book. These facts are obvious to anyone familiar with the design. Stating themrequires familiarity with the language of ACL2 and the user's own model of thecache system. Their proofs are easily constructed by the dialog method describedabove.References1. B. Brock, M. Kaufmann, and J S. Moore. ACL2 Theorems about Commercial Mi-croprocessors. In Proceedings of Formal Methods in Computer-Aided Design (FM-CAD'96), M. Srivas and A. Camilleri (eds.), Springer-Verlag, November, 1996, pp.275{293.2. D. A. Greve and M. M. Wilding Stack-based Java a back-to-future step", ElectronicEngineering Times, Jan. 12, 1998, pp. 92.3. J. Hennessy and D. Paterson, Computer Architecture A Quantitative Approach,Second Edition, Morgan Kaufmann Publishers, Inc., San Francisco, 1996.4. M. Kaufmann. ACL2 Support for Veri�cation Projects. In 15th International Con-ference on Automated Deduction (CADE) (to appear, 1998).5. M. Kaufmann and J S. Moore. An Industrial Strength Theorem Prover for a LogicBased on Common Lisp. In IEEE Transactions on Software Engineering 23(4),April, 1997, pp. 203{213.6. J S. Moore, T. Lynch, and M. Kaufmann. A Mechanically Checked Proof of theCorrectness of the Kernel of the AMD5K86 Floating-Point Division Algorithm,IEEE Transactions on Computers (to appear). See URL http://devil.ece.utexas-.edu:80/�lynch/divide/divide.html for a preliminary draft.7. J S. Moore. Symbolic Simulation: An ACL2 Approach. 1998. (submitted for publi-cation)8. D. M. Russino�. A Mechanically Checked Proof of IEEE Compliance of the Float-ing Point Multiplication, Division, and Square Root Algorithms of the AMD-K7TMProcessor URL http://www.onr.com/user/russ/david/k7-div-sqrt.html.9. J. Sawada, W. Hunt, Jr., Processor Veri�cation with Precise Exceptions and Spec-ulative Execution, Computer Aided Veri�cation 1998, Lecture Notes in ComputerScience, Springer Verlag, 1998 (to appear).


