
Learning Innate Face Preferences

James A. Bednar and Risto Miikkulainen

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
{jbednar,risto }@cs.utexas.edu

Neural Computation15(7): 1525–1557, 2003.

Abstract

Newborn humans preferentially orient to face-like patterns at birth, but months of experience with
faces is required for full face processing abilities to develop. Several models have been proposed
for how the interaction of genetic and evironmental influences can explain this data. These models
generally assume that the brain areas responsible for newborn orienting responses are not capable
of learning and are physically separate from those that later learn from real faces. However, it has
been difficult to reconcile these models with recent discoveries of face learning in newborns and
young infants. We propose a general mechanism by which genetically specified and environment-
driven preferences can coexist in the same visual areas. In particular, newborn face orienting may
be the result of prenatal exposure of a learning system to internally generated input patterns, such
as those found in PGO waves during REM sleep. Simulating this process with the HLISSOM
biological model of the visual system, we demonstrate that the combination of learning and inter-
nal patterns is an efficient way to specify and develop circuitry for face perception. This prenatal
learning can account for the newborn preferences for schematic and photographic images of faces,
providing a computational explanation for how genetic influences interact with experience to con-
struct a complex adaptive system.
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1 Introduction

A number of studies have found that newborn humans will preferentially turn their eyes or head
towards facelike stimuli within minutes or hours after birth (Goren et al., 1975; Johnson et al.,
1991; Johnson and Morton, 1991; Mondloch et al., 1999; Simion et al., 1998b; Valenza et al.,
1996). These results suggest that some rudimentary face-selective visual circuitry develops prena-
tally. However, full face processing abilities appear to require months or years of experience with
faces (as reviewed in de Haan, 2001; Gauthier and Nelson, 2001; Pascalis and Slater, 2001; Tovée,
1998).

As will be described in the next section, several theoretical and computational models have
been proposed to explain how face proessing develops through a combination of genetic and envi-
ronmental influences. Most of these models assume that the brain areas responsible for newborn
orienting behavior do not learn and are physically separate from those that later learn from real
faces (e.g. Johnson and Morton, 1991). However, recent studies show that newborns are capable
of learning faces in the first few hours and days after birth (Bushnell et al., 1989; Field et al.,
1984; Walton et al., 1997; Walton and Bower, 1993). It has been difficult to reconcile the existing
interactional models with early learning of faces.

In this paper we propose a novel explanation for how genetic and environmental influences
can interact in a way that allows the visual system to learn faces at all ages. The main hypoth-
esis is that the same brain regions and learning mechanisms are active throughout development,
both before and after birth. In both cases the learning mechanisms are extracting and encoding
regularities in their input patterns, but in prenatal development the input patterns are internally
generated and genetically controlled, whereas in postnatal development the input patterns come
from the visual environment (Constantine-Paton et al., 1990; Jouvet, 1999; Marks et al., 1995;
Roffwarg et al., 1966; Shatz, 1990, 1996). This way, instead of precisely specifying the organi-
zation of the brain, the genome can encode a developmental process that is based on presenting
genetically determined patterns to a learning mechanism. After birth, the learning mechanism can
then seamlessly integrate environmental and genetic information into the same cortical hardware.
Separating the genetic specification and visual processing circuitry in this manner also lets each
evolve and develop independently. A simple, genetically fixed pattern generating region can then
serve to direct the development of an arbitrarily complex visual system. This explanation can help
resolve a number of the confusing results from studies of infant face perception.

We test this idea computationally using a self-organizing model of cortical development (see
Erwin et al., 1995; Swindale, 1996 for reviews of this class of models). Computational models
allow the assumptions and implications of a conceptual model to be evaluated rigorously, and
are particularly useful for generating testable predictions. In previous experiments using the RF-
LISSOM model (Receptive-Field Laterally Interconnected Synergetically Self-Organizing Map;
Miikkulainen, Bednar, Choe, and Sirosh, 1997; Sirosh and Miikkulainen, 1994; Sirosh, Miik-
kulainen, and Bednar, 1996) we have shown that patterns of orientation preferences and lateral
connections in the primary visual cortex can form from spontaneously generated activity (Bednar
and Miikkulainen, 1998). We have also shown in preliminary work how a simplified model of face
processing can account for much of the behavioral data on newborn face preferences (Bednar and
Miikkulainen, 2000).
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In this paper we present HLISSOM, a significant extension to RF-LISSOM that allows pro-
cessing of real photographic images by modeling the retina, LGN, and higher-level visual areas in
addition to the primary visual cortex. The same model allows preferences for low-level features
such as orientation or spatial frequency, and high-level features such as faces. to be compared, in
order to account for the different categories of preferences found in experiments with newborns.
Very few self-organizing models have been tested with real images, and none to our knowledge
have previously modeled the self-organization of both the primary visual cortex and higher regions,
nor have any simulated the large retinal and cortical area needed to process the large stimuli tested
with newborns. Using HLISSOM, we demonstrate how patterns found during REM sleep could
explain a newborn’s orienting responses towards faces, within a general-purpose adaptive system
for learning both low-level and high-level features of images. This explanation will be called the
pattern-generation model of newborn face preferences.

In the next section, we will review other models of the early development of face percep-
tion as well as experimental evidence for the internally generated brain activity upon which the
pattern-generation model is based. Next, we introduce the HLISSOM architecture and describe
the experimental setup for testing face detection computationally. We then show how this model
can account for newborn face preferences using both schematic and photographic images, and sug-
gest future computational and psychophysical experiments to help understand the development of
face processing.

2 Related work

There are three main previous explanations for how a newborn can show an initial face preference
and later develop full face-processing abilities: (1) theLinear Systems Model(LSM), (2) Sensory
models(of which we consider the Acerra et al. (2002) computational model and theTop-heavy
conceptual model separately), and (3)Multiple systems models. These hypotheses will be reviewed
below, and we will argue that the pattern generation model provides a simpler, more effective
explanation.

2.1 Linear Systems Model

The Linear Systems Model (Banks and Salapatek, 1981; Kleiner, 1993) is a straightforward and
effective way of explaining a wide variety of newborn pattern preferences, and could easily be im-
plemented as a computational model. Due to its generality and simplicity, it constitutes a baseline
model against which others can be compared. The LSM is based solely on the newborn’s mea-
sured contrast sensitivity function (CSF). For a given spatial frequency, the value of the CSF will
be high if the early visual pathways respond strongly to that size of pattern, and lower otherwise.
The newborn CSF is limited by the immature state of the eye and the early visual pathways, which
makes lower frequencies more visible than fine detail.

The assumption of the LSM is that newborns simply pay attention to those patterns that when
convolved with the CSF give the largest response. Low-contrast patterns and patterns with only
very fine detail are only faintly visible, if at all, to newborns (Banks and Salapatek, 1981). Con-
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versely, faces might be preferred simply because they have strong spatial-frequency components
in the ranges that are most visible to newborns.

However, studies have found that the LSM fails to account for the responses to facelike stimuli.
For instance, some of the facelike patterns preferred by newborns have a lower amplitude spectrum
in the visible range (and thus lower expected LSM response) than patterns that are less preferred
(Johnson and Morton, 1991). The LSM also predicts that the newborn will respond equally well to
a schematic face regardless of its orientation, because the orientation does not affect the spatial fre-
quency or the contrast. Instead, newborns prefer schematic facelike stimuli oriented right-side-up.
Such a preference is found even when the inverted stimulus is a better match to the CSF (Valenza
et al., 1996). Thus the CSF alone does not explain face preferences, and a more complicated model
is required.

2.2 Acerra et al. sensory model

The LSM is only a high-level abstraction of the properties of the early visual system.Sensory
modelsextend the LSM to include additional constraints and circuitry, but without adding face-
selective visual regions or systems. Acerra et al. (2002) recently developed such a computational
model that can account for some of the face preferences found in the Valenza et al. (1996) study.
Their model consists of a fixed Gabor-filter–based model of V1, plus a higher level sheet of neurons
with modifiable connections. They model two conditions separately: newborn face preferences,
and postnatal development by 4 months. The newborn model includes only V1, because they
assume that the higher level sheet is not yet functional at birth.

Acerra et al. showed that the newborn model responds slightly more strongly to the upright
schematic face pattern used by Valenza et al. (1996) than to the inverted one, because of differences
in the responses of a subset of the V1 neurons. This surprising result replicates the newborn face
preferences from Valenza et al. The difference in model responses is because Valenza et al. actually
inverted only the internal facial features, not the entire pattern. In the upright case, the spacing is
more regular between the internal features and the face outline (compare figure 5d with 5g, row
Retina, on page 38). Making the spacing more regular between alternating white and black blobs
will increase the response of a Gabor filter whose RF lobes match the blob size. As a result,
the total response of all filters will be slightly higher for the facelike (upright) pattern than to the
non-facelike (inverted) pattern.

However, the Acerra et al. model was not tested with patterns from other studies of newborn
face preferences, such as Johnson et al. (1991). The facelike stimuli published in Johnson et al.
(1991) do not have a regular spacing between the internal features and the outline, and so we do
not expect that the Acerra et al. model will replicate preferences for these patterns. Moreover,
Johnson et al. used a white paddle against a light-colored ceiling, and so their face outlines would
have a much lower contrast than the black-background patterns used in Valenza et al. (1996). Thus
although border effects may contribute to the face preferences found by Valenza et al., they are
unlikely to be explain those measured by Johnson et al.

The Acerra et al. newborn model also does not explain newborn learning of faces, because
their V1 model is fixed and the higher level area is assumed not to be functional at birth. Also
importantly, the Acerra et al. newborn model was not tested with real images of faces, where the
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spacing of the internal features from the face outline varies widely depending on the way the hair
falls. Because of these differences, we do not expect that the Acerra et al. model will show a
significantly higher response overall to photographs of real faces than to other similar images. The
pattern-generation model will make the opposite prediction, and will explain how newborns can
learn faces.

2.3 Top-heavy sensory model

Simion et al. (2001) have also presented a sensory model of newborn preferences, but unlike Ac-
erra et al. (2002) it is a conceptual model only. Simion et al. observed that nearly all of the facelike
schematic patterns that have been tested with newborns are “top-heavy,” i.e. they have a boundary
that contains denser patterns in the upper than the lower half. Simion et al. (2001) also ran be-
havioral experiments showing that newborns prefer several top-heavy (but not facelike) schematic
patterns to similar but inverted patterns. Based on these results, they proposed that newborns prefer
top-heavy patterns in general, and thus prefer facelike schematic patterns as a special case.

This hypothesis is compatible with most of the experimental data so far collected in newborns.
However, facelike patterns have not yet been compared directly with other top-heavy patterns in
newborn studies. Thus it is not yet known whether newborns would prefer a facelike pattern to a
similarly top-heavy but not facelike pattern. Future experimental tests with newborns can resolve
this issue.

To be tested computationally, the top-heavy hypothesis would need to be made more explicit,
with a specific mechanism for locating object boundaries and the relative locations of patterns
within them. We expect that such a test would find only a small preference (if any) for photographs
of real faces, compared to many other common stimuli. For faces with beards, wide smiles, or
wide-open mouths, many control patterns would be preferred over the face image, because such
face images will no longer be top-heavy. Because the bulk of the current evidence suggests that
instead the newborn preferences are more selective for faces, most of the HLISSOM simulations
will use training patterns that result in strongly face-selective visual responses. Section 6.1 will
summarize results from training patterns that are less facelike and thus more comparable to the
top-heavy model.

2.4 Multiple-systems models

The most widely known conceptual model for newborn face preferences and later learning was
proposed by Johnson and Morton (1991). Apart from our tests using the HLISSOM architecture,
it has not yet been evaluated computationally. Johnson and Morton suggested that infant face pref-
erences are mediated by two hypothetical visual processing systems that they dubbed CONSPEC
and CONLERN.

CONSPEC is a non-plastic system controlling orienting to face-like patterns, assumed to be
located in the subcortical superior-colliculus–pulvinar pathway. Johnson and Morton proposed
that a CONSPEC responding to three blobs in a triangular configuration, one each for the eyes
and one for the nose/mouth region, would account for the newborn face preferences (for examples
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see figure 3a, page 36 and theRetina row of 4c, page 37).

CONLERN is a separate plastic cortical system, presumably the face-processing areas that
have been found in adults and in infant monkeys (Kanwisher et al., 1997; Rodman, 1994). The
CONLERN system would assume control only after about 6 weeks of age, and would account
for the face preferences seen in older infants. Eventually, as it learns from real faces, CONLERN
would gradually stop responding to schematic faces, which would explain why face preferences
can no longer be measured with static schematic patterns by five months (Johnson and Morton,
1991).

The CONSPEC/CONLERN model is plausible, given that the superior colliculus is fairly
mature in newborn monkeys and does seem to be controlling attention and other functions (Wallace
et al., 1997). Moreover, some neurons in the adult superior colliculus/pulvinar pathway appear to
be selective for faces (Morris et al., 1999), although such neurons have not yet been found in young
animals. The model also helps explain why infants after one month of age show a reduced interest
in faces in the periphery, which could occur as attentional control shifts to the not-quite-mature
cortical system (Johnson et al., 1991; Johnson and Morton, 1991).

However, subsequent studies showed that even newborns are capable of learning individual
faces (Slater, 1993; Slater and Kirby, 1998). Thus if there are two visual processing systems, ei-
ther both are plastic or both are functioning at birth, and thus there is noa priori reason why a
single face-selective visual system would be insufficient. On the other hand, de Schonen et al.
(1998) argue forthreevisual processing systems: a subcortical one responsible for facial feature
preferences at birth, another one responsible for newborn learning (of objects and head/hair out-
lines; Slater, 1993), and a cortical system responsible for older infant and adult learning of facial
features. And Simion et al. (1998a) proposed that face selectivity instead relies on multiple visual
processing systemswithin the cortex, maturing first in the dorsal stream but later supplanted by the
ventral stream (which is where most of the face-selective visual regions have been found in adult
humans).

In contrast to the increasing complexity of these explanations, we propose that a single general-
purpose, plastic visual processing system is sufficient, if that system is first exposed to internally
generated facelike patterns of neural activity.

2.5 Internally generated activity

Spontaneous neural activity has recently been documented in many cortical and subcortical areas
as they develop, including the visual cortex, the retina, the auditory system, and the spinal cord
(Feller et al., 1996; Leinekugel et al., 2002; Lippe, 1994; Wong et al., 1993; Yuste et al., 1995;
reviewed in O’Donovan, 1999; Wong, 1999). Such activity has been shown to be responsible for
the segregation of the LGN into eye-specific layers before birth, indicating that internally generated
activity is crucial for normal development (Shatz, 1990, 1996).

We will focus on one common type of spontaneous activity: ponto-geniculo-occipital (PGO)
waves generated during rapid-eye-movement (REM) sleep. Developing embryos spend a large
percentage of their time in what appears to be REM sleep, which suggests that it plays a major
role in development (Marks et al., 1995; Roffwarg et al., 1966). During and just before REM
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sleep, PGO waves originate in the pons of the brain stem and travel to the LGN, visual cortex, and
a variety of subcortical areas (see Callaway et al., 1987 for a review). PGO waves are strongly
correlated with eye movements and with vivid visual imagery in dreams, suggesting that they
activate the visual system as if they were visual inputs (Marks et al., 1995). PGO waves have been
found to elicit different distributions of activity in different species (Datta, 1997), and interrupting
them has been shown to increase the influence of the environment on development (Marks et al.,
1995; Shaffery et al., 1999).

All of these characteristics suggest that PGO waves may be providing species-specific training
patterns for development (Jouvet, 1998). However, due to limitations in experimental imaging
equipment and techniques, it has not yet been possible to measure the two-dimensional shape of the
activity resulting from the PGO waves; only the temporal behavior is known (Rector et al., 1997).
How closely neonatal REM sleep and PGO waves are related to those of adults is also controversial
(Dugovic and Turek, 2001; Jouvet, 1999). In any case, it is clear that there is substantial brainstem-
generated activity in the visual areas of newborns during sleep. This paper predicts that if these
activity patterns have a simple spatial configuration of three active areas (or other similar patterns),
they can account for the measured face-detection performance of human newborns.

The three-dot training patterns are similar to the three-dot preferences proposed by Johnson and
Morton (1991). However, in that model the patterns are implemented as a hard-wired subcortical
visual area responsible for orienting to faces. In the pattern-generation model, the areas receiving
visual input learn from their input patterns, and only the pattern generator is assumed to be hard-
wired.

Both of these possible mechanisms for newborn orienting responses would require about the
same amount of genetic specification, but the crucial difference is that in the pattern generation
approach the visual processing system can be arbitrarily complex. In contrast, a hard-coded visual
processing system like CONSPEC is limited in complexity by what can specifically be encoded
in the genome. For this reason, a system implemented like CONSPEC is a plausible model for
subcortically mediated orienting at birth, but would become less plausible if imaging techniques
later show that newborn face preferences are mediated by a hierarchy of cortical areas as in the
adult.

Specifying only the training patterns also makes sense from an evolutionary perspective, be-
cause that way the patterns and the visual processing hardware can evolve independently. Sepa-
rating these capabilities thus allows the visual system to become arbitrarily complex, while main-
taining the same genetically specified function. Finally, assuming that only the pattern generator
is hardwired explains how infants of all ages can learn faces.

3 HLISSOM model

We will investigate the pattern-generation hypothesis using the HLISSOM model of the primate
visual system, focusing on how sub-cortically generated patterns can drive the development of
cortical areas. The HLISSOM architecture is shown in figure 1.The model consists of a hierarchy
of two-dimensional sheets of neural units modeling different areas of the nervous system: two
sheets of input units (the retinal photoreceptors and the PGO generator), two sheets of LGN units
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LGN

V1

Photoreceptors

ON−cells

Face−selective area (FSA)

PGO pattern
generator

OFF−cells

Figure 1:Schematic diagram of the HLISSOM model. Each sheet of units in the model visual pathway
is shown with a sample activation pattern and the connections to one example unit. Grayscale visual inputs
are presented on the photoreceptors, and the resulting activity propagates through afferent connections to
each of the higher levels. Internally generated PGO input propagates similarly to visual input, but travels
through the ponto-geniculate (PG) pathway to occipital cortex (i.e., V1), rather than the retino-geniculate
pathway. As in humans and animals, activity may be generated either in the PGO area or the photoreceptors,
but not both at once. In the cortical levels (V1 and FSA), activity is focused by lateral connections, which
are initially excitatory between nearby neurons (dotted circles) and inhibitory between more distant neurons
(dashed circles). The final patterns of lateral and afferent connections in the cortical areas develop through
an unsupervised self-organizing process. After self-organization is complete, each stage in the hierarchy
represents a different level of abstraction, transforming the raw image input into a more biologically relevant
representation. The LGN responds best to edges and lines, suppressing areas with no information. The
V1 response is further selective for the orientation of each contour; the patchiness is due to geometrical
constraints on representing all orientations on a two-dimensional surface. The FSA represents the highest
level of abstraction — the response of an FSA neuron signals the presence of a face at the corresponding
location on the retina, which is information that an organism can use directly to control behaviors like
orienting.
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(ON-center and OFF-center), and two sheets of cortical units (“neurons”): the primary visual
cortex (V1), and a higher-level area from the ventral processing stream with large receptive fields
(here called the face-selective area, FSA, as described below). Because the focus is on the two-
dimensional organization of each cortical sheet, a neuron in V1 or the FSA corresponds to a vertical
column of cells through the six anatomical layers of that area of the cortex.

The FSA represents the first region in the ventral processing pathway above V1 that has recep-
tive fields (RFs) spanning approximately 45◦ of visual arc, i.e. large enough to span a human face
at close range. Areas V4v and LO are likely FSA candidates based on adult patterns of connec-
tivity, but the infant connectivity patterns are not known (Rolls, 1990). We use the generic term
“face-selective area” rather than V4v or LO to emphasize that the model results depend only on
having receptive fields large enough to allow face-selective responses, not on the region’s precise
location or architecture.

Within each cortical sheet (V1 or the FSA), neurons receive afferent connections from receptive
fields in the form of broad overlapping circular patches of units in the previous sheet(s) in the
hierarchy. Neurons in the cortical sheets also have reciprocal excitatory and inhibitory lateral
connections to neurons within the same sheet. Lateral excitatory connections are short range,
connecting each neuron with itself and its close neighbors in a circular radius. Lateral inhibitory
connections extend in a larger radius, but also include connections to the neuron itself and to its
neighbors.

This pattern of lateral connections models the lateral interactions measured experimentally for
high-contrast input patterns. Because the Hebbian learning used in this model is proportional to the
activity levels of the neurons, the higher contrast inputs have more influence on adaptation. Optical
imaging and electrophysiological studies have shown that at these contrasts long-range interactions
in the cortex are inhibitory, even though individual lateral connections are primarily excitatory
(Hirsch and Gilbert, 1991; Weliky et al., 1995). Computational studies have also shown that long-
range interactions between high-contrast inputs must be inhibitory for proper self-organization to
occur (Sirosh and Miikkulainen, 1994). For simplicity, the model uses only inhibitory interactions,
but additional long-range excitation can be included when studying phenomena such as perceptual
grouping (Choe, 2001; Choe and Miikkulainen, 2000).

Previous models have explained how the connections in the LGN could develop from internally
generated activity in the retina (Eglen, 1997; Haith, 1998). Because the HLISSOM model focuses
on learning at the cortical level, all connection strengths to such subcortical neurons are set to fixed
values. The strengths were chosen to approximate the receptive fields that have been measured in
adult LGN cells, using a standard Difference-of-Gaussians model (Rodieck, 1965). In this model,
the center of each receptive field is first mapped to the location in the input sheet corresponding to
the location of the LGN unit, and the weight to a receptor is then a fixed function of the distance
from that center. For an ON-center cell, the receptor weights are calculated from the difference of
two normalized Gaussians with radiiσc (center) andσs (surround). The weights for an OFF-center
cell are the negative of the ON-center weights; i.e., they are the surround minus the center instead
of the center minus the surround. The parameterσc determines the peak spatial frequency to which
the LGN responds, andσs is generally set to a fixed multiple ofσc.

The connections to neurons in the cortical sheets are initially unselective (either random, for
afferent weights, or Gaussian-shaped, for lateral weights), and their strengths are subsequently
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modified through an unsupervised learning process. The learning process is driven by input pat-
terns. Patterns may be presented on the photoreceptor sheet, representing external visual input,
or they may be generated internally, reaching V1 through the PGO pathway. The PGO-generating
region of the pons and its pathway to the LGN have not yet been mapped out in detail, but since the
activity that results from the PGO waves is similar to that from visual input (Marks et al., 1995),
for simplicity we assume that the retino-geniculate and PGO pathways are similar. Therefore, the
PGO pattern input is modeled with an area like the photoreceptor sheet, connecting to the LGN in
the same way.

At each training step, the activities of all units are initialized to zero, and a grayscale pattern is
drawn on the input sheet (either the PGO generator or the photoreceptors; see figures 2a,i and 3a
for examples). The cells in the ON and OFF channels of the LGN compute their responses as
a scalar product of their fixed weight vector and the activity of units in their receptive fields (as
in figures 2b,j and 3b). The responseηab of ON or OFF-center cell(a, b) is calculated from the
weighted sum of the retinal activations in its receptive field as

ηab = σ

(
γA

∑
xy

ξxyµab,xy

)
, (1)

whereσ is a piecewise linear approximation of the sigmoid activation function,ξxy is the activation
of retina cell(x, y), andµab,xy is the corresponding afferent weight. An LGN neuron will respond
when the input pattern is a better match to the central portion of the RF than to the surrounding
portion; the response will be larger with higher contrast, subject to the minimum and maximum
values enforced by the sigmoid. The constant afferent scaling factorγA is set so that the LGN
outputs approach 1.0 in the highest-contrast regions of typical input patterns.

The cortical activation is similar to the LGN, but extended to support self-organization and
to include lateral interactions. The total activation is computed from both afferent and lateral re-
sponses, which will be discussed separately here. First, the afferent responseζij of V1 neuron(i, j)
is calculated like the retinal sum in equation 1, with an additional divisive (shunting) normalization:

ζij =
γA
∑

ρab ξρabµij,ρab

1 + γN
∑

ρab ξρab

, (2)

whereξρab is the activation of unit(a, b) in sheetρ (either the ON channel or the OFF channel
andµij,ρab is the corresponding afferent weight. The normalization strengthγN starts at zero and
is gradually increased over training as neurons become more selective, and the scaling factorγA

is set to compensate so that the afferent responseζ will continue to have values in the range 0 to
1.0 for typical input patterns. The FSA computes its afferent response just as V1 does, except that
sheetρ in equation 2 is the settled response (described below) of V1, instead of the response of an
ON or OFF channel of the LGN.

Note that although only a single ON and OFF channel were used here, afferent inputs from
additional channels with different peak spatial frequencies (i.e. differentσc) can be included in
equation 2 in the same way. Simulating a single channel allows V1 to be smaller and makes its
output easier to interpret. This is a valid approximation because the response of each channel is
broad, so even a single channel responds to a wide range of input patterns.
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The initial response of a cortical neuron, whether in V1 or the FSA, is computed from the
afferent response only:

ηij(0) = σ (ζij) , (3)

whereσ is a piecewise linear approximation of the sigmoid activation function. After the initial
response, the cortical activity evolves over a very short time scale through lateral interaction. At
each subsequent time step, the neuron combines the afferent responseζ with lateral excitation and
inhibition:

ηij(t) = σ

(
ζij + γE

∑
kl

Eij,klηkl(t− 1)− γI

∑
kl

Iij,klηkl(t− 1)

)
, (4)

whereEij,kl is the excitatory lateral connection weight on the connection from neuron(k, l) to
neuron(i, j), Iij,kl is the inhibitory connection weight, andηkl(t−1) is the activity of neuron(k, l)
during the previous time step. The scaling factorsγE andγI determine the relative strengths of
excitatory and inhibitory lateral interactions.

While the cortical response in V1 and the FSA is settling, the afferent response remains con-
stant. The cortical activity pattern in both areas starts out diffuse, but within a few iterations of
equation 4, converges into a small number of stable focused patches of activity, or activity bubbles
(as in figures 2c,d,k and 3e,f ). After the activity has settled, the connection weights of each neuron
are modified. Afferent and lateral weights in both areas adapt according to the same mechanism:
the Hebb rule, normalized so that the sum of the weights is constant:

wij,mn(t + δt) =
wij,mn(t) + αηijXmn∑

mn [wij,mn(t) + αηijXmn]
, (5)

whereηij stands for the activity of neuron(i, j) in the final activity bubble,wij,mn is the affer-
ent or lateral connection weight (µ, E or I), α is the learning rate for each type of connection
(αA for afferent weights,αE for excitatory, andαI for inhibitory) andXmn is the presynaptic ac-
tivity (ξ for afferent,η for lateral). The larger the product of the pre- and post-synaptic activity
ηijXmn, the larger the weight change. At long distances, very few neurons in the cortical regions
have correlated activity and therefore most long-range connections eventually become weak. The
weak connections are eliminated periodically, resulting in patchy lateral connectivity similar to
that observed in the visual cortex.

4 Experiments

To model the presentation of large stimuli at close range (as in typical experiments with new-
borns), V1 parameters were generated using the scaling equations from Kelkar et al. (2001) to
model a large V1 area (approximately 1600 mm2 total) at a relatively low sampling density per
mm2 (approximately 50 neurons/mm2). The total area was chosen to be just large enough for the
corresponding photoreceptor area to cover the required range, and the density was chosen to be the
minimum that would still provide a V1 organization that matched animal maps. The input pattern
scale was then set so that the spatial frequencies for which V1 response was maximal would match
the frequency range to which newborns are most sensitive, as cited by Valenza et al. (1996). As
mentioned above, the response is broad, and the model also responds to other spatial frequencies.
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Figure 2:Training the V1 orientation map (color figure; on next page).The input consisted of randomly
located circular patterns (a) approximating spontaneous neural activity waves. The ON and OFF LGN
channels compute their responses based on this input; in (b), the ON response minus the OFF response is
shown, with medium gray indicating regions with no response. The V1 neurons compute their responses
based on the output of the ON and OFF channels. Initially V1 neurons have random weights in their
receptive fields, and thus all neurons with RFs overlapping the active areas of the LGN respond (c). After
training, the afferent weights of each neuron show a clear preference for a particular orientation (e); the
plot shows the weights to the ON-center LGN sheet minus those to the OFF-center sheet, drawn on the full
LGN sheet. The orientation maps (f ,g) summarize the development of such preferences. Each neuron is
color-coded according to its preferred orientation (using the color key besided); brighter colors indicate a
stronger selectivity. Initially the neurons are not selective for orientation (f ), but after training, V1 develops
an orientation map similar to those measured in experimental animals (g; Blasdel, 1992). The map covers a
large area of V1; previous work corresponded to only the central 36×36 portion (h) of the 288×288 map in
(g). For the same input (a), the self-organized network response is patchy (d), because only those neurons
whose preferred orientation matches the orientations of local features in the image respond. In (d) each
neuron is colored with the orientation it prefers, and the brightness of the color indicates how active that
neuron is. The trained orientation map works well with natural images; each V1 neuron responds to the
orientation of lines and edges in the corresponding region of the image (i-k). Color versions of these figures
are available online athttp://www.cs.utexas.edu/users/nn/ .

The FSA parameters were generated using the scaling equations from Kelkar et al. (2001) to
model a small region of units that have receptive fields large enough to span the central portion of
a face. The final FSA activation threshold (lower bound on the sigmoid function in equations 3
and 4) was set to a high value so that the presence of a blob of activity in the FSA would be a
criterion for the presence of a face at the corresponding location in the retina. This high threshold
allows the FSA output to be interpreted unambiguously as a behavioral response, without the need
for feedback from an additional higher level set of units modeling newborn attention and fixation
processes.

The model consisted of 438×438 photoreceptors, 220×220 PGO generator units, 204×204
ON-center LGN units, 204×204 OFF-center LGN units, 288×288 V1 units, and 36×36 FSA
units, for a total of 408,000 distinct units. Area FSA was mapped to the central 160×160 region of
V1 such that even the units near the borders of the FSA had a complete set of afferent connections
on V1, with no RF extending over the outside edges of V1. V1 was similarly mapped to the central
192×192 region of the LGN channels, and the LGN channels to the central 384×384 region of the
photoreceptors and the central 192×192 region of the PGO generators. In the figures below, only
the area mapped directly to V1 is shown, to ensure that plots for different sheets have the same
size scale. The model requires 300 megabytes of physical memory to represent the 80 million
connections in the two cortical sheets. The remaining parameters are listed in appendix A.

4.1 Training V1

For simplicity, V1 and the FSA were self-organized in separate training phases. V1 was self-
organized for10, 000 iterations, each with approximately 11 randomly located circular discs 25
PGO units wide (figure 2a).The background activity level was 0.5, and the brightness of each disc
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(a) Generated pattern (b) LGN activity before
training

(c) V1 activity before
training

(d) V1 activity after training (e) Afferent weights of one
V1 neuron

(f ) Initial V1 orientation
map

(g) Final V1 orientation
map

(h) Detail of map (g)

(i) Sample visual image (j) LGN response (k ) V1 response
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relative to this surround (either +0.3 or -0.3) was chosen randomly. The borders of each disc were
smoothed into the background level following a Gaussian of half-widthσ = 1.5. After 10, 000
such iterations (10 hours on a 600MHz Pentium III workstation), the orientation map shown in
figure 2g-h emerged, consisting of neurons that respond strongly to oriented edges and thick lines.
The map organization is similar to maps measured in experimental animals (Blasdel, 1992).

We selected these V1 training patterns as well-defined approximations of internally generated
spatial patterns, such as spontaneous retinal waves. Imaging data shows that these patterns have
spatially coherent blobs of activity (Feller et al., 1996), unlike the uniform random noise assumed
in earlier models of spontaneous activity (e.g. Linsker, 1986). Each pattern represents the state
of one wave at a given instant, and together the patterns result in a map of static input proper-
ties. It is possible to train the model with moving patterns as well, and the resulting map would
represent directional selectivity in addition to orientation selectivity (Bednar and Miikkulainen,
2003). However, including only orientation processing is appropriate in this case because all pat-
terns tested with newborns have either been static, or else moving at approximately the same rate
as control patterns.

Miller (1994) had previously argued that because retinal waves are much larger than the V1
receptive fields and not strongly oriented, they cannot account for how orientation selectivity de-
velops. The results here demonstrate the opposite conclusion, and show that patterns do not need
to be oriented as long as they are smooth and large relative to the RF size of the orientation map. To
our knowledge, these simulations are the first to show that realistic orientation maps can develop
from large, unoriented (but spatially coherent) stimuli like the retinal waves.

4.2 Training the FSA

After V1 training, the V1 weights were fixed to their self-organized values, and the FSA was
allowed to activate and learn from the V1 responses. The FSA was self-organized for10, 000
iterations using two triples of circular dots, each arranged in a triangular facelike configuration
(figure 3a). Each dot was 20 PGO units wide, and was 0.3 units darker than the surround, which
itself was 0.5 on a scale of 0 to 1.0. Each triple was placed at a random location each iteration, at
least 118 PGO units away from the center of the other one (to avoid overlap). The angle of each
triple was drawn randomly from a narrow (σ = π/36 radians) normal distribution around vertical.

Because the face preferences found in newborns have all been for faces of approximately the
same size (life-sized at a distance of around 20 cm), only a single training pattern size was used.
As a result, the model will only be able to detect facelike patterns at one particular size scale. If
response to multiple face sizes (i.e., distances) is desired, the spatial scale of the training patterns
can be varied during self-organization (Sirosh and Miikkulainen, 1996). However, the FSA in such
a simulation would need to be much larger to represent the different sizes, and the resulting patchy
FSA responses would require more complex methods of analysis.

Using these three-dot patterns, the FSA was self-organized for10, 000 iterations (13 hours on
a 600MHz Pentium III workstation). The result was the face-selective map shown in figure 3h,
consisting of an array of neurons that respond most strongly to patterns similar to the training
patterns. Despite the overall similarities between neurons, the individual weight patterns are unique
because each neuron targets specific orientation blobs in V1. Such complicated patterns would be
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(a) Generated pattern (b) LGN activity (c) V1 activity before
FSA training

(d) Afferent weights of
one FSA neuron

(e) FSA response before
training

(f ) FSA response after
training

(g) Initial map (h) Trained map

Figure 3: Training the FSA face map. (a) For training, the input consisted of simple three-dot config-
urations with random nearly vertical orientations presented at random locations in the PGO layer. These
patterns were chosen based on the experiments of Johnson and Morton (1991). (b-c) The LGN and V1
sheets compute their responses based on this input. Initially, FSA neurons will respond to any activity in
their receptive fields (e), but after training only neurons with closely matching RFs respond (f ). Through
self-organization, the FSA neurons develop RFs (d) that are selective for a range of V1 activity patterns
like those resulting from the three-dot stimuli. Importantly, the RFs are patchy because the weights target
specific orientation blobs in V1. This complex match between the FSA and the local self-organized pattern
in V1 would be difficult to ensure without training on internally generated patterns. Plots (g) and (h) show
the afferent weights for every third neuron in the FSA. All neurons develop roughly similar weight profiles,
differing primarily by the position of their preferred stimuli on the retina and by the specific orientation
blobs targeted in V1. The largest differences between RFs are along the outside border, where the neurons
are less selective for three dot patterns. Overall, the FSA develops into a face detection map, signaling the
location of facelike stimuli.

difficult to specify and hard-wire directly, but they arise naturally from internally generated activity.

As FSA training completed, the lower threshold of the sigmoid was increased to ensure that
only patterns that are a strong match to an FSA neuron’s weights will activate it. This way, the
presence of FSA activity can be interpreted unambiguously as an indication that there is a face at
the corresponding location in the retina, which will be important for measuring the face detection
ability of the network.

The cortical maps were then tested on natural images and with the same schematic stimuli on
which human newborns have been tested (Goren et al., 1975; Johnson and Morton, 1991; Simion
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et al., 1998b; Valenza et al., 1996). For all of the tests, the same set of model parameter settings
described in appendix A were used. Schematic images were scaled to a brightness range (dif-
ference between the darkest and lightest pixels in the image) of 1.0. Natural images were scaled
to a brightness range of 2.5, so that facial features in images with faces would have a contrast
comparable to that of the schematic images.

If both types of images were instead scaled to the same brightness range, the model would pre-
fer the schematic faces over real ones. Using different scales is appropriate for these experiments
because we are only comparing responses within groups of similar images, and we assume that the
infant has become adapted to images of this type. For simplicity, the model does not specifically
include the mechanisms in the eye, LGN, and V1 that are responsible for such contrast adaptation.

4.3 Predicting behavioral responses

The HLISSOM model provides detailed neural responses for each neural region. These responses
constitute predictions for future electrophysiological and imaging measurements in animals and
humans. However, the data currently available for infant face perception is behavioral. It con-
sists of newborn attention preferences measured from visual tracking distance and looking time.
Thus, validating the model on this data will require predicting a behavioral response based on the
simulated neural responses.

As a general principle, we hypothesize that newborns pay attention to the stimulus whose over-
all neural response most clearly differs from those to typical stimuli. This idea can be quantified
as

a(t) =
F (t)

F
+

V (t)

V
, +

L(t)

L
, (6)

wherea(t) is the attention level at timet, X(t) is the total activity in regionX at that time,X is
the average (or median) activity of regionX over recent history, andF , V , andL represent the
FSA, V1, and LGN regions, respectively. Because most stimuli activate the LGN and V1 but not
the FSA, when a pattern evokes activity in the FSA newborns would attend to it more strongly. Yet
stimuli evoking only V1 activity could still be preferred over facelike patterns if their V1 activity
is much higher than typical.

Unfortunately, it is difficult to use such a formula to compare to newborn experiments, because
the presentation order of stimuli in those experiments is usually not known. As a result, the average
or median value of patterns in recent history is not available. Furthermore, the numerical preference
values computed in this way will differ depending on the specific set of patterns chosen, and thus
will be different for each study.

Instead, for the simulations below we will use a categorical approach inspired by Cohen (1998)
that should yield similar results. Specifically, we will assume that when two stimuli both activate
the model FSA, the one with the higher total FSA activation will be preferred. Similarly, with two
stimuli activating only V1, the higher total V1 activation will be preferred. When one stimulus
activates only V1 and another activates both V1 and the FSA, we will assume that the pattern
that produces FSA activity will be preferred, unless the V1 activity is much larger than for typical
patterns. Using these guidelines, the computed model preferences can be validated against the
newborn’s looking preferences, to determine if the model shows the same behavior as the newborn.
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5 Results

This section presents the model’s response to schematic patterns and real images after it has com-
pleted training on the internally generated patterns. The response to each schematic pattern is
compared to behavioral results from infants, and the responses to real images constitute predic-
tions for future experiments.

5.1 Schematic patterns

Figures 4 and 5 show that the model responses match the measured stimulus preference of new-
borns remarkably well, with the same relative ranking in each case where infants have shown a
significant preference between schematic patterns. These figures and the rankings are the main
result from this simulation. We will next analyze each of the categories of preference rankings, to
show what parts of the model underlie the pattern preferences.

Most non-facelike patterns activate only V1, and thus the preferences between those patterns
are based only on the V1 activity values (figure 4a,e-i; 5f -i). Patterns with numerous high-contrast
edges have greater V1 response, which explains why newborns would prefer them. These prefer-
ences are in accord with the simple LSM model, because they are based only on the early visual
processing (section 2.1).

Facelike schematic patterns activate the FSA, whether they are realistic or simply patterns of
three dots (figure 4b-d; 5a-d). The different FSA activation levels reflect the level of V1 response
to each pattern, not the precise shape of the face pattern. The responses explain why newborns
would prefer patterns like the three-square-blob face over the oval-blob face, which has a lower
edge length. The preferences between these patterns are also compatible with the LSM, because
in each case the V1 responses in the model match newborn preferences.

The comparisons between facelike and non-facelike patterns show how the predictions of the
HLISSOM pattern generation model differ from those of the LSM. In the HLISSOM simulations,
the patterns that activate the FSA are preferred over those activating only V1, except when the
V1 response is highly anomalous. Most V1 responses are very similar, and so the patterns with
FSA activity (figure 4b-d; 5a-d) should be preferred over most of the other patterns, as found in
infants. However, the checkerboard pattern (4a) has nearly three times as much V1 activity as any
other pattern with a similar background. Thus the HLISSOM results explain why the checkerboard
would be preferred over other patterns, even ones that activate the FSA.

Because the RFs in the model are only a rough match to the schematic patterns, the FSA can
have spurious responses to patterns that to adults do not look like faces. For instance, the inverted
three-dot pattern in Figure 5eactivated the FSA. In this case part of the square outline filled in for
the missing third dot of an upright pattern. With high enough pattern contrast, two dots can also
be sufficient to give a response. Because inverted patterns have two dots in the correct location,
these results suggest that inverted patterns are not an ideal control to use in experimental studies
(Bednar, 2002).

Interestingly, the model also showed a clear preference in one case where no significant pref-
erence was found in newborns (Simion et al., 1998a): for the upright 3-blob pattern with no face
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Figure 4: Human newborn and model response to Goren et al.’s (1975) and Johnson et al.’s (1991)
schematic images.TheRetina row along the top shows a set of patterns as they are drawn on the photore-
ceptor sheet. These patterns have been presented to newborn human infants on head-shaped paddles moving
at a short distance (about 20cm) from the newborn’s eyes, against a light-colored ceiling. In the experimen-
tal studies, the newborn’s preference was determined by measuring the average distance his or her eyes or
head tracked each pattern, compared to other patterns. Below,x>y indicates that imagex was preferred
over imagey under those conditions. Goren et al. (1975) measured infants between 3 and 27 minutes after
birth. They found thatb>f>i andb>e>i. Similarly, Johnson et al. (1991), in one experiment measuring
within one hour of birth, foundb>e>i. In another, measuring at an average of 43 minutes, they foundb>e,
andb>h. Finally, Johnson and Morton (1991), measuring newborns an average of 21 hours old, found that
a>(b,c,d), c>d, andb>d. The HLISSOM model has the same preference for each of these patterns, as
shown in the images above. The second row shows the model LGN activations (ON minus OFF) resulting
from the patterns in the top row. The third row shows the V1 activations, with the numerical sum of the
activities shown underneath. If one unit were fully active, the sum would be 1.0; higher values indicate that
more units are active. The bottom row shows the settled response of the FSA. Activity at a given location
in the FSA corresponds to a facelike stimulus at that location on the retina, and the sum of this activity
is shown underneath. The images are sorted left to right according to the preferences of the model. The
strongest V1 response by nearly a factor of three is to the checkerboard pattern (a), which explains why the
newborn would prefer that pattern over the others. The facelike patterns (b-d) are preferred over patterns (e-
i) because of activation in the FSA. The details of the facelike patterns do not significantly affect the results
— all of the facelike patterns (b)–(d) lead to FSA activation, generally in proportion to their V1 activation
levels. The remaining patterns are ranked by their V1 activity alone, because they do not activate the FSA.
In all conditions tested, the HLISSOM model shows behavior remarkably similar to that of the newborns,
and provides a detailed computational explanation for why these behaviors occur.
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Figure 5:Response to schematic images from Valenza et al. (1996) and Simion et al. (1998a).Valenza
et al. measured preference between static, projected versions of pairs of the schematic images in the top
row, using newborns ranging from 24 to 155 hours after birth. They found the following preferences:d>f ,
d>g, f>g, andh>i. Simion et al. similarly found a preference ford>g andb>e. The LGN, V1, and FSA
responses of the model to these images are displayed here as in figure 4, and are again sorted by the model’s
preference. In all cases where the newborn showed a preference, the model preference matched it. For
instance, the model FSA responds to the facelike pattern (d) but not to the inverted version (g). Patterns
that closely match the newborn’s preferred spatial frequencies (f ,h) caused a greater V1 response than their
corresponding lower-frequency patterns (g,i). Some non-facelike patterns with high-contrast borders can
cause spurious FSA activation (e), because part of the border completes a three-dot pattern. Such spurious
responses did not affect the predicted preferences, because they are smaller than the genuine responses.

outline (figure 5a), over the similar but inverted pattern (5i). The V1 responses to both patterns
are similar, but only the upright pattern has an FSA response, and thus the model predicts that the
upright pattern would be preferred.

This potentially conflicting result may be due to postnatal learning rather than capabilities at
birth. As will be summarized in section 6.2, postnatal learning of face outlines can have a strong
effect on FSA responses. The newborns in the Simion et al. study were already 1–6 days old,
and Pascalis et al. (1995) has shown that newborns within this age range have already learned
some of the features of their mother’s face outline. Thus the pattern-generation model predicts that
if younger newborns are tested, they will show a preference for upright patterns even without a
border.

Alternatively, the border may satisfy some minimum requirement on size or complexity for
patterns to attract a newborn’s interest. For instance, the total V1 activity may need to be above a
certain threshold for the newborn to pay any attention to a pattern. If so, the HLISSOM procedure
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for deriving a behavioral response from the model response (section 4.3) would need to be modified
to include this constraint.

Overall, these results provide strong computational support for the speculation of Johnson and
Morton (1991) that the newborn could simply be responding to a three-dot facelike configuration,
rather than performing sophisticated face detection. Internally generated patterns provide an ac-
count for how such “innate” machinery can be constructed during prenatal development, within a
system that can also learn postnatally from visual experience.

5.2 Real face images

Researchers testing newborns with schematic patterns often assume that the responses to schemat-
ics are representative of responses to real faces. However, no experiment has yet tested that as-
sumption by comparing real faces to similar but non-facelike controls. Similarly, no previous
computational model of newborn face preferences has been tested with real images. HLISSOM
makes such tests practical, which is an important way to determine the significance of the be-
havioral data. The examples in figure 6 show that the prenatally trained HLISSOM model works
remarkably well as a face detector for natural images.

The face detection performance of the map was tested quantitatively using two image
databases: a set of 150 images of 15 adult males without glasses, photographed at the same dis-
tance against blank backgrounds (Achermann, 1995), and a set of 58 non-face images of various
natural scenes (National Park Service, 1995). The face image set contained two views of each per-
son facing forwards, upwards, downwards, left, and right; figure 6a shows an example of a frontal
view. Each natural scene was presented at 6 different size scales, for a total of 348 non-face pre-
sentations. Overall, the results indicated very high face detection performance: the FSA responded
to 91% (137/150) of the face images, but to only 4.3% (15/348) of the natural scenes.

Because the two sets of real images were not closely matched in terms of lighting, backgrounds,
and distances, it is important to consider the actual response patterns to be sure that the differences
in the overall totals are genuine. The FSA responded with activation in the location corresponding
to the center of the face in 88% (132/150) of the face images. At the same time, the FSA had
spurious responses in 27% (40/150) of the face images, i.e. responses in locations other than the
center of the face. Nearly half of the spurious responses were from less-selective neurons along
the outer border of the model FSA (see figure 3h); these can be ignored. Most of the remaining
spurious responses resulted from a genuine V1 eye or mouth response plus V1 responses to the
hair or jaw outlines. Such responses would actually serve to direct attention to the general region
of the face, although they would not pinpoint the precise center. For the natural scenes, most of the
responses were from the less-selective neurons along the border of the FSA, and those responses
can again be ignored. The remainder were in image regions that coincidentally had a triangular
arrangement of three contour-rich areas, surrounded by smooth shading.

In summary, the FSA responds to most top-lit human faces of about the right size, signaling
their location in the visual field. It does not respond to most other stimuli, except when they contain
accidental three-dot patterns. The model predicts that human newborns will have a similar pattern
of responses in the face-selective regions of the visual cortex.
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Figure 6:Model response to natural images.The top row shows a sample set of photographic images.
The LGN, V1, and FSA responses of the model to these images are displayed as in figures 4 and 5. The
FSA is indeed activated at the correct location for most top-lit faces of the correct size and orientation (e.g.
a–d). Image (a) is an example of one frontal view from the the Achermann (1995) database. For this
database, 88% of the faces resulted in FSA activity in the correct location. Just as important, the network
is not activated for most natural scenes (f –g) and man-made objects (h). For example, the FSA responded
to only 4.3% of 348 presentations of landscapes and other natural scenes from the National Park Service
(1995). Besides human faces, the FSA responds to patterns causing a V1 response similar to that of a three-
dot arrangement of contours (d,i), including related patterns such as dog and monkey faces (not shown).
Response is low to images where hair or glasses obscures the borders of the eyes, nose, or mouth, and to
front-lit downward-looking faces, which have low V1 responses from nose and mouth contours (e). The
model predicts that newborns would show similar responses if tested. Credits: (a) copyright 1995 Bernard
Achermann, (b–e) public domain; (f –i) copyright 1999–2001, James A. Bednar.

6 Discussion and future work

The HLISSOM simulations show that internally generated patterns and self-organization can to-
gether account for newborn face detection. The novel contributions of the model are: (1) providing
a rigorous, computational test of the Johnson and Morton (1991) three-dot conceptual model for
newborn schematic face preferences, (2) demonstrating that preferences for three-dot patterns re-
sult in significant preference for faces in natural images, (3) proposing a specific, plausible way that
a system for face detection could be constructed in the developing brain, (4) demonstrating how a
single system can both exhibit genetically encoded preferences in the newborn and later learn from
real faces, (5) demonstrating how a hierarchy of brain areas could self-organize and function, at
the level of columnar maps and their connections, (6) showing how the reported newborn pattern
preferences can result from specific feature preferences at the different levels of the hierarchy, and
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(7) showing that the effects of internally generated patterns should be considered when explaining
genetically influenced behavior. The key idea is that pattern generation can combine the strengths
of both genetic pre-specification and input-driven learning into a system more powerful than the
sum of its parts. The following subsections discuss results with other training patterns and postna-
tal learning, relate the HLISSOM results to those from other models, and discuss future research
directions.

6.1 Effect of the training pattern shape

How crucial is the specific pattern of three dots for the model, given that other patterns might also
provide face selectivity? For instance, Viola and Jones (2001) found that a horizontal bar or a
pair of eye spots can detect faces well in engineering applications. In separate work, we tested
the effectiveness of a variety of training pattern shapes at detecting faces in real images and for
replicating the psychological data (Bednar, 2002). These simulations used nine different training
patterns, including dots, bars, top-heavy triangles, and circles.

For all training patterns, test faces that matched the overall training pattern size gave higher re-
sponses than did other natural images. Thus simply matching the size of typical faces gives some
degree of face selectivity in real images. However, different training patterns led to large differ-
ences in responses to the schematic patterns. Of all training patterns tested, the three-dot pattern
provided the most face selectivity in overhead lighting and the best match to the experimental data,
and thus it is a good choice for pattern-generation simulations. It leads to strong predictions that
can be matched with experimental data and contrasted with other models.

All of these tests used upright training patterns, because the Simion et al. (1998a) and Simion
et al. (1998b) studies suggest that the orientation of face patterns is important even in the first few
days of life. In the areas that generate training patterns, such a bias might be due to anisotropic
lateral connectivity, which would cause spontaneous patterns in one part of the visual field to
suppress those below them. On the other hand, tests with the youngest infants (less than one day)
have not yet found orientation biases (Johnson et al., 1991). Thus the experimental data is also
consistent with a model that assumes unoriented patterns prenatally, followed by rapid learning
from upright faces. Such a model would be more complicated to simulate and describe than the
one presented here, but could use a similar architecture and learning rules.

Importantly, not all possible training patterns result in face preferences. For example, if only a
single low-level feature like eye size is matched between the training and testing images, the model
shows no face preference. Together, the results with different patterns show that the pattern shape
is important, but that the shape does not need to be strictly controlled to provide face preferences.

6.2 Postnatal learning

The work reported in this paper focuses on understanding the origin of newborn face preferences,
but a crucial motivation for the model is that the same components can learn from real faces and
not just prenatal patterns. To understand postnatal learning computationally, we have trained a map
with internally generated patterns, then trained it on images of real faces in front of natural image
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backgrounds (Bednar, 2002; Bednar and Miikkulainen, 2002).

Preliminary results from these simulations suggest that (1) prenatal training leads to faster
and more robust face learning after birth, compared to a system exposed only to environmental
stimuli, (2) the decline in infants’ response to schematic patterns in the periphery after one month
(section 2.4) may simply result from learning real faces, not from a shift to a separate system, (3)
learning of real faces may explain why young infants prefer their mother’s face, as well as why
the preference disappears when the face outline is masked, and (4) delayed maturation of the fovea
may explain why facial preferences appear in central vision later than in peripheral vision. These
results are consistent with the postnatal disappearance of newborn face preferences that in part
inspired the Johnson and Morton (1991) model, while also providing a simple account for why
infants of all ages appear to be able to learn faces.

6.3 Comparison to other models

Predictions from the HLISSOM pattern-generation model differ strongly from those of other recent
models. These predictions can be tested by future experiments.

One easily tested prediction is that newborn face preferences should not depend on the precise
shape of the face outline. The Acerra et al. (2002) model (section 2.2) makes the opposite predic-
tion, because in that model preferences arise from precise spacing differences between the external
border and the internal facial features. Results from the HLISSOM simulations also suggest that
newborns will have a strong preference for real faces (e.g. in photographs), while we argue that the
Acerra et al. model predicts only a weak preference for real faces, if any.

Experimental evidence to date cannot yet decide between the predictions of these two models.
For instance, Simion et al. (1998a) did not find a significant schematic face preference in new-
borns 1–6 days old without a contour surrounding the internal features, which is consistent with
the Acerra et al. model. However, the same study concluded that the shape of the contour “did
not seem to affect the preference” for the patterns, which would not be consistent with the Acerra
et al. model. As discussed earlier, newborns may not require any external contour, as the pattern
generation model predicts, until they have had postnatal experience with faces. Future experiments
with younger newborns should compare model and newborn preferences between schematic pat-
terns with a variety of border shapes and spacings. These experiments will either show that the
border shape is crucial, as predicted by Acerra et al., or that it is unimportant, as predicted by the
pattern-generation model.

The predictions of the pattern-generation model also differ from those of the Simion et al.
(2001) “top-heavy” model (reviewed in section 2.3). The top-heavy model predicts that any face-
sized border that encloses objects denser at the top than the bottom will be preferred over similar
schematic patterns. The pattern-generation model predicts instead that a pattern with three dots in
the typical symmetrical arrangement would be preferred over the same pattern with both eye dots
pushed to one side, despite both patterns being equally top-heavy. These two models represent
very different explanations of the existing data, and thus testing such patterns should offer clear
support for one model over the other.

On the other hand, many of the predictions of the fully trained pattern-generation model im-
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plemented in HLISSOM are similar to those of the CONSPEC model proposed by Johnson and
Morton (1991). In fact, the reduced HLISSOM face preference network in section 6.1 (which does
not include V1) can be seen as the first CONSPEC system to be implemented computationally,
along with a concrete proposal for how such a system could be constructed during prenatal devel-
opment (Bednar and Miikkulainen, 2000). The primary functional difference between the trained
HLISSOM network and CONSPEC is that in HLISSOM only neurons located in cortical visual
areas respond selectively to faces in the visual field.

Whether newborn face detection is mediated cortically or subcortically has been debated exten-
sively, yet no clear consensus has emerged from behavioral studies (Simion et al., 1998a). If future
brain imaging studies do discover face-selective visual neurons in subcortical areas in newborns,
HLISSOM will need to be modified to include such areas. Yet the key principles would remain
the same, because subcortical regions also appear to be organized from internally generated activ-
ity (Wong, 1999). Thus experimental tests of the pattern-generation model vs. CONSPEC should
focus on how the initial system is constructed, and not where it is located.

6.4 Future directions

The pattern-generation hypothesis can be verified directly by imaging the actual activity patterns
produced during REM sleep. Very recent advances in imaging hardware have made limited mea-
surements of this type possible (Rector et al., 1997). It may soon be feasible to test the assumptions
and predictions of the pattern generation model in developing animals.

Why would evolution have favored a pattern-generation approach over fixed hard-wiring or
strictly general learning? One important reason is that the genome can encode the desired out-
come, i.e. three-blob responses, independently of the actual architecture of the face processing
hardware. As shown by Dailey and Cottrell (1999), even when the underlying cortical architecture
is specified only in domain-general terms, specific regions can still become primarily devoted to
face processing. The divide-and-conquer strategy of pattern generation would allow such an ar-
chitecture to evolve and develop independently of the function, which could potentially enable the
rapid evolution and development of more complex adaptive systems.

In terms of information processing, pattern generation combined with self-organization may
represent a general way to solve difficult problems like face detection and recognition. Rather than
meticulously specifying the final, desired individual, the specification need only encode a process
for constructing an individual through interaction with its environment. The result can seamlessly
combine the full complexity of the environment witha priori information about the desired func-
tion of the system. In the future, this approach could be used for engineering complex artificial
systems for real-world tasks, e.g. handwriting recognition, speech recognition, and language pro-
cessing.
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7 Conclusion

The pattern-generator model of newborn face preferences can explain how newborns can show a
face preference at birth yet remain able to learn faces at all ages. The predictions of the model can
be tested experimentally, in order to better understand the development of face perception. The
simulations and future human experiments will also help explain how environmental and genetic
influences can together construct complex, adaptive systems.
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A Parameter values

Most of the model parameters were calculated using the scaling equations from Kelkar et al.
(2001). Of those below, only theγ parameters and the sigmoid thresholds were set empirically
for this study. For the LGN and V1, the values for these free parameters were set so that the output
from each neural sheet would be in a useful range for the following sheet over the course of train-
ing. For the highest level (FSA), the free parameters were set so that the response would be nearly
binary, and therefore an unambiguous criterion for the presence of a facelike pattern on the in-
put. Apart from such threshold parameters, small parameter variations produce roughly equivalent
results. The specific parameter values for each subcortical and cortical region follow.

For the LGN,σc was 0.4 andσs was 1.6. The afferent scaleγA was 10.6, and the upper and
lower thresholds of the sigmoid were0.14 and1.0, respectively.

For V1, the initial lateral excitation radius was3.6 and was gradually decreased to1.5. The
lateral inhibitory radius of each neuron was8, and inhibitory connections whose strength was
below0.01 were pruned away at10, 000 iterations. The lateral inhibitory connections were initial-
ized to a Gaussian profile withσ = 17, and the lateral excitatory connections to a Gaussian with
σ = 2.8, with no connections outside the nominal circular radius. Initially, the divisive normaliza-
tion strengthγN was zero, the afferent scaleγA was 1.0, and the lateral excitationγE and inhibition
strengthγI were both0.9. Theγ values were constant during V1 training and were gradually in-
creased over the course of FSA training toγN = 4, γA = 3.25, γE = 1.2, andγI = 1.4. The
learning rateαA was gradually decreased from0.0035 to 0.00075, αE from 0.059 to 0.0029, and
αI was a constant0.00088. The lower and upper thresholds of the sigmoid were increased from
0.08 to 0.5 and from0.63 to 0.86, respectively over the course of V1 training; the lower threshold
was then decreased to0.22 over the course of FSA training. The number of iterations for which
the lateral connections were allowed to settle at each training iteration was initially9, and was
increased to13.

For the FSA, the initial lateral excitation radius was6.3 and was gradually decreased to1.5.
The lateral inhibitory radius of each neuron was15.8, and inhibitory connections whose strength
was below0.0027 were pruned away at20, 000 iterations. The lateral inhibitory connections were
initialized to a Gaussian profile withσ = 33, and the lateral excitatory connections to a Gaussian
with σ = 4.9. The lateral excitationγE was0.9 and the inhibition strengthγI was0.9. Initially, the
divisive normalization strengthγN was zero, the afferent scaleγA was 3.0, and the lateral excitation
γE and inhibition strengthγI were both0.9. These values were gradually changed over the course
of FSA training toγN = 9, γA = 10.6, γE = 0.4, andγI = 0.6. The learning rateαA was gradually
decreased from0.0001 to 0.000022, αE from 0.025 to 0.013 andαI was a constant0.003. The
lower and upper thresholds of the sigmoid were increased from0.1 to 0.81 and from0.65 to 0.88,
respectively over the course of training. The number of iterations for which the lateral connections
were allowed to settle at each training iteration was initially9, and was increased to13.
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