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Abstract

A self-organizing neural networfor sequence classification called
SARDNET is describedhnd analyzed experimentally. SARDNET
extends the Kohonen Feature Map architecture with activation
retention anddecay inorder to create unique distributed response
patternsfor different sequences. SARDNET yields extremely dense
yetdescriptive representations of sequeritiglit in very fewtraining
iterations. The networkasproven successful omapping arbitrary
sequences of binaryand real numbers, as well as phonemic
representations of Englisklwords. Potential applications include
isolated spoken word recogniticend cognitive science models of
sequence processing.

1 INTRODUCTION

While neural networks have proved a good tool for processing static patiegsifying
sequential information has remained a challenging task. pArbelem involves
recognizing patterns in a time seriessettors, which requires forminggoodinternal
representation fothe sequences. Several researchers have proposed extdrelkiedf-
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organizing feature map (Kohonen 1989, 1990), a highlgcessful statigattern
classification method, to sequential information (Kangas 1991; Samarabandu and
Jakubowicz 1990; Scholtes 1991). Beldlree of the most recent of these networks are
briefly described.The remainder of the papfrcuses on a nearchitecture designed to
overcome the shortcomings of these approaches.

Recently,Chappel andraylor (1993) proposethe Temporal Kohonen MaflKM)
architecture for classifying sequencd$e TKM keepstrack of the activation history of
each node by updating a value callledky integrator potential, inspired by the
membrane potential in biologicakuralsystems. The activity of a node depends both
on the current inputectorand thepreviousinput vectors, represented ltkie node's
potential. A given sequencepsocessed by npging onevector at &ime, and the last
winning node serves to represdhie entiresequence. This way, there needs to be a
separate node favery possiblesequence, which is a disadvantage wiiennumber of
sequences to be classifiedasge. The TKM alssuffers from loss of contextWhich
node wins depends almost entirely upon the most régpatvectors. For example, the
stringbaaaa would most likelymap to the same node azaaa , making the approach
applicable only to short sequences.

The SOFM-S network proposed yan Harmelen (1993) extends TKM sutttat the
activity of eachmap node depends on the currieqput vectorand the pasactivation of
all map nodes. Th8OFM-S is an improvement of TKM itlhat contextual information
is not lost as quickly, but it still uses a single node to represent a sequence.

The TRACE feature map (Zandhuis 1992) tves feature map layers. The filstyer is

a topologicalmap of the individual inputectors,and isused to generate a trace (i.e.\
path) of the inpusequence othe map. The secordyerthen maps the trace pattern to
a single node. In TRACE, tteequencesare represented by distributed patterns on the
first layer, potentially allowing folarger @pacity, but it is difficult to encode sequences
where the sameectorsrepeat, such asaaaa. All a-vectors would be mapped on the
same unit in the first layer, and any numbea-afectors would be indistinguishable.

The architecturelescribed inthis paper, SARDNET (Sequential Activation Retention
and Decay NETwork), also uses a subset ofip nodes to represerihe sequence of
vectors. Such a distributed approach allowdame number of representations be
“packed” into a small map---like sardines. the following sections, we will examine
how SARDNET differs from conventionaElf-organizing mapandhow it can beused

to represent and classify a large number of complex sequences.

2 THE SARDNET ARCHITECTURE

Input to SARDNET consists of a sequence ofdimensional vectorsS =
Vi, Vg, V3, ..., V| (figure 1). The components of eacéctor are realvalues in the
interval [0,1]. For example, each vector might represent a sample of a spgedhinn
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Figure 1: The SARDNET architecture. A sequence dhputvectors activategnits on
the map one at a time. The past winremsexcluded fromfurther competition, and
their activation is decayed gradually to indicate position in the sequence.

INITIALIZATION: Clear all map nodes to zero.

MAIN LOOP: While not end of sequence

1. Find unactivated weight vector that best matches the input.
2. Assign 1.0 activation to that unit.

3. Adjust weight vectors of the nodes in the neighborhood.

4. Exclude the winning unit from subsequent competition.

5. Decrement activation values for all other active nodes.
RESULT: Sequence representation = activated nodes ordered by activation values.

Table 1: The SARDNET training algorithm.

different frequenciesand the entiresequencemight constitute a spoken word. The
SARDNET input layer consists ofi nodes, one for each componenthe inputvector,
and their values are denotedfas (a, a, a3, ...,a,). The mapconsists ofm x m nodes
with activationgy, 1< j, k< m. Each nodédas ann-dimensional input weightector
Wi, which determines the node's response to the input activation.

In a conventional feature map networkvesll as in SARDNET, eacinput vector is
mapped on a particulamit on the mapcalled the winner or the maximally responding
unit. In SARDNET, however, once a node wins mput, it is made uneligible to
respond to thesubsequent inputs ithe sequenceThis way a different map node is
allocated forevery vector inthe sequence. As more vectors comgethe activation of
the previous winners decays. In other words, each sequele®til is represented by

| active nodes otthe map, with theiactivity indicating the order in whiclthey were
activated. The algorithm is summarized in table 1.



Assumethe maximum length of theequences we wish to classifyljsandeach input
vector componentan take onp possible values. Sincthere arep” possibleinput
vectors, Ip" map nodesare needed to represeratl possible vectors irall possible
positions in thesequenceand adistributed patterrover the Ip” nodescan beused to
represent alp" different sequencedhis approactoffers asignificant advantagever
methods in whictp™ nodes would be required fp! sequences.

The specific computations ahe SARDNET algorithm are adollows: The winning
node {, k) in each iteration is determined by the Euclidean dist&npcef the input
vectorA and the node's weight vect:

D, = Z(w,-k,i -a)’

The unit with thesmallest distance is selectedtlas winner andctivated with 1.0. The
weights ofthis nodeand allnodes in its neighborhooake changed according to the
standard feature map adaptation rule:

Aij = C((\Njk,i - a)

wherea denoteghe learning rate. As usual, tineighborhood starts out largad is
gradually decreased #se mapbecomesnore ordered. As the last step in processing an
input vector,the activatiomy, of all activeunits in the map ardecayedroportional to
the decay parametdr

N (t+1) =dn, (), O0<d<1

As in the standard feature map, as the weigdttorsadapt, inputvectors gradually
become encoded ithe weightvectors ofthe winning units. Because weights are
changed in local neighborhoods, neighboring weigdtdtorsare forced to become as
similar aspossible,and eventuallythe networkforms a topological layout dhe input
vector space. In SARDNET, however, if arput vector occurs multiple times in the
same inpusequence, it will be represented multiple timestenmap asvell. In other
words,the map representation expands those areas ohplue spacethat arevisited
most often during an input sequence.

3 EXPERIMENTS

SARDNET hasproven successful itearning and recognizing arbitragequences of
binary and realnumbers, as well as sequences of phonemic representatidasgicsh
words. This section presents experiments oappingthree-syllable words.This data
was selected because it shows how SARDNE&T be applied toomplexinput derived
from a real-world task.



3.1 INPUT DATA

The phonemiovord representationwere obtained fronthe CELEX database of the
Max Planck Institute for Psycholinguistiesd converted intolnternational Phonetic
Alphabet (IPA)-compliant representation, which better descsbasgarities among the
phonemes. Thevords vary from five to twelvphonemes in length. Each phoneme is
represented byive values: place, manner, sound, chromacityand sonority. For
example, the consonamt is represented by a singlector pilabial , stop ,
unvoiced , nil , nil ), or in terms of real numbers, (.125, .167, .750, 0, 0). The
diphthong soundai as in “buy”, isrepresented by thevo vectors il , vowel ,
voiced , front , low) and (il , vowel , voiced , front-center , hi-mid ), or

in real numbers, (0, 1, .25, .2, 1) and (0, 1, .25, .4, .286).

There are a total of 43 phonemes in this data set, including 23 consanan0
vowels. Torepresent all phonemi&equences déngth 12, TKMand SOFM-S would
need to have 45= 6.9 x 10" map nodes, where&ARDNET would need only 48 12
= 540 nodes. Of course, only a very small subs#teypossible sequences actually occur
in the data. Three datets consisting of 713, 988nd 1628 words were used in the
experiments. If the maximum number o€currences of phonemein any single

sequence is;, then the number ofodes SARDNET needs i€ = ZN:oq , whereN is

the number of phonemes. This numbemoties will allow SARDNET tanap each
phoneme in each sequence tordt with anexact representation diatphoneme in its
weights. Calculated thisay, SARDNETshould scale upery wellwith the number of
words: it would need 81 nodes f@presenting the 718ord set, 84 fothe 988 set and
88 for the 1628 set.

3.2 DENSENESS AND ACCURACY

A series of experiments with ttedovethree datasetsand maps of 16 to 8dodeswere

run to see how accurately SARDNET can represent the sequences. Self-organization was
quite fast: each simulatiomook only about 10 epochsyith a = 0.45 and the
neighborhood radius decreasing gradually from 5-1 to zero. Figusho®s the
percentage of unique representations for each data set and map size.

SARDNET shows remarkable representational power: accuraeyl &ets is bettethan

97.7%, andSARDNET manages to pack 1592 unique representations even on the
smallest 16-node map. Even when there are not enough units to represent each
phoneme in each sequence exadthe map issometimes able to “reuseinits to
represent multiple similar phonemes. For exampdssume units withexact
representations fahe phonemesa andb exist somewhere othe map, and the input
datadoesnot contain pairs ofequences such aba--abb, in which it is crucial to
distinguished the secoral from the secondb. In this case, the seconoccurrence of

both phonemes could be representedhiaysamaunit with aweight vectorthat is the
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Figure 2: Accuracy of SARDNET for different map and dataset sizesTheaccuracy
is measured as a percentage of unique representations out of all word sequences.

average ofa andb. This isexactly what the map is doing: it is finding thmost
descriptive representation of the data, given the available resources.

Note that it would be possible todetermine theneeded C = ZN:oq phoneme

representation vectors directly frotine input data segnd wthout anylearning or a
map structure at allestablish distributed representations on these veetits the

SARDNET algorithm. However,feature mapearning isnecessary ithe number of
available representation vectors is ldssn C. Thetopological organization dche map
allows finding agood set of reusable vectdisat can standor different phonemes in
different sequences, making the representation more efficient.

3.3 REPRESENTING SIMILARITY

Not only are the representatiodensely packed otihe maptheyarealso descriptive in
the sensethat similarsequences hav@milar representations. FiguresBowsthe final
activation patterns on the 36-unitl3-wordmapfor six example words.The first two
words, “misplacementand“displacement”, soundery similar, and areepresented by
very similar patterns on the mapecauseahere isonly onemin “displacement”, it is
mapped on the sammit as the initiaim of “misplacement”. Notehat thetwo nis are
mapped next to each other, indicatithgit the map isndeed topologicaland small
changes in the inpwause onlysmall changes in the map representatidote also how

the units in this small map ameused to represent several different phonemes in
different contexts.

The other examples in figure 38lisplay different types ofsimilarities with
“misplacement”. Thehird word, “miscarried”, also begins with “mis&nd shares that
subpart of the representatiemactly. Similarly, “repayment” sharessanilar tail and
“pessimist” thesubsequence “mis” in a differepart or theword. Because thegppear
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Figure 3: Example map representations.

in a different context, these subsequences are mapped on slightly different units, but still
very close to their positions with “misplacement”. The last word, “burundi” souerngs
different, as its representation on the map indicates.

Such descriptive representatiosse important when the map has to represent
information that isincomplete or corrupted with noise. Small changes in the input
sequence causanall changes in the patteramd thesequencean still be recognized.
This property shouldturn out extremelyimportant in real-world applications of
SARDNET, as well as in cognitive science models where confu@mdar patterns
with each other is often plausible behavior.

4 DISCUSSION AND FUTURE RESEARCH

Becausdhe sequence representationstba map are distributed, the numbepossible
sequencethat can beepresented im units is exponential im, instead of linear as in
most previous sequential featurep architectures. Thidenseness together with the
tendency tanap similarsequences tsimilar representations shouldrn out useful in
real-world applications, which often require scale-uparge andnoisy data sets. For



example, SARDNET could forrthe core of an isolated word recognition system. The
word input would be encoded iduration-normalizedequences of sound samples such
as a string of phonemes, or perhaps representations of salient transitionspaette
signal. It mightalso be possible to modify SARDNET to formnaore continuous
trajectory onthe map so thaBARDNET itself would take care of variability wvord
duration. For example, sequence ofedundant inputgould be reduced to a single
node if all these inputs fall within the same neighborhood.

Even though the sequence representatoasienseheyarealso descriptive. Category
memberships are measured notdlyels ofthe maximally responding units, but by the
differences inthe response patterns themselvésis sort of distributed representation
should be useful in cognitiveystems wheresequential input must be mapped to an
internal static representatiofor later retrievaland manipulation.Similarity-based
reasoning orsequences should l@asy toimplement, and theequencean beeasily
recreated from the activity pattern on the map.

Given part of asequence, SARDNET may also be modified to prettietrest of the
sequence. This can be done by adding lateral connebibrserthe nodes inthe map

layer. The lateral connectiorisetween successiveinners would be strengthened
during training. Thusgiven part of asequence, one coufdllow the strongest lateral
connections to complete the sequence.

5 CONCLUSION

SARDNET is a novel feature map architecture for classifying sequences of input vectors.
Eachsequence is mapped on a distributed representatittmeamap, making ipossible

to pack a remarkable large numbercategory representations orsmall feature map.

The representations are nobly dense, they alsoepresent the similarities of the
sequences, which shoutdrn out useful in cognitive science as well as real-world
applications of the architecture.
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