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Abstract- In most modern video games, character be-
havior is scripted; no matter how many times the player
exploits a weakness, that weakness is never repaired.
Yet if game characters could learn through interacting
with the player, behavior could improve during game-
play, keeping it interesting. This paper introduces the
real-time NeuroEvolution of Augmenting Topologies (rt-
NEAT) method for evolving increasingly complex arti-
ficial neural networks in real time, as a game is being
played. The rtNEAT method allows agents to change
and improve during the game. In fact, rtNEAT makes
possible a new genre of video games in which the player
teaches a team of agents through a series of customized
training exercises. In order to demonstrate this concept
in the NeuroEvolving Robotic Operatives (NERO) game,
the player trains a team of robots for combat. This
paper describes results from this novel application of
machine learning, and also demonstrates how multiple
agents can evolve and adapt in video games like NERO
in real time using rtNEAT. In the future, rtNEAT may
allow new kinds of educational and training applications
that adapt online as the user gains new skills.

1 Introduction
The world video game market in 2002 was between $15
billion and $20 billion, larger than even that of Hollywood
(Thurrott 2002). Video games have become a facet of many
people’s lives and the market continues to expand. Because
there are millions of players and because video games carry
perhaps the least risk to human life of any real-world ap-
plication, they make an excellent testbed for techniques in
artificial intelligence and machine learning (Laird and van
Lent 2000). In fact, Fogel et al. (2004) argue that such tech-
niques can potentially both increase the longevity of video
games and decrease their production costs.

One of the most compelling yet least exploited technolo-
gies in the video game industry is machine learning. Thus,
there is an unexplored opportunity to make video games
more interesting and realistic, and to build entirely new gen-
res. Such enhancements may have applications in education
and training as well, changing the way people interact with
their computers.

In the video game industry, the termNon-player-
character (NPC) refers to an autonomous computer-
controlled agent in the game. This paper focuses on train-
ing NPCs as intelligent agents, and the standard AI term
agentsis therefore used to refer to them. The behavior of
agents in current games is often repetitive and predictable.

In most video games, scripts cannot learn or adapt to control
the agents: Opponents will always make the same moves
and the game quickly becomes boring. Machine learning
could potentially keep video games interesting by allowing
agents to change and adapt. However, a major problem with
learning in video games is that if behavior is allowed to
change, the game content becomes unpredictable. Agents
might learn idiosyncratic behaviors or even not learn at all,
making the gaming experience unsatisfying. One way to
avoid this problem is to train agents offline, and then freeze
the results into the final game. However, if behaviors are
frozen before the game is released, agents cannot adapt and
change in response to the tactics of particular players.

If agents are to adapt and change in real-time, a powerful
and reliable machine learning method is needed. This paper
describes a novel game built around a real-time enhance-
ment of the NeuroEvolution of Augmenting Topologies
method (NEAT; Stanley and Miikkulainen 2002b, 2004).
NEAT evolves increasingly complex neural networks, i.e.
it complexifies. Real-time NEAT (rtNEAT) is able to com-
plexify neural networksas the game is played, making it
possible for agents to evolve increasingly sophisticated be-
haviors in real time. Thus, agent behavior improves visibly
during gameplay. The aim is to show that machine learning
is indispensable for some kinds of video games to work, and
to show how rtNEAT makes such an application possible.

In order to demonstrate the potential of rtNEAT,
the Digital Media Collaboratory (DMC) at the Uni-
versity of Texas at Austin initiated the NeuroEvolving
Robotic Operatives (NERO) project in October of 2003
(http://dev.ic2.org/nero public). This project
is based on a proposal for a game based on rtNEAT de-
veloped at the2nd Annual Game Development Workshop
on Artificial Intelligence, Interactivity, and Immersive Envi-
ronmentsin Austin, TX (presentation by Kenneth Stanley,
2003). The idea was to create a game in which learning
is indispensable, in other words, without learning NERO
could not exist as a game. In NERO, the player takes the
role of a trainer, teaching skills to a set of intelligent agents
controlled by rtNEAT. Thus, NERO is a powerful demon-
stration of how machine learning can open up new possibil-
ities in gaming and allow agents to adapt.

This paper describes rtNEAT and NERO, and reviews
results from the first year of this ongoing project. The next
section briefly reviews learning methods for games. NEAT
is then described, including how it was enhanced to create
rtNEAT. The last sections describe NERO and summarize
the current status and performance of the game.



2 Background
This section reviews several machine learning techniques
that can be used in games, and explains whyneuroevolution
(NE), i.e. the artificial evolution neural networks using a ge-
netic algorithm, is the ideal method for real-time learningin
NERO. Because agents in NERO need to learn online as
the game is played, predetermined training targets are usu-
ally not available, ruling out supervised techniques such as
backpropagation (Rumelhart et al. 1986) and decision tree
learning (Utgoff 1989).

Traditional reinforcement learning (RL) techniques such
as Q-Learning (Watkins and Dayan 1992) and Sarsa(�)
with a Case-Based function approximator (SARSA-CABA;
Santamaria et al. 1998) can adapt in domains with sparse
feedback (Kaelbling et al. 1996; Sutton and Barto 1998)
and thus can be applied to video games as well. These
techniques learn to predict the long-term reward for taking
actions in different states by exploring the state space and
keeping track of the results. However, video games have
several properties that pose significant challenges to tradi-
tional RL:

1. Large state/action space. Since games usually have
several different types of objects and characters, and
many different possible actions, the state/action space
that RL must explore is high-dimensional. Not only
does this pose the usual problem of encoding a high-
dimensional space (Sutton and Barto 1998), but in
a real-time game there is the additional challenge of
checking the value of every possible action on every
game tick for every agent in the game.

2. Diverse behaviors. Agents learning simultaneously
should not all converge to the same behavior because
a homogeneous population would make the game
boring. Yet since RL techniques are based on con-
vergence guarantees and do not explicitly maintain
diversity, such an outcome is likely.

3. Consistent individual behaviors. RL depends on
occasionally taking a random action in order to ex-
plore new behaviors. While this strategy works well
in offline learning, players do not want to see an in-
dividual agent periodically making inexplicable and
idiosyncratic moves relative to its usual behavior.

4. Fast adaptation. Players do not want to wait hours
for agents to adapt. Yet a complex state/action repre-
sentation can take a long time to learn. On the other
hand, a simple representation would limit the ability
to learn sophisticated behaviors. Thus, choosing the
right representation is difficult.

5. Memory of past states. If agents remember past
events, they can react more convincingly to the
present situation. However, such memory requires
keeping track of more than the current state, ruling
out traditional Markovian methods.

While these properties make applying traditional RL
techniques difficult, NE is an alternative RL technique that
can meet each requirement: (1) NE works well in high-
dimensional state spaces (Gomez and Miikkulainen 2003),

and only produces a single requested action without check-
ing the values of multiple actions. (2) Diverse popula-
tions can be explicitly maintained (Stanley and Miikkulai-
nen 2002b). (3) The behavior of an individual during its
lifetime does not change. (4) Arepresentationof the solu-
tion can be evolved, allowing simple behaviors to be discov-
ered quickly in the beginning and later complexified (Stan-
ley and Miikkulainen 2004). (5) Recurrent neural networks
can be evolved that utilize memory (Gomez and Miikkulai-
nen 1999). Thus, NE is a good match for video games.

The current challenge is to achieve evolution inreal time,
as the game is played. If agents could be evolved in a
smooth cycle of replacement, the player could interact with
evolution during the game and the many benefits of NE
would be available to the video gaming community. This
paper introduces such a real-time NE technique, rtNEAT,
which is applied to the NERO multi-agent continuous-state
video game. In NERO, agents must master both motor con-
trol and higher-level strategy to win the game. The player
acts as a trainer, teaching a team of robots the skills they
need to survive. The next section reviews the NEAT neu-
roevolution method, and how it can be enhanced to produce
rtNEAT.

3 Real-time NeuroEvolution of Augmenting
Topologies (rtNEAT)

The rtNEAT method is based on NEAT, a technique for
evolving neural networks for complex reinforcement learn-
ing tasks using a genetic algorithm (GA). NEAT combines
the usual search for the appropriate network weights with
complexificationof the network structure, allowing the be-
havior of evolved neural networks to become increasingly
sophisticated over generations. This approach is highly
effective: NEAT outperforms other neuroevolution (NE)
methods e.g. on the benchmark double pole balancing task
(Stanley and Miikkulainen 2002a,b). In addition, because
NEAT starts with simple networks and expands the search
space only when beneficial, it is able to find significantly
more complex controllers than fixed-topology evolution, as
demonstrated in a robotic strategy-learning domain (Stanley
and Miikkulainen 2004). These properties make NEAT an
attractive method for evolving neural networks in complex
tasks such as video games.

Like most GAs, NEAT was originally designed to run
offline. Individuals are evaluated one or two at a time, and
after the whole population has been evaluated, a new popu-
lation is created to form the next generation. In other words,
in a normal GA it is not possible for a human to interact
with the multiple evolving agentswhile they are evolving.
This section first briefly reviews the original offline NEAT
method, and then describes how it can be modified to make
it possible for players to interact with evolving agents in real
time. See e.g. Stanley and Miikkulainen (2002a,b, 2004) for
a complete description of NEAT.

NEAT is based on three key ideas. First, evolving net-
work structure requires a flexible genetic encoding. Each
genome includes a list ofconnection genes, each of which
refers to twonode genesbeing connected. Each connec-
tion gene specifies the in-node, the out-node, the connection



weight, whether or not the connection gene is expressed (an
enable bit), and aninnovation number, which allows finding
corresponding genes during crossover. Mutation can change
both connection weights and network structures. Connec-
tion weights mutate as in any NE system, with each con-
nection either perturbed or not. Structural mutations, which
allow complexity to increase, either add a new connection
or a new node to the network. Through mutation, genomes
of varying sizes are created, sometimes with completely dif-
ferent connections specified at the same positions.

Each unique gene in the population is assigned a unique
innovation number, and the numbers are inherited during
crossover. Innovation numbers allow NEAT to perform
crossover without the need for expensive topological analy-
sis. Genomes of different organizations and sizes stay com-
patible throughout evolution, and the problem of matching
different topologies (Radcliffe 1993) is essentially avoided.

Second, NEAT speciates the population, so that individ-
uals compete primarily within their own niches instead of
with the population at large. This way, topological innova-
tions are protected and have time to optimize their structure
before competing with other niches in the population. The
reproduction mechanism for NEAT isexplicit fitness shar-
ing (Goldberg and Richardson 1987), where organisms in
the same species must share the fitness of their niche, pre-
venting any one species from taking over the population.

Third, unlike other systems that evolve network topolo-
gies and weights (Gruau et al. 1996; Yao 1999) NEAT be-
gins with a uniform population of simple networks with no
hidden nodes. New structure is introduced incrementally as
structural mutations occur, and only those structures survive
that are found to be useful through fitness evaluations. This
way, NEAT searches through a minimal number of weight
dimensions and finds the appropriate complexity level for
the problem.

In previous work, each of the three main components
of NEAT (i.e. historical markings, speciation, and start-
ing from minimal structure) were experimentally ablated in
order to demonstrate how they contribute to performance
(Stanley and Miikkulainen 2002b). The ablation study
demonstrated that all three components are interdependent
and necessary to make NEAT work. The next section ex-
plains how NEAT can be enhanced to work in real time.

3.1 Running NEAT in Real Time

In NEAT, the population is replaced at each generation.
However, in real time, replacing the entire population to-
gether on each generation would look incongruous since ev-
eryone’s behavior would change at once. In addition, behav-
iors would remain static during the large gaps between gen-
erations. Instead, in rtNEAT, a single individual is replaced
every few game ticks (as in e.g. (�,1)-ES; Beyer and Paul
Schwefel 2002). One of the worst individuals is removed
and replaced with a child of parents chosen from among the
best. This cycle of removal and replacement happens con-
tinually throughout the game (figure 1). The challenge is to
preserve the usual dynamics of NEAT, namely protection of
innovation through speciation and complexification.

The main loop in rtNEAT works as follows. Letfi be

2 high−fitness agents

1 low−fitness agent

Cross over

New agent

Mutate

X   

Figure 1:The main replacement cycle in rtNEAT. Robot game
agents (represented as small circles) are depicted playinga game in
the large box. Every few ticks, two high-fitness robots are selected
to produce an offspring that replaces another of lower fitness. This
cycle of replacement operates continually throughout the game,
creating a constant turnover of new behaviors.

the fitness of individuali. Fitness sharing adjusts it tofijSj ,
wherejSj is the number of individuals in the species. In
other words, fitness is reduced proportionally to the size
of the species. This adjustment is important because se-
lection in rtNEAT must be based on adjusted fitness rather
than original fitness in order to maintain the same dynamics
as NEAT. In addition, because the number of offspring as-
signed to a species in NEAT is based on its average fitnessF , this average must always be kept up-to-date. Thus, af-
ter everyn ticks of the game clock, rtNEAT performs the
following operations:

1. Remove the agent with the worstadjustedfitness
from the population assuming one has been alive suf-
ficiently long so that it has been properly evaluated.

2. Re-estimateF for all species

3. Choose a parent species to create the new offspring

4. Adjust compatibility thresholdCt dynamically and
reassignall agents to species

5. Place the new agent in the world

Each of these steps is discussed in more detail below.

3.1.1 Step 1: Removing the worst agent

The goal of this step is to remove a poorly performing agent
from the game, hopefully to be replaced by something bet-
ter. The agent must be chosen carefully to preserve specia-
tion dynamics. If the agent with the worstunadjustedfitness
were chosen, fitness sharing could no longer protect innova-
tion because new topologies would be removed as soon as
they appear. Thus, the agent with the worstadjustedfitness
should be removed, since adjusted fitness takes into account
species size, so that new smaller species are not removed as
soon as they appear.

It is also important not to remove agents that are too
young. In original NEAT,age is not considered since net-
works are generally all evaluated for the same amount of



time. However, in rtNEAT, new agents are constantly being
born, meaning different agents have been around for dif-
ferent lengths of time. It would be dangerous to remove
agents that are too young because they have not played for
long enough to accurately assess their fitness. Therefore, rt-
NEAT only removes agents who have played for more than
the minimum amount of timem.

3.1.2 Step 2: Re-estimatingF
Assuming there was an agent old enough to be removed, its
species now has one less member and therefore its average
fitnessF has likely changed. It is important to keepF up-
to-date becauseF is used in choosing the parent species in
the next step. Therefore, rtNEAT needs to re-estimateF .

3.1.3 Step 3: Choosing the parent species

In original NEAT the number of offspringnk assigned to

speciesk is FkF tot jP j, whereFk is the average fitness of

speciesk, F tot is the sum of all the average species’ fit-
nesses, andjP j is the population size.

This behavior needs to be approximated in rtNEAT even
thoughnk cannot be assigned explicitly (since only one off-
spring is created at a time). Given thatnk is proportional toF , the parent species can be chosen probabilistically using
the same relationship:Pr(Sk) = FkF tot : (1)

The probability of choosing a given parent species is pro-
portional to its average fitness compared to the total of all
species’ average fitnesses. Thus, over the long run, the ex-
pected number of offspring for each species is proportional
tonk, preserving the speciation dynamics of original NEAT.

3.1.4 Step 4: Dynamic Compatibility Thresholding

Networks are placed into a species in original NEAT if they
are compatible with a representative member of the species.
rtNEAT attempts to keep the number of species constant by
adjusting a threshold,Ct, that determines whether an indi-
vidual is compatible with a species’ representative. When
there are too many species,Ct is increased to make species
more inclusive; when there are too few,Ct is decreased to
be stricter. An advantage of this kind ofdynamic compat-
ibility thresholding is that it keeps the number of species
relatively stable.

In rtNEAT changingCt alone cannot immediately affect
the number of species because most of the population sim-
ply remains where they are. Just changing a variable does
not cause anything to move to a different species. There-
fore, after changingCt in rtNEAT, the entire population
must be reassigned to the existing species based on the newCt. As in original NEAT, if a network does not belong in
any species a new species is created with that network as its
representative.1

1Depending on the specific game,Ct does not necessarily need to be
adjusted and species reorganized as often as every replacement. The num-
ber of ticks between adjustments is chosen by the game designer.

3.1.5 Step 5: Replacing the old agent with the new one

Since an individual was removed in step 1, the new off-
spring needs to replace it. How agents are replaced depends
on the game. In some games, the neural network can be
removed from a body and replaced without doing anything
to the body. In others, the body may have died and need
to be replaced as well. rtNEAT can work with any of these
schemes as long as an old neural network gets replaced with
a new one.

Step 5 concludes the steps necessary to approximate
original NEAT in real-time. However, there is one remain-
ing issue. The entire loop should be performed at regular
intervals, everyn ticks: How shouldn be chosen?

3.1.6 Determining Ticks Between Replacements

If agents are replaced too frequently, they do not live long
enough to reach the minimum timem to be evaluated. For
example, imagine that it takes 100 ticks to obtain an ac-
curate performance evaluation, but that an individual is re-
placed in a population of 50 on every tick. No one ever lives
long enough to be evaluated and the population always con-
sists of only new agents. On the other hand, if agents are
replaced too infrequently, evolution slows down to a pace
that the player no longer enjoys.

Interestingly, the appropriate frequency can be deter-
mined through a principled approach. LetI be the fraction
of the population that is too young and therefore cannot be
replaced. As before,n is the ticks between replacements,m
is the minimum time alive, andjP j is the population size. A
law of eligibility can be formulated that specifies what frac-
tion of the population can be expected to be ineligible once
evolution reaches a steady state (i.e. after the first few time
steps when no one is eligible):I = mjP jn: (2)

According to Equation 2, the larger the population and the
more time between replacements, the lower the fraction of
ineligible agents. Based on the law, rtNEAT can decide on
its own how many ticksn should lapse between replace-
ments for a preferred level of ineligibility, specific popula-
tion size, and minimum time between replacements:n = mjP jI : (3)

It is best to let the user chooseI because in general it is most
critical to performance; if too much of the population is in-
eligible at one time, the mating pool is not sufficiently large.
Equation 3 allows rtNEAT to determine the correct number
of ticks between replacementsn to maintain a desired el-
igibility level. In NERO, 50% of the population remains
eligible using this technique.

By performing the right operations everyn ticks, choos-
ing the right individual to replace and replacing it with an
offspring of a carefully chosen species, rtNEAT is able to
replicate the dynamics of NEAT in real-time. Thus, it is
now possible to deploy NEAT in a real video game and in-
teract with complexifying agents as they evolve. The next
section describes such a game.



Scenario 1: Enemy Turret Scenario 2: 2 Enemy Turrets Scenario 3: Mobile Turrets & Walls Battle

Figure 2:A turret training sequence. The figure depicts a sequence of increasingly difficult and complicated training exercises in
which the agents attempt to attack turrets without getting hit. In the first exercise there is only a single turret but moreturrets are added
by the player as the team improves. Eventually walls are added and the turrets are given wheels so they can move. Finally, after the team
has mastered the hardest exercise, it is deployed in a real battle against another team.

4 NeuroEvolving Robotic Operatives (NERO)
NERO is representative of a new genre that is only possible
through machine learning. The idea is to put the player in
the role of atrainer or adrill instructor who teaches a team
of agents by designing a curriculum.

In NERO, the learning agents are simulated robots, and
the goal is to train a team of robots for military combat. The
robots begin the game with no skills and only the ability to
learn. In order to prepare for combat, the player must design
a sequence of training exercises and goals specified with a
set of sliders. Ideally, the exercises are increasingly diffi-
cult so that the team can begin by learning a foundation of
basic skills and then gradually building on them (figure 2).
When the player is satisfied that the team is prepared, the
team is deployed in a battle against another team trained by
another player (possibly on the internet), making for a cap-
tivating and exciting culmination of training. The challenge
is to anticipate the kinds of skills that might be necessary
for battle and build training exercises to hone those skills.
The next two sections explain how the agents are trained in
NERO and how they fight an opposing team in battle.

4.1 Training Mode

The player sets up training exercises by placing objects on
the field and specifying goals through several sliders (fig-
ure 3). The objects include static enemies, enemy turrets,
rovers (i.e. turrets that move), and walls. To the player, the
sliders serve as an interface for describing ideal behavior.
To rtNEAT, they represent coefficients for fitness compo-
nents. For example, the sliders specify how much to reward
or punish approaching enemies, hitting targets, getting hit,
following friends, dispersing, etc. Each individual fitness
component is normalized to a Z-score so that each fitness
component is measured on the same scale. Fitness is com-
puted as the sum of all these normalized components mul-
tiplied by their slider levels. Thus, the player has a natural
interface for setting up a training exercise and specifying
desired behavior.

Robots have several types of sensors. Although NERO
programmers frequently experiment with new sensor con-
figurations, the standard sensors include enemy radars, an
“on target” sensor, object rangefinders, and line-of-fire sen-
sors. Figure 4 shows a neural network with the standard set
of sensors and outputs. Several enemy radar sensors divide

Figure 3:Setting up training scenarios. This screenshot shows
items the player can place on the field and sliders used to control
behavior. The robot is a stationary enemy turret that turns back
and forth as it shoots repetitively. Behind the turret is a wall. The
player can place turrets, other kinds of enemies, and walls any-
where on the training field. On the right is the box containing
slider controls. These sliders specify the player’s preference for
the behavior the team should try to optimize. For example the“E”
icon means “approach enemy,” and the descending bar above it
specifies that the player wants to punish robots that approach the
enemy. The crosshair icon represents “hit target,” which isbeing
rewarded. The sliders represent fitness components that areused
by rtNEAT. The value of the slider is used by rtNEAT as the co-
efficient of the corresponding fitness component. Through placing
items on the field and setting sliders, the player creates training
scenarios where learning takes place.

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

Figure 4: NERO input sensors and action outputs. Each
NERO robot can see enemies, determine whether an enemy is cur-
rently in its line of fire, detect objects and walls, and see the direc-
tion the enemy is firing. Its outputs specify the direction ofmove-
ment and whether or not to fire. This configuration has been used
to evolve varied and complex behaviors; other variations work as
well and the standard set of sensors can easily be changed.



the 360 degrees around the robot into slices. Each slice acti-
vates a sensor in proportion to how close an enemy is within
that slice. Rangefinders project rays at several angles from
the robot. The distance the ray travels before it hits an ob-
ject is returned as the value of the sensor. The on-target
sensor returns full activation only if a ray projected along
the front heading of the robot hits an enemy. The line of fire
sensors detect where a bullet stream from the closest enemy
is heading. Thus, these sensors can be used to avoid fire.
Robots can also be trained with friend radar sensors that
allows them to see what each other are doing. The com-
plete sensor set supplies robots with sufficient information
to make intelligent tactical decisions.

Training mode is designed to allow the player to set up
a training scenario on the field where the robots can contin-
ually be evaluated while the worst robot’s neural network
is replaced every few ticks. Thus, training must provide a
standard way for robots to appear on the field in such a way
that every robot has an equal chance to prove its worth. To
meet this goal, the robots spawn from a designated area of
the field called thefactory. Each robot is allowed a limited
time on the field during which its fitness is assessed. When
their time on the field expires, robots are transported back
to the factory, where they begin another evaluation. Neural
networks are only replaced in robots that have been put back
in the factory. The factory ensures that a new neural network
cannot get lucky by appearing in a robot that happens to be
standing in an advantageous position: All evaluations begin
consistently in the factory. In addition, the fitness of robots
that survive more than one deployment on the field is up-
dated through a diminishing average that gradually forgets
deployments from the distant past.

Training begins by deploying 50 robots on the field.
Each robot is controlled by a neural network with random
connection weights and no hidden nodes, as is the usual
starting configuration for NEAT. As the neural networks are
replaced in real-time, behavior improves dramatically, and
robots eventually learn to perform the task the player sets
up. When the player decides that performance has reached
a satisfactory level, he or she can save the team in a file.
Saved teams can be reloaded for further training in different
scenarios, or they can be loaded into battle mode. In battle,
they face off against teams trained by an opponent player,
as will be described next.

4.2 Battle Mode

In battle mode, the player discovers how training paid off. A
battle team of 20 robots is assembled from as many differ-
ent training teams as desired. For example, perhaps some
robots were trained for close combat while others were
trained to stay far away and avoid fire. A player can com-
pose a heterogeneous team from both training sessions.

Battle mode is designed to run over a server so that two
players can watch the battle from separate terminals on the
internet. The battle begins with the two teams arrayed on
opposite sides of the field. When one player presses a “go”
button, the neural networks obtain control of their robots
and perform according to their training. Unlike in train-
ing, where being shot does not lead to a robot body being

Figure 5: Running away backwards. This training screen-
shot shows several robots backed up against the wall after running
backwards and shooting at the enemy, which is being controlled
from a first-person perspective by a human trainer using a joy-
stick. Robots learned to run away from the enemy backwards dur-
ing avoidance training because that way they can shoot as they
flee. Running away backwards is an example of evolution’s ability
to find novel and effective behaviors.

damaged, the robots are actually destroyed after being shot
several times in battle. The battle ends when action ceases
either because one team is completely eliminated, or be-
cause the remaining robots will not fight. The winner is the
team with the most robots left standing.

The basic battlefield configuration is an empty pen sur-
rounded by four bounding walls, although it is possible to
compete on a more complex field, with walls or other ob-
stacles. Players train their robots and assemble teams for
the particular battlefield configuration on which they intend
to play. In the experiments described in this chapter, the
battlefield was the basic pen.

The next section gives examples of actual NERO training
and battle sessions.

5 Playing NERO
Behavior can be evolved very quickly in NERO, fast enough
so that the player can be watching and interacting with the
system in real time. The game engine Torque, licensed from
GarageGames (http://www.garagegames.com/),
drives NERO’s simulated physics and graphics. An im-
portant property of the Torque engine is that its physics
simulation is slightly nondeterministic, so that the same
game is never played twice.

The first playable version of NERO was completed in
May of 2004. At that time, several NERO programmers
trained their own teams and held a tournament. As exam-
ples of what is possible in NERO, this section outlines the
behaviors evolved for the tournament, the resulting battles,
and the real-time performance of NERO and rtNEAT.

NERO can evolve behaviors very quickly in real-time.
The most basic battle tactic is to aggressively seek the en-
emy and fire. To train for this tactic, a single static enemy
was placed on the training field, and robots were rewarded
for approaching the enemy. This training required robots to
learn to run towards a target, which is difficult since robots
start out in the factory facing in random directions. Starting
from random neural networks, it takes on average 99.7 sec-
onds for 90% of the robots on the field learn to approach the
enemy successfully (10 runs,sd = 44:5s).



Figure 6:Avoiding turret fire. The arrow points in the current
direction of the turret fire (the arrow is not part of the NERO dis-
play and is only added for illustration). Robots in traininglearn to
run safely around the enemy’s line of fire in order to attack. No-
tice how they loop around the back of the turret and attack from
behind. When the turret moves, the robots change their attack tra-
jectory accordingly. Learning to avoid fire is an important battle
skill. The conclusion is that rtNEAT was able to evolve sophisti-
cated, nontrivial behavior in real time.

Figure 7:Navigating a maze. Incremental training on increas-
ingly complex wall configurations produced robots that could nav-
igate this maze to find the enemy. The robots spawn from the left
side of the maze and proceed to an enemy at the right.

Robots were also trained to avoid the enemy. In fact, rt-
NEAT was flexible enough todevolvea population that had
converged on seeking behavior into a completely opposite,
avoidance, behavior. For avoidance training, players con-
trolled an enemy robot with a joystick and ran it towards
robots on the field. The robots learned to back away in or-
der to avoid being penalized for being too near the enemy.
Interestingly, robots preferred to run away from the enemy
backwards because that way they could still shoot the en-
emy (figure 5).

By placing a turret on the field and asking robots to ap-
proach the turret without getting hit, robots were able to
learn to avoid enemy fire (figure 6).

Other interesting behaviors were evolved to test the lim-
its of rtNEAT rather than specifically prepare the troops for
battle. For example, robots were trained to run around walls
to approach the enemy. As performance improved, players

incrementally added more walls until the robots could nav-
igate an entire maze without any path-planning (figure 7)!

In a powerful demonstration of real-time adaptation with
implications beyond NERO, robots that were trained to ap-
proach a designated location (marked by a flag) through a
hallway were then attacked by an enemy controlled by the
player (figure 8). After two minutes, the robots learned to
take an alternative path through an adjacent hallway in or-
der to avoid the enemy’s fire. While such training is used
in NERO to prepare robots for battle, the same kind of
adaptation could be used in any interactive game to make
it more realistic and interesting. Such fast strategic ad-
justment demonstrates that rtNEAT can be used in existing
video game genres as well as in NERO.

In battle, some teams that were trained differently were
nevertheless evenly matched, while some training types
consistently prevailed against others For example, an ag-
gressive seeking team from the tournament had only a slight
advantage over an avoidant team, winning six out of ten bat-
tles, losing three, and tying one. The avoidant team runs in a
pack to a corner of the field’s enclosing wall. Sometimes, if
they make it to the corner and assemble fast enough, the ag-
gressive team runs into an ambush and is obliterated. How-
ever, slightly more often the aggressive team gets a few
shots in before the avoidant team can gather in the corner. In
that case, the aggressive team traps the avoidant team with
greater surviving numbers. The conclusion is that seeking
and running away are fairly well-balanced tactics, neither
providing a significant advantage over the other. The inter-
esting challenge of NERO is to conceive strategies that are
clearly dominant over others.

One of the best teams was trained by observing a phe-
nomenon that happened consistently in battle. Chases
among robots from opposing teams frequently caused
robots to eventually reach the field’s bounding walls. Partic-
ularly for robots trained to avoid turret fire by attacking from
behind (figure 6), enemies standing against the wall present
a serious problem since it is not possible to go around them.
Thus, training a team against a turret with its back against
the wall, it was possible to familiarize robots with attack-
ing enemies against a wall. This team learned to hover near
the turret and fire when it turned away, but back off quickly
when it turned towards them. The wall-based team won the
first NERO tournament by using this strategy. The wall-
trained team wins 100% of the time against the aggressive
seeking team. Thus, it is possible to learn sophisticated tac-
tics that dominate over simpler ones like seek or avoid.

6 Discussion
Participants in the first NERO tournament agreed that the
game was engrossing and entertaining. Battles were excit-
ing for all the participants, evoking plentiful clapping and
cheering. Players spent hours honing behaviors and assem-
bling teams with just the right combination of tactics.

The success of the first NERO prototype suggests that
the rtNEAT technology has immediate potential commer-
cial applications in modern games. Any game in which
agent behavior is repetitive and boring can be improved by
allowing rtNEAT to at least partially modify tactics in real-



(a) Robots approach flag (b) Player attacks on left (c) Robots learn new approach
Figure 8:Video game characters adapt to player’s actions. The robots in these screenshots spawn from the top of the screen and
must approach the flag (circled) at the bottom left. White arrows point in the direction of mass motion. (a) The robots firstlearn to take
the left hallway since it is the shortest path to the flag. (b) Ahuman player (identified by a square) attacks inside the lefthallway and
decimates the robots. (c) Even though the left hallway is theshortest path to the flag, the robots learn that they can avoidthe human
enemy by taking the right hallway, which is protected from the human’s fire by a wall. rtNEAT allows the robots to adapt in this way to
the player’s tactics in real time.

time. Especially in persistent video games such as Massive
Multiplayer Online Games (MMOGs) that last for months
or years, the potential for rtNEAT to continually adapt and
optimize agent behavior may permanently alter the gaming
experience for millions of players around the world.

7 Conclusion
A real-time version of NEAT (rtNEAT) was developed to
allow users to interact with evolving agents. In rtNEAT,
an entire population is simultaneously and asynchronously
evaluated as it evolves. Using this method, it was possible
to build an entirely new kind of video game, NERO, where
the characters adapt in real time in response to the player’s
actions. In NERO, the player takes the role of a trainer and
constructs training scenarios for a team of simulated robots.
The rtNEAT technique can form the basis for other similar
interactive learning applications in the future, and eventu-
ally even make it possible to use gaming as a method for
training people in sophisticated tasks.
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