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Abstract- In most modern video games, character be- Inmostvideo games, scripts cannot learn or adapt to control
havior is scripted; no matter how many times the player the agents: Opponents will always make the same moves
exploits a weakness, that weakness is never repaired. and the game quickly becomes boring. Machine learning
Yet if game characters could learn through interacting could potentially keep video games interesting by allowing
with the player, behavior could improve during game- agents to change and adapt. However, a major problem with
play, keeping it interesting. This paper introduces the learning in video games is that if behavior is allowed to
real-time NeuroEvolution of Augmenting Topologies (rt- change, the game content becomes unpredictable. Agents
NEAT) method for evolving increasingly complex arti- might learn idiosyncratic behaviors or even not learn at all
ficial neural networks in real time, as a game is being making the gaming experience unsatisfying. One way to
played. The rtNEAT method allows agents to change avoid this problem is to train agents offline, and then freeze
and improve during the game. In fact, tNEAT makes the results into the final game. However, if behaviors are
possible a new genre of video games in which the player frozen before the game is released, agents cannot adapt and
teaches a team of agents through a series of customized change in response to the tactics of particular players.
training exercises. In order to demonstrate this concept If agents are to adapt and change in real-time, a powerful
in the NeuroEvolving Robotic Operatives (NERO) game, and reliable machine learning method is needed. This paper
the player trains a team of robots for combat. This describes a novel game built around a real-time enhance-
paper describes results from this novel application of ment of the NeuroEvolution of Augmenting Topologies
machine learning, and also demonstrates how multiple method (NEAT; Stanley and Miikkulainen 2002b, 2004).
agents can evolve and adapt in video games like NERO NEAT evolves increasingly complex neural networks, i.e.
in real time using rtNEAT. In the future, rtNEAT may it complexifies Real-time NEAT (rtNEAT) is able to com-
allow new kinds of educational and training applications plexify neural networkss the game is playednaking it

that adapt online as the user gains new skills. possible for agents to evolve increasingly sophisticated b
ducti haviors in real time. Thus, agent behavior improves visibly
1 Introduction during gameplay. The aim is to show that machine learning

The world video game market in 2002 was between $1§ indispensable for some kinds of video games to work, and
billion and $20 billion, larger than even that of Hollywoodto show how tNEAT makes such an application possible.
(Thurrott 2002). Video games have become a facet of many |n order to demonstrate the potential of rtNEAT,
people’s lives and the market continues to expand. Becaugfe Digital Media Collaboratory (DMC) at the Uni-
there are millions of players and because video games caiyrsity of Texas at Austin initiated the NeuroEvolving
perhaps the least risk to human life of any real-world aprohotic Operatives (NERO) project in October of 2003
plication, they make an excellent testbed for techniques it t p: / / dev. i c2. or g/ ner o_publ i c¢). This project
artificial intelligence and machine learning (Laird and vans based on a proposal for a game based on rtNEAT de-
Lent 2000). In fact, Fogel et al. (2004) argue that such teckyeloped at the2nd Annual Game Development Workshop
niques can potentially both increase the longevity of videgn Artificial Intelligence, Interactivity, and Immersiven-
games and decrease their production costs. ronmentsin Austin, TX (presentation by Kenneth Stanley,

One of the most compelling yet least exploited technoloz003). The idea was to create a game in which learning
gies in the video game industry is machine learning. Thugs indispensablgin other words, without learning NERO
there is an unexplored opportunity to make video gamesuld not exist as a game. In NERO, the player takes the
more interesting and realistic, and to build entirely new-ge role of a trainer, teaching skills to a set of intelligent atye
res. Such enhancements may have applications in educatightrolled by rtNEAT. Thus, NERO is a powerful demon-
and training as well, changing the way people interact wittration of how machine learning can open up new possibil-
their computers. ities in gaming and allow agents to adapt.

In the video game industry, the termNon-player- This paper describes tNEAT and NERO, and reviews
character (NPC) refers to an autonomous computerresults from the first year of this ongoing project. The next
controlled agent in the game. This paper focuses on traigection briefly reviews learning methods for games. NEAT
ing NPCs as intelligent agents, and the standard Al terg then described, including how it was enhanced to create
agentsis therefore used to refer to them. The behavior oftNEAT. The last sections describe NERO and summarize
agents in current games is often repetitive and predictabl@e current status and performance of the game.



2 Background and only produces a single requested action without check-

This section reviews several machine learning techniquég the values of multiple actions. (2) Diverse popula-
that can be used in games, and explains méyroevolution tions can be explicitly maintained (Stanley and Miikkulai-
(NE), i.e. the artificial evolution neural networks usingea g Nen 2002b). (3) The behavior of an individual during its
netic algorithm, is the ideal method for real-time learriimg lifetime does not change. (4) representatiorof the solu-
NERO. Because agents in NERO need to learn online 46N can be evolved, allowing simple behaviors to be discov-
the game is played, predetermined training targets are ugtred quickly in the beginning and later complexified (Stan-
ally not available, ruling out supervised techniques swuch ey and Miikkulainen 2004). (5) Recurrent neural networks
backpropagation (Rumelhart et al. 1986) and decision tr&&n be evolved that utilize memory (Gomez and Miikkulai-
learning (Utgoff 1989). nen 1999). Thus, NE is a good match for video games.
Traditional reinforcement learning (RL) techniques such  The currentchallenge is to achieve evolutioreial time
as Q-Learning (Watkins and Dayan 1992) and Sajsa(as the game is played. If agents could be evolved in a
with a Case-Based function approximator (SARSA-CABASMooth cycle of replacement, the player could interact with
Santamaria et al. 1998) can adapt in domains with sparggolution during the game and the many benefits of NE
feedback (Kaelbling et al. 1996; Sutton and Barto 1998yould be available to the video gaming community. This
and thus can be applied to video games as well. Theg@per introduces such a real-time NE technique, rtNEAT,
techniques learn to predict the long-term reward for takinghich is applied to the NERO multi-agent continuous-state
actions in different states by exploring the state space aiifieo game. In NERO, agents must master both motor con-
keeping track of the results. However, video games hag€ol and higher-level strategy to win the game. The player

several properties that pose significant challenges to-tradcts as a trainer, teaching a team of robots the skills they
tional RL: need to survive. The next section reviews the NEAT neu-

roevolution method, and how it can be enhanced to produce
1. Large state/action space Since games usually have {NEAT.

several different types of objects and characters, and ] ) .
many different possible actions, the state/action space Real-time NeuroEvolution of Augmenting
that RL must explore is high-dimensional. Not only Topologies (rtNEAT)

does this pose the usual problem of encoding a highthe rtNEAT method is based on NEAT, a technique for
dimensional space (Sutton and Barto 1998), but igvolving neural networks for complex reinforcement learn-
a real-time game there is the additional challenge ahg tasks using a genetic algorithm (GA). NEAT combines
checking the value of every possible action on evenhe usual search for the appropriate network weights with
game tick for every agent in the game. complexificatiorof the network structure, allowing the be-

2. Diverse behaviors Agents learning simultaneously havior of evolved neural networks to become increasingly
should not all converge to the same behavior becausephisticated over generations. This approach is highly
a homogeneous population would make the gameffective: NEAT outperforms other neuroevolution (NE)
boring. Yet since RL techniques are based on commethods e.g. on the benchmark double pole balancing task
vergence guarantees and do not explicitly maintai{Stanley and Miikkulainen 2002a,b). In addition, because
diversity, such an outcome is likely. NEAT starts with simple networks and expands the search

3. Consistent individual behaviors RL depends on space only when beneficial, it is able to find significantly
occasionally taking a random action in order to exmore complex controllers than fixed-topology evolution, as
plore new behaviors. While this strategy works welldemonstrated in a robotic strategy-learning domain (8tanl
in offline learning, players do not want to see an inand Miikkulainen 2004). These properties make NEAT an
dividual agent periodically making inexplicable andattractive method for evolving neural networks in complex
idiosyncratic moves relative to its usual behavior.  tasks such as video games.

4. Fast adaptation Players do not want to wait hours  Like most GAs, NEAT was originally designed to run
for agents to adapt. Yet a complex state/action repreffline Individuals are evaluated one or two at a time, and
sentation can take a long time to learn. On the othefter the whole population has been evaluated, a new popu-
hand, a simple representation would limit the abilitylation is created to form the next generation. In other words
to learn sophisticated behaviors. Thus, choosing the a normal GA it is not possible for a human to interact
right representation is difficult. with the multiple evolving agentahile they are evolving

5. Memory of past states If agents remember past This section first briefly reviews the original offline NEAT
events, they can react more convincingly to themethod, and then describes how it can be modified to make
present situation. However, such memory requirei possible for players to interact with evolving agentsaalr
keeping track of more than the current state, rulinggme. See e.g. Stanley and Miikkulainen (2002a,b, 2004) for
out traditional Markovian methods. a complete description of NEAT.

NEAT is based on three key ideas. First, evolving net-

While these properties make applying traditional Rlyork structure requires a flexible genetic encoding. Each

techniques difficult, NE is an alternative RL technique thaﬁenome includes a list aonnection genegach of which
can meet each requirement: (1) NE works well in highrefers to twonode genedeing connected. Each connec-
dimensional state spaces (Gomez and Miikkulainen 2003jgny gene specifies the in-node, the out-node, the conmectio



weight, whether or not the connection gene is expressed (an
enable bit), and amnovation numbemwhich allows finding
corresponding genes during crossover. Mutation can change Q
both connection weights and network structures. Connec-
tion weights mutate as in any NE system, with each con-
nection either perturbed or not. Structural mutations civhi
allow complexity to increase, either add a new connection
or a new node to the network. Through mutation, genomes
of varying sizes are created, sometimes with completely dif ‘1 low-fitness agent ax e
g
ferent connections specified at the same positions. Cross over
Each unique gene in the population is assigned a unique ¥
innovation number, and the numbers are inherited during @
crossover. Innovation numbers allow NEAT to perform New agent
crossover without the need for expensive topological analy |
sis. Genomes of different organizations and sizes stay CofRigure 1:The main replacement cycle in tNEAT. Robot game
patible throughout evolution, and the problem of matchinggents (represented as small circles) are depicted playjage in
different topologies (Radcliffe 1993) is essentially alexd. the large box. Every few ticks, two high-fitness robots atected
Second, NEAT speciates the population, so that individe produce an offspring that replaces another of lower fén€his
uals compete primarily within their own niches instead ofycle of replacement operates continually throughout theey
with the population at large. This way, topological innova€reating a constant turnover of new behaviors.

tions are protected and have time to optimize their strectuthe fitness of individual. Fitness sharing adjusts it ﬁé
before competing with other niches in the population. Th@here|S| is the number of individuals in the species. In
reproduction mechanism for NEAT explicit fitness shar-  gther words, fitness is reduced proportionally to the size
ing (Goldberg and Richardson 1987), where organisms ig the species. This adjustment is important because se-
the same species must share the fitness of their niche, prgetion in tNEAT must be based on adjusted fitness rather
venting any one species from taking over the population. than original fitness in order to maintain the same dynamics
_ Third, unI.|ke other systems that evolve network topoloz s NEAT. In addition, because the number of offspring as-
gies and weights (Gruau et al. 1996; Yao 1999) NEAT besjgned to a species in NEAT is based on its average fithess
gins with a uniform population of simple networks with NOF  this average must always be kept up-to-date. Thus, af-

hidden nodes. New structure is introduced incrementally gg, everyn ticks of the game clock, tNEAT performs the
structural mutations occur, and only those structures\seirv following operations:

that are found to be useful through fitness evaluations. This
way, NEAT searches through a minimal number of weight 1. Remove the agent with the woratljustedfitness
dimensions and finds the appropriate complexity level for ~ from the population assuming one has been alive suf-
the problem. ficiently long so that it has been properly evaluated.
In previous work, each of the three main components
of NEAT (i.e. historical markings, speciation, and start-
ing from minimal structure) were experimentally ablated in 3, Choose a parent species to create the new offspring
order to demonstrate how they contribute to performance
(Stanley and Miikkulainen 2002b). The ablation study 4. Adjust compatibility threshold’; dynamically and
demonstrated that all three components are interdependent  feéassignall agents to species
and necessary to make NEAT work. The next section ex-
plains how NEAT can be enhanced to work in real time.

3.1 Running NEAT in Real Time

2. Re-estimaté” for all species

5. Place the new agent in the world

Each of these steps is discussed in more detail below.
In NEAT, the population is replaced at each generatior13.'1'1 Step 1: Removing the worst agent
However, in real time, replacing the entire population toThe goal of this step is to remove a poorly performing agent
gether on each generation would look incongruous since efrom the game, hopefully to be replaced by something bet-
eryone’s behavior would change at once. In addition, behater. The agent must be chosen carefully to preserve specia-
iors would remain static during the large gaps between getien dynamics. If the agent with the worstadjusteditness
erations. Instead, in rtNEAT, a single individual is re@dc were chosen, fithess sharing could no longer protect innova-
every few game ticks (as in e.qu,()-ES; Beyer and Paul tion because new topologies would be removed as soon as
Schwefel 2002). One of the worst individuals is removedhey appear. Thus, the agent with the wadjustedfitness
and replaced with a child of parents chosen from among ttslould be removed, since adjusted fithess takes into account
best. This cycle of removal and replacement happens caspecies size, so that new smaller species are not removed as
tinually throughout the game (figure 1). The challenge is teoon as they appear.
preserve the usual dynamics of NEAT, namely protection of It is also important not to remove agents that are too
innovation through speciation and complexification. young. In original NEAT,ageis not considered since net-
The main loop in rtNEAT works as follows. Let be works are generally all evaluated for the same amount of



time. However, in rtNEAT, new agents are constantly being.1.5 Step 5: Replacing the old agent with the new one
born, meaning different agents have been around for dig—. S .
ince an individual was removed in step 1, the new off-

ferent lengths of time. It would be dangerous to remove . .

ring needs to replace it. How agents are replaced depends
agents that are too young because they have not played for

2 on the game. In some games, the neural network can be
long enough to accurately assess their fithess. Therefore, 1

removed from a body and replaced without doing anythin
NEAT only removes agents who have played for more that% the body. In othe¥s the bpody may have diec? ang neegd
the minimum amount of timexz. ’ ’

o to be replaced as well. tNEAT can work with any of these
3.1.2 Step 2: Re-estimating” schemes as long as an old neural network gets replaced with

Assuming there was an agent old enough to be removed, ftd'<.” °"¢:
9 g 9 ' "~ Step 5 concludes the steps necessary to approximate

species now has one less member and therefore its average. . . : .
. fu . o — original NEAT in real-time. However, there is one remain-
fitnessF has likely changed. It is important to keépup- . ~. .

— ) . . __.ing issue. The entire loop should be performed at regular
to-date becauseg' is used in choosing the parent species I ervals. evervs ticks: How shouldh be chosen?
the next step. Therefore, tNEAT needs to re-estinkate ' v ' |

3.1.3 Step 3: Choosing the parent species 3.1.6 Determining Ticks Between Replacements

If agents are replaced too frequently, they do not live long
) 7 . : enough to reach the minimum time to be evaluated. For

speciesk is =-|P|, where F}; is the average fitness of o, ample. imagine that it takes 100 ticks to obtain an ac-
speciesk, Fy; is the sum of all the average species’ fit-curate performance evaluation, but that an individual is re
nesses, and| is the population size. placed in a population of 50 on every tick. No one ever lives

This behavior needs to be approximated in rtNEAT evelong enough to be evaluated and the population always con-
thoughn,;, cannot be assigned explicitly (since only one offsists of only new agents. On the other hand, if agents are
spring is created at a time). Given thatis proportional to replaced too infrequently, evolution slows down to a pace
F, the parent species can be chosen probabilistically usitigat the player no longer enjoys.

In original NEAT the number of offspring;, assigned to

the same relationship: Interestingly, the appropriate frequency can be deter-
I mined through a principled approach. Lebe the fraction
Pr(Si) = Foor (1) ofthe population that is too young and therefore cannot be

. . ) L replaced. As beforey is the ticks between replacementis,
The probability of choosing a given parent Species is prag he minimum time alive, anfP| is the population size. A

portic_)na}l to its average fitness compared to the total of all,; o eligibility can be formulated that specifies what frac-
species’ average fitnesses. Thus, over the long run, the i, of the population can be expected to be ineligible once

pected number of offspring for each species is proportiong,,tion reaches a steady state (i.e. after the first few tim
tonyg, preserving the speciation dynamics of original NEATSteIOS when no one is eligible):

3.1.4 Step 4: Dynamic Compatibility Thresholding m )

I=—.
Pn
Networks are placed into a species in original NEAT if they i ) Pl .
are compatible with a representative member of the specigtccording to Equation 2, the larger the population and the

rtNEAT attempts to keep the number of species constant i5j°re time between replacements, the lower the fraction of
adjusting a threshold};, that determines whether an indi- N€ligible agents. Based on the law, tNEAT can decide on
vidual is compatible with a species’ representative. WheltS 0Wn how many ticks: should lapse between replace-
there are too many species, is increased to make speciesents for a preferred level of ineligibility, specific popel
more inclusive; when there are too fef, is decreased to 10N Size, and minimum time between replacements:

be stricter. An advantage of this kind dfnamic compat- m

ibility thresholdingis that it keeps the number of species n= W (3)
relatively stable.

In tNEAT changingC; alone cannot immediately affect Itis best to let the user choo$éecause in general it is most
the number of species because most of the population sigritical to performance; if too much of the population is in-
ply remains where they are. Just changing a variable doekgible at one time, the mating pool is not sufficiently larg
not cause anything to move to a different species. Ther&quation 3 allows rtNEAT to determine the correct number
fore, after changing’; in rtNEAT, the entire population of ticks between replacementsto maintain a desired el-
must be reassigned to the existing species based on the rigibility level. In NERO, 50% of the population remains
C;. As in original NEAT, if a network does not belong in eligible using this technique.
any species a new species is created with that network as itsBy performing the right operations evemyticks, choos-
representativé. ing the right individual to replace and replacing it with an

1Depending on the specific gam@; does not necessarily need to be offsprlng of a Carefu,”y chosen speues, r,tNEAT IS abl_e _tO
adjusted and species reorganized as often as every reglatefine num- eplicate the dynamics of NEAT in real-time. Thus, it is
ber of ticks between adjustments is chosen by the game @gsign now possible to deploy NEAT in a real video game and in-

teract with complexifying agents as they evolve. The next
section describes such a game.
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Figure 2: A turret training sequence. The figure depicts a sequence of increasingly difficult andglizated training exercises in
which the agents attempt to attack turrets without gettihglh the first exercise there is only a single turret but moreets are added
by the player as the team improves. Eventually walls arecddd the turrets are given wheels so they can move. Finéhy,the team
has mastered the hardest exercise, it is deployed in a retled Against another team.

4 NeuroEvolving Robotic Operatives (NERO)

NERO is representative of a new genre that is only possibl®

through machine learning. The idea is to put the player

the role of arainer or adrill instructor who teaches a team

of agents by designing a curriculum. _ Ers
In NERO, the learning agents are simulated robots, an¢: =+ =

the goal is to train a team of robots for military combat. Thel i

robots begin the game with no skills and only the ability to

learn. In order to prepare for combat, the player must desid'_rigure 3:Setting up training scenarios. This screenshot shows

a sequence of training exercises and goals specified witH!@ms the player can place on the field and sliders used toatont

set of sliders. Ideally, the exercises are increasinglj-dif behavior. The robot is a stationary enemy turret that tuatkb

cult so that the team can begin by learning a foundation 8{1d forth as it shoots repetitively. Behind the turret is d.wehe

. . - . player can place turrets, other kinds of enemies, and walls a
basic skills and then gradually building on them (figure 2)\‘Nhere on the training field. On the right is the box containing

When. the player IS satisfied th"’}t the team is prepargd, WQfer controls. These sliders specify the player’s pegfee for
team is deployed in a battle against another team trained ¢ pehavior the team should try to optimize. For exampléBie
another player (possibly on the internet), making for a caficon means “approach enemy,” and the descending bar above it
tivating and exciting culmination of training. The chalign specifies that the player wants to punish robots that apprtvec

is to anticipate the kinds of skills that might be necessarmnemy. The crosshair icon represents “hit target,” whidheisig

for battle and build training exercises to hone those skillgewarded. The sliders represent fitness components thasad
The next two sections explain how the agents are trained Ry 'tNEAT. The value of the slider is used by rtNEAT as the co-

NERO and how they fight an opposing team in battle. efficient of the corresponding fithess component. Throughipy
items on the field and setting sliders, the player creatésiriga

4.1 Training Mode scenarios where learning takes place.

The player sets up training exercises by placing objects on

the field and specifying goals through several sliders (fig-

ure 3). The objects include static enemies, enemy turrets,

rovers (i.e. turrets that move), and walls. To the playes, th LeftRight Forward/Back  Fire

sliders serve as an interface for describing ideal behavior

To rtNEAT, they represent coefficients for fithess compo-

nents. For example, the sliders specify how much to reward

or punish approaching enemies, hitting targets, gettitg hi

following friends, dispersing, etc. Each individual fitses

component is normalized to a Z-score so that each fitness

component is measured on the same scale. Fitness is com-

puted as the sum of all these normalized components mul-

tiplied by their slider levels. Thus, the player has a ndtura Enemy Radars On  Object Rangefiners  Enemy

interface for setting up a training exercise and specifying Target SLOF

desired behavior. . . . ensors
Robots have several types of sensors. Although NER gure 4: NERO input sensors and action outputs. Each

. | : ith ERO robot can see enemies, determine whether an enemy is cur
programmers frequently experiment with new sensor COI't]éntly in its line of fire, detect objects and walls, and seedinec-

figurations, the standard sensors include enemy radars, @, the enemy is firing. Its outputs specify the directionraive-
“on target” sensor, object rangefinders, and line-of-fire se ment and whether or not to fire. This configuration has beed use
sors. Figure 4 shows a neural network with the standard sgtevolve varied and complex behaviors; other variationskves

of sensors and outputs. Several enemy radar sensors divigell and the standard set of sensors can easily be changed.
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the 360 degrees around the robot into slices. Each slice acti
vates a sensor in proportion to how close an enemy is within
that slice. Rangefinders project rays at several angles from
the robot. The distance the ray travels before it hits an ob-
ject is returned as the value of the sensor. The on-target
sensor returns full activation only if a ray projected along
the front heading of the robot hits an enemy. The line of fire
sensors detect where a bullet stream from the closest enemy
is heading. Thus, these sensors can be used to avoid fire.
Robots can also be trained with friend radar sensors that
allows them to see what each other are doing. The corfilgureé 5: Running away backwards. This training screen-
plete sensor set supplies robots with sufficient infornmatioS"°t shows several robots backed up against the wall afteimg

. ) - . backwards and shooting at the enemy, which is being coattoll
to make intelligent tactical decisions.

g . . from a first-person perspective by a human trainer using a joy
Training mode is designed to allow the player to set URlick. Robots learned to run away from the enemy backwards du

a training scenario on 'Fhe field where the'robots can contiqh-g avoidance training because that way they can shoot s the
yally be evaluated Wh"_e the worst ropqts neural net‘_’Vorlﬂee. Running away backwards is an example of evolutionktybi

is replaced every few ticks. Thus, training must provide & find novel and effective behaviors.

standard way for robots to appear on the field in such a way

that every robot has an equal chance to prove its worth. To

meet this goal, the robots spawn from a designated areaqﬂmaged' the robots are actually destroyed after being shot
the field called thdactory. Each robot is allowed a limited several times in battle. The battle ends when action ceases

time on the field during which its fitness is assessed. Whéther because one team is completely eliminated, or be-

their time on the field expires, robots are transported badi@use the remaining robots will not fight. The winner is the
to the factory, where they begin another evaluation. Neurlffam with the most robots Ieft Sta”_d'”g-
networks are only replaced in robots that have been put back The basic battleﬁeld.conflguratlon IS an _el_”npty pen sur-
in the factory. The factory ensures that a new neural netwoﬂ?unded by four bounding WaII_s, a'thf’“gh it is possible to
cannot get lucky by appearing in a robot that happens to geMpete on a more_comp_lex field, with walls or other ob-
standing in an advantageous position: All evaluationsrbegPtacles: Players train their robots and assemble teams for
consistently in the factory. In addition, the fitness of rsho € Particular battlefield configuration on which they irden
that survive more than one deployment on the field is ur}p play. In the experlments described in this chapter, the
dated through a diminishing average that gradually forgeﬂ"j‘ttle'cleld was the ba_S|c pen. .
deployments from the distant past. The next sec_tlon gives examples of actual NERO training
Training begins by deploying 50 robots on the field@nd battle sessions.
Each robot is controlled by a neural network with randon; Playing NERO

connection weights and no hidden nodes, as is the usyal, _° . .
starting configuration for NEAT. As the neural networks arle@ehawor can be evolved very quickly in NERO, fast enough

; : o . 50 that the player can be watching and interacting with the
replaced in real-time, behavior improves dramatically] an piay 9 9

stem in real time. The game engine Torque, licensed from
robots eventually learn to perform the task the player seg 9 g 9

. rageGames h{t p: // www. gar ageganes. cont ),
up. When the player decides that performance has reach&r%/eég NERO's si(muplated physgilcs agdggraphics Azl im-
a satisfactory level, he or she can save the team in a f”e()rtant roperty of the Toraue endine is that ité hvsics
Saved teams can be reloaded for further training in differen. property q g phy

; . imulation is slightly nondeterministic, so that the same
scenarios, or they can be loaded into battle mode. In battlse gnty

d . ame is never played twice.
they face off against teams trained by an opponent playet, The first playable version of NERO was completed in
as will be described next.

May of 2004. At that time, several NERO programmers
4.2 Battle Mode trained their own teams and held a tournament. As exam-

les of what is possible in NERO, this section outlines the

In battle mode, the player discovers how training paid off. 'Lgehaviors evolved for the tournament, the resulting battle

battle team of 20 robots is assembled from as many d'ﬁezrind the real-time performance of NERO and rtNEAT.

ent training teams as desired. For example, perhaps SOME\ERD can evolve behaviors very quickly in real-time.

ropots were trained for close c_om.bat while others e he most basic battle tactic is to aggressively seek the en-
trained to stay far away and avoid fire. A player can com-

> . emy and fire. To train for this tactic, a single static enemy

pose a heterogeneous team from both training sessions. L
i ) was placed on the training field, and robots were rewarded
Battle mode is designed to run over a server so that MF]

players can watch the battle from separate terminals on t Ch approaching the enemy. This training required robots to

: . : earn to run towards a target, which is difficult since robots
internet. The battle begins with the two teams arrayed o . A L .
onposite sides of the field. When one plaver presses a a8 rt out in the factory facing in random directions. Stayti

PP ' player p 98 0m random neural networks, it takes on average 99.7 sec-

button, the neural n_etworks o.btaln. cpntrol Of. thgw rOpo%nds for 90% of the robots on the field learn to approach the
and perform according to their training. Unlike in train-

ing, where being shot does not lead to a robot body beinegnemy successfullf runs,sd = 44.5s).



incrementally added more walls until the robots could nav-
igate an entire maze without any path-planning (figure 7)!

In a powerful demonstration of real-time adaptation with
implications beyond NERO, robots that were trained to ap-
proach a designated location (marked by a flag) through a
hallway were then attacked by an enemy controlled by the
player (figure 8). After two minutes, the robots learned to
take an alternative path through an adjacent hallway in or-
der to avoid the enemy’s fire. While such training is used
in NERO to prepare robots for battle, the same kind of
adaptation could be used in any interactive game to make
it more realistic and interesting. Such fast strategic ad-

Figure 6: Avoiding turret fire. The arrow points in the current justment demonstrates that rtNEAT can be used in existing
direction of the turret fire (the arrow is not part of the NERS-d  \jdeo game genres as well as in NERO.

play and is only added for illustration). Robots in trainiegrn to
run safely around the enemy’s line of fire in order to attack- N
tice how they loop around the back of the turret and attackfro

In battle, some teams that were trained differently were
nevertheless evenly matched, while some training types

behind. When the turret moves, the robots change theirtttac Consigtently prevailed against others For example, an .ag—
jectory accordingly. Learning to avoid fire is an importaattte gressive seeking team from the tournament had only aslight
skill. The conclusion is that rtNEAT was able to evolve sepini  2dvantage over an avoidant team, winning six out of ten bat-
cated, nontrivial behavior in real time. tles, losing three, and tying one. The avoidantteam runsin a
pack to a corner of the field’s enclosing wall. Sometimes, if
they make it to the corner and assemble fast enough, the ag-
gressive team runs into an ambush and is obliterated. How-
ever, slightly more often the aggressive team gets a few
shots in before the avoidant team can gather in the corner. In
that case, the aggressive team traps the avoidant team with
greater surviving numbers. The conclusion is that seeking
and running away are fairly well-balanced tactics, neither
providing a significant advantage over the other. The inter-
esting challenge of NERO is to conceive strategies that are
clearly dominant over others.

One of the best teams was trained by observing a phe-
nomenon that happened consistently in battle. Chases
among robots from opposing teams frequently caused
robots to eventually reach the field’s bounding walls. arti
ularly for robots trained to avoid turret fire by attackingrir
) behind (figure 6), enemies standing against the wall present
Figure 7:Navigating a maze. Incremental training on increas- g serious problem since it is not possible to go around them.
ingly complex wall configurations produced robots that dmdv- 1,5 training a team against a turret with its back against
|g_ate this maze to find the enemy. The robots spawn from the | he wall, it was possible to familiarize robots with attack-
side of the maze and proceed to an enemy at the right. . - . .

ing enemies against a wall. This team learned to hover near

Robots were also trained to avoid the enemy. In fact, rihe turret and fire when it turned away, but back off quickly
NEAT was flexible enough tdevolvea population that had v_vhen it turned towards them. The ngl—based team won the
converged on seeking behavior into a completely oppositfst NERO tournament by using this strategy. The wall-
avoidance, behavior. For avoidance training, players co#fained team wins 100% of the time against the aggressive
trolled an enemy robot with a joystick and ran it toward$eeking team. Thus, it is possible to learn sophisticated ta
robots on the field. The robots learned to back away in ofi¢S that dominate over simpler ones like seek or avoid.
der to avoid being penalized for being too near the enemy¥. Discussion
Interestingly, robots preferred to run away from the enem
backwards because that way they could still shoot the e
emy (figure 5).

By placing a turret on the field and asking robots to ap

proach the turret without getting hit, robots were able tg . " . L2 .
learn to avoid enemy fire (figure 6). ling teams with just the right combination of tactics.

Other interesting behaviors were evolved to test the Iim—h Thﬁléx_?_cesi of Ithe f'r:St NERO dprototype ;ulg;gests that
its of rtNEAT rather than specifically prepare the troops foF,eI "t ¥ t'ec no Ogyd as imme |atipotent|a (':omrf?.eL-
battle. For example, robots were trained to run around walfdd! applications in modern games. Any game in whic

to approach the enemy. As performance improved, playe enF behavior is repetitive and_ boring can be _improved by
PP y P P piay allowing rtNEAT to at least partially modify tactics in real

articipants in the first NERO tournament agreed that the
game was engrossing and entertaining. Battles were excit-
ing for all the participants, evoking plentiful clappingdan

heering. Players spent hours honing behaviors and assem-



(a) Robots approach flag
Figure 8:Video game characters adapt to player’s actions. The robots in these screenshots spawn from the top of therseared
must approach the flag (circled) at the bottom left. Whitevasrpoint in the direction of mass motion. (a) The robots featn to take
the left hallway since it is the shortest path to the flag. (d)ulnan player (identified by a square) attacks inside thehkdftvay and
decimates the robots. (c) Even though the left hallway isstiwrtest path to the flag, the robots learn that they can dkeithuman
enemy by taking the right hallway, which is protected frora ttuman'’s fire by a wall. rtNEAT allows the robots to adapt is thay to
the player’s tactics in real time.

(b) Player attacks on left

(c) Robots learn new approach

time. Especially in persistent video games such as Massi@eldberg, D. E., and Richardson, J. (1987). Genetic alyostwith shar-
Multiplayer Online Games (MMOGS) that last for months ing for multimodal function optimization. In Grefenstette J., editor,

- : Proceedings of the Second International Conference on fgeAfgo-
or years, the potential for rtNEAT to continually adapt and rithms, 148-154. San Francisco: Kaufmann.

optimize agent behavior may permanently alter the gamingomez, F., and Miikkulainen, R. (1999). Solving non-Marieov con-

experience for millions of players around the world.

7 Conclusion

A real-time version of NEAT (rtNEAT) was developed to
allow users to interact with evolving agents. In rtNEAT,

trol tasks with neuroevolution. IRroceedings of the 16th International
Joint Conference on Atrtificial Intelligenc&an Francisco: Kaufmann.
Gomez, F. J., and Miikkulainen, R. (2003). Active guidanoed finless
rocket through neuroevolution. Proc. of the Genetic and Evolutionary
Computation Conf. (GECCO-2003erlin: Springer Verlag.
Gruau, F., Whitley, D., and Pyeatt, L. (1996). A comparisetween cellu-

an entire population is simultaneously and asynchronouslylar encoding and direct encoding for genetic neural netaiotk Koza,

evaluated as it evolves. Using this method, it was possib

to build an entirely new kind of video game, NERO, where

the characters adapt in real time in response to the playe|

J. R, Goldberg, D. E., Fogel, D. B., and Riolo, R. L., edit@sgnetic
Programming 1996: Proceedings of the First Annual Confeee®1—
89. Cambridge, MA: MIT Press.

K8elbling, L. P., Littman, M., and Moore, A. W. (1996). Reinfement

le

actions. In NERO, the player takes the role of a trainer and learning: A survey.Journal of Artificial Intelligence 4:237-285.

constructs training scenarios for a team of simulated sbo
The rtNEAT technique can form the basis for other similal
interactive learning applications in the future, and euent

{_aird, J. E., and van Lent, M. (2000). Human-level Al's kilkgplication:

Interactive computer games. roc. of the 17th Nat. Conf. on Atrtificial
I' Intelligence and the 12th Annual Conference on Innovatjvglisations
of Artificial Intelligence Menlo Park, CA: AAAI Press.

ally even make it possible to use gaming as a method f&adcliffe, N. J. (1993). Genetic set recombination and fiiglieation to

training people in sophisticated tasks.
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