
CS 314: Data Structures

Gordon S. Novak Jr.

Department of Computer Sciences
University of Texas at Austin
novak@cs.utexas.edu

http://www.cs.utexas.edu/users/novak

“When you tell women you’re really good at
algorithms, it doesn’t do much.” – Aaron Patzer1

Copyright c© Gordon S. Novak Jr. 2

1“whose skill at algorithms helped him create Mint.com, the online personal finance tool, which he recently
sold to Quicken for $170 million.” – New York Times, Dec. 6, 2009.

2Acknowledgment: Many figures in these notes are taken from Wikipedia.
MapReduce slides are from code.google.com/edu/parallel/index.html .
All are licensed under creativecommons.org/licenses/by/2.5/.

1

Course Topics

• Introduction: why we need clever data structures and
algorithms

• Representation: how data, pointers, and structures
are represented in the computer

• Performance and Big O: how much time and storage
are needed as data sizes become large

• Some Lisp: (+ x 3)

• Lists and Recursion; Stacks and Queues

• Trees and Tree Recursion

• Using Library Packages

• Balanced Trees and Maps

• Hashing and randomization; XOR

• Priority Queues and Heaps

• Sorting, Merge

• Graphs

• Map, Reduce, and MapReduce / Hadoop: data-
intensive and parallel computation

2

Introduction

In this course, we will be interested in performance,
especially as the size of the problem increases.

Understanding performance allows us to select the right
data structure for an application.

An engineer can do for a dime
what any fool can do for a dollar.

Thus, engineer/fool ∼= 10.

3

eine kleine LispMusik

We will learn a bit of Lisp in this course:

• Parentheses go outside a function call: (sqrt 2.0)

• Everything is a function call: (+ x 3)

• defun defines a function:
(defun twice (x) (* 2 x))

• Every function returns a value:

(defun abs (x)

(if (< x 0)

(- x)

x))

• setq is like = : (setq i 3)

4

Fibonacci Numbers

Leonardo of Pisa, known as Fibonacci, introduced this
series to Western mathematics in 1202:

F (0) = 0
F (1) = 1
F (n) = F (n− 2) + F (n− 1) , where n > 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

The ratio between successive Fibonacci numbers
approaches the golden ratio ϕ = (1 +

√
5)/2 =

1.618034....

5

Fibonacci Functions

Let’s look at two versions of this function:

(defun fib2 (n) public int fib2(int n) {

(if (< n 2) if (n < 2)

n return n;

else return

(+ (fib2 (- n 2)) fib2(n - 2) +

(fib2 (- n 1))))) fib2(n - 1); }

(defun fib1 (n) (fib1b 0 1 n))

(defun fib1b (lo hi steps)

(if (<= steps 0)

lo

(fib1b hi (+ lo hi) (- steps 1))))

public int fib1(int n) { return fib1b(0, 1, n); }

public int fib1b(int lo, int hi, int steps) {

if (steps <= 0)

return lo;

else return fib1b(hi, (lo + hi), steps - 1); }

6

Testing Fibonacci

>(fib1 8)

21

>(fib2 8)

21

>(fib1 20)

6765

>(fib2 20)

6765

fib1 and fib2 appear to compute the correct result.

>(fib1 200)

280571172992510140037611932413038677189525

>(fib2 200) ...

While engineer/fool ∼= 10,
we see that cs major/fool→∞

7

Rates of Growth

In Greek mythology, the Hydra was a many-headed
monster with an unfortunate property: every time you
cut off a head, the Hydra grew two more in its place.

One of our Fibonacci functions is like the Hydra: each
call to fib2 may generate two more calls to fib2.

Like Hercules, our task is to slay the monster by avoiding
excessive rates of growth.

8

Exponential Growth

“Know your enemy.” – Sun Tzu, The Art of War

We want to be able to recognize problems or
computations that will be intractable, impossible to solve
in a reasonable amount of time.

Exponential growth of computation has several names in
computer science:

• combinatoric explosion

• NP-complete

• O(2n)

In real life, things that involve exponential growth usually
end badly:

• Atomic bombs

• Cancer

• Population explosion

9

Goals of the Course

• Understand the tools of the trade:

– Data Structures that allow certain operations on
the data to be done efficiently.

– Algorithms that perform operations and maintain
the data structure.

• Gain experience in using library packages

– the buy-versus-build decision

• Understand performance:

– Big O: mathematical shorthand for rate of growth.

– How to analyze a problem, design a solution, and
estimate the performance.

– How to analyze an existing design or program, spot
the performance problems, and fix them.

• Gain experience in other programming paradigms:

– Lisp: a notation, as well as a language

– Patterns or Rewrite Rules

– MapReduce, Hadoop and parallel data-intensive
programming

10

Big O and Performance

We are very interested in performance (efficiency,
complexity) of algorithms and how the cost of an
algorithm increases as the size of the problem increases.
Cost can include:

• Time required

• Space (memory) required

• Network bandwidth

Understanding Big O is important to us:

• In many cases, Big O is the deciding factor in choosing
a data structure or algorithm.

•We need to be cognizant of Big O when writing code:
even a single line of code can raise the Big O of an
application, making it unusable.

11

Big O

Big O (often pronounced order) is an abstract function
that describes how fast a function grows as the size of the
problem becomes large. The order given by Big O is a
least upper bound on the rate of growth.

We say that a function T (n) has order O(f (n)) if there
exist positive constants c and n0 such that:
T (n) ≤ c ∗ f (n) when n ≥ n0.

For example, the function T (n) = 2 ∗ n2 + 5 ∗ n + 100
has order O(n2) because 2 ∗n2 + 5 ∗n+ 100 ≤ 3 ∗n2 for
n ≥ 13.

We don’t care about performance for small values of n,
since small problems are usually easy to solve. In fact,
we can make that a rule:

If the input is small, any algorithm is okay.

In such cases, the simplest (easiest to code) algorithm is
best.

12

Big O: An Upper Bound

Leno: The economy is bad ...
Ricky: How bad is it?

Big O lets us answer the “How bad is it?” question by
saying that it never gets any worse than a certain class of
function.

Most computer programs can be put into a few well-
defined classes based on their Big O.

When the size of the input gets large, the Big O is what
counts.

13

Rules for Big O

There are several rules that make it easy to find the order
of a given function:

• Any constant multipliers are dropped.

• The order of a sum is the maximum of the orders of
its summands.

• A higher power of n beats a lower power of n.

• n beats log(n) (by a lot).

• log(n) beats 1 (just barely).

• 2n beats any power of n.

For example, in analyzing T (n) = 2 ∗ n2 + 5 ∗ n + 100,
we first drop all the constant multipliers to get n2 +n+ 1
and then drop the lower-order terms to get O(n2).

14

Classes of Algorithms

f (n) Name Example
1 Constant +
log(n) Logarithmic binary search
log2(n) Log-squared
n Linear max of array
n ∗ log(n) Linearithmic quicksort
n2 Quadratic selection sort
n3 Cubic matrix multiply
nk Polynomial
2n Exponential knapsack problem

When we use log(n), we often mean log2(n); however,
the base of the log(n) does not matter:

logk(n) = log(n)/log(k)

Thus, a log(n) is converted to another base by
multiplying by a constant; but we eliminate constants
when determining Big O.

15

Log n Grows Slowly

The function log(n) grows so slowly that it can almost
be considered to be the same as 1.

A good rule: log2(1000) ∼= 10, since 210 = 1024.

10 bits ∼= 3 decimal digits.

n log2(n)
students in CS 314 240 8
students at UT 50,000 16
people in US 300,000,000 28
people on earth 7,000,000,000 33
national debt 19,500,000,000,000 45
Library of Congress, bytes 20 ∗ 1012 45
earth surface area, mm2 5 ∗ 1020 69
atoms in universe 1080 266

Thus, we can say that log2(n) < 300 for any problem
that we are likely to see. If we simply wrote 300 instead
of log2(n), our rule tells us to eliminate the constant 300.

16

Log n Is Almost the Same as 1

O(log(n)) is much better than O(n):

• 100 times better when n = 1, 000

• 50,000 times better when n = 1, 000, 000

• 30,000,000 times better when n = 1, 000, 000, 000

17

Powers of 10: SI Prefixes

Prefix Symbol 10n Prefix Symbol 2k Word
Yotta Y 1024 Yobi Yi 280

Zetta Z 1021 Zebi Zi 270

Exa E 1018 Exbi Ei 260

Peta P 1015 Pebi Pi 250

Tera T 1012 Tebi Ti 240 trillion
Giga G 109 Gibi Gi 230 billion
Mega M 106 Mebi Mi 220 million
Kilo K 103 Kibi Ki 210 thousand
milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

zepto z 10−21

yocto y 10−24

18

A Scientist Should Be Careful, Skeptical

• Is the input data good? Garbage in, garbage out!

– Is the data source authoritative? (Don’t trust it!)

– Was the data measured accurately?

– How much noise does the data have?

– Was the data recorded accurately?

– Does the data mean what it is alleged to mean?

• Is the algorithm correct?

• Is the algorithm an accurate model of reality?

• Are the answers numerically accurate?

• Are the units of measurement correct?

• Is the data represented accurately?

– 32-bit int: 9 decimal digits

– 64-bit long: 19 decimal digits

– 32-bit float: 7 decimal digits (avoid!)
Patriot missile: inaccurate float conversion caused
range gate error: 28 killed, 98 injured.

– 64-bit double: 15+ decimal digits

– Ariane 5: 64-bit double converted to 16-bit int:
overflowed, rocket exploded, $500 million loss.

19

Finding Big O: Log-log Graph

There are two ways to find the order of a computation:

• Analytically before developing software.

• Experimentally with existing software.

– Log-log graph

– Time ratios

A plot of time versus n on a log-log graph allows Big O
to be found directly. Polynomial algorithms show up as
straight lines on log-log graphs, and the slope of the line
gives the order of the polynomial.

20

Log-log Example

Suppose that f (n) = 25 ∗ n2.
n f (n)
2 100
3 225
4 400
5 625
6 900

The log-log graph makes it obvious that f (n) is O(n2):
if the slope of the line is k, the function is O(nk).

The points that are plotted from the function lie on a
straight line that is parallel to a known O(n2) line.

21

Finding Big O: Semi-Log Graph

Functions whose Big O is exponential, O(2n), grow so
quickly that they can hardly be plotted on a log-log graph.

If you find that your function cannot be plotted on a log-
log graph, try plotting it on a semi-log graph, where the
x axis is linear and the y axis is logarithmic.

An exponential function will produce a linear plot on
a semi-log graph. Such functions are considered to be
intractable, i.e. thay can only be computed when n is
relatively small.

22

Big O from Timing Ratio

Another method that can often be used to find Big O
is to look at the ratio of times as the size of input is
doubled. Ratios that are approximately powers of 2 are
easily recognized:

Ratio Power of 2 Big O
2 21 n
2+ 21+ n ∗ log(n) ?
4 22 n2

8 23 n3

Example:

n Time Ratio
4000 0.01779
8000 0.06901 3.8785

16000 0.27598 3.9991
32000 1.10892 4.0180
64000 4.44222 4.0059

Since the ratio is about 4, this function is O(n2).

23

Computation Model

We will assume that basic operations take constant time.

Later, we will consider some exceptions to this
assumption:

• Some library functions may take more than O(1) time.
We will want to be conscious of the Big O of library
functions.

• Memory access may be affected by paging and cache
behavior.

• There may be hidden costs such as garbage collection.

24

Big O from Code

It is often easy to determine Big O directly from code:

• Elementary ops such as +, =, a[i], v.f are O(1).

• The Big O for a sequence of statements { ; ; } is
the max of the Big O of the statements.

• The Big O for an if statement is the max of the Big
O of the test, then statement, and else statement.

• The Big O for a loop is the loop count times the Big
O of the contents.

• Big O for a recursive call that cuts the problem size
in half is:

– discard one half: log(n) (binary search).

– process both halves: n · log(n) (quicksort).

25

Big O of Loops

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

sum += a[i][j];

We all know this is O(n2); but what about:

for (i = 0; i < n; i++)

for (j = 0; j <= i; j++)

sum += a[i][j];

26

Beware the Bermuda Triangle

Some gym teachers punish misbehaving students by
making them run 50 meters. However, the way in which
they must do it is to run 1 meter, then come back, then
run 2 meters, then come back, ...

How many total meters does a student run?

n∑
i=1
i = n ∗ (n + 1)/2 = O(n2)

for (i = 0; i < n; i++)

for (j = 0; j <= i; j++)

sum += a[i][j];

Rule: If a computation of O(i) is inside a loop where i
is growing up to n, the total computation is O(n2).

27

Big O for Arrays

Arrays are random access, which means that access to
any element has the same cost.

• a[i] is O(1).

• Allocating a new array (not initializing the contents)
could be essentiallyO(1). However, since Java is type-
safe, the new array must be initialized for its contents
type, so creation of a new size n array costs O(n).

If the O(n) cost of array creation is amortized over
the n elements, the creation cost per element is O(1).

• Arrays are rigid: they cannot be expanded. One must
either:

– Get a new, larger array and copy the old contents
into it, O(n)

– Make the array over-sized, wasting some space.

• If an array is larger than main memory, the cost
to access an element can be much larger due to
disk paging. Cache memory also affects array
performance.

28

Average Case vs. Worst Case

Sometimes we will be interested in several performance
values:

• Average Case: a random or average input

• Typical Case: it might typically be the case that the
input is “nearly sorted”.

•Worst Case: to guarantee performance even in the
worst case of input data.

The worst-case figure gives the strongest guarantee, and
it may be easier to analyze.

29

Familiarity with Big O

We want to be familiar with Big O for typical algorithms:

• Given a description of a task, guess its Big O. “First
you sort the input, which is n ∗ log(n), then ...”

• Predict how well an algorithm will scale up. “Now
that my new web service is the hottest thing in the
CS Department, will it scale up to every college in
the country so I can take it public and make my first
billion dollars?”

• Given a program that is too slow, figure out what is
wrong. “The sorting step is taking O(n2) time; that’s
pathetic.”

• Select algorithms based on data sizes and Big O. “This
set could be large, so we need O(log(n)) lookup ...”

30

Pointer / Reference

A pointer or reference is the memory address of the
beginning of a record or block of storage, which extends
through higher memory addresses. On modern machines,
a pointer is 64 bits or 8 bytes (48 bits actually used). On
older machines, a pointer was the same size as int, 32
bits, but that can address only 4 Giga bytes of storage.
(A byte is 8 bits.)

null is typically represented by a pointer value of 0 .

An object or reference type in a language such as Java is
also a record, which has as its first item a pointer or other
code that indicates its class. In Java, reference types are
capitalized, e.g. Integer.

As in this example, a record often contains other pointers.
This is sometimes called a boxed integer .

31

Boxed Number

A boxed number, such as this instance of Integer, is nice
because it can be treated as an object, used in structures
such as LinkedList<Integer>, and has useful methods.

However:

• Integer has the same numeric accuracy as an int,
32 bits.

• Integer requires 16 bytes of storage, while int only
requires 4 bytes.

• Integer is immutable: since it is possible that
multiple variables point to it, we cannot change its
value. Double, String, etc. are immutable.

• Doing arithmetic (even ++) may require creation of a
new box (allocation of new storage), often making the
old box garbage. (Java caches small Integer values to
make them more efficient.)

• Boxes are somewhat expensive because they must be
garbage collected. The garbage collector is a highly
paid worker.

32

References and ==

Integer i = 3; what is the value of

Integer j = i; (i == j) ?

Integer i = 127;

Integer j = 127;

Integer i = 130;

Integer j = 130;

Integer i = new Integer(100);

Integer j = new Integer(100);

Integer i = new Integer(100);

Integer j = 100;

Integer i = Integer.valueOf(100);

Integer j = 100;

Integer i = new Integer(99);

i++;

Integer j = 100;

Integer i = 127; i++;

Integer j = 127; j++;

33

== vs. .equals()

For all reference types, including Integer etc., the
meaning of == and != is equality of pointer values, i.e.
same data address in memory.

Rule: To test equality of the contents or value of a
reference type, always use .equals().

Rule: To compare against null, use == or != .

Rule: To make an Integer from an int, either use:

• Integer myInteger = (Integer) myint;

(casting)

• Integer myInteger = myint;

(auto-boxing)

• Integer myInteger = Integer.valueOf(myint)

These can save storage:

• new Integer() always makes a new box, costing 16
bytes and (eventually) garbage collection.

• Integer.valueOf() will reuse a value in the
Integer cache if possible, costing 0 bytes.

34

Linked List

A linked list is one of the simplest data structures. A
linked list element is a record with two fields:

• a link or pointer to the next element (null in Java or
nil in Lisp if there is no next element).

• some contents, as needed for the application. The
contents could be a simple item such as a number, or
it could be a pointer to another linked list, or multiple
data items.

In Lisp, a list is written inside parentheses:

(list ’a ’b ’c) -> (a b c)

list("a", "b", "c")

(list (+ 2 3) (* 2 3)) -> (5 6)

We will use parentheses and spaces as a notation for
linked lists, in Java as well as in Lisp.

35

Constructing a Linked List

A linked list is usually made by linking new elements
onto the front of the list. The function (cons item list)
makes a new list element containing item and adds it to
the front of list:

(cons ’a nil) -> (a)

(cons ’a ’())

cons("a", null)

cons("a", list())

(cons ’a ’(b c)) -> (a b c)

cons("a", list("b", "c"))

In Java, the class Cons is:

public class Cons {

private Object car;

private Cons cdr;

private Cons(Object first, Cons rest)

{ car = first;

cdr = rest; }

public static Cons

cons(Object first, Cons rest)

{ return new Cons(first, rest); }

36

Access to Parts of a List

The two fields of a cons cell are traditionally called car

and cdr, but perhaps better names are first, the first
item in the list, and rest, the link to the rest of the list.

(first ’(a b c)) -> a

first(list("a", "b", "c"))

(rest ’(a b c)) -> (b c)

rest(list("a", "b", "c"))

public static Object first(Cons lst) {

return ((lst == null) ? null : lst.car); }

public static Cons rest(Cons lst) {

return ((lst == null) ? null : lst.cdr); }

Note that first and rest in general have different types;
first can be any Object type, while rest is a Cons or
null.

The functions second and third are also defined.

37

List Access Functions

There are easy rules for the access functions using the
parenthesized representation of lists:

first returns the first thing in a list. A thing is:

• a basic item such as a number or string

• a balanced pair of parentheses and everything inside
the parens, no matter how large.

(first ’(a b c)) -> a

(first ’((a b) c)) -> (a b)

rest returns the rest of a list after the first thing. Simply
move the left parenthesis to the right past the first thing.

(rest ’(a b c)) -> (b c)

(rest ’((a b) c)) -> (c)

(rest (rest ’((a b) c))) -> () = null

38

Iterative Processing of List

The basic operation on a list is to walk along it, processing
one element at a time. We will illustrate the design
patterns for doing this with the length function.

(length ’(a b c)) -> 3

public static int length (Cons arg) {

int n = 0;

for (Cons lst=arg; lst != null; lst = rest(lst))

n++;

return n; }

(defun length (lst)

(let (n) ; let declares variables

(setq n 0) ; setq is like =

(while (not (null lst)) ; while it is a cons

(setq n (+ n 1))

(setq lst (rest lst)))

n))

public static int length (Cons lst) {

int n = 0;

while (lst != null) {

n++;

lst = rest(lst); }

return n; }

39

Iterative List Design Pattern

public int fn (Cons lst) {

initialize answer;

for (Cons ptr = lst;

ptr != null;

ptr = rest(ptr)) {

answer = someCombinationOf(

answer,

somethingAbout(first(ptr))); }

return answer; }

(defun fn (lst)

(let (answer)

initialize answer

(while (not (null lst))

(setq answer

(some-combination-of

answer

(something-about (first lst))))

(setq lst (rest lst)))

answer))

40

Recursion

A recursive program calls itself as a subroutine.
Recursion allows one to write programs that are powerful,
yet simple and elegant. Often, a large problem can be
handled by a small program which:

1. Tests for a base case and computes the value for this
case directly.

2. Otherwise,

(a) calls itself recursively to do smaller parts of the
job,

(b) computes the answer in terms of the answers to
the smaller parts.

(defun factorial (n)

(if (<= n 0)

1

(* n (factorial (- n 1)))))

Rule: Make sure that each recursive call involves an
argument that is strictly smaller than the original;
otherwise, the program can get into an infinite loop.

A good method is to use a counter or data whose size
decreases with each call, and to stop at 0; this is an
example of a well-founded ordering.

41

Designing Recursive Functions

Some guidelines for designing recursive functions:

1. Write a clear definition of what your function should
do, including inputs, outputs, assumptions. Write this
definition as a comment above the function code.

2. Identify one or more base cases: simple inputs for
which the answer is obvious and can be determined
immediately.

3. Identify the recursive case: an input other than the
base case. How can the answer be expressed in terms
of the present input and the answer provided by this
function (assuming that it works as desired) for a
smaller input?

There are two common ways of making the input
smaller:

• Remove a piece of the input, e.g. remove the first
element from a linked list.

• Cut the input in half, e.g. follow one branch of a
tree.

42

Design Pattern for Recursive Functions

A design pattern is an abstracted way of writing
programs of a certain kind. By learning design patterns,
you can write programs faster and with fewer errors.

A design pattern for recursive functions is:

(defun myfun (arg)
(if (basecase? arg)

(baseanswer arg)
(combine arg (myfun (smaller arg)))))

In this pattern,

• (basecase? arg) is a test to determine whether arg
is a base case for which the answer is known at once.

• (baseanswer arg) is the known answer for the base
case.

• (combine arg (myfun (smaller arg)))
computes the answer in terms of the current
argument arg and the result of calling the function
recursively on (smaller arg), a reduced version of
the argument.

Exercise: Show how the factorial function
corresponds to this design pattern.

43

Recursive Processing of List

Recursive processing of a list is based on a base case
(often an empty list), which usually has a simple answer,
and a recursive case, whose answer is based on a
recursive call to the same function on the rest of the list.

(defun length (lst)

(if (null lst) ; test for base case

0 ; answer for base case

(+ 1

(length (rest lst))))) ; recursive call

public static int length (Cons lst) {

if (lst == null) ; test for base case

return 0; ; answer for base case

else return (1 +

length(rest(lst))); }

44

Recursive List Design Pattern

(defun fn (lst)

(if (null lst) ; test for base case

baseanswer ; answer for base case

(some-combination-of

(something-about (first lst))

(fn (rest lst))))) ; recursive call

public int fn (Cons lst) {

if (lst == null)

return baseanswer;

else return someCombinationOf(

somethingAbout(first(lst)),

fn(rest(lst))); }

The recursive version is often short and elegant, but it
has a potential pitfall: it requires O(n) stack space on
the function call stack. Many languages do not provide
enough stack space for 1000 calls, but a linked list with
1000 elements is not unusual.

45

Tail Recursive Processing of List

A function is tail recursive if it either

• returns an answer directly, e.g return 0;

• the answer is exactly the result of a recursive call,
return myself(something);

Tail recursion often involves the use of an extra function
with extra variables as parameters.

public static int length (Cons lst) {

return lengthb(lst, 0); }

public static int lengthb (Cons lst, int answer) {

if (lst == null)

return answer;

else return lengthb(rest(lst), answer + 1); }

(defun length (lst)

(lengthb lst 0)) ; init extra variable

(defun lengthb (lst answer)

(if (null lst) ; test for base case

answer ; answer for base case

(lengthb (rest lst) ; recursive call

(+ answer 1)))) ; update answer

46

Tail Recursive List Design Pattern

public int fn (Cons lst) {

return fnb(lst, answerinit); }

public static int fnb (Cons lst, answer) {

if (lst == null)

return answer;

else return fnb(rest(lst),

someCombinationOf(

answer,

somethingAbout(first(lst))));}

(defun fn (lst) (fnb lst answerinit))

(defun fnb (lst answer)

(if (null lst) ; test for base case

answer ; answer for base case

(fnb (rest lst)

(some-combination-of

answer

(something-about (first lst))))))

A smart compiler can detect a tail-recursive function and
compile it so that it is iterative and uses O(1) stack space.

47

Constructive Linked List: Reverse

reverse makes a new linked list whose elements are
in the reverse order of the original list; the original is
unchanged.

(reverse ’(a b c)) -> (c b a)

This function takes advantage of the fact that cons

creates a list in the reverse order of the conses.

public static Cons reverse (Cons lst) {

Cons answer = null;

for (; lst != null; lst = rest(lst))

answer = cons(first(lst), answer);

return answer; }

(defun reverse (lst)

(let (answer)

(setq answer ’())

(while (consp lst)

(setq answer (cons (first lst) answer))

(setq lst (rest lst)))

answer))

48

Tail Recursive Reverse

(defun trrev (lst) (trrevb lst ’()))

(defun trrevb (in out)

(if (null in)

out

(trrevb (rest in)

(cons (first in) out))))

With a tail-recursive function, the unwinding of the
recursion is all the same, so it can be compressed into
one stack frame.

>(trrev ’(a b c d))

1> (TRREVB (A B C D) NIL)

2> (TRREVB (B C D) (A))

3> (TRREVB (C D) (B A))

4> (TRREVB (D) (C B A))

5> (TRREVB NIL (D C B A))

<5 (TRREVB (D C B A))

<4 (TRREVB (D C B A))

<3 (TRREVB (D C B A))

<2 (TRREVB (D C B A))

<1 (TRREVB (D C B A))

(D C B A)

49

Tail Recursive Reverse in Java

public static Cons trrev (Cons lst) {

return trrevb(lst, null); }

public static Cons trrevb (Cons in, Cons out) {

if (in == null)

return out;

else return trrevb(rest(in),

cons(first(in), out)); }

50

Copying a List

Since reverse is constructive, we could copy a list by
reversing it twice:

public static Cons copy_list (Cons lst) {

return reverse(reverse(lst)); }

What is the Big O of this function?

We could criticize the efficiency of this function because
it creates O(n) garbage: the list produced by the first
reverse is unused and becomes garbage when the
function exits. However, the Big O of the function is
still O(n) + O(n) = O(n).

51

Append

append concatenates two lists to form a single list. The
first argument is copied; the second argument is reused
(shared).

(append ’(a b c) ’(d e)) -> (a b c d e)

public static Cons append (Cons x, Cons y) {

if (x == null)

return y;

else return cons(first(x),

append(rest(x), y)); }

(defun append (x y)

(if (null x)

y

(cons (first x)

(append (rest x) y))))

This version of append append is simple and elegant, but
it takes O(nx) stack space.

52

Iterative Append

An iterative version of append can copy the first list in
a loop, using O(1) stack space. For this function, it is
convenient to use the setrest function:

public static Cons append (Cons x, Cons y) {

Cons front = null;

Cons back = null;

Cons cell;

if (x == null) return y;

for (; x != null ; x = rest(x)) {

cell = cons(first(x), null);

if (front == null)

front = cell;

else setrest(back, cell);

back = cell; }

setrest(back, y);

return front; }

53

Destructive Linked List Functions

All of the functions we have considered so far are
constructive: they may construct new lists, but they
do not modify their arguments. However, these functions
sometimes share structure, i.e. the same list structure is
part of more than one list.

(setq x ’(a b c))

(setq y ’(d e))

(setq z (append x y))

x -> (a b c)

y -> (d e)

z -> (a b c d e)

Appending x and y to form z did not change x and y.
However, z and y now share structure.

Functions that modify their arguments are sometimes
called destructive; they are useful, but must be used
with care to make sure that shared structures are not
inadvertently modified. If we made a destructive change
to y, it would also change z.

(setf (first y) 3)

z -> (a b c 3 e)

54

Nconc

nconc concatenates two lists to form a single list; instead
of copying the first list as append does, nconc modifies
the end of the first list to point to the second list.

(nconc (list ’a ’b ’c) ’(d e)) -> (a b c d e)

public static Cons nconc (Cons x, Cons y) {

Cons ptr = x;

if (x == null)

return y;

else { while (rest(x) != null)

x = rest(x); // walk to end

setrest(x, y);

return ptr; } }

(defun nconc (x y)

(let (ptr)

(setq ptr x)

(if (null x)

y

(progn ; progn is like { }

(while (not (null (rest x)))

(setq x (rest x)))

(setf (rest x) y)

ptr))))

55

Nreverse

Destructive functions in Lisp often begin with n.
nreverse reverses a list in place by turning the pointers
around.

(nreverse (list ’a ’b ’c)) -> (c b a)

public static Cons nreverse (Cons lst) {

Cons last = null; Cons next;

while (lst != null)

{ next = rest(lst);

setrest(lst, last);

last = lst;

lst = next; };

return last; }

(defun nreverse (lst)

(let (last next)

(setq last nil)

(while (not (null lst))

(setq next (rest lst))

(setf (rest lst) last)

(setq last lst)

(setq lst next))

last))

56

Set as Linked List

A linked list can be used as a representation of a set.
member (written ∈) tests whether a given item is an
element of the list. member returns the remainder of the
list beginning with the desired element, although usually
member is used as a predicate to test whether the element
is present or not.

(member ’dick ’(tom dick harry)) -> (dick harry)

(member ’fred ’(tom dick harry)) -> nil

public static Cons member (Object item, Cons lst) {

if (lst == null)

return null;

else if (item.equals(first(lst)))

return lst;

else return member(item, rest(lst)); }

(defun member (item lst)

(if (null lst)

nil

(if (eql item (first lst))

lst

(member item (rest lst)))))

57

Intersection

The intersection (written ∩) of two sets is the set of
elements that are members of both sets.

(intersection ’(a b c) ’(a c e)) -> (c a)

public static Cons intersection (Cons x, Cons y) {

if (x == null)

return null;

else if (member(first(x), y) != null)

return

cons(first(x),

intersection(rest(x), y));

else return intersection(rest(x), y); }

(defun intersection (x y)

(if (null x)

nil

(if (member (first x) y)

(cons (first x)

(intersection (rest x) y))

(intersection (rest x) y))))

If the sizes of the input lists are m and n, the time
required is O(m · n). That is not very good; this version
of intersection will only be acceptable for small lists.

58

Tail-Recursive Intersection

(defun intersecttr (x y) (intersecttrb x y ’()))

(defun intersecttrb (x y result)

(if (null x)

result

(intersecttrb (rest x) y

(if (member (first x) y)

(cons (first x) result)

result))))

>(intersecttr ’(a b c) ’(a c e))

1> (INTERSECTTR (A B C) (A C E))

2> (INTERSECTTRB (A B C) (A C E) NIL)

3> (INTERSECTTRB (B C) (A C E) (A))

4> (INTERSECTTRB (C) (A C E) (A))

5> (INTERSECTTRB NIL (A C E) (C A))

<5 (INTERSECTTRB (C A))

<4 (INTERSECTTRB (C A))

<3 (INTERSECTTRB (C A))

<2 (INTERSECTTRB (C A))

<1 (INTERSECTTR (C A))

(C A)

59

Tail-Recursive Intersection in Java

public static Cons

intersecttr (Cons x, Cons y) {

return intersecttrb(x, y, null); }

public static Cons intersecttrb

(Cons x, Cons y, Cons result) {

if (x == null)

return result;

else return intersecttrb(rest(x), y,

(member(first(x), y) != null)

? cons(first(x), result)

: result); }

60

Union and Set Difference

The union (written ∪) of two sets is the set of elements
that are members of either set.

(union ’(a b c) ’(a c e)) -> (b a c e)

The set difference (written −) of two sets is the set of
elements that are members of the first set but not the
second set.

(set-difference ’(a b c) ’(a c e)) -> (b)

Note that set difference is asymmetric: unique members
of the second set, such as e above, do not appear in the
output.

61

Circularly Linked List

It is possible to have a linked list in which the last link
points back to the front of the list rather than to null or
nil. This is called a circularly linked list.

This may be convenient for data such as a list of vertices
of a polygon, since it makes the data uniform: each vertex
is followed by its successor.

Circularly linked lists must be used with care, since they
make it easy to write a program that gets into an infinite
loop.

A doubly linked list has link pointers that point both
forward and backward. This makes it easy to insert or
remove items at either end. The Java library uses doubly
linked lists.

62

Merge

To merge two sorted lists means to combine them into
a single list so that the combined list is sorted. We
will consider both constructive and destructive versions
of merge.

The general idea of a merge is to walk down two sorted
lists simultaneously, advancing down one or the other
based on comparison of the top values using the sorting
function.

In combining two sorted lists with a merge, we walk down
both lists, putting the smaller value into the output at
each step. Duplicates are retained in a merge.

(merge ’list ’(3 7 9) ’(1 3 4) ’<)

-> (1 3 3 4 7 9)

For simplicity, we will define a function merj that
assumes a list of comparable objects and an ascending
sort.

(merj ’(3 7 9) ’(1 3 4)) -> (1 3 3 4 7 9)

63

Constructive Merge

The easiest way to understand this idiom is a simple
merge that constructs a new list as output.

public static Cons merj (Cons x, Cons y) {

if (x == null)

return y;

else if (y == null)

return x;

else if (((Comparable) first(x))

.compareTo(first(y)) < 0)

return cons(first(x),

merj(rest(x), y));

else return cons(first(y),

merj(x, rest(y))); }

(defun merj (x y)

(if (null x)

y

(if (null y)

x

(if (< (first x) (first y))

(cons (first x)

(merj (rest x) y))

(cons (first y)

(merj x (rest y)))))))

What is O()? Stack depth? Conses?

64

Tail Recursive Merge

(defun merjtr (x y) (nreverse (merjtrb x y ’())))

(defun merjtrb (x y result)

(if (null x)

(if (null y)

result

(merjtrb x (rest y) (cons (first y) result)))

(if (or (null y)

(< (first x) (first y)))

(merjtrb (rest x) y (cons (first x) result))

(merjtrb x (rest y) (cons (first y) result)))))

1> (MERJTR (3 7 9) (1 2 4))

2> (MERJTRB (3 7 9) (1 2 4) NIL)

3> (MERJTRB (3 7 9) (2 4) (1))

4> (MERJTRB (3 7 9) (4) (2 1))

5> (MERJTRB (7 9) (4) (3 2 1))

6> (MERJTRB (7 9) NIL (4 3 2 1))

7> (MERJTRB (9) NIL (7 4 3 2 1))

8> (MERJTRB NIL NIL (9 7 4 3 2 1))

<8 (MERJTRB (9 7 4 3 2 1))

<7 (MERJTRB (9 7 4 3 2 1))

<6 (MERJTRB (9 7 4 3 2 1))

<5 (MERJTRB (9 7 4 3 2 1))

<4 (MERJTRB (9 7 4 3 2 1))

<3 (MERJTRB (9 7 4 3 2 1))

<2 (MERJTRB (9 7 4 3 2 1))

<1 (MERJTR (1 2 3 4 7 9))

65

Tail Recursive Merge in Java

public static Cons merjtr (Cons x, Cons y) {

return nreverse(merjtrb(x, y, null)); }

public static Cons merjtrb (Cons x, Cons y,

Cons result) {

if (x == null)

if (y == null)

return result;

else return merjtrb(x, rest(y),

cons(first(y), result));

else if ((y == null) ||

((Comparable) first(x))

.compareTo(first(y)) < 0)

return merjtrb(rest(x), y,

cons(first(x), result));

else return merjtrb(x, rest(y),

cons(first(y), result));}

66

Destructive Merge Function

public static Cons dmerjr (Cons x, Cons y) {

if (x == null)

return y;

else if (y == null)

return x;

else if (((Comparable) first(x))

.compareTo(first(y)) < 0)

{ setrest(x, dmerjr(rest(x), y));

return x; }

else { setrest(y, dmerjr(x, rest(y)));

return y; } }

(defun dmerjr (x y)

(if (null x)

y

(if (null y)

x

(if (< (first x) (first y))

(progn (setf (rest x)

(dmerjr (rest x) y))

x)

(progn (setf (rest y)

(dmerjr x (rest y)))

y)))))

67

Iterative Destructive Merge

(defun dmerj (x y)

(let (front end)

(if (null x)

y

(if (null y)

x

(progn

(if (< (first x) (first y))

(progn (setq front x)

(setq x (rest x)))

(progn (setq front y)

(setq y (rest y))))

(setq end front)

(while (not (null x))

(if (or (null y)

(< (first x) (first y)))

(progn (setf (rest end) x)

(setq x (rest x)))

(progn (setf (rest end) y)

(setq y (rest y))))

(setq end (rest end)))

(setf (rest end) y)

front)))))

68

Java Iterative Destructive Merge

public static Cons dmerj (Cons x, Cons y) {

if (x == null) return y;

else if (y == null) return x;

else { Cons front = x;

if (((Comparable) first(x))

.compareTo(first(y)) < 0)

x = rest(x);

else { front = y;

y = rest(y); };

Cons end = front;

while (x != null)

{ if (y == null ||

((Comparable) first(x))

.compareTo(first(y)) < 0)

{ setrest(end, x);

x = rest(x); }

else { setrest(end, y);

y = rest(y); };

end = rest(end); }

setrest(end, y);

return front; } }

What is O()? Stack depth? Conses?

69

Comparison in Java

The various types of Java are compared in different ways:

• The primitive types int, long, float and double

are compared using < and >. They cannot use
.compareTo() .

• String uses .compareTo(); it cannot use < and >.
.compareTo() for String is case-sensitive.

• An application object type can be given a
.compareTo() method, but that allows only one
way of sorting. We might want a case-insensitive
comparison for String.

• A Comparator can be passed as a function argument,
and this allows a custom comparison method. The
Java library has a case-insensitive Comparator for
String.

Sometimes it is necessary to implement several versions
of the same method in order to use different methods of
comparison on its arguments.

70

Comparator in Java

Java does not allow a function to be passed as a function
argument, but there is a way to get around this restriction
by passing in an object that defines the desired function as
a method (sometimes called a functor). A Comparator

is a class of object that defines a method compare.

A comparison is basically a subtraction; the compare

method returns an int that gives the sign of the
subtraction (the value of the int does not matter).
If cmp is a Comparator, cmp.compare(x, y) will be:

- x < y
0 x = y
+ x > y

A simple comparator can simply subtract properties of
the objects:

public static void

mySort(AnyType[] a,

Comparator<? super AnyType> cmp) {...}

class MyOrder implements Comparator<MyObject> {

public int compare(MyObject x, MyObject y)

{ return (x.property() - y.property()); }}

71

Complex Comparator

A comparator can use if statements to compare two
objects using multiple criteria, e.g. year first, then month,
then day.

Comparator<MyDate>

cmp = new Comparator<MyDate>() {

public int compare(MyDate x, MyDate y) {

int ans = x.year - y.year;

if (ans != 0) return ans;

ans = x.month - y.month;

if (ans != 0) return ans;

return x.day - y.day; }};

int res = cmp.compare(datea, dateb);

Sometimes it is convenient for the comparator to simply
return a value such as 1 or -1 to indicate that one object
should be sorted before the other.

72

Divide and Conquer

We can make a sorting routine using merge. Divide and
conquer is a technique for solving a large problem by
breaking it into two smaller problems, until the problems
become easy. If we cut the problem in half each time, the
solution will be O(log(n)) or O(n · log(n)).

• If divide-and-conquer cuts the problem in half at each
step, the problem size will decrease very fast: by a
factor of 1,000 in 10 steps, a factor of 1,000,000 in 20
steps, a factor of 1,000,000,000 in 30 steps.

•We soon reach a problem of size 1, which is usually
easy to solve.

• Time will be O(log(n)) if we only process one of the
halves, as in binary search.

• Time will be O(n · log(n)) if we process both halves,
as in sorting.

73

Dividing a List

We can find the midpoint of a list by keeping two pointers,
moving one by two steps and another by one step, O(n).

public static Cons midpoint (Cons lst) {

Cons current = lst;

Cons prev = current;

while (lst != null && rest(lst) != null) {

lst = rest(rest(lst));

prev = current;

current = rest(current); };

return prev; }

(defun midpoint (lst)

(let (prev current)

(setq current lst)

(setq prev lst)

(while (and (not (null lst))

(not (null (rest lst))))

(setq lst (rest (rest lst)))

(setq prev current)

(setq current (rest current)))

prev))

74

Sorting by Merge

A list of length 0 or 1 is already sorted. Otherwise, break
the list in half, sort the halves, and merge them.

public static Cons llmergesort (Cons lst) {

if (lst == null || rest(lst) == null)

return lst;

else { Cons mid = midpoint(lst);

Cons half = rest(mid);

setrest(mid, null);

return dmerj(llmergesort(lst),

llmergesort(half)); } }

(defun llmergesort (lst)

(let (mid half)

(if (or (null lst) (null (rest lst)))

lst

(progn (setq mid (midpoint lst))

(setq half (rest mid))

(setf (rest mid) nil)

(dmerj (llmergesort lst)

(llmergesort half)))))))

What is O()? Stack depth? Conses?

75

Tracing Sort and Merge

(trace merj llmergesort)

(llmergesort ’(39 84 48 59 86 32))

1> (LLMERGESORT (39 84 48 59 86 32))

2> (LLMERGESORT (39 84 48))

3> (LLMERGESORT (39))

<3 (LLMERGESORT (39))

3> (LLMERGESORT (84 48))

4> (LLMERGESORT (84))

4> (LLMERGESORT (48))

4> (MERJ (84) (48))

<4 (MERJ (48 84))

<3 (LLMERGESORT (48 84))

3> (MERJ (39) (48 84))

<3 (MERJ (39 48 84))

<2 (LLMERGESORT (39 48 84))

2> (LLMERGESORT (59 86 32))

3> (LLMERGESORT (59))

<3 (LLMERGESORT (59))

3> (LLMERGESORT (86 32))

4> (LLMERGESORT (86))

4> (LLMERGESORT (32))

4> (MERJ (86) (32))

<4 (MERJ (32 86))

<3 (LLMERGESORT (32 86))

3> (MERJ (59) (32 86))

<3 (MERJ (32 59 86))

<2 (LLMERGESORT (32 59 86))

2> (MERJ (39 48 84) (32 59 86))

<2 (MERJ (32 39 48 59 84 86))

<1 (LLMERGESORT (32 39 48 59 84 86))

(32 39 48 59 84 86)

76

On Not Dropping the Ball

llmergesort is a destructive sorting function that will
change the order, but not the location or contents, of list
elements.

Suppose that lst is (b c a) and we perform
llmergesort(lst). If we now print out lst, it looks
like (b c). Has part of the list been lost?

What we need to do is to perform an assignment to save
the result of the sort.

lst = llmergesort(lst);

This will save the result of sorting. We don’t want the
old value of lst any longer since it now points into the
middle of the sorted list.

Rule: Save the result of a function by doing an
assignment to a variable. If the function is destructive,
use the same variable name as the original, since what it
pointed to before is no longer meaningful.

77

Divide and Conquer Design Pattern

(defun myfun (problem)

(if (basecase? problem)

(baseanswer problem)

(combine (myfun (firsthalf problem))

(myfun (secondhalf problem)))

))

(defun llmergesort (lst)

(let (mid half)

(if (or (null lst) (null (rest lst)))

lst

(progn (setq mid (midpoint lst))

(setq half (rest mid))

(setf (rest mid) nil)

(dmerj (llmergesort lst)

(llmergesort half)))))))

78

Intersection by Merge

public static Cons intersectionm (Cons x, Cons y) {

return mergeint(llmergesort(x), llmergesort(y));}

public static Cons mergeint (Cons x, Cons y) {

if (x == null || y == null) return null;

else if (first(x).equals(first(y)))

return cons(first(x),

mergeint(rest(x),rest(y)));

else if (((Comparable) first(x))

.compareTo(first(y)) < 0)

return mergeint(rest(x), y);

else return mergeint(x, rest(y));}

(defun intersection (x y)

(mergeint (llmergesort x) (llmergesort y)))

(defun mergeint (x y)

(if (or (null x) (null y))

nil

(if (= (first x) (first y))

(cons (first x)

(mergeint (rest x) (rest y)))

(if (< (first x) (first y))

(mergeint (rest x) y)

(mergeint x (rest y))))))

What is O()? Stack depth? Conses?

79

Merge Technique

The merge technique can be used to perform a variety of
operations on sequences of items (linked lists or arrays)
in O(n · log(n)) time:

1. Sort both sequences: O(n · log(n))

2. The merging function steps through the sequences
one element at a time, looking only at the two front
elements and comparing their keys.

3. The function performs some operation involving one
or both front elements, perhaps producing some
output.

4. The function may step down one list, the other list,
or both lists.

5. Examples: merge two sorted lists in order; set
intersection, union, or set difference; update a bank
account based on a transaction.

80

Sort, then Merge

A program that sorts and then merges is a good way to
perform many kinds of set operations in O(n · log(n))
time.

A merge can just as easily be performed with arrays using
two array indexes as pointers.

81

Association List

An association list or alist is a simple lookup table
or map: a linked list containing a key value and some
information associated with the key.

(assoc ’two ’((one 1) (two 2) (three 3)))

-> (two 2)

public static Cons assoc(Object key, Cons lst) {

if (lst == null)

return null;

else if (key.equals(first((Cons) first(lst))))

return ((Cons) first(lst));

else return assoc(key, rest(lst)); }

(defun assoc (key lst)

(if (null lst)

nil

(if (equal key (first (first lst)))

(first lst)

(assoc key (rest lst)))))

New items can be added to the association list using cons.

Adv: Simple code. Table is easily expanded.

Dis: O(n) lookup: Suitable only for small tables.

82

Stack using Linked List

A stack, analogous to a stack of cafeteria plates, supports
only two operations, push and pop, and a test empty.
A stack is sometimes called a LIFO queue, for Last-In
First-Out, because the last item pushed is the first item
popped.

A linked list is a natural way to implement a stack. cons
accomplishes push, and first and rest accomplish pop.
Both push and pop are provided as macros in Lisp.

(setq stack (cons item stack)) ; push

(setq item (first stack)) ; pop

(setq stack (rest stack))

stack = cons(item, stack); // push

item = first(stack); // pop

stack = rest(stack);

(stack == null) // empty?

Both push and pop are O(1) and very fast.

pop of an empty stack is an error; this can cause a null
dereference hardware trap or an exception.

83

Sentinel Node

The push and pop operations on a stack both have side
effects on the pointer to the stack. If that pointer is a
variable, we cannot write push and pop as subroutines.
A common technique is to put an extra dummy node or
sentinel at the front of the list; the sentinel node points
to the actual list. Then we can write subroutines:

public static Cons

pushb (Cons sentinel, Object item) {

setrest(sentinel, cons(item,rest(sentinel)));

return sentinel; }

public static Object popb (Cons sentinel) {

Object item = first(rest(sentinel));

setrest(sentinel, rest(rest(sentinel)));

return item; }

(defun pushb (sentinel item)

(setf (rest sentinel)

(cons item (rest sentinel)))

sentinel)

(defun popb (sentinel)

(let (item)

(setq item (first (rest sentinel)))

(setf (rest sentinel) (rest (rest sentinel)))

item))

84

Other Uses of Linked Lists

A linked list does not have to be in main memory.

For example, a file on the disk may be kept as a linked
list of disk blocks. In this case, a reference or a link is a
disk address.

This is the reason that a deleted file is not actually erased:
the storage of the disk file is released (as a linked list of free
disk blocks), but the contents of the disk blocks remains.

85

Arrays

An array is a contiguous group of elements, all of the
same type, indexed by an integer. In a sense, the array is
the most basic data structure, since the main memory of
a computer is essentially one big array.

The major advantage of an array is random access or
O(1) access to any element. (Paging and cache behavior
can add significantly to access time, but we will ignore
that.)

The major disadvantage of an array is rigidity:

• an array cannot be expanded

• two arrays cannot be combined

• Storage may be wasted because an array is made
larger so it will have some extra space.

In Java, an array is an Object, so it is possible to expand
it in effect by making a new larger array, copying the
old array contents into the new array, and letting the old
array get garbage-collected.

86

Stack using Array

final class MyStack {

private int top;

private int [] stack;

public MyStack(int size)

{ top = 0;

stack = new int[size]; }

public boolean empty() {

return (top == 0); }

public MyStack push(int val) {

stack[top++] = val;

return this; }

public int pop() {

int val = stack[--top];

return val; }

}

87

Uses of Stacks

Stacks are used in many places in computer science:

• Most programming languages keep variable values on
a runtime stack.

• The SPARC architecture has a register file stack in
the CPU.

• Operating systems keep the state of interrupted
processes on a stack.

• A web browser keeps a stack of previously visited web
pages; this stack is popped when the Back button is
clicked.

• Compilers use a stack when parsing programming
languages.

• In general, a stack is needed to traverse a tree.

88

Recursion and Runtime Stack

The runtime stack keeps a fresh set of values for each
variable in a stack frame. A new stack frame is pushed
onto the stack each time a function is entered. Consider
a function to compute the factorial function, written n!

(defun fact (n)

(if (= n 0)

1

(* n (fact (- n 1)))))

>(trace fact)

>(fact 3)

1> (FACT 3)

2> (FACT 2)

3> (FACT 1)

4> (FACT 0)

<4 (FACT 1)

<3 (FACT 1)

<2 (FACT 2)

<1 (FACT 6)

6

89

Recursive Function Execution

Consider the computation of (fact 3). A new stack
frame is created in which n = 3:

n = 3

Now we can execute the code of fact. We test
(if (<= n 0) ...) and, since n = 3, evaluate
(* n (fact (- n 1))). n evaluates to 3, and then
we evaluate (fact (- n 1)) which is (fact 2). This
creates a new stack frame in which n = 2:

n = 2

n = 3

Note that the older binding, n = 3, has not gone away,
but is now shadowed by a new binding n = 2.

Now we test (if (<= n 0) ...) and call (fact 1):

n = 1

n = 2

n = 3

and then we call (fact 0):

n = 0

n = 1

n = 2

n = 3

90

Recursive Execution ...

This time, our test (if (<= n 0) ...) is true and we
return the value 1 as the value of (fact 0):

n = 1

n = 2

n = 3

Now the top stack frame has been popped off. We
multiply 1 by the value of (fact 0) (also 1) and return
1 as the value of (fact 1).

Now (fact 1) = 1 and our stack looks like:

n = 2

n = 3

We multiply 2 by the value of (fact 1) and return 2 as
the value of (fact 2):

n = 3

We multiply 3 by the value of (fact 2) and return 6 as
the final value of (fact 3). Now the stack is empty.

The trace printout two pages above shows the argument
values and return values.

91

Recursive Length Function Execution

>(defun length (lst)

(if (null lst) ; test for base case

0 ; answer for base case

(+ 1

(length (rest lst))))) ; recursive call

>(length ’(a b c))

1> (LENGTH (A B C))

2> (LENGTH (B C))

3> (LENGTH (C))

4> (LENGTH NIL)

<4 (LENGTH 0)

<3 (LENGTH 1)

<2 (LENGTH 2)

<1 (LENGTH 3)

3

92

Balancing Parentheses

A stack is a good way to test whether parentheses are
balanced. An open paren must be matched by a close
paren of the same kind, and whatever is between the
parens must be balanced. ({[][][]}) is balanced, but
({[) is not.

public class charStack {

int n;

char[] stack;

public charStack()

{ n = 0;

stack = new char[100]; }

public void push(char c) {

stack[n++] = c; }

public char pop() {

return stack[--n]; }

public boolean empty() {

return (n == 0); }

This example illustrates that it is easy to roll your own
stack.

93

Balance Test Using Stack

public static boolean testBalance(String s) {

charStack stk = new charStack();

boolean okay = true;

for (int i=0; okay && (i < s.length()); i++)

{ char c = s.charAt(i);

switch (c) {

case ’(’: case ’{’: case ’[’:

stk.push(c);

break;

case ’)’:

if (stk.empty() ||

(stk.pop() != ’(’))

okay = false;

break;

// same for ’}’ and ’]’

default: break; // accept other chars

} }

return (okay && stk.empty()); }

94

Linked List Stack

We could just as easily use a linked list to implement
the stack. The testBalance program is the same for
either version. The stack abstract data type uses the
same interface for both implementations.

public class charStack {

charStack link;

char contents;

public void push(char c) {

charStack newitem = new charStack();

newitem.link = link;

newitem.contents = c;

link = newitem; }

public char pop() {

char c = link.contents;

link = link.link;

return c; }

public boolean empty() {

return (link == null); } }

This data structure is essentially the same as the one for
Cons.

95

Tree Traversal and Stack

A grammar can be written to describe the syntax of the
language of balanced parentheses:

S → (S)

S → [S]

S → { S }

S → SS
S → ε

This grammar describes a balanced parenthesis string as a
tree. As we check the syntax of a string, the stack always
contains the unbalanced symbols between the current
symbol and the root of the tree.

96

XML

XML , for Extensible Markup Language, allows users to
put tags around their data to describe what pieces of the
data mean.

<CATALOG>

<CD>

<TITLE>Empire Burlesque</TITLE>

<ARTIST>Bob Dylan</ARTIST>

<COUNTRY>USA</COUNTRY>

<COMPANY>Columbia</COMPANY>

<PRICE>10.90</PRICE>

<YEAR>1985</YEAR>

</CD>

<CD> ... </CD>

</CATALOG>

We can see that XML provides a hierarchical tree
structure for data. The task of checking the validity of an
XML file is essentially the same as checking for balanced
parentheses; XML simply allows the users to define their
own parenthesis names.

97

Stack in Plain Code

A stack is so simple that it can be written as plain code,
without making a class out of it.

Stack using Linked List:

Cons mystack = null; // init to empty

mystack = cons(item, mystack); // push

item = first(mystack); // pop

mystack = rest(mystack);

Stack using Array:

int [] mystack = new int[50];

int mystackp = 0; // init to empty

mystack[mystackp++] = item; // push

item = mystack[--mystackp]; // pop

98

Queues

A queue data structure implements waiting in line: items
are inserted (enqueued) at the end of the queue and
removed (dequeued) from the front. Sometimes the term
FIFO queue or just FIFO is used, for First-In First-Out.

A queue is a fair data structure: an entry in the queue
will eventually be removed and get service. (A stack, in
contrast, is unfair.)

Queues are frequently used in operating systems:

• queues of processes that are ready to execute

• queues of jobs to be printed

• queues of packets that are ready to be transmitted
over a network

99

Two Pointer Queue using Linked List

A linked list makes a good queue if we keep a pointer to
the end of the list as well as the front.

public class MyQueue {

private Cons front;

private Cons end;

public MyQueue() { front = null; }

public MyQueue insert(Object val) {

Cons element = Cons.list(val);

if (front == null)

front = element;

else Cons.setrest(end, element);

end = element;

return this; }

public Object remove () { // same as pop

Object val = Cons.first(front);

front = Cons.rest(front);

return val; }

100

Circular Queue using Array

We can easily keep a queue of elements in an array. This
is the same as a stack, except that we remove items from
the other end.

We make the array circular by assuming that index [0]

follows index [n - 1].

public class CirQueue {

private int [] queue;

private int front;

private int end;

public CirQueue()

{ queue = new int[10];

front = 0;

end = 0; }

public boolean empty()

{ return (front == end); }

101

Circular Queue Code

public void insert(int val) {

int next = (end + 1) % queue.length;

// wrap around

// if (next == front)

// expand the array, or

// throw new QueueFullException();

queue[end] = val;

end = next; }

public int remove () {

int val = queue[front];

front = (front + 1) % queue.length;

// wrap around

return val; }

102

Java Collection API

The Java Collection interface (in package java.util)
provides a common way for various kinds of collections to
be used. This may make it possible to change the kind
of collection used by an application. It also allows use of
Java iterators to iterate over the members of a collection.

public interface Collection<AnyType>

extends Iterable<AnyType> {

int size();

boolean isEmpty();

void clear();

boolean contains (AnyType x);

boolean add (AnyType x);

boolean remove (AnyType x);

java.util.Iterator<AnyType> iterator();

Object[] toArray();

<T> T[] toArray(T[] a); }

The toArray method allows any Collection to be
converted easily to an array.

103

Java Collections Iteration

Two iterator patterns can be used with collections. The
first is a simple iteration through all elements:

for (AnyType item : coll)

The second form allows more complicated processing,
including removal of an item.

Iterator<AnyType> itr = coll.iterator();

while (itr.hasNext()) {

AnyType item = itr.next();

... // process item

if (...) itr.remove(); }

In this pattern, an iterator object itr is created. This
object can be queried to test whether any items remain
using itr.hasNext(). If there are objects, itr.next()
gets the next one. itr.remove() removes the last object
returned by itr.next() and can only be used once until
there is another call to itr.next() .

A collection should not be modified while an iteration
over it is in progress, except by the itr.remove() .

104

Filter Pattern

A filter is an important concept in CS. Just as a coffee
filter removes coffee grounds while letting liquid pass
through, a filter program removes items from a Collection
if they meet some condition:

static void filter(Collection<?> c) {

for (Iterator<?> it = c.iterator();

it.hasNext();)

if (condition(it.next()))

it.remove(); }

This filter is destructive, removing items from the
collection if they satisfy the condition. One can also
write a constructive filter that makes a new collection,
without modifying the original collection.

105

Using Library Packages

Lead us not into temptation,
but deliver us from evil.

This seems like good advice for designers of library
packages, but it is not necessarily followed.

Temptation: Oh, look, there’s a method that does
what I want.

Evil: If you use that method, your program is O(n2).

The Moral: You need to understand the Big-O of
library methods in order to use them appropriately.
The Big-O of different methods varies between packages
that do essentially the same thing, such as ArrayList

and LinkedList, so that the packages are not
interchangeable. There may also be restrictions on how
library packages can be used.

106

Java List Interface

public interface List<AnyType>

extends Collection<AnyType> {

int size();

boolean isEmpty();

AnyType get(int index);

AnyType set(int index, AnyType newVal);

void add(int index, AnyType x);

boolean add(AnyType x); // at end

void remove(int index); }

get and set allow access to elements of the list by
position, as in an array; set returns the previous value
at that position. add adds a new element to the list after
the specified position.

107

ArrayList

ArrayList provides a growable array implementation of
a List.

Advantages:

• get and set are O(1)

• add and remove at the end are O(1), so an
ArrayList makes a good implementation of a stack.

Disadvantages:

• add and remove are O(n) for random positions: the
rest of the list has to be moved down to make room.

• contains is O(n). contains uses the .equals()

method of the contents type.

• Some space in the array is wasted, O(n), because the
array grows by a factor of 3/2 each time it is expanded.

• clear is O(n), because clear replaces all existing
entries with null to allow those items to possibly be
garbage collected.

108

LinkedList

LinkedList implements a List as a doubly-linked list,
with both forward and backward pointers.

This provides a good implementation of a linked list,
stack, queue, and deque (often pronounced “deck”) or
double-ended queue.

Advantage:

• getFirst, addFirst, removeFirst, getLast,
addLast, removeLast are O(1).

Disadvantages:

• get, set, add and remove are O(n) for random
positions: it is necessary to step down the list to find
the correct position. However, a remove during an
iteration is O(1).

• contains is O(n).

• LinkedList seems more like an array than a true
linked list. There is no method equivalent to
setrest, so the structure of a LinkedList cannot
be changed. It is not possible to write the destructive
merge sort for linked lists that we saw earlier.

109

ListIterator

public interface ListIterator<AnyType>

extends Iterator<AnyType> {

boolean hasPrevious();

AnyType previous();

void add(AnyType x);

void set(AnyType newVal);

ListIterator extends the functionality of Iterator:

• It is possible to move backwards through the list as
well as forwards.

• add adds an element at the current position: O(1)
for LinkedList but O(n) for random positions in
ArrayList.

• set sets the value of the last item seen: O(1) for both.

110

Comparing ArrayList and LinkedList

If the list contains n elements, the Big-O of operations is
as follows:

Method ArrayList LinkedList
get, set ith O(1) O(n)
... at front or end O(1) O(1)
add, remove ith O(n) O(n)
... at front O(n) O(1)
... at end O(1) O(1)
... in ListIterator O(n) O(1)
contains O(n) O(n)

To choose the best Collection, you need to understand
which methods you will use and how often you use them.

If an O(n) method is used within a loop up to n, the
total time required is O(n2) even though the code may
look like it isO(n). Thus, library methods can be a Big-O
trap for the unwary.

111

Trees

A tree is a kind of graph, composed of nodes and links,
such that:

• A link is a directed pointer from one node to another.

• One node, called the root, has no incoming links.

• Each node, other than the root, has exactly one
incoming link from its parent.

• Every node is reachable from the root.

A node can have any number of children. A node with
no children is called a leaf ; a node with children is an
interior node.

Trees often occur in computer systems and in nature.

112

Arithmetic Expressions as Trees

Arithmetic expressions can be represented as trees, with
operands as leaf nodes and operators as interior nodes.

y = m * x + b (= y (+ (* m x) b))

113

Computer Programs as Trees

When a compiler parses a program, it often creates a tree.
When we indent the source code, we are emphasizing the
tree structure.

if (x > y)

j = 3;

else

j = 1;

This is called an abstract syntax tree or AST.

114

English Sentences as Trees

Parsing is the assignment of structure to a linear string
of words according to a grammar; this is much like the
diagramming of a sentence taught in grammar school.

The speaker wants to communicate a structure, but must
make it linear in order to say it. The listener needs to
re-create the structure intended by the speaker. Parts of
the parse tree can then be related to object symbols in
memory.

115

File Systems as Trees

Most computer operating systems organize their file
systems as trees.

A directory or folder is an interior node; a file is a leaf
node.

116

Phylogenetic Trees

As new species evolve and branch off from ancestor
species, they retain most of the DNA of their ancestors.
DNA of different species can be compared to reconstruct
the phylogenetic tree.

117

Taxonomies as Trees

Taxonomy, from the Greek words taxis (order) and
nomos (law or science), was introduced to biology by Carl
Linnaeus in 1760. This 1866 figure is by Ernst Haeckel.

118

Ontologies as Trees

An ontology, from the Greek words ontos (of being) and
logia (science, study, theory), is a classification of the
concepts in a domain and relationships between them.
An ontology describes the kinds of things that exist in
our model of the world.

Ontologies can be represented in Java as class hierarchies,
which have tree structure.

119

Organizations as Trees

Most human organizations are hierarchical and can be
represented as trees.

120

Nerves

121

Representations of Trees

Many different representations of trees are possible:

• Binary tree: contents and left and right links.

• First-child/next-sibling: contents, first-child, next
sibling.

• Linked list: the first element contains the contents,
the rest are a linked list of children.

• Implicit: a node may contain only the contents; the
children can be generated from the contents or from
the location of the parent.

122

Binary Tree

public class Tree {

private String contents;

private Tree left, right;

public Tree(String stuff, Tree lhs, Tree rhs)

{ contents = stuff;

left = lhs;

right = rhs; }

public String str() { return contents; }

123

First-Child / Next-Sibling Tree

A node may not have a fixed number of children.
Dedicating a large number of links would be wasteful if
the average number of children is much smaller than the
maximum, and it would still limit the possible number of
children.

Luckily, we can use the same structure as the binary tree,
with just two links, and have unlimited children with no
wasted space.

public class Tree {

private Object contents;

private Tree first;

private Tree next;

public Tree(Object stuff, Tree child,

Tree sibling)

{ contents = stuff;

first = child;

next = sibling; }

124

First-Child / Next-Sibling Example

y = m * x + b

Tree: Representation:

The layout of nodes in this kind of tree is the same as
for a traditional tree; we are just putting the links in a
different place.

Down arrows represent the first child, while side arrows
represent the next sibling.

125

Linked List Tree

We can think of a linked list as a tree. The first node of
the list contains the contents of the node, and the rest of
the list is a list of the children. The children, in turn, can
be lists; a non-list is a leaf node.

(= Y (+ (* M X) B))

126

Implicit Tree

In some cases, it may be possible to compute the children
from the state or the location of the parent.

For example, given the board state of a game of checkers,
and knowing whose turn it is to move, it is possible to
compute all possible moves and thus all child states.

127

Binary Search Tree (BST)

Suppose that we have a binary tree that is ordered,
such that each node has contents, and all of its left

descendants are less than the contents, and all of its
right descendants are greater than the contents.

128

Binary Tree Search

We can efficiently search for a desired element of the tree
by taking advantage of the ordering and using divide-and-
conquer.

public static Tree search

(Tree start, String goal) {

if (start == null)

return null; // goal not found

else

{ int test = goal.compareTo(start.contents);

if (test == 0)

return start; // found

else if (test < 0)

return search(start.left, goal);

else return search(start.right, goal);

} }

If the tree is balanced, search takes only O(log(n)) time.

We return the node because it is likely that the
application will need to do something with it. For
example, we might search on a customer name and use
the customer’s account information.

129

Binary Search of Array

If objects are arranged in a sorted array, we can think of
the array as a gedanken tree and use our binary search
pattern on it.

We can think of a tree as being described by two array
indexes, low and high, as follows:

• root = (low + high) / 2

• left = (low, root - 1)

• right = (root + 1, high)

• empty: high < low

130

Binary Tree Array Search

This version returns the index of the goal, or -1 if not
found.

public static int search (String [] arr, int low,

int high, String goal) {

if (high < low)

return -1; // goal not found

else

{ int root = (low + high) / 2;

int test = goal.compareTo(arr[root]);

if (test == 0)

return root; // found

else if (test < 0)

return search(arr, low,

root - 1, goal);

else return search(arr, root + 1,

high, goal); } }

This binary search uses divide-and-conquer and takes
O(log(n)) time.

131

Binary Array Search Example

(defun searcharr (arr low high goal)

(let (root)

(setq root (truncate (+ low high) 2))

(if (< high low)

-1 ; arr[root]

(if (string= (aref arr root) goal)

root

(if (string< goal (aref arr root))

(searcharr arr low

(- root 1) goal)

(searcharr arr (+ root 1)

high goal))))))

>(setq myarr ’#("ape" "bat" "bee" "cat" "dog" ...))

>(searcharr myarr 0 6 "bee")

1> (SEARCHARR #("ape" "bat" "bee" "cat" ...) 0 6

"bee")

2> (SEARCHARR #("ape" "bat" "bee" ...) 0 2 "bee")

3> (SEARCHARR #("ape" "bat" "bee" ...) 2 2

"bee")

<3 (SEARCHARR 2)

<2 (SEARCHARR 2)

<1 (SEARCHARR 2)

2

132

Binary Tree Recursion

While recursion is not always the best method for linked
lists, it usually is the best method for trees. We don’t
have a problem with stack depth because depth is only
O(log(n)) if the tree is balanced.

Suppose that we want to add up all numbers in a Cons
tree.

public static int addnums(Object tree) {

if (consp(tree)) ; is this a Cons?

return addnums(first((Cons)tree))

+ addnums(rest((Cons)tree));

else if (numberp(tree))

return (int) (Integer) tree;

else return 0;

}

(defun addnums (tree)

(if (consp tree) ; interior node

(+ (addnums (first tree))

(addnums (rest tree)))

(if (numberp tree) ; leaf node

tree

0)))

133

Binary Tree Recursion

Add up all numbers in a Cons tree:

(defun addnums (tree)

(if (consp tree) ; interior node

(+ (addnums (first tree))

(addnums (rest tree)))

(if (numberp tree) ; leaf node

tree

0)))

Set of all symbols in a Cons tree:

(defun symbolset (tree)

(if (consp tree)

(union (symbolset (first tree))

(symbolset (rest tree)))

(if (and (not (null tree))

(symbolp tree))

(list tree)

’())))

134

Design Pattern: Binary Tree Recursion

This pattern is like the one for lists, except that it calls
itself twice for interior nodes. This is essentially the same
as the divide-and-conquer design pattern.

(defun myfun (tree)
(if (interior? tree)

(combine (myfun (left tree))
(myfun (right tree)))

(if (test tree) ; leaf
(baseanswer tree)
safeanswer)))

(defun addnums (tree) ; sum all numbers in tree

(if (consp tree)

(+ (addnums (first tree))

(addnums (rest tree)))

(if (numberp tree)

tree

0)))

The safeanswer should be an identity element for the
combine operation, i.e. a value that, when combined
with any other value, yields the other value.

135

Binary Tree Recursion Pattern in Java

type myfun (Object tree) {
if (interior? tree)

return combine(myfun(left tree),
myfun(right tree));

else if (test tree) // leaf
return baseanswer(tree);
else return safeanswer; }

(public static int addnums(Object tree) {

if (consp(tree)) // is this a Cons?

return addnums(first((Cons)tree))

+ addnums(rest((Cons)tree));

else if (numberp(tree))

return (int) (Integer) tree;

else return 0; }

136

Design Pattern: Binary Tree Recursion

If we are using the form of binary tree that has contents,
left and right, we can alter the design pattern slightly:

(defun myfun (tree)
(if (not (null tree))

(combine (contents tree)
(myfun (left tree))
(myfun (right tree)))

(if (test tree) ; leaf
(baseanswer tree)
safeanswer)))

safeanswer depends on the combine:

combine safeanswer = identity
+ 0

* 1

and, every true

or, some false

min Integer.MAX VALUE

max Integer.MIN VALUE

union null

137

Searching Directories for a File

Given a tree-structured directory of files and a file path,
we want to find the file specified by the path. This is
an important task for an operating system. For example,
given a command:

javac /u/novak/cs314/asg4/Cons.java

the OS must convert the file path into the disk address
of the file.

We will assume that a parsing program has converted the
file path into a list of strings or symbols,

(u novak cs314 asg4 Cons.java)

Our task, then, is to search a tree-structured directory to
find the desired file, given the file path.

138

Findpath Example

(/usr bill course cop3212 fall06 grades)

((/usr (mark (book ch1.r ch2.r ch3.r) ...)

(alex (junk))

(bill (work)

(course

(cop3212

(fall05 grades ...)

(fall06 prog2.r prog1.r grades))))))

139

Findpath Representation

We will use a Cons representation in which a symbol or
String is a file or directory name and a list is a directory
whose first element is the directory name and whose
rest is the contents.

findpath has two arguments:

• dirtree is a directory tree, a list of items:
(item1 ... itemn). Each itemi is:

– a subdirectory: a list (name item1 ... itemn)
(fall06 prog2.r prog1.r grades)

– a file name: prog2.r

• path is a list of names.
(/usr bill course cop3212 fall06 grades)

What findpath does is to look through its list to find
some item that matches the first name in path:

• If a subdirectory matches, go into that subdirectory.

• If a file matches, done: return that entry.

• If a file does not match, skip it; go to next entry.

140

Java Version of Findpath

public static String

findpath(Cons dirtree, Cons path) {

if (dirtree == null)

return null; // not found

else if (consp(first(dirtree))) // directory?

if (((String) first(path)) // first(path)

.equals(first((Cons) // = dir name?

first(dirtree))))

return findpath(rest((Cons) // yes: go in

first(dirtree)), // contents

rest(path)) ; // pop path

else return findpath(rest(dirtree), // no: keep

path); // looking

else if (((String) first(path)) // first(path)

.equals(first(dirtree))) // = file name?

return (String) first(path); // yes: success

else // no: keep

return findpath(rest(dirtree), // looking

path); }

141

Lisp Version of Findpath

(defun findpath (dirtree path)

(if (null dirtree)

nil ; file not found

(if (consp (first dirtree)) ; directory?

(if (eq (first path) ; dir name ==

(first (first dirtree)))

(findpath ; yes: go in

(rest (first dirtree)) ; dir contents

(rest path)) ; pop path

(findpath ; no: keep

(rest dirtree) ; looking

path))

(if (eq (first path) ; file name ==

(first dirtree))

(first path) ; yes: success

(findpath ; no: keep

(rest dirtree) ; looking

path)))))

142

Searching Directories Example

>(findpath directory ’(/usr bill course cop3212 fall06 grades))

1> (FINDPATH

((/USR (MARK (BOOK CH1.R CH2.R CH3.R)

(COURSE (COP3530 (FALL05 SYL.R) (SPR06 SYL.R)

(SUM06 SYL.R)))

(JUNK))

(ALEX (JUNK))

(BILL (WORK)

(COURSE (COP3212 (FALL05 GRADES PROG1.R PROG2.R)

(FALL06 PROG2.R PROG1.R GRADES))))))

(/USR BILL COURSE COP3212 FALL06 GRADES))

2> (FINDPATH

((MARK (BOOK CH1.R CH2.R CH3.R)

(COURSE (COP3530 (FALL05 SYL.R) (SPR06 SYL.R)

(SUM06 SYL.R)))

(JUNK))

(ALEX (JUNK))

(BILL (WORK)

(COURSE (COP3212 (FALL05 GRADES PROG1.R PROG2.R)

(FALL06 PROG2.R PROG1.R GRADES)))))

(BILL COURSE COP3212 FALL06 GRADES))

3> (FINDPATH

((ALEX (JUNK))

(BILL (WORK)

(COURSE (COP3212 (FALL05 GRADES PROG1.R PROG2.R)

(FALL06 PROG2.R PROG1.R GRADES)))))

(BILL COURSE COP3212 FALL06 GRADES))

4> (FINDPATH

((BILL (WORK)

(COURSE (COP3212 (FALL05 GRADES PROG1.R PROG2.R)

(FALL06 PROG2.R PROG1.R GRADES)))))

(BILL COURSE COP3212 FALL06 GRADES))

143

Searching Directories Example ...
5> (FINDPATH

((WORK)

(COURSE (COP3212 (FALL05 GRADES PROG1.R PROG2.R)

(FALL06 PROG2.R PROG1.R GRADES))))

(COURSE COP3212 FALL06 GRADES))

6> (FINDPATH

((COURSE (COP3212 (FALL05 GRADES PROG1.R PROG2.R)

(FALL06 PROG2.R PROG1.R GRADES))))

(COURSE COP3212 FALL06 GRADES))

7> (FINDPATH

((COP3212 (FALL05 GRADES PROG1.R PROG2.R)

(FALL06 PROG2.R PROG1.R GRADES)))

(COP3212 FALL06 GRADES))

8> (FINDPATH

((FALL05 GRADES PROG1.R PROG2.R)

(FALL06 PROG2.R PROG1.R GRADES))

(FALL06 GRADES))

9> (FINDPATH ((FALL06 PROG2.R PROG1.R GRADES))

(FALL06 GRADES))

10> (FINDPATH (PROG2.R PROG1.R GRADES) (GRADES))

11> (FINDPATH (PROG1.R GRADES) (GRADES))

12> (FINDPATH (GRADES) (GRADES))

<12 (FINDPATH GRADES)

<11 (FINDPATH GRADES)

<10 (FINDPATH GRADES)

<9 (FINDPATH GRADES)

<8 (FINDPATH GRADES)

<7 (FINDPATH GRADES)

<6 (FINDPATH GRADES)

<5 (FINDPATH GRADES)

<4 (FINDPATH GRADES)

<3 (FINDPATH GRADES)

<2 (FINDPATH GRADES)

<1 (FINDPATH GRADES)

GRADES

144

Big O for Trees

If a tree is uniform and balanced, we can describe it in
terms of several parameters:

• b, the breadth or branching factor, is the number of
branches per interior node. For a binary tree, b = 2.

• d is the depth, the height of the tree. d = logb(n)

• n is the number of leaf nodes. n = bd

Note that most of the nodes are on the bottom row of
the tree. If b = 2, half the nodes are on the bottom; if b is
higher, an even greater proportion will be on the bottom.

In general, a tree algorithm will have Big O:

• if one branch of the tree is followed and the others are
abandoned, O(log(n)): proportional to depth.

• if all branches of the tree are processed, O(n∗ log(n))

145

Depth First Search

Many kinds of problems can be solved by search, which
involves finding a goal from a starting state by applying
operators that lead to a new state.

Suppose that a robot can take 4 actions: move west,
north, east, or south. We could represent the state of
the robot as its position. From any given state, the robot
has 4 possible actions, each of which leads to a new state.
This can be represented as a root node (initial state) with
4 branches to new states.

Depth-first search (DFS) follows an implicit tree of size
O(bdepth), where b is the branching factor. Given a state,
we test whether it is a goal or a terminal failure node; if
not, we generate successor states and try searching from
each of them. Most of these searches will fail, and we will
backtrack and try a different branch.

The program execution stack records the state of
examining each node. We may need our own stack of
previous states to avoid getting into a loop, wandering
in circles. We will return a stack of operators so we can
record how we reached the goal. All of these stacks are
O(depth).

146

Depth First Search Order

Depth-first search is so named because the recursion goes
deep in the tree before it goes across. The above diagram
shows the order in which nodes of a search tree are
examined.

Usually, the search will quit and return an answer when
a node is either a terminal failure node or a goal node.

Depth-first search is often preferred because of its low
O(log(n)) storage requirement.

147

Robot Mouse in Maze
Depth-first search of an implicit tree can simulate a robot
mouse in a maze. The goal is to return a sequence of steps
to guide the mouse to the cheese.

(defun mouse (maze x y prev)

(let (path here)

(if (or (eq (aref maze y x) ’*)

(member (setq here (list x y))

prev :test ’equal))

nil ; fail

(if (eq (aref maze y x) ’c)

’(cheese) ; success

(if (setq path

(mouse maze (- x 1) y

(cons here prev)))

(cons ’w path)

(if (setq path

(mouse maze x (- y 1) (cons here prev)))

(cons ’n path)

(if (setq path

(mouse maze (+ x 1) y (cons here prev)))

(cons ’e path)

(if (setq path

(mouse maze x (+ y 1) (cons here prev)))

(cons ’s path)

nil)))))))) ; fail

148

Robot Mouse in Java

public static Cons

mouse (String[][] maze, int x, int y, Cons prev){

Cons path;

if (maze[y][x].equals("*")) return null;

Cons here = list(x, y);

if (memberv(here, prev) != null) return null;

else if (maze[y][x].equals("C"))

return list("C");

else if ((path = mouse(maze, x - 1, y,

cons(here,prev)))

!= null)

return cons("W", path);

else if ((path = mouse(maze, x, y - 1,

cons(here,prev)))

!= null)

return cons("N", path);

else if ((path = mouse(maze, x + 1, y,

cons(here,prev)))

!= null)

return cons("E", path);

else if ((path = mouse(maze, x, y + 1,

cons(here,prev)))

!= null)

return cons("S", path);

else return null; }

149

Robot Mouse Program

• The maze is a 2-D array. * represents a wall. 0

represents an open space. C represents cheese.

• The mouse starts in an open position.

• The mouse has 4 possible moves at each point: w, n,
e or s.

•We have to keep track of where the mouse has been,
or it might wander infinitely in circles. The list prev
is a stack of previous states. If the mouse re-visits a
position on prev, we want to fail.

•We need to return an answer:

– nil for failure

– a list of moves that will lead from the current
position to the goal; for the goal itself, we will
use the sentinel (cheese). As we unwind the
recursion, we will push the operator that led to
the goal onto the answer list at each step.

150

Robot Mouse Example

(setq maze (make-array ’(10 10)

:initial-contents

; 0 1 2 3 4 5 6 7 8 9

’((* * * * * * * * * *) ; 0

(* 0 0 * * * * * * *) ; 1

(* 0 * * * * * * * *) ; 2

(* 0 * * * * * * * *) ; 3

(* 0 0 0 0 0 0 * * *) ; 4

(* * * * 0 * 0 * * *) ; 5

(* * * * 0 * 0 * C *) ; 6

(* * * * 0 * 0 * 0 *) ; 7

(* * * * 0 * 0 0 0 *) ; 8

(* * * * 0 * * * * *)))) ; 9

>(mouse maze 4 9 ’())

(N N N N N E E S S S S E E N N CHEESE)

151

Tracing the Robot Mouse

>(mouse maze 4 9 ’())

1> (MOUSE #2A((* * * * * * * * * *)

(* 0 0 * * * * * * *)

(* 0 * * * * * * * *)

(* 0 * * * * * * * *)

(* 0 0 0 0 0 0 * * *)

(* * * * 0 * 0 * * *)

(* * * * 0 * 0 * C *)

(* * * * 0 * 0 * 0 *)

(* * * * 0 * 0 0 0 *)

(* * * * 0 * * * * *)) 4 9 NIL)

2> (MOUSE 3 9 ((4 9))) ; west

<2 (MOUSE NIL) ; hit the wall

2> (MOUSE 4 8 ((4 9))) ; north

3> (MOUSE 3 8 ((4 8) (4 9))) ; west

<3 (MOUSE NIL) ; hit the wall

3> (MOUSE 4 7 ((4 8) (4 9))) ; north

4> (MOUSE 4 6 ((4 7) (4 8) (4 9))) ; north

5> (MOUSE 4 5 ((4 6) (4 7) (4 8) (4 9))) ; north

6> (MOUSE 4 4 ((4 5) (4 6) (4 7) (4 8) (4 9))) ; north

7> (MOUSE 3 4 ((4 4) (4 5) (4 6) (4 7) (4 8) ; west

8> (MOUSE 2 4 ((3 4) (4 4) (4 5) (4 6) ; west

9> (MOUSE 1 4 ((2 4) (3 4) (4 4) (4 5) ; west

10> (MOUSE 0 4 ((1 4) (2 4) (3 4) (4 4) ; west

<10 (MOUSE NIL) ; hit the wall

10> (MOUSE 1 3 ((1 4) (2 4) (3 4) (4 4) ; north

11> (MOUSE 1 2 ((1 3) (1 4) (2 4) (3 4)

12> (MOUSE 1 1 ((1 2) (1 3) (1 4) (2 4)

13> (MOUSE 1 0 ((1 1) (1 2) (1 3) (1 4) ; north

<13 (MOUSE NIL) ; hit the wall

13> (MOUSE 2 1 ((1 1) (1 2) (1 3) (1 4) ; east

14> (MOUSE 1 1 ((2 1) (1 1) (1 2) (1 3) ; west

<14 (MOUSE NIL) ; ! loop

152

Tracing the Robot Mouse ...

14> (MOUSE 3 1 ((2 1) (1 1) (1 2) (1 3)

<14 (MOUSE NIL)

14> (MOUSE 2 2 ((2 1) (1 1) (1 2) (1 3)

<14 (MOUSE NIL)

<13 (MOUSE NIL) ...

<7 (MOUSE NIL) ; fail back to (4 4)

7> (MOUSE 5 4 ((4 4) (4 5) (4 6) (4 7) ; east

8> (MOUSE 6 4 ((5 4) (4 4) (4 5) (4 6)

9> (MOUSE 6 5 ((6 4) (5 4) (4 4) (4 5) ; south

10> (MOUSE 6 6 ((6 5) (6 4) (5 4)

11> (MOUSE 6 7 ((6 6) (6 5) (6 4)

12> (MOUSE 6 8 ((6 7) (6 6) (6 5) ; south

13> (MOUSE 7 8 ((6 8) (6 7) (6 6) ; east

14> (MOUSE 8 8 ((7 8) (6 8) (6 7) ; east

15> (MOUSE 8 7 ((8 8) (7 8) (6 8) ; north

16> (MOUSE 8 6 ((8 7) (8 8) (7 8) ; north

<16 (MOUSE (CHEESE)) ; found the cheese!

<15 (MOUSE (N CHEESE)) ; last move was N

<14 (MOUSE (N N CHEESE)) ; push on operators

<13 (MOUSE (E N N CHEESE)) ; as we backtrack

<12 (MOUSE (E E N N CHEESE))

<11 (MOUSE (S E E N N CHEESE))

<10 (MOUSE (S S E E N N CHEESE))

<9 (MOUSE (S S S E E N N CHEESE))

<8 (MOUSE (S S S S E E N N CHEESE))

<7 (MOUSE (E S S S S E E N N CHEESE))

<6 (MOUSE (E E S S S S E E N N CHEESE))

<5 (MOUSE (N E E S S S S E E N N CHEESE))

<4 (MOUSE (N N E E S S S S E E N N CHEESE))

<3 (MOUSE (N N N E E S S S S E E N N CHEESE))

<2 (MOUSE (N N N N E E S S S S E E N N CHEESE))

<1 (MOUSE (N N N N N E E S S S S E E N N CHEESE))

(N N N N N E E S S S S E E N N CHEESE)

153

Tree Traversal

For some applications, we need to traverse an entire tree,
performing some action as we go. There are three basic
orders of processing:

• Preorder: process the parent node before children.

• Inorder: process one child, then the parent, then
the other child.

• Postorder: process children first, then the parent.

Thus, the name of the order tells when the parent is
processed.

We will examine each of these with an example.

154

Preorder

In preorder, the parent node is processed before its
children.

Suppose that we want to print out a directory name, then
the contents of the directory. We will also indent to show
the depth. We assume a directory tree as shown earlier:
a directory is a list of the directory name followed by its
contents; a non-list is a file.

(defun printdir (dir level)

(spaces (* 2 level))

(if (symbolp dir)

(progn (prin1 dir)

(terpri))

(progn (prin1 (first dir))

(terpri)

(dolist (contents (rest dir))

(printdir contents

(+ level 1))))))

155

Preorder Example

>(printdir (first directory) 0)

/USR

MARK

BOOK

CH1.R

CH2.R

CH3.R

COURSE

COP3530

FALL05

SYL.R

SPR06

SYL.R

SUM06

SYL.R

JUNK

ALEX

JUNK

BILL

WORK

COURSE

COP3212

FALL05

GRADES

PROG1.R

PROG2.R

FALL06

PROG2.R

PROG1.R

GRADES

156

Preorder Example in Java

public static void printdir (Object dir, int level) {

for (int i = 0; i < level; i++)

System.out.print(" ");

if (! consp(dir))

System.out.println(dir);

else { System.out.println(first((Cons) dir));

while (rest((Cons) dir) != null) {

dir = rest((Cons) dir);

printdir(first((Cons) dir),

level + 1); } } }

(/usr (mark (book ch1.r ch2.r ch3.r)

(course (cop3530 (fall05 syl.r)

(spr06 syl.r) (sum06 syl.r)))

(junk))

(alex (junk))

(bill (work) ...))

/usr

mark

book

ch1.r

ch2.r

ch3.r

course ...

157

Inorder

There are several ways of writing arithmetic expressions;
these are closely related to the orders of tree traversal:

• Prefix or Cambridge Polish, as in Lisp: (+ x y)

• Infix, as in Java: x + y

• Polish Postfix: x y +

An expression tree can be printed as infix by an inorder
traversal:

(defun op (x) (first x)) ; access functions

(defun lhs (x) (second x)) ; left-hand side

(defun rhs (x) (third x)) ; right-hand side

(defun infix (x)

(if (consp x)

(progn (princ "(")

(infix (lhs x)) ; first child

(prin1 (op x)) ; parent

(infix (rhs x)) ; second child

(princ ")"))

(prin1 x)))

>(infix ’(* (+ x y) z))

((X+Y)*Z)

158

Inorder Printing of Binary Tree

An ordered binary tree can be printed in sorted order by
an inorder traversal. It is clear that inorder is the right
algorithm since the parent is between the two children in
the sort ordering.

(defun printbt (tree)

(if (consp tree)

(progn (printbt (lhs tree)) ; 1. L child

(print (op tree)) ; 2. parent

(printbt (rhs tree))) ; 3. R child

(if tree (print tree))))

>(printbt ’(cat (bat ape

bee)

(elf dog

fox)))

APE

BAT

BEE

CAT

DOG

ELF

FOX

159

Flattening Binary Tree

An ordered binary tree can be flattened into an ordered
list by a backwards inorder traversal. We do the inorder
backwards so that pushing onto a stack (using cons) can
be used to accumulate the result.

(defun flattenbt (tree) (flattenbtb tree ’()))

(defun flattenbtb (tree result)

(if (consp tree)

(flattenbtb (lhs tree) ; 3. L child

(cons (op tree) ; 2. parent

(flattenbtb

(rhs tree) ; 1. R child

result)))

(if tree

(cons tree result)

result)))

>(flattenbt ’(cat (bat ape

bee)

(elf dog

fox)))

(APE BAT BEE CAT DOG ELF FOX)

160

Tracing Flattening Binary Tree

>(flattenbt ’(cat (bat ape

bee)

(elf dog

fox)))

1> (FLATTENBT (CAT (BAT APE BEE) (ELF DOG FOX)))

2> (FLATTENBTB (CAT (BAT APE BEE) (ELF DOG FOX)) NIL)

3> (FLATTENBTB (ELF DOG FOX) NIL)

4> (FLATTENBTB FOX NIL)

<4 (FLATTENBTB (FOX))

4> (FLATTENBTB DOG (ELF FOX))

<4 (FLATTENBTB (DOG ELF FOX))

<3 (FLATTENBTB (DOG ELF FOX))

3> (FLATTENBTB (BAT APE BEE) (CAT DOG ELF FOX))

4> (FLATTENBTB BEE (CAT DOG ELF FOX))

<4 (FLATTENBTB (BEE CAT DOG ELF FOX))

4> (FLATTENBTB APE (BAT BEE CAT DOG ELF FOX))

<4 (FLATTENBTB (APE BAT BEE CAT DOG ELF FOX))

<3 (FLATTENBTB (APE BAT BEE CAT DOG ELF FOX))

<2 (FLATTENBTB (APE BAT BEE CAT DOG ELF FOX))

<1 (FLATTENBT (APE BAT BEE CAT DOG ELF FOX))

(APE BAT BEE CAT DOG ELF FOX)

161

Flattening Binary Tree in Java

public static Cons flattenbt (Object tree) {

return flattenbtb(tree, null); }

public static Cons flattenbtb (Object tree,

Cons result) {

if (consp(tree))

return flattenbtb(lhs((Cons) tree),

cons(op((Cons) tree),

flattenbtb(

rhs((Cons) tree),

result)));

return (tree == null) ? result

: cons(tree, result); }

btr = (cat (bat ape bee)

(elf dog fox))

flatten = (ape bat bee cat dog elf fox)

162

Postorder

The Lisp function eval evaluates a symbolic expression.
We can write a version of eval using postorder traversal
of an expression tree with numeric leaf values. Postorder
follows the usual rule for evaluating function calls, i.e.,
arguments are evaluated before the function is called.

(defun myeval (x)

(if (numberp x)

x

(funcall (op x) ; execute the op

(myeval (lhs x))

(myeval (rhs x)))))

>(myeval ’(* (+ 3 4) 5))

1> (MYEVAL (* (+ 3 4) 5))

2> (MYEVAL (+ 3 4))

3> (MYEVAL 3)

<3 (MYEVAL 3)

3> (MYEVAL 4)

<3 (MYEVAL 4)

<2 (MYEVAL 7)

2> (MYEVAL 5)

<2 (MYEVAL 5)

<1 (MYEVAL 35)

35

163

Balanced Binary Trees

We have seen that searching a binary tree is very
efficient, O(log(n)); however, this is only true if the
tree is balanced, i.e. the two branches of a node have
approximately the same height. If the tree is unbalanced,
search time could be worse, perhaps even O(n).

There are several clever algorithms that maintain self-
balancing binary trees; these algorithms re-balance the
tree as needed.

• AVL Tree: heights of subtrees differ by at most 1.
A node contains a balance value of -1, 0, or 1, which is
the difference in height of its subtrees. If the balance
goes out of this range, the tree is rebalanced.

• Red-Black Tree: nodes are colored red or black.
The longest path from root to a leaf is no more than
twice the length of the shortest path.

• Splay Tree: the tree is rebalanced so that recently
accessed elements can be accessed quickly the next
time.

164

AVL Tree

An AVL Tree 3 is a binary tree that is approximately
height-balanced: left and right subtrees of any node differ
in height by at most 1.

Advantage: approximatelyO(log(n)) search and insert
time.

Disadvantage: complex code (120 - 200 lines).

http://www.cs.utexas.edu/users/novak/cgi/apserver.cgi

will generate AVL programs in your choice of language.

3G. M. Adel’son-Vel’skĭi and E. M. Landis, Soviet Math. 3, 1259-1263, 1962; D. Knuth, The Art of
Computer Programming, vol. 3: Sorting and Searching, Addison-Wesley, 1973, section 6.2.3.

165

Tree Rotation

The basic idea upon which self-balancing trees are based
is tree rotation. Rotations change the height of subtrees
but do not affect the ordering of elements required for
binary search trees.

The tree on the left is converted to the tree on the right
with a right rotation, or vice versa with a left rotation.
Both trees maintain the required ordering, but the heights
of the subtrees have changed. In this diagram, B and D

are single nodes, while A, C, and E could be subtrees.

There are several other rotation cases, but this is the basic
idea.

166

B-Tree

Suppose that a tree is too big to be kept in memory,
and thus must be kept on a disk. A disk has large
capacity (e.g. a terabyte, 1012 bytes) but slow access
(e.g. 10 milliseconds). A computer can execute millions
of instructions in the time required for one disk access.

We would like to minimize the number of disk accesses
required to get to the data we want. One way to do this
is to use a tree with a very high branching factor.

• Every interior node (except the root) has between
m/2 and m children. m may be large, e.g 256, so
that an interior node fills a disk block.

• Each path from the root to a leaf has the same length.

• The interior nodes, containing keys and links, may be
a different type than the leaf nodes.

• A link is a disk address.

• The real data (e.g. customer record) is stored at the
leaves; this is sometimes called a B+ tree. Leaves will
have between l/2 and l data items.

167

B-Tree Implementation

Conceptually, an interior node is an array of n pointers
and n − 1 key values. A pointer is between the two key
values that bound the entries that it covers; we imagine
that the array is bounded by key values of −∞ and ∞.
(In practice, two arrays, pointers and key values, may be
used since they are of different types.)

Binary search of the array of key values can be used to
find the right pointer to follow. If we have the sequence

keyi pointeri keyi+1

pointeri covers all keys such that keyi ≤ key < keyi+1.

168

Advantages of B-Trees

• The desired record is found at a shallow depth (few
disk accesses). A tree with 256 keys per node can
index millions of records in 3 steps or 1 disk access
(keeping the root node and next level in memory).

• In general, there are many more searches than
insertions.

• Since a node can have a wide range of children, m/2
to m, an insert or delete will rarely go outside this
range. It is rarely necessary to rebalance the tree.

• Inserting or deleting an item within a node is
O(blocksize), since on average half the block must
be moved, but this is fast compared to a disk access.

• Rebalancing the tree on insertion is easy: if a node
would become over-full, break it into two half-nodes,
and insert the new key and pointer into its parent.
Or, if a leaf node becomes over-full, see if a neighbor
node can take some extra children.

• In many cases, rebalancing the tree on deletion can
simply be ignored: it only wastes disk space, which is
cheap.

169

Quadtree

A quadtree is a tree in which each interior node has 4
descendants. Quadtrees are often used to represent 2-
dimensional spatial data such as images or geographic
regions.

170

Image Quadtree

An image quadtree can represent an image more
compactly than a pixel representation if the image
contains homogeneous regions (which most real images
do). Even though the image is compressed, the value at
any point can be looked up quickly, in O(log n) time.

171

Intersection of Quadtrees

Quadtrees A and B can be efficiently intersected:

• If A = 0 or B = 0, the result is 0.

• If A = 1, the result is B.

• If B = 1, the result is A.

• Otherwise, make a new interior node whose values are
corresponding intersections of children of A and B.

Notice that the intersection can often reuse parts of the
input trees. Uses include:

• Geospatial modeling, e.g. what is the intersection of
area of forecast rain with area of corn?

• Graphics, games: view frustum culling

• Collision detection

172

Aggregate Data in Quadtrees

A quadtree node can hold aggregate data about the area
covered by the node:

• Addition, averaging, statistics: each node can
aggregate the data of its children.

• Color: a node can average the color of its children.

• Updating: aggregate data can be kept up-to-date in
O(log n) time.

173

Uses of Quadtrees

• Spatial indexing: O(log n) lookup of data values by
spatial position, while using less storage than an array.

• Numerical algorithms: spatial algorithms can be
much more efficient by using lower-resolution data for
interactions that are far apart.

• Graphics: reduce resolution except where user is
looking.

An octtree is a 3-dimensional tree similar to a quadree.

174

Be Extreme!

Sometimes an extreme solution to a problem may be best:

• Buy enough memory to put everything in main
memory. A 32-bit PC can address 4 GB of memory,
or 200 bytes for every person in Texas.

• Buy a lot of PC’s and put part of the data on each
PC.

• Use a SSN (9 digits = 1 Gig) as an array index to
index a big array stored on disk: no disk accesses to
find the disk address. Not all 9-digit numbers are valid
SSN’s, so some disk will be wasted; but who cares?

• Buy a million PC’s if that is what it takes to do your
computation.

175

Sparse Arrays

In a sparse array, most elements are zero or empty.

A two-dimensional array of dimension n takes O(n2)
storage; that gets expensive fast as n increases. However,
a sparse array might have only O(n) nonzero elements.

What we would like to do is to store only the nonzero
elements in a lookup structure; if we look up an element
and don’t find it, we can return zero.

For example, we could have an array of size n for the first
index; this could contain pointers to a linked list or tree
of values using the second index as the search key.

(defun sparse-aref (arr i j)

(or (second (assoc j (aref arr i)))

0))

(setq myarr (make-array ’(10) :initial-contents

’(nil nil ((3 77) (2 13)) nil ((5 23))

nil nil ((2 47) (6 52)) nil nil)))

>(sparse-aref myarr 7 6)

52

>(sparse-aref myarr 7 4)

0

176

Solving Equations

Simple equations can be solved by search, using rules of
algebra to transform equations into equivalent forms until
an equation for the desired variable is produced.

We will think of the same data structure in several ways:

• Equation: y = m · x + b

• List structure: (= Y (+ (* M X) B))

or (op lhs rhs) recursively

• Tree:

M

*

X

B

+

=

Y rhs

op

lhs

@
@
@
@@�

�
�
��

�
�
�
��

�
�
�
��

�
�
�
�� @

@
@
@@

@
@
@
@@

@
@
@
@@

• Executable code: eval can evaluate an expression
using a set of variable bindings.

177

Solving an Equation by Search

We can perform algebraic operations by manipulating the
list structure representation of an expression tree (taking
apart the original tree and constructing a new tree). To
solve an equation e for a desired variable v:

• Base cases:

– If the lhs of e is v, return e.

– If the rhs of e is v, rewrite e to switch the lhs

and rhs of e, and return that.

– If only an undesired variable or constant is on the
right, (rhs is not consp), fail by returning null.

• Recursive case: Rewrite e using an algebraic law,
and try to solve that equation. Return the first result
that is not null.

Often, there are two possible ways to rewrite an
equation; it is necessary to try both. Thus, the process
will be a binary tree search analogous to the robot
mouse searching for cheese.

178

Examples: Base Cases

>(solve ’(= x 3) ’x)

(= X 3)

>(solve ’(= 3 x) ’x)

(= X 3)

>(solve ’(= 3 y) ’x)

NIL

179

Recursive Cases: Operators

The recursive case has a rhs that is an operation:
(= α (op β γ))

We are hoping that the desired variable will be somewhere
in β or γ; to get to it, we must apply some kind of inverse
operation to both sides of the equation to get rid of op
and isolate β or γ.

In general, there may be two inverse operations to try.

We can produce the result of the inverse operation by
constructing a new equation from the given one, e.g.,
given:
(= α (+ β γ))

we can construct two new possibilities:

(= (- α β) γ) (subtract β from both sides)

(= (- α γ) β) (subtract γ from both sides)

After making a new equation, we simply call solve to
try to solve that equation. We return the first solution
that is not null.

180

Recursive Tree Search

In effect, the search process will rewrite the original
equation in every possible legal way. Most of these will
not be what we want, and will fail, but one of them will
be solved for the desired variable.

>(solve ’(= y (+ x b)) ’x)

1> (SOLVE (= Y (+ X B)) X)

2> (SOLVE (= (- Y X) B) X)

<2 (SOLVE NIL)

2> (SOLVE (= (- Y B) X) X)

<2 (SOLVE (= X (- Y B)))

<1 (SOLVE (= X (- Y B)))

(= X (- Y B))

>(solve ’(= y (+ (* m x) b)) ’x)

(= X (/ (- Y B) M))

181

Big O and Termination

We want to make sure that we cannot get into a loop by
transforming an equation endlessly.

Well-founded Ordering: If a program has an input
that is finite and gets smaller in each recursion, and the
program stops when the input reaches a lower boundary,
then the program is guaranteed to terminate.

Our program assumes that initially the lhs is only a
single variable. Each recursive step makes the rhs

smaller.

We don’t have to worry about Big O for this problem
because the number of operations is limited by the size
of the expression tree, which is always small.

182

Solving a Physics Problem

With the collection of programs that we now have, solving
a physics problem becomes easy:

• Make a list (set) of the variables in the problem
(desired variable and variables whose values are
given).

• Find an equation that involves those variables.

• Solve the equation for the desired variable.

• evaluate the rhs of the equation for the given values.

183

Solving Sets of Equations

Given:

• a set of equations

fall:

((= gravity ’(q 9.80665 (/ m (* s s))))

(= horizontal-velocity ’(q 0 (/ m s))) ; default

(= height (* 1/2 (* gravity (expt time 2))))

(= velocity (* gravity time)) ; vertical

(= kinetic-energy

(* 1/2 (* mass (expt total-velocity 2))))

(= horizontal-distance (* horizontal-velocity

time))

(= total-velocity

(sqrt (+ (expt velocity 2)

(expt horizontal-velocity 2))))

• a set of variables with known values:
((TIME 4))

• a variable whose value is desired: HEIGHT

184

Solving a Set of Equations by Search

• Try to find an equation where all variables are known
except one.

(= F (* M A))

• Solve the equation for that variable.

(= A (/ F M))

• Substitute the known values into the right-hand side
of the solved equation (Lisp function sublis).

(= A (/ 8 2))

• Evaluate the resulting expression (Lisp function
eval) to give the value of the new variable. Add
that variable to the binding list.

(= A 4)

• Keep trying until you get the value of the variable you
want (or quit if you stop making any progress).

185

Solving Physics Story Problems

By combining the techniques we have discussed with a
simple English parser, a remarkably small Lisp program
can solve physics problems stated in English:

>(phys ’(what is the area of a circle

with radius = 2))

12.566370614359172

>(phys ’(what is the circumference of a circle

with area = 12))

12.279920495357862

>(phys ’(what is the power of a lift

with mass = 5 and height = 10

and time = 4))

122.583125

186

Pattern Matching Overview

We have emphasized the use of design patterns in writing
programs. We would like to use patterns automatically
to generate, improve, or transform programs, equations,
and other tree-like data structures.

We will use rewrite rules, each consisting of an input
pattern and an output pattern.

• Input Pattern: (- (- ?x ?y))

• Output Pattern: (- ?y ?x)

• Rewrite Rule: ((- (- ?x ?y)) (- ?y ?x))

• Example Input: (- (- (sin theta) z))

• Bindings: ((?y z) (?x (sin theta)))

• Output: (- z (sin theta))

187

Copy Tree and Substitute

It is easy to write a function to copy a binary tree:

(defun copy-tree (z)

(if (consp z)

(cons (copy-tree (first z))

(copy-tree (rest z)))

z))

Why make an exact copy of a tree that we already have?
Well, if we modify copy-tree slightly, we can make a
copy with a substitution:

; substitute x for y in z

(defun subst (x y z)

(if (consp z)

(cons (subst x y (first z))

(subst x y (rest z)))

(if (eql z y) x z)))

>(subst ’axolotl ’banana ’(banana pudding))

(AXOLOTL PUDDING)

>(subst 10 ’r ’(* pi (* r r)))

(* PI (* 10 10))

>(eval (subst 10 ’r ’(* pi (* r r))))

314.15926535897933

188

Copy Tree and Substitute in Java

public static Object copy_tree(Object tree) {

if (consp(tree))

return cons(copy_tree(first((Cons) tree)),

(Cons) copy_tree(rest((Cons) tree)));

return tree; }

public static Object

subst(Object gnew, String old, Object tree) {

if (consp(tree))

return cons(subst(gnew, old,

first((Cons) tree)),

(Cons) subst(gnew, old,

rest((Cons) tree)));

return (old.equals(tree)) ? gnew : tree; }

189

Binding Lists

A binding is a correspondence of a name and a value. In
Lisp, it is conventional to represent a binding as a cons:
(cons name value), e.g. (?X . 3); we will use a list,
(list name value), e.g. (?X 3) . We will use names
that begin with ? to denote variables.

A set of bindings is represented as a list, called an
association list, or alist for short. A new binding can
be added by:
(cons (list name value) binding-list)

A name can be looked up using assoc:
(assoc name binding-list)

(assoc ’?y ’((?x 3) (?y 4) (?z 5)))

= (?Y 4)

The value of the binding can be gotten using second:

(second (assoc ’?y ’((?x 3) (?y 4) (?z 5))))

= 4

190

Multiple Substitutions

The function (sublis alist form) makes multiple
substitutions simultaneously:

>(sublis ’((rose peach) (smell taste))

’(a rose by any other name

would smell as sweet))

(A PEACH BY ANY OTHER NAME WOULD TASTE AS SWEET)

; substitute in z with bindings in alist

(defun sublis (alist z)

(let (pair)

(if (consp z)

(cons (sublis alist (first z))

(sublis alist (rest z)))

(if (setq pair (assoc z alist))

(second pair)

z))))

191

Sublis in Java

public static Object

sublis(Cons alist, Object tree) {

if (consp(tree))

return cons(sublis(alist,

first((Cons) tree)),

(Cons) sublis(alist,

rest((Cons) tree)));

if (tree == null) return null;

Cons pair = assoc(tree, alist);

return (pair == null) ? tree

: second(pair); }

192

Instantiating Design Patterns

sublis can be used to instantiate design patterns. For
example, we can instantiate a tree-recursive accumulator
pattern to make various functions:

(setq pattern

’(defun ?fun (tree)

(if (consp tree)

(?combine (?fun (first tree))

(?fun (rest tree)))

(if (?test tree) ?trueval ?falseval))))

>(sublis ’((?fun nnums)

(?combine +)

(?test numberp)

(?trueval 1)

(?falseval 0)) pattern)

(DEFUN NNUMS (TREE)

(IF (CONSP TREE)

(+ (NNUMS (FIRST TREE))

(NNUMS (REST TREE)))

(IF (NUMBERP TREE) 1 0)))

>(nnums ’(+ 3 (* i 5)))

2

193

Tree Equality

It often is necessary to test whether two trees are equal,
even though they are in different memory locations. We
will say two trees are equal if:

• the structures of the trees are the same

• the leaf nodes are equal, using an appropriate test

(defun equal (pat inp)

(if (consp pat) ; interior node?

(and (consp inp)

(equal (first pat) (first inp))

(equal (rest pat) (rest inp)))

(eql pat inp))) ; leaf node

>(equal ’(+ a (* b c)) ’(+ a (* b c)))

T

194

Tree Equality in Java

public static boolean

equal(Object tree, Object other) {

if (consp(tree))

return (consp(other) &&

equal(first((Cons) tree),

first((Cons) other)) &&

equal(rest((Cons) tree),

rest((Cons) other)));

return eql(tree, other); }

public static boolean // leaf equality

eql(Object tree, Object other) {

return ((tree == other) ||

((tree != null) &&

(other != null) &&

tree.equals(other))); }

195

Tracing Equal

>(equal ’(+ a (* b c)) ’(+ a (* b c)))

1> (EQUAL (+ A (* B C)) (+ A (* B C)))

2> (EQUAL + +)

<2 (EQUAL T)

2> (EQUAL (A (* B C)) (A (* B C)))

3> (EQUAL A A)

<3 (EQUAL T)

3> (EQUAL ((* B C)) ((* B C)))

4> (EQUAL (* B C) (* B C))

5> (EQUAL * *)

<5 (EQUAL T)

5> (EQUAL (B C) (B C))

6> (EQUAL B B)

<6 (EQUAL T)

6> (EQUAL (C) (C))

7> (EQUAL C C)

<7 (EQUAL T)

7> (EQUAL NIL NIL)

<7 (EQUAL T)

<6 (EQUAL T)

<5 (EQUAL T)

<4 (EQUAL T)

4> (EQUAL NIL NIL)

<4 (EQUAL T)

<3 (EQUAL T)

<2 (EQUAL T)

<1 (EQUAL T)

T

This is our old friend, depth-first search.

196

Design Pattern: Nested Tree Recursion

Binary tree recursion can be written in a nested form,
analogous to tail recursion. We carry the answer along,
adding to it as we go. This form is useful if it is easier
to combine an item with an answer than to combine two
answers. Compare to p. 135

(defun myfun (tree) (myfunb tree init))

(defun myfunb (tree answer)

(if (interior? tree)

(myfunb (right tree)

(myfunb (left tree) answer))

(combine (baseanswer tree) answer)))

; count numbers in a tree

(defun nnums (tree) (nnumsb tree 0))

(defun nnumsb (tree answer)

(if (consp tree)

(nnumsb (rest tree)

(nnumsb (first tree) answer))

(if (numberp tree)

(+ 1 answer)

answer)))

197

Tracing Nested Tree Recursion

>(nnums ’(+ (* x 3) (/ z 7)))

1> (NNUMSB (+ (* X 3) (/ Z 7)) 0)

2> (NNUMSB + 0)

<2 (NNUMSB 0)

2> (NNUMSB ((* X 3) (/ Z 7)) 0)

3> (NNUMSB (* X 3) 0)

4> (NNUMSB * 0)

<4 (NNUMSB 0)

4> (NNUMSB (X 3) 0)

5> (NNUMSB X 0)

<5 (NNUMSB 0)

5> (NNUMSB (3) 0)

6> (NNUMSB 3 0)

<6 (NNUMSB 1)

6> (NNUMSB NIL 1)

<6 (NNUMSB 1)

<5 (NNUMSB 1)

<4 (NNUMSB 1)

<3 (NNUMSB 1)

3> (NNUMSB ((/ Z 7)) 1)

4> (NNUMSB (/ Z 7) 1)

5> (NNUMSB / 1)

<5 (NNUMSB 1)

5> (NNUMSB (Z 7) 1)

6> (NNUMSB Z 1)

<6 (NNUMSB 1)

6> (NNUMSB (7) 1)

7> (NNUMSB 7 1)

<7 (NNUMSB 2)

7> (NNUMSB NIL 2)

<7 (NNUMSB 2)

<6 (NNUMSB 2)

...

2

198

Pattern Matching

Pattern matching is the inverse of substitution: it tests
to see whether an input is an instance of a pattern, and
if so, how it matches.

>(match ’(go ?expletive yourself)

’(go bleep yourself))

((?EXPLETIVE BLEEP) (T T))

(match ’(defun ?fun (tree)

(if (consp tree)

(?combine (?fun (car tree))

(?fun (cdr tree)))

(if (?test tree) ?trueval ?falseval)))

’(DEFUN NNUMS (TREE)

(IF (CONSP TREE)

(+ (NNUMS (CAR TREE))

(NNUMS (CDR TREE)))

(IF (NUMBERP TREE) 1 0))))

((?FALSEVAL 0) (?TRUEVAL 1) (?TEST NUMBERP)

(?COMBINE +) (?FUN NNUMS) (T T))

199

Specifications of Match

• Inputs: a pattern, pat, and an input, inp

• Constants in the pattern must match the input
exactly.

• Structure that is present in the pattern must also be
present in the input.

• Variables in the pattern are symbols (strings) that
begin with ?

• A variable can match anything, but it must do so
consistently.

• The result of match is a list of bindings: null

indicates failure, not null indicates success.

• The dummy binding (T T) is used to allow an empty
binding list that is not null.

200

Match Function

(defun equal (pat inp)

(if (consp pat) ; interior node?

(and (consp inp)

(equal (first pat) (first inp))

(equal (rest pat) (rest inp)))

(eql pat inp))) ; leaf node

(defun match (pat inp) (matchb pat inp ’((t t))))

(defun matchb (pat inp bindings)

(and bindings

(if (consp pat) ; interior node?

(and (consp inp)

(matchb (rest pat)

(rest inp)

(matchb (first pat)

(first inp) bindings)))

(if (varp pat) ; leaf: variable?

(let ((binding (assoc pat bindings)))

(if binding

(and (equal inp (second binding))

bindings)

(cons (list pat inp) bindings)))

(and (eql pat inp) bindings)))))

201

Match Function in Java

public static Cons dummysub = list(list("t", "t"));

public static Cons match(Object pattern, Object input) {

return matchb(pattern, input, dummysub); }

public static Cons

matchb(Object pattern, Object input, Cons bindings) {

if (bindings == null) return null;

if (consp(pattern))

if (consp(input))

return matchb(rest((Cons) pattern),

rest((Cons) input),

matchb(first((Cons) pattern),

first((Cons) input),

bindings));

else return null;

if (varp(pattern)) {

Cons binding = assoc(pattern, bindings);

if (binding != null)

if (equal(input, second(binding)))

return bindings;

else return null;

else return cons(list(pattern, input), bindings); }

if (eql(pattern, input))

return bindings;

return null; }

202

Transformation by Patterns

Matching and substitution can be combined to transform
an input from a pattern-pair: a list of an input pattern
and an output pattern.

(defun transform (pattern-pair input)

(let (bindings)

(if (setq bindings

(match (first pattern-pair)

input))

(sublis bindings

(second pattern-pair)))))

>(transform ’((I aint got no ?x)

(I do not have any ?x))

’(I aint got no bananas))

(I DO NOT HAVE ANY BANANAS)

203

Transformation Patterns

Optimization:

(defpatterns ’opt

’(((+ ?x 0) ?x)

((* ?x 0) 0)

((* ?x 1) ?x)

((setq ?x (+ ?x 1)) (incf ?x))))

Language translation:

(defpatterns ’lisptojava

’(((aref ?x ?y) ("" ?x "[" ?y "]"))

((incf ?x) ("++" ?x))

((setq ?x ?y) ("" ?x " = " ?y))

((+ ?x ?y) ("(" ?x " + " ?y ")"))

((= ?x ?y) ("(" ?x " == " ?y ")"))

((and ?x ?y) ("(" ?x " && " ?y ")"))

((if ?c ?s1 ?s2) ("if (" ?c ")" #\Tab

#\Return ?s1

#\Return ?s2))

204

Program Transformation using Lisp

>code

(IF (AND (= J 7) (/= K 3))

(PROGN (SETQ X (+ (AREF A I) 3))

(SETQ I (+ I 1))))

>(cpr (trans (trans code ’opt)

’lisptojava))

if (((j == 7) && (k != 3)))

{

x = (a[i] + 3);

++i;

}

205

Programs and Trees

• Fundamentally, programs are trees, sometimes called
abstract syntax trees or AST.

• Parsing converts programs in the form of character
strings (source code) into trees.

• It is easy to convert trees back into source code form
(unparsing).

• Parsing - Transformation - Unparsing allows us to
transform programs.

206

Set API in Java

ArrayList and LinkedList are inefficient, O(n), for
searching.

The Set interface is a Collection that does not contain
duplicate (.equals()) elements. (A set-like object that
allows duplicates is sometimes called a bag).

TreeSet maintains a set in sorted order, using the
natural order of elements (.compareTo()), or a
comparator. add, remove, and contains are O(log(n)).

The add method adds a new item; it returns true if the
add succeeded, or false if the item was already there.
Since a Set is a Collection, it has iterators.

Set<String>

s = new TreeSet<String>

(new CaseInsensitiveCompare());

s.add("Hello");

There are also a HashSet and a LinkedHashSet.

207

Map API in Java

A map M : D → R associates an element of its domain
with an element of its range.

We can think of a map as a lookup table that allows us
to look up information given a key value; for example, a
telephone directory lets us look up a name to find a phone
number: Directory : Name→ Number.

A Map is an interface to a Collection that associates
keys with values. A key is unique, but different keys can
map to the same value. A TreeMap maintains a map in
sorted order; operations are O(log(n)). There is also a
HashMap, O(1).

boolean containsKey(KeyType key)

ValueType get (KeyType key)

ValueType put (KeyType key, ValueType value)

ValueType remove (KeyType key)

put returns the old value associated with key, or null if
there was no old value.

208

Iteration over a Map

A Map does not provide an iterator, so to iterate over it, it
must be converted to a Collection that has an iterator.
There are three possible collections: keys, values, and
key-value pairs.

Set<KeyType> keySet()

Collection<ValueType> values()

Set<Map.Entry<KeyType,ValueType>> entrySet()

The latter option, Map.Entry, has methods for accessing
the components:

KeyType getKey()

ValueType getValue()

ValueType setValue(ValueType newValue)

209

Array as a Map

Suppose that:

• The KeyType is an integer.

• The size of the domain (largest possible key minus
smallest) is not too large.

In this case, the best map to use is an array:

• O(1) and very fast.

• very simple code: a[i]

• no space required for keys (key is the array index).

When it is applicable, use an array in your programs
rather than a switch statement:

• runs faster

• uses less storage

• better software engineering

210

Avoid Repeated Code

Repetition of code that is almost the same is an indication
that your program should be restructured: use only a
single copy of the code, with tables for the differences.4

if (month == 1) {

System.out.println("January");

} else if (month == 2) {

System.out.println("February");

}

...

switch (month) {

case 1: System.out.println("January"); break;

case 2: System.out.println("February"); break;

case 3: System.out.println("March"); break;

...

default: System.out.println("Invalid month.");break;

}

Better:

System.out.println(months[month]);

4Sadly, the examples of bad code here are from Oracle’s Java Tutorial web site.

211

Initializing Array

Java makes it easy to initialize an array with constants:

String[] months = {"", "January", "February",

"March", ... };

String[] days = {"Monday", "Tuesday",

"Wednesday", ... };

String[][] phone = {{"Vader", "555-1234"},

{"Skywalker", "472-2123"},

... }

212

Key of a Map

Should you use a person’s name as a key?

• 10,000 people named Wang Wang in Beijing.

• 100,000 people named Ivan Ivanov Ivanovich in
Russia.

• 18 people (both sexes) with the same Chinese name
at UT, 4 of them in CS and Computational Math.

Clearly, names do not make unique keys.

213

Hashing

We have seen that an array is the best way to implement
a map if the key type is integer and the range of possible
keys is not too large: access to an array is O(1).

What if the key type does not fit these criteria? The idea
of hashing is to use a hash function

h : KeyType→ integer

• Convert a key to an integer so that it can be used as
an array index.

• Randomize, in the sense that two different keys
usually produce different hash values, and hash values
are equally likely.

• h should not be too expensive to compute.

214

Hash Function

We want a hash function to be easy to compute and to
avoid clustering , the hashing of many keys to the same
value.

One hash function that is usually good is to treat the key
(e.g., a string of characters) as an integer and find the
remainder modulo a prime p:

int hash = key % p;

Since this produces an integer from 0 to p− 1, we make
the array size p.

The Java .hashCode() for String is roughly: 5

public static int hashCode(String input) {

int h = 0;

int len = input.length();

for (int i = 0; i < len; i++) {

h = 31 * h + input.charAt(i);

}

return h; }

5from Wikipedia.

215

Java .hashCode()

The Java .hashCode() returns int, which could be
positive or negative. To use the .hashCode() as an
array index, make it positive (e.g. with Math.abs())
and make it modulo the table size.

The requirements of a .hashCode() include:

1. When called on the same object, .hashCode() must
always return the same value during a given execution
of a program (but could be different on different
executions).

2. If two objects are .equals(), .hashCode() must
return the same value for both.

The .hashCode() that is inherited from Object may use
the memory address of an object as the hash code; this
will differ between executions. Therefore, it is preferable
to write your own .hashCode() for application data
structures.

216

Exclusive OR

An important Boolean function is the bitwise exclusive
or function ⊕ :

a b a⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

Sometimes called a half-adder or XOR, ⊕ is true if a or
b is true, but not both. The Java operator for ⊕ is ^.

An important fact is that (a⊕ b)⊕ b = a.

Exclusive OR has many important uses:

• Cryptography: text ⊕ code looks like garbage, but
another ⊕code recovers the text.

217

Uses of Exclusive OR

• Hashing: hash functions are closely related to
encryption.

• Graphics: background⊕picture paints picture, but
another ⊕picture erases it and restores background.
This is especially good for animation and for cursors,
which move across a background.

• Linked lists: both forward and backward pointers can
be stored in the same space using next ⊕ previous.
Since we will be coming from either next or previous,
we can ⊕ with the link value to get the other one.

• RAID6: a disk that stores (a ⊕ b) can back up two
other disks, a and b. If a fails, b ⊕ (a ⊕ b) = a; if b
fails, a⊕ (a⊕ b) = b.

•Wireless networking: if message (a⊕ b) is broadcast,
those who know a can get b, and those who know b
can get a.

6redundant array of independent disks

218

Hash Function for Strings

It isn’t always easy to find a good hash function;
statistical tests are needed to ensure that the distribution
of values is good. Java provides the function hashCode()

that can be used for strings.

public static int jenkinshash(String key) {

int hash = 0;

for (int i = 0; i < key.length(); i++) {

hash += key.charAt(i);

hash += (hash << 10);

hash ^= (hash >> 6); }

hash += (hash << 3);

hash ^= (hash >> 11);

hash += (hash << 15);

return hash; }

public static int hashfix(int hashcode, int size) {

hashcode %= size;

if (hashcode < 0) hashcode += size;

return hashcode; }

The function jenkinshash is by Bob Jenkins, Dr.
Dobbs Journal, 1997; this returns a 32-bit integer that
could be negative. The function hashfix makes a hash
code positive and returns the hash code modulo the table
size, which should be prime.

219

Hash Function for Application Types

Although Java has a default hashCode() method that
is inherited by every class, it may be desirable to write a
custom hashCode() method for application types:7

public class Employee{

private int employeeId;

private String firstName;

private String lastName;

private Department dept;

public int hashCode() {

int hash = 1;

hash = hash * 31 + lastName.hashCode();

hash = hash * 29 + firstName.hashCode();

hash = hash * 17 + employeeId;

hash = hash * 13 + (dept == null ? 0

: dept.hashCode());

return hash; } }

This illustrates a good pattern for combining hash codes:
multiply one by a prime and add the other. XOR can
also be used.

7example from Wikipedia.

220

Collisions

Even if the hash function is randomizing, it is inevitable
that sometimes different keys will hash to the same value;
this is called a collision.

The load factor λ is the ratio of hash table entries to
table size. Obviously, the higher λ is, the greater the
probability of a collision.

There are two basic ways to handle a collision:

• Rehash the key using a different hash function.
The simplest method of rehashing is linear probing,
simply adding 1 to the previous hash value (modulo
table size). Other options are quadratic probing and
double hashing, using a different hash function. With
rehashing, access to the hash table is efficient if the λ
is kept below 0.7; this wastes nearly half of the storage.

• Let each table entry point to a bucket of entries, an
auxiliary data structure such as a linked list.

221

Hashing with Buckets

Hashing with buckets, also called separate chaining, is a
simple method that works well. The array that is indexed
by the hash function points to a linked list of entries for
the items with that hash value; such a list is called a
bucket.

Insertion is simply a push of a new linked list entry onto
the list given by the array entry indexed by the hash
value. Search is linked list search on that entry.

Expected time is n/(2 · tablesize). Although formally
this is O(n), in practice one can make it O(1) by making
tablesize large enough.

If tablesize is nmax/10, the expected time would be 5
comparisons, but the dedicated table size would not be
too large.

222

Hashing with Buckets: Code

The basic code for hashing with buckets is very simple:

public void insert(String key) {

int hashindex = hashfix(key.hashCode(),

hashtable.length);

hashtable[hashindex] =

cons(key, hashtable[hashindex]); }

public boolean contains(String key) {

int hashindex = hashfix(key.hashCode(),

hashtable.length);

Cons item =

member(key, hashtable[hashindex]);

return (item != null); }

223

Rehashing

If a fixed-size hash table is used with some secondary
hash function to deal with collisions, the number of
comparisons will become larger as λ increases, with a
knee around λ = 0.7 .

When this happens, it will be necessary to expand the
array by:

• making a new array, larger by a factor of 1.5 or 2.

• rehashing all elements of the existing array into the
new array.

• replacing the old array by the new one, letting the old
one be garbage-collected.

The rehashing process is O(n), but only has to be done
once every n times, so its amortized cost is O(1).

224

Hash Tables in Java

The Java library provides HashSet and HashMap; the
item type for these must provide methods .equals()

and .hashCode().

A HashMap, O(1), is a good choice when it is not
necessary to be able to access the items in a sorted order;
otherwise, use a TreeMap, O(log(n)) .

In Java, a String object caches8 its hash code by storing
the hash code in the String object the first time it
is computed. Thereafter, the hash code can be gotten
quickly. This is trading some space for time.

8The word cache is French for hiding place.

225

Extendible Hashing

Extendible hashing can be used when a table is too large
to fit in main memory and must be placed on disk.

Extendible hashing is similar to the idea of a B-tree.
Instead of having key ranges and disk addresses at the
top level, we can hash the key to get an index into a table
of disk addresses.

226

Uses of Hashing

There are many applications of hashing:

• A compiler keeps a symbol table containing all the
names declared within a program, together with
information about the objects that are named.

• A hash table can be used to map names to numbers.
This is useful in graph theory and in networking,
where a domain name is mapped to an IP address:
willie.cs.utexas.edu = 128.83.130.16

• Programs that play games such as chess keep hash
tables of board positions that have been seen and
evaluated before. In general, hashing is a good way to
look up items that do not have a natural sort order.

• The Rabin-Karp string search algorithm uses hashing
to tell whether strings of interest are present in
the text being searched. This algorithm is used in
plagiarism detection and DNA matching.

• If an expensive function may be called repeatedly
with the same argument value, pairs of (argument,
result) can be saved in a hash table, with argument
as the key, and result can be reused. This is called
memoization.

227

Randomization

Hashing is our first example of randomized algorithms,
since a hash function is a somewhat random function of
the key.

Randomized algorithms can be used to avoid clustering.

As an example, suppose that a table contains an equal
number of a and b. The worst case of searching for a
b with any predefined strategy is O(n); for example, a
linear search would be O(n) if all the a entries are at the
front.

If we use a randomized search, though, the expected time
is O(1) and the probability of O(n) search is very small.
The expected time forms a geometric series:

1/2 + 1/4 + 1/8 + 1/16 + ... = 1

• Random delays for retry can prevent collisions.

• Randomized choice of a communication path or server
can avoid failures.

• MapReduce randomizes using hashing for load
balancing.

• Spies randomize their route to work to avoid assassins.

228

Priority Queue

A priority queue is conceptually an array of queues,
indexed by priority. To remove an item from the priority
queue, the first item of the highest-priority non-empty
queue is removed and returned.

In an operating system, there often is a fixed and small
number of priorities. A high-priority process, such as
responding to a device interrupt, can interrupt a lower-
priority process such as a user program. The processes
that are ready to run are kept on a priority queue. The
high-priority processes are short but need fast service.
Whenever a process ceases execution, the operating
system removes the next highest-priority process from the
ready queue and runs it.

If we use an array of circular queues or two-pointer
queues, both insertion and removal are O(1).

We will assume that the highest-priority item is the one
with the lowest priority number. The operations on the
priority queue are insert and deleteMin. (We will
discuss a min queue; a max queue could be implemented
similarly.)

229

Priority Queue with Array or Binary Tree

If the number of possible priorities is small and fixed, as
in an operating system, an array of queues can be used,
with the priority being the array index.

If there are many possible priority values, an easy way to
implement a priority queue is to use a binary search tree
such as an AVL tree, indexed by priority, with a queue at
the leaves.

This makes both insert and deleteMin be O(log(n)).

However, we can do slightly better with less cumbersome
machinery.

230

Binary Heap

A binary heap is a binary tree that is mapped onto an
array. Because of the mapping that is used, links between
nodes are easily computed without storing them.

A heap has two fundamental properties:

• Structure Property: The heap is a complete
binary tree, meaning that all nodes are filled except
for the right-hand part of the bottom row.

• Heap Order Property: For any subtree of the
heap, the value at the root is less than the value of
any of its descendants. Since the minimum element is
at the root, it is easy to find.

231

Mapping to Array

A heap is a gedanken tree, but it is actually stored in an
array.

This heap maps to an array:

The links for an element at position i are easily computed:

• parent: i/2

• left child: 2 ∗ i
• right child: 2 ∗ i + 1

232

Insertion into Heap

insert will place a new element in the next available
array position; this keeps the binary tree complete.

To maintain the heap order property, we must percolate
up the new value until it reaches its proper position. This
is easy: if the new item is less than its parent, swap the
new item with its parent; then percolate up from the
parent.

public void insert(AnyType item) {

if (currentSize >= array.length - 1)

enlargeArray(array.length * 2 + 1);

int hole = ++currentSize;

while (hole > 1 &&

item.compareTo(array[hole / 2]) < 0)

{ array[hole] = array[hole / 2]; // swap

hole /= 2; } // change hole to parent

array[hole] = item; }

This is simple and gives O(log(n)) insert.

233

Removal from Heap

Finding the item to remove with deleteMin is easy: the
smallest item is at the root, array position [1]. Removing
the top element creates a hole at the top, and we must
somehow move the last element in the array into the hole
in order to keep the tree complete.

To maintain the order property, we see whether the last
element can be put into the hole. If so, we are done; if
not, exchange the hole with its smaller child and repeat.

public AnyType deleteMin() {

AnyType top = array[1];

int hole = 1;

boolean done = false;

while (hole * 2 < currentSize && ! done)

{ int child = hole * 2;

if (array[child]

.compareTo(array[child + 1]) > 0)

child++; // child now points to smaller

if (array[currentSize]

.compareTo(array[child]) > 0)

{ array[hole] = array[child];

hole = child; }

else done = true; }

array[hole] = array[currentSize--];

return top; }

234

Uses of Priority Queues

Priority queues have many uses in Computer Science:

• Operating systems use priority queues to run the most
important jobs first, print the shortest files first, etc.

• Discrete event simulation simulates a system by
executing programs that represent events; an event
will cause future events. A priority queue is used to
store events, with the scheduled time of an event as
the priority. deleteMin removes the event that will
occur next, and time is jumped forward to its time.

• Greedy algorithms are algorithms that try the thing
that looks the best, in hopes of finding a solution
quickly. A priority queue can store possibilities, with
the priority indicating how good they look.

235

PriorityQueue in Java

The Java library provides a generic class
PriorityQueue:

• add(item) is the method we called insert

• peek() returns, but does not remove, the minimum
element

• poll() removes and returns the minimum element,
the method we called deleteMin() above.

The PriorityQueue can be set up using .compareTo()
to order events according to their natural ordering, or
using a specified Comparator.

236

Example Discrete Event Simulation

A traffic light cycles through green, yellow, and red; this
can easily be simulated:

public static void

red (PriorityQueue pq, int time) {

turnOff("green");

turnOff("yellow");

turnOn("red");

pq.add(new Event("green", time + 60));

}

This program is typical of Discrete Event Simulation:

• It may examine the state of the world at the time it
is executed.

• It performs one or more simple actions, in this case
turning on the red light and turning off the others.

• It schedules one or more new events for future times,
i.e. the green event for the current time plus 60
seconds.

237

Sorting

Sorting a set of items into order is a very common task
in Computer Science.

There are a number of bad algorithms that sort in O(n2)
time; we will not discuss those much. We have already
seen algorithms that do sorting in O(n · log(n)) time, and
in fact it can be proved that that is the best possible.

An internal sort is performed entirely in main memory.
If the set of items is too large to fit in memory, an external
sort using disk or other external storage can be done.

Sorting is based on comparison between items. In
general, complex data can be compared and sorted in
many ways. It is common to furnish a comparison
function to the sorting program:

>(sort ’(32 29 62 75 48 14 80 98 28 19) ’<)

(14 19 28 29 32 48 62 75 80 98)

>(sort ’(32 29 62 75 48 14 80 98 28 19) ’>)

(98 80 75 62 48 32 29 28 19 14)

A good resource is www.sorting-algorithms.com

238

Insertion Sort

Insertion sort is similar to the way people sort playing
cards: given some cards that are sorted and a new card
to be added, make a hole where the new card should go
and put the new card into the hole.

public static void insertionSort(Integer[] a) {

for (int i = 1; i < a.length; i++)

{ int hole;

Integer item = a[i];

for (hole = i;

hole > 0 &&

item.compareTo(a[hole - 1]) < 0;

hole--)

a[hole] = a[hole - 1];

a[hole] = item; } }

239

Insertion Sort Performance

Since insertion sort has a triangle of an outer loop and an
inner loop that grows to the index of the outer loop, it is
O(n2). This would be unacceptable unless n is small.

However, if the input is almost sorted, insertion sort can
run quickly, O(n+d), where d is the number of inversions
or pairs of items that are not in correct order. The reason
for this is that the hole is usually in the right place already,
so the inner loop terminates quickly. Real applications
often have almost-sorted input, e.g. the telephone book
with a few new customers.

Insertion sort is:

• stable: does not change the relative position of items
with equal keys.

• in-place: does not require any additional storage.

• on-line: can sort items as it receives them one at a
time.

240

Heapsort

We have already seen that a Heap can store a set of items
and return the smallest one, in O(log(n)) time per item.

Therefore, an easy way to sort would be to put all the
items into a heap, then remove items one at a time with
deleteMin and put them into the output array.

The problem with this easy method is that it uses an extra
array. However, we can do it using the original array:

1. Make the original array into a max heap. This can be
done in O(n) time.

2. For the size of the heap,

(a) Remove the largest item from the heap. This
makes the heap smaller, so that there is a hole
at the end of the heap.

(b) Put the largest item into the hole.

This gives a sort in O(n · log(n)) time. Heapsort is in-
place, but not stable.

241

Merge Sort

We have already seen Merge Sort with linked lists. The
idea with arrays is the same: break the array in half, sort
the halves, and merge the halves into a sorted whole.

One problem with Merge Sort is that it is not in-place:
it requires an extra array of size n. Although it can be
coded to be in-place, this is very complicated.

242

Merge Sort Performance

As we have seen, Merge Sort is O(n · log(n)). Despite
requiring extra storage, Merge Sort has a number of
advantages:

• 39% fewer comparisons than Quicksort

• Merge Sort is inherently sequential:

– has good memory locality and cache performance

– can be done with off-line media such as disk

– can be parallelized easily: parts of the input
array can be sorted independently by separate
computers.

• stable

• can efficiently merge in updates to an existing sorted
array

• If the highest element in the low sublist is less than
the lowest element in the high sublist, the merge can
be omitted.

243

Memory Hierarchy and Locality

Most computers have a memory hierarchy :

• Fastest memory is most expensive and smallest, e.g.
1 KB registers.

• On-chip memory is expensive and small, e.g. 1 MB
cache.

• Medium-speed memory is larger, e.g. 1 GB main
memory.

• Slowest memory is cheapest and largest, e.g. 1 TB
disk.

Operations can only be performed on registers. There is
a continual migration of data between slower memories
and faster memories where it can be processed.

Computer hardware and software is often optimized to
run faster when there is memory locality , i.e. successive
accesses to memory are in nearby locations by memory
address.

Algorithms that step through an array using a for loop
to access adjacent locations are likely to be faster than
algorithms that jump around.

244

Does Array Index Order Matter?

static double arr[1000][1000];

double test1 ()

{ double sum; int i, j;

sum = 0.0;

for (i=0; i<1000; i++)

for (j=0; j<1000; j++)

sum = sum + arr[i][j];

return (sum); }

double test2 ()

{ double sum; int i, j;

sum = 0.0;

for (j=0; j<1000; j++)

for (i=0; i<1000; i++)

sum = sum + arr[i][j];

return (sum); }

The two programs compute the same result, but
performance is quite different:

test1 result = 1000000.0 time = 430000

test2 result = 1000000.0 time = 1940000

245

Array Storage and Indexing

Most modern computer languages (except Fortran) use
row-major order, in which elements of a matrix row are
adjacent in memory: A[i][j] is stored as:

[j]

[i]

0 1 2 ... n

0 1 2 ... n

0 1 2 ... n

Performance is significantly better if the order of accessing
array elements takes advantage of memory locality.

To get the best performance, the last subscript, j, should
be the index of the inner loop, so that j will vary fastest
and accesses will be adjacent:

for (i=0; i<1000; i++)

for (j=0; j<1000; j++)

sum = sum + arr[i][j];

246

Quicksort

As its name suggests, Quicksort is one of the better sort
algorithms; it is O(n · log(n)) (though it can be O(n2) in
the worst case). In practice it is significantly faster than
other algorithms.

Quicksort is a divide-and-conquer algorithm that chooses
a pivot value, then partitions the array into two sections
with the pivot in its final position roughly in the middle:

elements ≤ pivot pivot elements > pivot

The outside sections are then sorted recursively.

The partitioning can be done in-place, making Quicksort
an in-place sort. Since partitioning is done in-place by
swapping elements, Quicksort is not stable.

247

Quicksort Code9

public static void quicksort(

Integer[] a, int lo, int hi) {

int i=lo, j=hi; Integer h;

Integer pivot = a[(lo+hi)/2];

do // partition

{

while (a[i] < pivot) i++; // move

while (a[j] > pivot) j--;

if (i<=j)

{

h=a[i]; a[i]=a[j]; a[j]=h; // swap

i++; j--;

}

} while (i<=j);

if (lo<j) quicksort(a, lo, j); // recursion

if (i<hi) quicksort(a, i, hi);

}

9This version of Quicksort is from H. W. Lang, Fachhochschule Flensburg,
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/quick/quicken.htm

248

Partitioning

lo hi

32 29 62 75 48 14 80 98 28 19
initial

i j

32 29 62 75 48 14 80 98 28 19
pivot = 48

i j

32 29 62 75 48 14 80 98 28 19
move i and j

i j

32 29 19 75 48 14 80 98 28 62
swap

i j

32 29 19 28 48 14 80 98 75 62
swap

i j

32 29 19 28 48 14 80 98 75 62
move

lo j i hi

32 29 19 28 14 48 80 98 75 62
swap

249

Quicksort Example

Quicksort: lo 0 hi 9 [32, 29, 62, 75, 48, 14, 80, 98, 28, 19]

Partition: i 5 j 4 [32, 29, 19, 28, 14, 48, 80, 98, 75, 62]

Quicksort: lo 0 hi 4 [32, 29, 19, 28, 14]

Partition: i 2 j 1 [14, 19, 29, 28, 32]

Quicksort: lo 0 hi 1 [14, 19]

Partition: i 1 j -1 [14, 19]

sorted: lo 0 hi 1 [14, 19]

Quicksort: lo 2 hi 4 [29, 28, 32]

Partition: i 3 j 2 [28, 29, 32]

Quicksort: lo 3 hi 4 [29, 32]

Partition: i 4 j 2 [29, 32]

sorted: lo 3 hi 4 [29, 32]

sorted: lo 2 hi 4 [28, 29, 32]

sorted: lo 0 hi 4 [14, 19, 28, 29, 32]

Quicksort: lo 5 hi 9 [48, 80, 98, 75, 62]

Partition: i 9 j 8 [48, 80, 62, 75, 98]

Quicksort: lo 5 hi 8 [48, 80, 62, 75]

Partition: i 8 j 7 [48, 75, 62, 80]

Quicksort: lo 5 hi 7 [48, 75, 62]

Partition: i 7 j 6 [48, 62, 75]

Quicksort: lo 5 hi 6 [48, 62]

Partition: i 6 j 4 [48, 62]

sorted: lo 5 hi 6 [48, 62]

sorted: lo 5 hi 7 [48, 62, 75]

sorted: lo 5 hi 8 [48, 62, 75, 80]

sorted: lo 5 hi 9 [48, 62, 75, 80, 98]

sorted: lo 0 hi 9 [14, 19, 28, 29, 32, 48, 62, 75, 80, 98]

250

Quicksort Performance

Quicksort usually performs quite well; we want to avoid
the O(n2) worst case and keep it at O(n · log(n)).

The choice of pivot is important; choosing the first
element is a very bad choice if the array is almost
sorted. Choosing the median of the first, middle, and
last elements makes it very unlikely that we will get a
bad choice.

IntroSort (“introspective sort”) changes from Quicksort
to a different sort for some cases:

• Change to Insertion Sort when the size becomes small
(≤ 20), where Insertion Sort may be more efficient.

• Change to Heapsort after a certain depth of recursion,
which can protect against the unusual O(n2) worst
case.

Quicksort is easily parallelized, and no synchronization is
required: each subarray can be sorted independently.

251

Radix Sort

Radix sort is an old method that is worth knowing
because it can be used as an external sort for data sets
that are too large to fit in memory.

We will assume that we are sorting integers in decimal
notation; in modern practice, groups of bits would be
more sensible.

The idea of radix sort is to sort the input into bins based
on the lowest digit; then combine the bins in order and
sort on the next-highest digit, and so forth.

The bins can be mostly on external storage media, so that
the size of the data to be sorted can exceed the size of
memory.

The sorting process can also be parallelized.

The performance of radix sort is O(n · k) where k is
the key length. It makes sense to think of k as being
approximately log(n), but if there many items for each
key, radix sort would be more efficient than O(n · log(n)).

Radix sort is stable.

252

Radix Sort Example

Original: (32 29 62 75 48 14 80 98 28 19)

0 (80)

1 ()

2 (32 62)

3 ()

4 (14)

5 (75)

6 ()

7 ()

8 (48 98 28)

9 (29 19)

Sorted into bins on lowest digit

Appended: (80 32 62 14 75 48 98 28 29 19)

0 ()

1 (14 19)

2 (28 29)

3 (32)

4 (48)

5 ()

6 (62)

7 (75)

8 (80)

9 (98)

Sorted into bins on second digit

Appended: (14 19 28 29 32 48 62 75 80 98)

253

Sorting in Java Library

Java provides generic sort methods for lists and arrays:

void sort(Object [] arr)

void Collections.sort(List list)

void sort(Object [] arr, Comparator c)

void Collections.sort(List list, Comparator c)

The first methods use the natural compareTo method,
while the second allow a Comparator to be specified.
The sort algorithm is a modified mergesort, stable and
guaranteed O(n · log(n)).

Since the Collection interface provides a toArray

method, it is easy to sort any Collection by first
converting it to an array.

The Java List class provides sort methods that operate
by dumping the List into an array, sorting the array, and
then resetting the List elements in the sorted order.

254

Graphs

A graph G = (V,E) has a set of vertices or nodes V
and a set of edges or arcs or links E, where each edge
connects two vertices. We write this mathematically as
E ⊆ V × V , where × is called the Cartesian product of
two sets. We can write an edge as a pair (v1, v2), where
v1 and v2 are each a vertex.

A path is a sequence of vertexes connected by edges:
v1, v2, ..., vn where (vi, vi+1) ∈ E. A simple path is a
path with no nodes repeated, except possibly at the ends.
The length of a path is the number of edges in it. A cycle
is a path from a node back to itself; a graph with no cycles
is acyclic.

An edge may have a weight or cost associated with it.

255

Examples of Graphs

There are many examples of graphs:

• The road network forms a graph, with cities as vertices
and roads as edges. The distance between cities can
be used as the cost of an edge.

• The airline network is a graph, with airports as
vertices and airline flights as edges.

• Communication networks such as the Internet:
computers and switches are nodes, connections
between them are links.

• Social networks such as the graph of people who call
each other on the telephone, or friends on Facebook:
people are nodes and there are links to the people they
communicate with.

• Distribution networks that model the flow of goods:
an oil terminal is a node, and an oil tanker or pipeline
is a link.

• Biological networks model the interactions of
biological systems that communicate via messenger
molecules such as hormones.

256

Directed Acyclic Graph

If connections are one-way, from v1 to v2, we say the graph
is directed ; otherwise, it is undirected. A directed graph
is sometimes called a digraph. Directed acyclic graphs
or DAG representations such as trees are important in
Computer Science.

257

Graph Representations

We want the internal representation of a graph to be one
that can be efficiently manipulated.

If the external representation of a node is a string, such
as a city name, we can use a Map or symbol table to map
it to an internal representation such as:

• a node number, convenient to access arrays of
information about the node

• a pointer to a node object.

A graph is called dense if |E| = O(|V |2); if |E| is less,
the graph is called sparse .

All real-world graphs are sparse unless they are
small.

258

Adjacency List

In the adjacency list representation of a graph, each node
has a list of nodes that are adjacent to it, i.e. connected
by an edge. A linked list is a natural representation.

1 (5 2)

2 (3 5 1)

3 (4 2)

4 (6 3 5)

5 (4 2 1)

6 (4)

This graph is undirected, so each link is represented twice.

The storage required is O(|V | + |E|). This is a good
representation if the graph is sparse, i.e. each node is not
linked to many others.

259

Adjacency Matrix

In the adjacency matrix representation of a graph, a
Boolean matrix contains a 1 in position (i, j) iff there
is a link from vi to vj, otherwise 0.

1 2 3 4 5 6
1 0 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 1 0 0
4 0 0 1 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0

Since this graph is undirected, each link is represented
twice, and the matrix is symmetric.

The storage required is O(|V |2); even though only one
bit is used for each entry, the storage can be excessive.

260

Implicit Graphs

Some graphs must be represented implicitly because they
cannot be represented explicitly. For example, the graph
of all possible chess positions is larger than the number of
elementary particles in the universe. In such cases, only
part of the graph will be explicitly considered, such as
the chess positions that can be reached from the current
position in 7 moves or less.

261

Topological Sort

Some graphs specify an order in which things must
be done; a common example is the course prerequisite
structure of a university.

A topological sort orders the vertices of a directed acyclic
graph (DAG) so that if there is a path from vertex vi to
vj, vj comes after vi in the ordering. A topological sort is
not necessarily unique. An example of a topological sort
is a sequence of taking classes that is legal according to
the prerequisite structure.

An easy way to find a topological sort is:

• initialize a queue to contain all vertices that have no
incoming arcs.

•While the queue is not empty,

– remove a vertex from the queue,

– put it into the sort order

– remove all of its arcs

– If the target of an arc now has zero incoming arcs,
add the target to the queue.

262

Uses of Topological Sort

Topological Sort has many uses:

• PERT technique for scheduling of tasks

• Instruction scheduling in compilers

• Deciding what to update in spreadsheets

• Deciding what files to re-compile in makefiles

• Resolving symbol dependencies in linkers.

263

PERT Chart

PERT, for Program Evaluation and Review Technique,
is a project management method using directed graphs.

• Nodes represent events, milestones, or time points.

• Arcs represent activities, which take time and
resources. Each arc is labeled with the amount of
time it takes.

• A node has the maximum time of its incoming arcs.

• An activity cannot start before the time of its
preceding event.

• The critical path is the longest path from start to
finish.

• The slack is the amount of extra time available to an
activity before it would become part of the critical
path.

264

PERT Chart: Calculating Times

The time of events can be found as follows:

• The time of the initial node is 0.

• For each node j in the topological sort after the first,

timej = max(i,j)∈E(timei + costi,j)

By considering nodes in topological sort order, we know
that the time of each predecessor will be computed before
it is needed.

We can compute the latest completion time for each node,
in reverse topological order, as:

• The latest time of the final node n is timen.

• For node i,

latesti = min(i,j)∈E(latestj − costi,j)

Slack for an edge (i, j) is:

slacki,j = latestj − timei − costi,j

265

Shortest Path Problem

An important graph problem is the shortest path
problem, namely to find a path from a start node to a
goal node such that the sum of weights along the path
is minimized. We will assume that all weights are non-
negative.

Shortest path routing algorithms are used by web sites
that suggest driving directions, such as MapQuest.

266

Dijkstra’s Algorithm

Dijkstra’s algorithm finds the shortest path to all nodes
in a weighted graph from a specified starting node.

Dijkstra’s algorithm is a good example of a greedy
algorithm, one that tries to follow the best-looking
possibility at each step.

The basic idea is simple:

• Set the cost of the start node to 0, and all other nodes
to ∞.

• Let the current node be the lowest-cost node that has
not yet been visited. Mark it as visited. For each edge
from the current node, if the sum of the cost of the
current node and the cost of the edge is less than the
cost of the destination node,

– Update the cost of the destination node.

– Set the parent of the destination node to be the
current node.

When we get done visiting all nodes, each node has a cost
and a path back to the start; we can reverse that to get
a forward path.

267

Dijkstra’s Algorithm

public void dijkstra(Vertex s) {

for (Vertex v : vertices) {

v.visited = false;

v.cost = 999999; }

s.cost = 0;

s.parent = null;

PriorityQueue<Vertex>

fringe = new PriorityQueue<Vertex>(20,

new Comparator<Vertex>() {

public int compare(Vertex i, Vertex j) {

return (i.cost - j.cost); }});

fringe.add(s);

while (! fringe.isEmpty()) {

Vertex v = fringe.remove(); // lowest-cost

if (! v.visited)

{ v.visited = true;

for (Edge e : v.edges)

{ int newcost = v.cost + e.cost;

if (newcost < e.target.cost)

{ if (e.target.cost < 999999)

fringe.remove(e.target);

e.target.cost = newcost;

e.target.parent = v;

fringe.add(e.target); } } } } }

268

Dijkstra’s Algorithm Example

Dijkstra’s Algorithm finds the shortest path to all nodes
from a given start node, producing a tree.

269

Minimum Spanning Tree

A minimum spanning tree is a subgraph of a given
undirected graph, containing all the nodes and a subset
of the arcs, such that:

• All nodes are connected.

• The resulting graph is a tree, i.e. there are no cycles.

• The sum of weights on the remaining arcs is as low as
possible.

Example: Connect a set of locations to the Internet
using a minimum length of cable.

The minimum spanning tree may not be unique, but all
MST’s will have the same total cost of arcs.

270

Prim’s Algorithm

Prim’s Algorithm for finding a minimum spanning tree is
similar to Dijkstra’s Algorithm for shortest paths. The
basic idea is to start with a part of the tree (initially, one
node of the graph) and add the lowest-cost arc between
the existing tree and another node that is not part of the
tree.

As with Dijkstra’s Algorithm, each node has a parent
node pointer and a cost, which is the least cost of an arc
connecting to the tree that has been found so far.

271

Prim’s Algorithm

public void prim(Vertex s) {

for (Vertex v : vertices) {

v.visited = false;

v.parent = null;

v.cost = 999999; }

s.cost = 0;

PriorityQueue<Vertex>

fringe = new PriorityQueue<Vertex>(20,

new Comparator<Vertex>() {

public int compare(Vertex i, Vertex j) {

return (i.cost - j.cost); }});

fringe.add(s);

while (! fringe.isEmpty()) {

Vertex v = fringe.remove(); // lowest-cost

if (! v.visited)

{ v.visited = true;

for (Edge e : v.edges)

{ if ((! e.target.visited) &&

(e.cost < e.target.cost))

{ e.target.cost = e.cost;

e.target.parent = v;

fringe.add(e.target); } } } } }

272

Prim’s Algorithm Example

Prim’s Algorithm finds a way to connect all nodes as a
tree for the minimum total cost.

273

Directed Search

Dijkstra’s algorithm finds the shortest path to all nodes
of a graph from a given starting node. If the graph is
large and we only want a path to a single destination,
this is inefficient.

We might have some heuristic information that gives an
estimate of how close a given node is to the goal.

Using the heuristic, we can search the more promising
parts of the graph and ignore the rest.

274

Hill Climbing

A strategy for climbing a hill in a fog is to move upward.

A heuristic that estimates distance to the goal can be
used to guide a hill-climbing search. A discrete depth-
first search guided by such a heuristic is called greedy
best-first search; it can be very efficient. For example,
in route finding, hill climbing could be implemented by
selecting the next city that is closest to the goal.

Unfortunately, hill-climbing sometimes gets into trouble
on a local maximum:

275

Heuristic Search: A*

The A* algorithm uses both actual distance (as in
Dijkstra’s algorithm) and a heuristic estimate of the
remaining distance. It is both very efficient and able to
overcome local maxima.

A* chooses the next node based on lowest estimated total
cost of a path through the node.

Estimated Total Cost f (n) = g(n) + h(n)
g(n) = Cost from Start to n [known]
h(n) = Cost from n to Goal [estimated]

g(n) h(n)?

Start -------> n -------> Goal

The heuristic function, h, estimates the cost of getting
from a given node n to the goal. If h is good, the search
will be highly directed and efficient; for example, airline
distance is an excellent heuristic distance estimator for
route finding. If h is not so good or has pathologies,
inclusion of the known cost g keeps the search from
getting stuck or going too far astray.

276

A* Algorithm

The A* algorithm is similar to Dijkstra’s algorithm,
except that it puts entries into the priority queue based
on the f value (estimated total cost) rather than g value
(lowest cost found so far).

Note that A* does not recognize that a node is a goal
until the node is removed from the priority queue.

Theorem: If the h function does not over-estimate the
distance to the goal, A* finds an optimum path.

A* will get the same result as Dijkstra’s algorithm while
doing less work, since Dijkstra searches all nodes while A*
searches only nodes that may be on a path to the goal.

277

Ordered Search for Route Finding

• h(n) = 0: Search proceeds in all directions

• f (n) = h(n) + g(n): Search directed toward goal

• h = h∗: Search proceeds directly to goal

278

Effect of Heuristic Function

279

Heuristic Search Handles Local Maxima

A barrier in the route-finding space creates a local
maximum where hill-climbing would get stuck. Heuristic
search will widen the search until it gets around the
barrier.

h = 0.9 ∗ distance, with barrier.

280

A* Algorithm Example

A* finds the shortest path to a single goal node from a
given start. A* will do less work than Dijkstra because it
focuses its search on the goal using the heuristic.

281

Graph Search Algorithm Summary

Name: Result Sort Criterion Formula

Dijkstra Shortest Path Total cost d + e
to all nodes from start
from start node to this node

Prim Minimum Spanning Cost of e
Tree to connect connecting edge
all nodes to node

A* Shortest Path Estimated total d + e + h
to goal node cost from start
from start node through this

node to goal

282

Microcontrollers

Microcontrollers are small computers that can easily be
interfaced to real-world sensors and effectors. They are
inexpensive and easy to program, making them ideal for
a variety of maker projects.

• Arduino: $25, credit-card size. Easy to plug in to.
Shields plug in for capabilities such as internet.

• Arduino Pro Mini: $10 ($2 on eBay). Thumb-size,
requires soldering.

• Flora: $20. Wearable Arduino, designed to be sewn
into garments.

• Teensy: $20. Thumb-size, requires soldering. More
powerful processor than Arduino.

• Raspberry Pi: $35. Runs Debian Linux. Has plugs
for internet, keyboard, mouse, TV for display, SD card
hard drive. Desktop system costs $80 plus a TV.

• Starter Kits: $80 - $100. Includes a processor board,
plugboard, wires, components, book of projects.

• Sensors: buttons, pots (potentiometers or volume
controls), light, sound, temperature, tilt, motion,
GPS, touch, muscle, camera, joystick, etc.

• Effectors: lights, motors, relays, sound, displays.

283

Arduino Programming

Arduino is programmed in C on a laptop:

/* Blink

Turns on LED for 1 second, then off, repeat.

LED is attached to digital pin 13.

by Scott Fitzgerald

*/

// setup function runs once on power up

void setup() {

// initialize digital pin 13 as an output.

pinMode(13, OUTPUT);

}

// the loop function runs forever

void loop() {

digitalWrite(13, HIGH); // turn the LED on

delay(1000); // wait 1 second

digitalWrite(13, LOW); // turn the LED off

delay(1000); // wait 1 second

}

284

Resources

• www.arduino.org
• www.raspberrypi.org
• www.sparkfun.com
• www.adafruit.com
• www.seeedstudio.com fritzing.org

• www.element14.com
• www.mcmelectronics.com
• www.alliedelec.com www.mouser.com

• austinmakerfaire.com makerfaire.com

makezine.com

• amazon.com, ebay.com, the usual suspects.

285

Mapping

A mapping M : D → R specifies a correspondence
between elements of a domain D and a range R.

If each element of D maps to exactly one element of R,
and that elementR is mapped to only by that one element
of D, the mapping is one-to-one or injective .

If every element of R is mapped to by some element of
D, the mapping is onto or surjective .

A mapping that is both one-to-one and onto is bijective.

286

Implementation of Mapping

We have seen several ways in which a mapping can be
implemented:

• A function such as sqrt maps from its argument to
the target value.

• If the domain is a finite, compact set of integers, we
can store the target values in an array and look them
up quickly.

• If the domain is a finite set, we can use a lookup table
such as an association list, TreeMap or HashMap.

• If the domain is a finite set represented as an array or
linked list, we can create a corresponding array or list
of target values.

287

Functional Programming

A functional program is one in which:

• all operations are performed by functions

• a function does not modify its arguments or have side-
effects (such as printing, setting the value of a global
variable, writing to disk).

A subset of Lisp, with no destructive functions, is an
example of a functional language.

(defun hypotenuse (x y)

(sqrt (+ (expt x 2)

(expt y 2))))

Functional programming is easily adapted to parallel
programming, since the program can be modeled as flow
of data through functions that could be on different
machines.

288

Associative and Commutative

An operation ◦ is associative if a ◦ (b ◦ c) = (a ◦ b) ◦ c.

An operation ◦ is commutative if a ◦ b = b ◦ a.

If an operation ◦ is both associative and commutative,
then the arguments of the operation can be in any order,
and the result will be the same. For example, the
arguments of integer + can be in any order.

This gives great freedom to process the arguments of a
function independently on multiple processors.

In many cases, parts of the operation (e.g. partial sums)
can be done independently as well.

289

Computation as Simulation

It is useful to view computation as simulation, cf.:
isomorphism of semigroups.10

Given two semigroups G1 = [S, ◦] and G2 =
[T, ∗], an invertible function ϕ : S → T is said
to be an isomorphism between G1 and G2 if, for
every a and b in S, ϕ(a ◦ b) = ϕ(a) ∗ ϕ(b)

from which: a ◦ b = ϕ−1(ϕ(a) ∗ ϕ(b))

(defun string+ (x y)

(princ-to-string ; phi inverse

(+ ; + in model space

(read-from-string x) ; phi

(read-from-string y)))) ; phi

>(string+ "2" "3")

"5"
10Preparata, F. P. and Yeh, R. T., Introduction to Discrete Structures, Addison-Wesley, 1973, p. 129.

290

Mapping in Lisp

Lisp has several functions that compute mappings from
a linked list. The one we have seen is mapcar, which
makes a new list whose elements are obtained by applying
a specified function to each element (car or first) of the
input list(s).

>(defun square (x) (* x x))

>(mapcar ’square ’(1 2 3 17))

(1 4 9 289)

>(mapcar ’+ ’(1 2 3 17) ’(2 4 6 8))

(3 6 9 25)

>(mapcar ’> ’(1 2 3 17) ’(2 4 6 8))

(NIL NIL NIL T)

291

Mapcan

The Lisp function mapcan works much like mapcar, but
with a different way of gathering results:

• The function called by mapcan returns a list of results
(perhaps an empty list).

• mapcan concatenates the results; empty lists vanish.

(defun filter (lst predicate)

(mapcan #’(lambda (item)

(if (funcall predicate item)

(list item)

’()))

lst))

>(filter ’(a 2 or 3 and 7) ’numberp)

()(2)()(3)() (7)

(2 3 7)

>(filter ’(a 2 or 3 and 7) ’symbolp)

(a)()(or)()(and)()

(A OR AND)

292

Input Filtering and Mapping

We can use mapcan to both filter input and map input
values to intermediate values for the application.

• filter: get rid of uninteresting parts of the input.

• map: convert an interesting part of the input to a
useful intermediate value.

A key point is that we are not trying to compute the final
answer, but to set up the inputs for another function to
compute the final answer.

Suppose that we want to count the number of z’s in an
input list. We could map a z to a 1, which must be (1)

for mapcan; anything else will map to () or nil.

(defun testforz (item)

(if (eq item ’z) ; if it is a z

(list 1) ; emit 1 (map)

’())) ; else emit nothing

; (filter)

>(mapcan ’testforz ’(z m u l e z r u l e z))

(1) (1) (1)

(1 1 1)

293

Reduce in Lisp

The function reduce applies a specified function to the
first two elements of a list, then to the result of the first
two and the third element, and so forth.

>(reduce ’+ ’(1 2 3 17))

23

>(reduce ’* ’(1 2 3 17))

102

reduce is what we need to process a result from mapcan:

>(reduce ’+ (mapcan ’testforz

’(z m u l e z r u l e z)))

(1) (1) (1)

= (reduce ’+ ’(1 1 1))

3

294

Combining Map and Reduce

A combination of map and reduce can provide a great
deal of power in a compact form.

The Euclidean distance between two points in n-space
is the square root of the sum of squares of the differences
between the points in each dimension.

Using map and reduce, we can define Euclidean distance
compactly for any number of dimensions:

(defun edist (pointa pointb)

(sqrt (reduce ’+

(mapcar ’square

(mapcar ’- pointa pointb)))))

>(edist ’(3) ’(1))

2.0

>(edist ’(3 3) ’(1 1))

2.8284271247461903

>(edist ’(3 4 5) ’(2 4 8))

3.1622776601683795

295

MapReduce and Massive Data

At the current state of technology, it has become difficult
to make individual computer CPU’s faster; however, it
has become cheap to make lots of CPU’s. Networks
allow fast communication between large numbers of cheap
CPU’s, each of which has substantial main memory and
disk.

A significant challenge of modern CS is to perform
large computations using networks of cheap computers
operating in parallel.

Google specializes in processing massive amounts of data,
particularly the billions of web pages now on the Internet.
MapReduce makes it easy to write powerful programs
over large data; these programs are mapped onto Google’s
network of hundreds of thousands of CPU’s for execution.

296

Distributed Programming is Hard!

• 1000’s of processors require 1000’s of programs.

• Need to keep processors busy.

• Processors must be synchronized so they do not
interfere with each other.

• Need to avoid bottlenecks (most of the processors
waiting for service from one processor).

• Some machines may become:

– slow

– dead

– evil

and they may change into these states while your
application is running.

• If a machine does not have the data it needs, it must
get the data via the network.

• Many machines share one (slow) network.

• Parts of the network can fail too.

297

What MapReduce Does for Us

MapReduce makes it easy to write powerful programs over
large data to be run on thousands of machines.

All the application programmer has to do is to write two
small programs:

• Map: Input → intermediate value

• Reduce: list of intermediate values → answer

These two programs are small and easy to write!

MapReduce does all the hard stuff for us.

298

Map Sort Reduce

MapReduce extends the Lisp map and reduce in one
significant respect: the map function produces not just
one result, but a set of results, each of which has a key
string. Results are grouped by key.

When our function testforz found a z, it would output
(1). But now, we will always produce a key as well, e.g.
(z (1)). In Java, we would say:

mr.collect_map("z", list("1"));

because the intermediate values are always strings.

There is an intermediate Sort process that groups the
results for each key. Then reduce is applied to the results
for each key, returning the key with the reduced answer
for that key.

At the end of the map and sort, we have:

("z" (("1") ("1") ("1")))

with the key and a list of results for that key.

299

Simplified MapReduce

We think of the map function as taking a single input,
typically a String, and emitting zero or more outputs,
each of which is a (key, (value)) pair. For example, if
our program is counting occurrences of the word liberty,
the input "Give me liberty" would emit one output,
("liberty", ("1")).

As an example, consider the problem of finding the
nutritional content of a cheeseburger. Each component
has a variety of features such as calories, protein, etc.
MapReduce can add up the features individually.

We will present a simple version of MapReduce in Lisp
to introduce how it works.

300

Mapreduce in Lisp

(defun mapreduce (mapfn reducefn lst)

(let (db keylist)

(dolist (item lst)

(dolist (resitem (funcall mapfn item))

(or (setq keylist

(assoc (first resitem) db

:test ’equal))

(push (setq keylist

(list (first resitem)))

db))

(push (second resitem) (rest keylist))))

(mapcar #’(lambda (keylist)

(list (first keylist)

(reduce reducefn

(rest keylist))))

db)))

>(mapreduce ’identity ’+ ’(((a 3) (b 2) (c 1))

((b 7) (d 3) (c 5))))

((D 3) (C 6) (B 9) (A 3))

301

Simple MapReduce Example

>(mapreduce ’identity ’+

’(((a 3) (b 2) (c 1))

((b 7) (d 3) (c 5))) t)

Mapping: ((A 3) (B 2) (C 1))

Emitted: (A 3)

Emitted: (B 2)

Emitted: (C 1)

Mapping: ((B 7) (D 3) (C 5))

Emitted: (B 7)

Emitted: (D 3)

Emitted: (C 5)

Reducing: D (3) = 3

Reducing: C (5 1) = 6

Reducing: B (7 2) = 9

Reducing: A (3) = 3

((D 3) (C 6) (B 9) (A 3))

302

MapReduce Example

(defun nutrition (food)

(rest (assoc food

’((hamburger (calories 80) (fat 8)

(protein 20))

(bun (calories 200) (carbs 40) (protein 8)

(fiber 4))

(cheese (calories 100) (fat 15) (sodium 150))

(lettuce (calories 10) (fiber 2))

(tomato (calories 20) (fiber 2))

(mayo (calories 40) (fat 5) (sodium 20))))))

>(nutrition ’bun)

((CALORIES 200) (CARBS 40) (PROTEIN 8) (FIBER 4))

>(mapreduce ’nutrition ’+ ’(hamburger bun cheese

lettuce tomato mayo))

((SODIUM 170) (FIBER 8) (CARBS 40) (PROTEIN 28)

(FAT 28) (CALORIES 450))

303

Hamburger Example

>(mapreduce ’nutrition ’+

’(hamburger bun cheese lettuce tomato mayo) t)

Mapping: HAMBURGER

Emitted: (CALORIES 80)

Emitted: (FAT 8)

Emitted: (PROTEIN 20)

Mapping: BUN

Emitted: (CALORIES 200)

Emitted: (CARBS 40)

Emitted: (PROTEIN 8)

Emitted: (FIBER 4)

Mapping: CHEESE

Emitted: (CALORIES 100)

Emitted: (FAT 15)

Emitted: (SODIUM 150)

Mapping: LETTUCE

Emitted: (CALORIES 10)

Emitted: (FIBER 2)

Mapping: TOMATO

Emitted: (CALORIES 20)

Emitted: (FIBER 2)

Mapping: MAYO

Emitted: (CALORIES 40)

Emitted: (FAT 5)

Emitted: (SODIUM 20)

Reducing: SODIUM (20 150) = 170

Reducing: FIBER (2 2 4) = 8

Reducing: CARBS (40) = 40

Reducing: PROTEIN (8 20) = 28

Reducing: FAT (5 15 8) = 28

Reducing: CALORIES (40 20 10 100 200 80) = 450

((SODIUM 170) (FIBER 8) (CARBS 40) (PROTEIN 28) (FAT 28)

(CALORIES 450))

304

How MapReduce Works

There is a single Master computer and many Worker
computers.

The Master divides the input data into bite-size chunks
of 64 MB and assigns the data chunks to workers. If
possible, Master chooses a worker that already has the
data on its hard drive in the Google File System, or is
close to a computer with the data; this minimizes network
traffic.

Think of the data chunks as being like a sack of beans:
lots of pieces of data, all more or less alike.

305

Map Worker

A Map Worker runs the Map program on its
assigned data. The Map program receives as input
(inputkey, inputvalue) pairs; for example, inputkey
could be the IP address of a web page (as a string) and
inputvalue could be the contents of that web page (all
as one string).

The Map worker emits (outputkey, list(mapvalue))
pairs. outputkey could be the same as inputkey, but
often is different. For example, to count links to a web
page, outputkey could be the IP address of a page that
is linked to by the page being processed.

If there are R Reduce Workers, the outputkey is hashed
modulo R to determine which Reduce Worker will get
it; hashing randomizes the assignment of keys to Reduce
Workers, providing load balancing.

The Map Worker has R output buffers corresponding to
R files that it is producing as output, one for each Reduce
Worker. The (outputkey, list(mapvalue)) pair is put
into the corresponding output buffer.

306

Buffering

Buffering is a technique used to match a small-but-steady
process (e.g. a program that reads or writes one line at a
time) to a large-block process (e.g. disk I/O).

Disk I/O has two problematic features:

• A whole disk block (e.g. 4096 bytes) must be read or
written at a time.

• Disk access is slow (e.g. 8 milliseconds).

An I/O buffer is an array, the same size as a disk block,
that is used to collect data. The application program
removes data from the block (or adds data to it) until the
block is empty (full), at which time a new block is read
from disk (written to disk).

If there are R Reduce tasks, each Map task will have
R output buffers, one for each Reduce task. When an
output buffer becomes full, it is written to disk. When
the Map task is finished, it sends the file names of its R
files to the Master.

307

Load Balancing

Some data values are much more popular than others.
For example, there were 13 people on a class roster whose
names started with S, but only one K, and no Q or X.

If MapReduce assigned Reduce tasks based on key values,
some Reduce tasks might have large inputs and be too
slow, while other Reduce tasks might have too little work.

MapReduce performs load balancing by having a large
number R of Reduce tasks and using hashing to assign
data to Reduce tasks:

task = Hash(key) mod R

This assigns many keys to the same Reduce task. The
Reduce task reads the files produced by all Map tasks for
its hash value (remote read over the network), sorts the
combined input by key value, and appends the value

lists before calling the application’s Reduce function.

308

Reduce Worker

A Reduce Worker receives from the Master a set of M
file addresses, one for each Map worker. The Reduce
worker reads these files; these reads must go across the
network, and therefore may take some time and cause
network congestion.

The Reduce Worker first sorts its input data by key and
groups together all the data values for each key. It then
runs the Reduce program on each data set.

The result is a list, (key, list(value)); these are put into
the output buffer of the Reduce worker (these will now
be sorted by key). When done, the Reduce worker send
the file address of its output file to the Master.

The Master can finally combine all the output files from
Reduce workers into sorted order by doing a Merge.

309

PageRank

The PageRank algorithm used by Google expresses the
ranking of a web page in terms of two components:

• a base value, (1− d), usually 0.15

• d ∗ ∑
i∈links PRi/ni where PRi is the page rank of a

page that links to this page, and ni is the number of
links from that page.

The PageRank values can be approximated by relaxation
by using this formula repeatedly within MapReduce.
Each page is initially given a PageRank of 1.0; the sum
of all values will always equal the number of pages.

•Map: Share the love: each page distributes its
PageRank equally across the pages it links to.

• Reduce: Each page sums the incoming values,
multiplies by 0.85, and adds 0.15 .

310

PageRank Example

Iterative PageRank converges fairly quickly for this net:11

A B C

1.00000000 1.00000000 1.00000000

1.00000000 0.57500000 1.42500000

1.36125000 0.57500000 1.06375000

1.05418750 0.72853125 1.21728125

1.18468906 0.59802969 1.21728125

1.18468906 0.65349285 1.16181809

1.13754537 0.65349285 1.20896178

1.17761751 0.63345678 1.18892571

1.16058685 0.65048744 1.18892571

1.16058685 0.64324941 1.19616374

1.16673918 0.64324941 1.19001141

1.16150970 0.64586415 1.19262615

1.16373223 0.64364162 1.19262615

...

1.16336914 0.64443188 1.19219898

The sum of PageRank values is the total number of pages.
The value for each page is the expected number of times
a random web surfer, who starts as many times as there
are web pages, would land on that page.

11http://pr.efactory.de/e-pagerank-algorithm.shtml

311

Running PageRank Example

Starting MapReduce on:

((a (1.0 (b c))) (b (1.0 (c))) (c (1.0 (a))))

mapping: key = a val = (1.0 (b c))

emitting: key = b val = (0.5)

emitting: key = c val = (0.5)

emitting: key = a val = ((b c))

mapping: key = b val = (1.0 (c))

emitting: key = c val = (1.0)

emitting: key = b val = ((c)) ...

reducing: key = a val = (((b c)) (1.0))

result: key = a val = (1.0 (b c))

reducing: key = b val = ((0.5) ((c)))

result: key = b val = (0.575 (c))

reducing: key = c val = ((0.5) (1.0) ((a)))

result: key = c val = (1.425 (a))

Starting MapReduce on:

((a (1.0 (b c))) (b (0.575 (c))) (c (1.425 (a))))

reducing: key = a val = (((b c)) (1.425))

reducing: key = b val = ((0.5) ((c)))

reducing: key = c val = ((0.5) (0.575) ((a)))

Starting MapReduce on:

((a (1.36125 (b c))) (b (0.575 (c))) (c (1.06375 (a))))

reducing: key = a val = (((b c)) (1.06375))

reducing: key = b val = ((0.680625) ((c)))

reducing: key = c val = ((0.680625) (0.575) ((a)))

... after 10 steps:

Result = ((a (1.16673918 (b c)))

(b (0.64324941 (c)))

(c (1.19001141 (a))))

312

Advanced Performance

The notions of Big O and single-algorithm performance
on a single CPU must be extended in order to understand
performance of programs on more complex computer
architectures. We need to also account for:

• Disk access time

• Network bandwidth and data communication time

• Coordination of processes on separate machines

• Congestion and bottlenecks as many computers or
many users want the same resource.

313

Performance Techniques in MapReduce

• The Google File System (GFS) stores multiple copies
(typically 3) of data files on different computers for
redundancy and availability.

• Master assigns workers to process data such that the
data is on the worker’s disk, or near the worker within
the same rack. This reduces network communication;
network bandwidth is scarce.

• Combiner functions can perform partial reductions
(adding "1" values) before data are written out to
disk, reducing both I/O and network traffic.

• Master can start redundant workers to process the
same data as a dead or “slacker” worker. Master
will use the result from the worker that finishes first;
results from later workers will be ignored.

• Reduce workers can start work as soon as some Map
workers have finished their data.

314

Algorithm Failure

If MapReduce detects that a worker has failed or is slow
on a Map task, it will restart redundant Map tasks to
process the same data.

If the redundant Map tasks also fail, maybe the problem
is that the data caused the algorithm to fail, rather than
hardware failure.

MapReduce can restart the Map task without the last un-
processed data. This causes the output to be not quite
right, but for some tasks (e.g. average movie rating) it
may be acceptable.

315

Atomic Commit

In CS, the word atomic, from Greek words meaning
not cut, describes an all-or-nothing process: either the
process finishes without interruption, or it does not
execute at all.

If multiple worker machines are working on the same data,
it is necessary to ensure that only one set of result data
is actually used.

An atomic commit is provided by the operating system
(and, ultimately, CPU hardware) that allows exactly one
result to be committed or accepted for use. If other
workers produce the same result, those results will be
discarded.

In MapReduce, atomicity is provided by the file system.
When a Map worker finishes, it renames its temporary file
to the final name; if a file by that name already exists,
the renaming will fail.

316

