## Problem Set \#1

This problem set is due at the start of class on Tuesday, February 21st.

1. Consider an $n$-person game in which each player has only two actions. This game has $2^{n}$ possible outcomes, one for each of the $2^{n}$ possible pure strategy profiles. Therefore the game in matrix form is exponentially large. Let $T$ be a tree (i.e., an acyclic, connected, undirected graph) with maximum degree 3 and with $n$ vertices, one corresponding to each player. Assume that the payoff to player $i$ only depends on the strategies of player $i$ and the (at most 3) neighbors of player $i$ in $T$. Give an algorithm with running time that is polynomial in $n$ to decide whether such a game has a pure Nash equilibrium.
2. Let $A$ be a set of three or more candidates. Assume that $n$ voters, numbered from 1 to $n$, each submit a ballot that ranks these candidates from best to worst. Each ballot also indicates the number of the corresponding voter. Let $C$ be a social choice function that takes the preference profile specified by the $n$ ballots and determines the winning candidate. Assume that $C$ satisfies the properties MON and $\mathrm{PE}^{\prime}$ defined in the lecture. In the proof of the Muller-Satterthwaite theorem that was presented in class, we showed how to construct from $C$ a social welfare function $W$ satisfying the properties IIA and PE; this allowed us to apply Arrow's impossibility theorem. Let $W^{\prime}$ be the social welfare function that is derived from $C$ in the following different manner. For a preference profile $I=I_{0}$, we define the highest candidate in $W^{\prime}(I)$ as $C\left(I_{0}\right)$. We then obtain a preference profile $I_{1}$ from $I_{0}$ by moving $C\left(I_{0}\right)$ to the bottom of every ballot, and we define the second highest candidate in $W^{\prime}(I)$ as $C\left(I_{1}\right)$. We then obtain a preference profile $I_{2}$ from $I_{1}$ by by moving $C\left(I_{1}\right)$ to the bottom of every ballot, and we define the third highest candidate in $W^{\prime}(I)$ as $C\left(I_{2}\right)$, and so on, until all of the candidates have been ranked in $W^{\prime}(I)$.
(a) Prove that $W^{\prime}$ is guaranteed to be a valid social welfare function.
(b) Prove or disprove: $W=W^{\prime}$.
3. This question is concerned with rules for voting with single-peaked preferences. Let $n$ denote the number of voters. Fix a multiset $Y=\left\{y_{1}, \ldots, y_{n-1}\right\}$ of $n-1$ real numbers in $[0,1]$. Let $R$ denote a rule that produces as output the median of the multiset of $2 n-1$ numbers consisting of the $n$ peaks specified on the ballots and the elements of $Y$.
(a) Briefly explain why $R$ is anonymous.
(b) Prove that $R$ is onto.
(c) Prove that $R$ is strategyproof.
4. Let $I$ be an instance of the stable marriage problem in which each man $x$ specifies a strict preference order over some subset of the women ( $x$ prefers to remain single than to marry any woman not in this subset), and each woman $y$ specifies a strict preference order over some subset of the men. The number of men need not be equal to the number of women. Let $M$ and $M^{\prime}$ be stable matchings for instance $I$.
(a) Prove that if a man $x$ is matched in $M$, then $x$ is matched in $M^{\prime}$. (By a symmetric argument, the same claim holds for the women.)
(b) Let $X$ denote the set of all men matched by $M$, and let $Y$ denote the set of all women matched by $M$. By part (a), the set of men matched by $M^{\prime}$ is equal to $X$, and the set of women matched by $M^{\prime}$ is equal to $Y$. For any man $x$ who is matched in $M$ and $M^{\prime}$, let $f(x)$ denote $x$ 's preferred mate under either $M$ or $M^{\prime}$, and let $g(x)$ denote $x$ 's least preferred mate under either $M$ or $M^{\prime}$. (If $x$ has the same mate $y$ in $M$ and $M^{\prime}$, then $f(x)=g(x)=y$.) Let $M_{0}$ denote the set of all man-woman pairs $(x, y)$ such that $f(x)=y$, and let $M_{1}$ denote the set of all man-woman pairs $(x, y)$ such that $g(x)=y$. Prove that $M_{0}$ and $M_{1}$ are each perfect matchings of the set of men $X$ with the set of women $Y$.
(c) In part (b) we have chosen to define the matchings $M_{0}$ and $M_{1}$ in terms of the preferences of the men. Give an equivalent definition of the matchings $M_{0}$ and $M_{1}$ in terms of the preferences of the women. You are not required to prove equivalence, since the proof details are similar to those associated with part (b).
(d) Let $M_{0}$ and $M_{1}$ be the matchings defined in part (b). Prove that $M_{0}$ is stable. (A symmetric argument can be used to show that $M_{1}$ is stable.)
