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Problem Set #3

This problem set is due at the start of class on Thursday, March 29th.
Fix an instance of the assignment game with m buyers and n sellers, and where all of

the αi,j values are integers. As a technical convenience, we assume that the set of buyers
includes n buyers i such that αi,j = 0 for each item j. (These buyers may be viewed as
dummy buyers; we will use them to ensure that there is a stable assignment in which every
item is assigned to a buyer.)

Let p∗ denote the minimum (i.e., buyer-optimal) stable price vector for this instance. In
the lecture we saw how to use the (incremental) Hungarian algorithm to compute p∗. In
this problem set, we analyze another method for computing p∗. For any price vector p, and
any buyer i, we define gap(p, i) as the maximum, over all items j, of αi,j − pj. Given any
price vector p, let yes(p) denote the set of all buyers i such that gap(p, i) > 0, let maybe(p)
denote the set of all buyers i such that gap(p, i) = 0, and let no(p) denote the set of all
buyers i such that gap(p, i) < 0.

For any buyer i, we define demand(p, i) as the set of all items j such that αi,j − pj =
max{0, gap(p, i)}. For any set of items S, we define confined(p, S ) as the set of all buyers
i in yes(p) such that demand(p, i) is contained in S. [NOTE ADDED 3/16/12: In the
original version of the problem set, I had erroneously written “belongs to S” at the end
of the previous sentence, rather than “is contained in S”.] We define overdemanded(p) as
the collection of all sets of items S such that |confined(p, S )| > |S|. We define a subset of
overdemanded(p), denoted minimal(p), as follows: A set S in overdemanded(p) belongs to
minimal(p) if no proper subset of S belongs to overdemanded(p).

For any set of items S, we define interested(p, S ) as the set of all buyers i such that
demand(p, i) ∩ S is nonempty.

1. Let p be a price vector such that p ≤ p∗ (i.e, for any item j, pj ≤ p∗j), let S be a set
of items in minimal(p), and let p′ denote the price vector that is obtained from p by
incrementing the prices of all items in S (i.e., for each item j in S, p′j = pj + 1, and for
each item j that does not belong to S, p′j = pj). Prove that p′ ≤ p∗.

2. Consider the following nondeterministic algorithm A for computing a price vector
p. Start by initializing p to the all-zeros vector. Then, while overdemanded(p) is
nonempty, nondeterministically choose a set S from minimal(p) and update p by in-
crementing each pj such that j belongs to S. It is easy to argue that this algorithm
terminates. In the following parts, let p denote the final price vector produced by some
execution of algorithm A.

(a) Use the result of question 1 to argue that p is at most p∗.

(b) Prove that for any set of items S, we have |interested(p, S )| ≥ |S|. Hint: Use
induction on the number of iterations performed by A, and bear in mind the
existence of the “dummy” buyers.
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(c) Prove that there is an assignment x′ such that every buyer i in yes(p) is assigned
to an item in demand(p, i). Hint: It is known (Hall, 1935) that if G = (U, V,E)
is a bipartite graph such that every subset U ′ of U has a neighborhood of size
at least |U ′| in V , then G admits a matching M such that every vertex in U is
matched in M . (The “neighborhood” of a subset U ′ of U is the set of all vertices
in V that are adjacent to at least one vertex in U ′.)

(d) Prove that there is an assignment x′′ such that every item j is assigned to some
buyer i such that j belongs to demand(p, i). Hint: Make use of the result of
part (b) and the hint of part (c).

(e) Prove that there is an assignment x such that every buyer i in yes(p) is assigned
to an item in demand(p, i), and every item j is assigned to some buyer i such that
j belongs to demand(p, i). Hint: It is known (Mendelson and Dulmage, 1958)
that if bipartite graph G = (U, V,E) admits a matching M ′ such that every vertex
in a subset U ′ of U is matched in M ′, and a second matching M ′′ such that every
vertex in a subset V ′ of V is matched in M ′′, then G admits a matching M such
that every vertex in U ′ ∪ V ′ is matched in M .

(f) Let x be an assignment satisfying the conditions of the previous part. Prove that
there is a stable outcome u, v, x such that v = p.

(g) Prove that p = p∗.
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