Problem Set \#3

This problem set is due at the start of class on Thursday, March 29th.
Fix an instance of the assignment game with m buyers and n sellers, and where all of the $\alpha_{i, j}$ values are integers. As a technical convenience, we assume that the set of buyers includes n buyers i such that $\alpha_{i, j}=0$ for each item j. (These buyers may be viewed as dummy buyers; we will use them to ensure that there is a stable assignment in which every item is assigned to a buyer.)

Let p^{*} denote the minimum (i.e., buyer-optimal) stable price vector for this instance. In the lecture we saw how to use the (incremental) Hungarian algorithm to compute p^{*}. In this problem set, we analyze another method for computing p^{*}. For any price vector p, and any buyer i, we define $\operatorname{gap}(p, i)$ as the maximum, over all items j, of $\alpha_{i, j}-p_{j}$. Given any price vector p, let $\operatorname{yes}(p)$ denote the set of all buyers i such that $\operatorname{gap}(p, i)>0$, let maybe (p) denote the set of all buyers i such that $\operatorname{gap}(p, i)=0$, and let $n o(p)$ denote the set of all buyers i such that $\operatorname{gap}(p, i)<0$.

For any buyer i, we define $\operatorname{demand}(p, i)$ as the set of all items j such that $\alpha_{i, j}-p_{j}=$ $\max \{0, \operatorname{gap}(p, i)\}$. For any set of items S, we define $\operatorname{confined}(p, S)$ as the set of all buyers i in $y e s(p)$ such that $\operatorname{demand}(p, i)$ is contained in S. [NOTE ADDED 3/16/12: In the original version of the problem set, I had erroneously written "belongs to S " at the end of the previous sentence, rather than "is contained in S ".] We define $\operatorname{overdemanded}(p)$ as the collection of all sets of items S such that $|\operatorname{confined}(p, S)|>|S|$. We define a subset of overdemanded (p), denoted minimal (p), as follows: A set S in overdemanded (p) belongs to $\operatorname{minimal}(p)$ if no proper subset of S belongs to overdemanded (p).

For any set of items S, we define $\operatorname{interested}(p, S)$ as the set of all buyers i such that $\operatorname{demand}(p, i) \cap S$ is nonempty.

1. Let p be a price vector such that $p \leq p^{*}$ (i.e, for any item $j, p_{j} \leq p_{j}^{*}$), let S be a set of items in $\operatorname{minimal}(p)$, and let p^{\prime} denote the price vector that is obtained from p by incrementing the prices of all items in S (i.e., for each item j in $S, p_{j}^{\prime}=p_{j}+1$, and for each item j that does not belong to $S, p_{j}^{\prime}=p_{j}$). Prove that $p^{\prime} \leq p^{*}$.
2. Consider the following nondeterministic algorithm \mathcal{A} for computing a price vector p. Start by initializing p to the all-zeros vector. Then, while overdemanded (p) is nonempty, nondeterministically choose a set S from $\operatorname{minimal}(p)$ and update p by incrementing each p_{j} such that j belongs to S. It is easy to argue that this algorithm terminates. In the following parts, let p denote the final price vector produced by some execution of algorithm \mathcal{A}.
(a) Use the result of question 1 to argue that p is at most p^{*}.
(b) Prove that for any set of items S, we have $|\operatorname{interested}(p, S)| \geq|S|$. Hint: Use induction on the number of iterations performed by \mathcal{A}, and bear in mind the existence of the "dummy" buyers.
(c) Prove that there is an assignment x^{\prime} such that every buyer i in $\operatorname{yes}(p)$ is assigned to an item in demand (p, i). Hint: It is known (Hall, 1935) that if $G=(U, V, E)$ is a bipartite graph such that every subset U^{\prime} of U has a neighborhood of size at least $\left|U^{\prime}\right|$ in V, then G admits a matching M such that every vertex in U is matched in M. (The "neighborhood" of a subset U^{\prime} of U is the set of all vertices in V that are adjacent to at least one vertex in U^{\prime}.)
(d) Prove that there is an assignment $x^{\prime \prime}$ such that every item j is assigned to some buyer i such that j belongs to demand (p, i). Hint: Make use of the result of part (b) and the hint of part (c).
(e) Prove that there is an assignment x such that every buyer i in $\operatorname{yes}(p)$ is assigned to an item in $\operatorname{demand}(p, i)$, and every item j is assigned to some buyer i such that j belongs to demand (p, i). Hint: It is known (Mendelson and Dulmage, 1958) that if bipartite graph $G=(U, V, E)$ admits a matching M^{\prime} such that every vertex in a subset U^{\prime} of U is matched in M^{\prime}, and a second matching $M^{\prime \prime}$ such that every vertex in a subset V^{\prime} of V is matched in $M^{\prime \prime}$, then G admits a matching M such that every vertex in $U^{\prime} \cup V^{\prime}$ is matched in M.
(f) Let x be an assignment satisfying the conditions of the previous part. Prove that there is a stable outcome u, v, x such that $v=p$.
(g) Prove that $p=p^{*}$.
