
Brief Announcement: Concurrent Maintenance of Rings ∗

Xiaozhou Li Jayadev Misra C. Greg Plaxton

Department of Computer Science
University of Texas at Austin

Austin, Texas 78712
{xli,misra,plaxton}@cs.utexas.edu

Categories and Subject Descriptors:E.1 [Data Structures]: Dis-
tributed Data Structures; C.2.2 [Computer-Communication Net-
works]: Network Protocols—Protocol Verification

General Terms: Algorithms, Design, Theory, Verification

Keywords: Ring, concurrency, network protocols

A central problem for structured peer-to-peer networks is topol-
ogy maintenance, that is, how to properly update neighbor variables
when membership changes (i.e., nodes join or leave the network,
possibly concurrently). Depending on whether neighbor variables
are immediately updated once membership changes occur, there
are two general approaches to topology maintenance: thepassive
approach and theactiveapproach. Existing work on the active ap-
proach has several shortcomings: the protocols cannot handle both
joins and leaves actively; the protocols are complicated; the cor-
rectness proofs are operational and sketched at a high level. It is
well known, however, that concurrent programs often contain sub-
tle errors and operational reasoning is unreliable for proving their
correctness.

In this work, we address the maintenance of the ring topology,
the basis of several peer-to-peer networks, in the fault-free environ-
ment. We design, and prove the correctness of, protocols that ac-
tively maintain a bidirectional ring under both joins and leaves. Us-
ing an assertional proof method, we prove the correctness of a pro-
tocol by developing a global invariant and showing that every ac-
tion of the protocol preserves the invariant. We show that, although
the ring topology may be tentatively disrupted during membership
changes, the protocols restore the ring topology once membership
changes subside or all the messages associated with membership
changes are delivered. The protocols are based on an asynchronous
communication model where only reliable delivery is assumed.

To illustrate our approach, we show in Figure 1 a join protocol
for a unidirectional ring. The protocol is written as a collection of
actions. We assume without loss of generality that the actions are
atomic, and we reason about the system state between actions. In
the protocol, thecontact() function returns an arbitrary non-out
process if there is one, and returns the calling process otherwise.
Our global invariant identifies a secondary ring structure that is pre-
served by every action.

We then design a protocol that maintains a bidirectional ring un-
der both joins and leaves. Our approach is to first design a join

∗Full paper available as TR-04-03, Department of Computer Science,
University of Texas at Austin, February 2004. This research was supported
by NSF grants CCR–0310970 (Li and Plaxton) and CCR–0204323 (Misra).

Copyright is held by the author/owner.
PODC’04,July 25–28, 2004, St. Johns, Newfoundland, Canada.
ACM 1-58113-802-4/04/0007.

process p
var s : {in, out , jng}; r : V ′; a : V ′

init s = out ∧ r = nil
begin

2 s = out → a := contact();
if a = p → r, s := p, in
2 a 6= p → s := jng ; send join() to a fi

2 rcv join() from q →
if s = in → send grant(r) to q; r := q
2 s 6= in → send retry() to q fi

2 rcv grant(a) from q → r, s := a, in
2 rcv retry() from q → s := out

end

Figure 1: The join protocol for a unidirectional ring.

protocol and a leave protocol and then combine them. To facilitate
the combining of the two protocols, the join protocol and the leave
protocol are designed to be symmetric. In both protocols, complet-
ing a join or a leave operation takes only four messages.

The combined protocol, however, is not a straightforward com-
bination of the join protocol and the leave protocol; some subtleties
arise when both joins and leaves are considered. We again use an
assertional method to prove the correctness of these protocols; the
invariants for these protocols are more involved. In these protocols,
a process enters abusy state when it is processing a join or a leave
request; abusy process declines any other join or leave requests.
However, if we assume reliable and ordered delivery of messages,
then there is a join protocol that does not require abusy state.

A desirable property of a topology maintenance protocol is that
out processes do not receive messages. We show that, assuming
reliable and ordered delivery, the leave protocol provides this prop-
erty, and with some simple extensions, the combined protocol also
provides this property.

In certain extreme scenarios (e.g., if all of the processes in the
network try to leave at once), the leave protocol and the combined
protocol may suffer from livelock. Due to the similarity between
this problem and the classical dining philosophers problem, it may
be difficult to obtain a livelock-free deterministic symmetric proto-
col. In practice, a system can use other techniques to avoid live-
lock. For example, as in the Ethernet protocol, a process may delay
a random amount of time before sending out another leave request.

It would be interesting to extend the techniques and results of this
paper to establish stronger progress properties, to maintain more
sophisticated peer-to-peer topologies, and to allow for faults. In ad-
dition, it would be worthwhile to develop machine-checked proofs
for the protocols using a theorem prover such as ACL2.


