
Online Hierarchical Cooperative Caching

Xiaozhou Li1,2 C. Greg Plaxton1,2 Mitul Tiwari1,3 Arun Venkataramani1,4

ABSTRACT
We address a hierarchical generalization of the well-known
disk paging problem. In the hierarchical cooperative caching
problem, a set of n machines residing in an ultrametric space
cooperate with one another to satisfy a sequence of read re-
quests to a collection of (read-only) files. A seminal result in
the area of competitive analysis states that LRU (the widely-
used deterministic online paging algorithm based on the
“least recently used” eviction policy) is constant-competitive
if it is given a constant-factor blowup in capacity over the
offline algorithm. Does such a constant-competitive deter-
ministic algorithm (with a constant-factor blowup in the
machine capacities) exist for the hierarchical cooperative
caching problem? The main contribution of the present pa-
per is to answer this question in the negative. More specifi-
cally, we establish an Ω(log log n) lower bound on the com-
petitive ratio of any online hierarchical cooperative caching
algorithm with capacity blowup O((log n)1−ε), where ε de-
notes an arbitrarily small positive constant.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems - Computa-
tions on Discrete Structures; C.2.4 [Computer Commu-
nication Networks]: Distributed Systems - Distributed
Applications

General Terms
Algorithms, Performance

1Department of Computer Science, University of Texas at
Austin, 1 University Station C0500, Austin, Texas 78712–
0233. Email: {xli,plaxton,mitult,arun}@cs.utexas.edu.
2Supported by NSF Grant CCR–0310970.
3Supported by NSF Grant ANI–0326001.
4Supported by Texas Advanced Technology Project 003658–
0503–2003 and by IBM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04,June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

Keywords
Online computation, hierarchical cooperative caching

1. INTRODUCTION
The traditional paging problem, which has been exten-

sively studied, is defined as follows. Given a cache and a
sequence of requests for files of uniform sizes, a system has
to satisfy the requests one by one. If the file f being re-
quested is in the cache, then no cost is incurred; otherwise
a uniform retrieval cost is incurred to place f in the cache.
If need be, some files, determined by an online caching algo-
rithm that does not know the future request sequence, are
evicted to make room for f . The objective is to minimize the
total retrieval cost by wisely choosing which files to evict.
The cost of the online algorithm is compared against that of
an optimal offline algorithm (OPT) that has full knowledge
of the request sequence. Following Sleator and Tarjan [10],
we call an online algorithm c-competitive if its cost is at
most c times that of OPT for any request sequence. It is
well-known that an optimal offline strategy is to evict the
file that will be requested furthest in the future.

The paging problem is also known as caching if the files
have nonuniform size and retrieval cost. In their seminal
paper, Sleator and Tarjan [10] have shown that LRU (Least-
Recently-Used) and several other deterministic paging algo-
rithms are k

k−h+1
-competitive, where k is the cache space

used by LRU and h is that used by OPT. They have also
shown that k

k−h+1
is the best possible among all determin-

istic algorithms. We call k
h

the capacity blowup of LRU. For
files of nonuniform size and retrieval cost, Young [13] has
proposed the Landlord algorithm and shown that Land-
lord is k

k−h+1
-competitive. As stated in [13], the focus of

Landlord “is on simple local caching strategies, rather than
distributed strategies in which caches cooperate to cache
pages across a network”.

In cooperative caching [6], a set of caches cooperate in
serving requests for each other and in making caching deci-
sions. The benefits of cooperative caching have been sup-
ported by several studies. For example, the Harvest cache [5]
introduce the notion of a hierarchical arrangements of caches.
Harvest uses the Internet Cache Protocol [12] to support dis-
covery and retrieval of documents from other caches. The
Harvest project later became the public domain Squid cache
system [11]. Adaptive Web Caching [14] builds a mesh
of overlapping multicast trees; the popular files are pulled
down towards their users from their origin server. In local-
area network environments, the xFS system [1] utilizes co-

operative caches to obtain a serverless file system.
A cooperative caching scheme can be roughly divided into

three components: placement, which determines where to
place copies of files, search, which directs each request to
an appropriate copy of the requested file, and consistency,
which maintains the desired level of consistency among the
various copies of a file. In this paper, we study the placement
problem, and we assume that a separate mechanism enables
a cache to locate a nearest copy of a file, free of cost, and
we assume that files are read-only (i.e., copies of a file are
always consistent). We focus on a class of networks called
hierarchical networks, the precise definition of which is given
in Section 2, and we call the cooperative caching problem
in such networks the hierarchical cooperative caching (HCC)
problem.

Our notion of a hierarchical network is constant-factor
related to the notion of hierarchically well-separated tree
metrics, as introduced by Bartal [3]. Refining earlier results
by Bartal [3], Fakcharoenphol et al. [7] have shown that any
metric space can be approximated by well-separated tree
metrics with a logarithmic distortion. Hence, many results
for tree metrics imply corresponding results for arbitrary
metric spaces with an additional logarithmic factor.

If the access frequency of each file at each cache is known
in advance, Korupolu et al. [9] have provided both exact
and approximation algorithms that minimize the average
retrieval cost. In practice, such access frequencies are of-
ten unknown or are too expensive to track. Since LRU
and Landlord provide constant competitiveness for a single
cache, it is natural to ask whether there exists a determinis-
tic constant-competitive algorithm (with constant capacity
blowup) for the hierarchical cooperative caching problem.

In this paper, we answer this question in the negative.
We show that Ω(log log n) is a lower bound on the competi-
tive ratio of any deterministic online algorithm with capacity
blowup O((log n)1−ε), where n is the number of caches in the
hierarchy and ε is an arbitrarily small positive constant. In
particular, we construct a hierarchy with a sufficiently large
depth and show that an adversary can generate an arbi-
trarily long request sequence such that the online algorithm
incurs a cost Ω(log log n) times that of the adversary. In-
terestingly, the offline algorithms associated with our lower
bound argument do not replicate files.

On the other hand, if an online algorithm is given a suf-
ficiently large capacity blowup, then constant competitive-
ness can be easily achieved. Appendix A shows a simple
result that, given (1 + ε′)d capacity blowup, where d is the
depth of the hierarchy (i.e., d = Θ(log n)) and ε′ an ar-
bitrarily small positive constant, a simple LRU-like online
algorithm is constant-competitive. Note that in terms of d,
our lower bound result yields that if the capacity blow up is
O(d1−ε), then the competitive ratio is Ω(log d). Hence, our
results imply that there is a very small range of values of the
capacity blowup that separates the regions where constant
competitiveness is achievable and unachievable.

Drawing an analogy to traditional caching, where LRU
and Landlord provide constant competitiveness, we may
think that a constant-competitive algorithm exists for HCC,
being perhaps a hierarchical variant of LRU or Landlord.
In fact, we began our investigation by searching for such an
algorithm. Since the HCC problem generalizes the paging
problem, we cannot hope to achieve constant competiveness
without at least a constant capacity blowup. (In this regard,

we remark that the results of [9] are incomparable as they
do not require a capacity blowup.)

Several paging problems (e.g., distributed paging, file mi-
gration, and file allocation) have been considered in the lit-
erature, some of which are related to the HCC problem.
(See, e.g., the survey paper by Bartal [4] for the definitions
of these problems.) In particular, the HCC problem can be
formulated as the read-only version of the distributed pag-
ing problem on ultrametrics. And the HCC problem without
replication is a special case of the constrained file migration
problem where accessing and migrating a file has the same
cost. Most existing work on these problems focuses on up-
per bound results, and lower bound results only apply to
algorithms without a capacity blowup. For example, for the
distributed paging problem, Awerbuch et al. [2] have shown
that, given polylog(n, ∆) capacity blowup, there exists de-
terministic polylog(n, ∆)-competitive algorithms on general
networks, where ∆ is the normalized diameter of the net-
work. For the constrained file migration problem, Bartal [3]
has given a deterministic upper bound of Ω(m), where m is
the total size of the caches, and a randomized lower bound of
Ω(log m) in some network topology, and an O(log m log2 n)
randomized upper bound for arbitrary network topologies.
Using the recent result of Fakcharoenphol et al. [7], the last
upper bound can be improved to O(log m log n).

The rest of this paper is organized as follows. Section 2
gives the preliminaries of the problem. Sections 3 and 4
present the main result of our paper, a lower bound for con-
stant capacity blowup. Section 5 provides some concluding
remarks. Appendix A presents an upper bound for suffi-
ciently large capacity blowup.

2. PRELIMINARIES
In this section we formally define the HCC problem. We

are given a fixed six-tuple

(F , C, dist , size, cap, penalty),

where F is a set of files, C a set of caches, dist a function
from C×C to N, size a function from F to N, cap a function
from C to N, penalty a function from F to N, and N denotes
nonnegative integers. We assume that dist is an ultramet-
ric (defined below) over C, and we assume that for every
file f in F , penalty(f) ≥ diam(C), where diam(U) denotes
maxu,v∈U dist(u, v) for every set of caches U .

2.1 Ultrametrics and Hierarchical Networks
A distance function d : C × C → N is defined to be a

metric if d is nonnegative, symmetric, satisfies the triangle
inequality, and d(u, v) = 0 if and only if u = v. An ultramet-
ric is a special case of a metric that satisfy the inequality
d(u, v) ≤ max(d(u, w), d(v, w)), which subsumes the triangle
inequality d(u, w) ≤ d(u, v) + d(v, w).

An equivalent and perhaps more intuitive characterization
of our ultrametric assumption is that the caches in C form
a “hierarchical tree”, or simply, a tree defined as follows.
Every leaf node of the tree corresponds to a (distinct) cache.
Every node in the tree has an associated nonnegative value,
called the diameter of the node, such that for every two
caches u and v, dist(u, v) equals the diameter of the least
common ancestor of u and v.

Since a hierarchical network has a natural correspondence
to a tree, in the rest of this paper, we use tree terminology
to develop our algorithms and analysis. In what follows,

the definitions of ancestor, descendant, parent, and children
follow the standard tree terminology. We use T to denote
the tree of caches and we use root to denote the root of T .
The depth of root is 0, and the depth of T is the maximum
depth of any of its nodes. The capacity of a node is the total
capacity of all the caches within the subtree rooted at that
node. We impose an arbitrary order on the children of every
internal node.

2.2 The HCC Problem
The goal of an HCC algorithm is to minimize the total

cost incurred in the movement of files to serve a sequence of
requests while respecting capacity constraints at each cache.
To facilitate a formal definition of the problem, we introduce
additional definitions below.

A copy is a pair (u, f) where u is a cache and f is a file.
A set of copies is called a placement. If (u, f) belongs to a
placement P, we say that a copy of f is placed at u in P. A
placement P is b-feasible if the total size of the files placed
in any cache is at most b times the capacity of the cache.
A 1-feasible placement is simply referred to as a feasible
placement.

Given a placement P, upon a request for a file f at a cache
u, an algorithm incurs an access cost to serve the request.
If P places at least one copy of f in any of the caches, then
the cost is defined to be size(f) · dist(u, v), where v is the
closest cache at which a copy of f is placed; otherwise the
cost is defined to be penalty(f). After serving a request, an
algorithm may modify its placement via an arbitrarily long
sequence of the following two operations: (1) it may add any
copy to P and incur an access cost as defined above, or (2)
it may remove any copy from P and incur no cost.

Given a capacity blowup of b, the goal of an HCC algo-
rithm is to maintain a b-feasible placement such that the
total cost is minimized.

3. THE LOWER BOUND
In this section, we show that, given any constant capacity

blowup b, the competitive ratio of any online HCC algo-
rithm is Ω(log d), where d is the depth of the hierarchy. We
prove this lower bound algorithm by showing the existence
of a suitable hierarchy, a set of files, a request sequence,
and a feasible offline HCC algorithm that incurs an Ω(log d)
factor lower cost for that request sequence than any online
b-feasible HCC algorithm. This result easily extends to ana-
lyzing how the lower bound on the competitive ratio varies as
a function of nonconstant capacity blowup up to the depth
of the hierarchy. In particular, with a capacity blowup of
d1−ε for a fixed ε > 0, the competitive ratio of any online
HCC algorithm is still Ω(log d).

We present an adversarial argument for the lower bound.
Let ON denote a b-feasible online HCC algorithm and ADV
an adversarial offline feasible HCC algorithm. ON chooses
a fixed value for the capacity blowup b, and ADV subse-
quently chooses an instance of an HCC problem (i.e., the
six-tuple as introduced in Section 2) as follows. The hierar-
chy root consists of n unit-sized caches that form the leaves
of a regular k-ary tree with depth d = 4bk. Thus, for a given
choice of k, n = k4bk. The set of files Ψ consists of Θ(n

k
)

unit-sized files. The diameter of each hierarchy at depth
4bk− 1 is 1, and the diameter of every non-trivial hierarchy
is at least λ times the diameter of any child, where λ > 1.
For any file f , penalty(f) is at least λ · diam(root). Given

an instance of an HCC problem as described in Section 2,
we give a program that takes ON as an input and generates
a request sequence and a family of offline HCC algorithms
each of which incurs a factor Ω(log d) less cost than ON. We
use the name OFF to refer to one algorithm in this family.

At a high level, ON’s lack of future knowledge empowers
ADV to play a game analogous to a shell game1. In this
game, OFF maintains a compact placement of files tailored
for the request sequence that ADV generates, while ON
is forced to guess OFF’s placement and incurs relocation
costs if it guesses incorrectly. When ON finally zeroes in
on OFF’s placement, OFF switches its placement around,
incurring a small fraction of the relocation cost that ON has
already expended, and repeats the game.

As an example, consider a simple two-level hierarchy asso-
ciated with equal-sized departments within a university. A
set of files, say A, are of university-wide interest, while the
remaining files are of department-specific interest. The ca-
pacity constraints are set up in such a way that a department
can either cache files of its interest or of the university’s, but
not both sets simultaneously. OFF stores all the files in A
in an “idle” department, i.e., one with no access activity. On
the other hand, ON has to guess the identity of the idle de-
partment. If ON guesses incorrectly, ADV creates requests
that force ON to move files in A to a different department.
The best strategy for ON is to evenly distribute files in A
across all departments that have not yet been exposed as
nonidle. Unfortunately, even with this strategy ON ends up
incurring a significantly higher cost than OFF. Of course,
in this simplistic case, ON can circumvent its predicament
simply by a two-fold blowup in capacity and using the algo-
rithm described in the Appendix A. In the rest of the paper,
we present a formalization of the shell-game-like adversarial
strategy and an extension of this strategy to hierarchies of
nonconstant depth.

3.1 The Adversary Algorithm ADV
We fix d + 1 disjoint sets of files S0, S1, . . . , Sd such that

|Sd| = 1 and |Si| = kd−i−1 for all 0 ≤ i < d. We call i the
depth of a file f if f ∈ Si. We define the function g(i, j),
where i ≥ 0 and j > 0, as

g(i, j) = kd−i ·
ţ

i− 1

4k
+

1

2j

ű
.

ADV is shown in Figure 1 and the key notations used in
the algorithm (and the rest of the paper) are explained in
Table 3.1. In ADV, the nonnegative integer N specifies the
number of requests to be generated. The code in Figure 1
only shows how ADV generates a bad request sequence for
ON. In Section 4, we show how to augment this code to
obtain an offline algorithm that serves the same request se-
quence but incurs a much lower cost.

For every node, ADV maintains two integer fields, x and
y, to summarize the state of ON. In ADV, π is a global
variable that records the current node where ADV generates
the next request. Initially, π is set to root . The program
proceeds in rounds. At the end of each round, the algorithm
generates a request. Based on ON’s adjustment of its own
placement, ADV adjusts π using the up loop and the down
loop. The former moves π to an ancestor while the latter
moves it to a descendant.

1Thimblerig played especially with three walnut shells.

Notation Meaning

α.parent the parent of α
α.anc the ancestors of α
α.desc the descendants of α

α.depth the depth of α
α.diam the diameter of α
α.files Si, where i = α.depth
α.cap the total capacity of the caches in α
α.ch children hierarchies of α

α.placed the set of (distinct) files placed in the caches in α
α.load the number of files f in α.placed such that the depth of f is less than α.depth

α.missing the set of files f such that the depth of f is α.depth but f /∈ α.placed
α.act g(α.depth, r), where r = |{β : β ∈ α.parent .ch : β.x = 0}|, the “activation” value

α.react g(α.depth, k), the “reactivation” value
α.deact g(α.depth, 2k), the “deactivation” value

Table 1: Key notations.

3.2 Correctness of ADV
We show in this section that ADV is well-defined (i.e.,

π 6= root just before line 12, π is not a leaf just before line
8, and line 14 finds a child) and that each round terminates
with the generation of a request. For the sake of brevity, in
our reasoning below, we call a predicate a global invariant
if it holds everywhere in ADV (i.e., it holds initially and it
holds between any two adjacent lines of the pseudocode in
Figure 1).

Lemma 3.1. Let I1 denote that every internal node has
a child with the x field equal to 0, I2 denote that π is an
internal node, and I3 denote that π.load ≥ π.deact. Then
I1 ∧ I2 is a global invariant and I3 holds everywhere in the
down loop.

Proof. The predicate I1 ∧ I2 holds initially because π =
root and α.x = 0 for all α, and I3 holds just before the down
loop due to the guard of the up loop. We next show that
every line of code out of the down loop preserves I1∧I2 (i.e.,
if I1 ∧ I2 holds before the line, then it holds after the line)
and every line of code in the down loop preserves I1∧I2∧I3.

Every line of code out of the down loop preserves I1 be-
cause none assigns a nonzero value to a x field. The only line
that affects I2 is line 5. We observe that π 6= root just before
line 5, due to the guard of the up loop and the observation
that root .load ≥ root .deact = 0. Hence, line 5 preserves I2.

In the down loop, the only line that affects I1 is 15, but I3

and the inner if statement establish that π has at least two
children with the x field equal to 0 just before line 14. Hence,
line 15 preserves I1. The only lines that affect I2 are lines 9
and 14. We first observe that just before line 8, π.depth <
4bk−1. This is because I2 states that π.depth < 4bk and I3

implies that if π.depth = 4bk − 1, then π.load ≥ π.deact =
bk− 1

4
. Since π.load is an integer, this implies that π.load ≥

bk, which implies that π.missing ⊇ S4bk 6= ∅, a contradiction
to the guard of the down loop. Hence, π.depth < 4bk−1 just
before line 8. Therefore, line 9 preserves I2. We now show
that line 14 also preserves I2. Let A = {α : α ∈ π.ch∧α.x =
0} and B = {β : β ∈ π.ch ∧ β.x > 0}. Let r denote |A| and

i denote π.depth. We observe that
X
α∈A

α.load

=
X
α∈A

α.load +
X

β∈B

β.load −
X

β∈B

β.load

= π.load + |Si| −
X

β∈B

β.load

≥ π.deact + |Si| −
X

β∈B

β.react

= g(i, 2k) + kd−i−1 −
X

β∈B

g(i + 1, k)

= r · kd−i−1 ·
ţ

i

4k
+

1

2r
+

1

2k

ű
.

(In the derivation above, the second equality is due to the
guard of the down loop and the definition of load , and the
first inequality is due to the guard of the outer if statement.)
Hence, by an averaging argument, there exists a child δ of
π such that

δ.load

≥ kd−i−1 ·
ţ

i

4k
+

1

2r

ű

= δ.act .

Hence, step 14 finds a child. And as shown above, π.depth <
4bk − 1 just before line 8. Hence, line 14 preserves I2.
The only lines that affect I3 are 9 and 14. Both of these
lines preserve I3 because by definition, α.act ≥ α.deact and
α.react ≥ α.deact for all α.

The claim of the lemma then follows. ¤

Lemma 3.2. The up loop terminates.

Proof. Every iteration of the up loop moves π to its
parent, and root .load ≥ root .deact by definition. Hence, the
up loop terminates. ¤

Lemma 3.3. The down loop terminates.

{initially, N ≥ 0, count = 0, π = root , root .x = root .y = root .act = g(0, k), and α.x = α.y = 0 for all α other than root}
1 while count < N do {main loop}
2 while π.load < π.deact do {up loop}
3 π.y := π.react ;
4 for every child δ of π, set both δ.x and δ.y to 0;
5 π := π.parent
6 od; {end of up loop}
7 while π.missing = ∅ do {down loop}
8 if a child δ of π satisfies δ.x > 0 ∧ δ.load ≥ δ.react then
9 π := δ

10 else
11 if π has exactly one child with x equal to 0 then
12 for every child δ of π, set both δ.x and δ.y to 0
13 fi;
14 π := a child δ of π such that δ.x = 0 ∧ δ.load ≥ δ.act ;
15 set both π.x and π.y to π.act
16 fi
17 od; {end of down loop}
18 generate a request for an element in π.missing at an arbitrary cache in π;
19 ON serves the request and arbitrarily updates its placement;
20 count := count + 1
21 od {end of main loop}

Figure 1: The ADV algorithm.

Proof. Every iteration of the down loop moves π to one
of its children. By I2 of Lemma 3.1, π is always an internal
node. Hence, the down loop terminates. ¤

Lemma 3.4. ADV terminates after generating a sequence
of N requests.

Proof. Follows from Lemmas 3.2 and 3.3. ¤

4. COST ACCOUNTING
In this section, we show that there exists an offline HCC

algorithm OFF that serves the sequence of requests gener-
ated by ADV and incurs a cost that is a factor Ω

ą
log d

b

ć
less

than that incurred by any b-feasible online HCC algorithm.

4.1 Some Properties of ADV
We first prove some properties of ADV that follow directly

from its structure. For the sake of brevity, for a property
that is a global invariant, we sometimes only state the prop-
erty but omit stating that the property holds everywhere.

Lemma 4.1. For all α, α.x = 0 or α.x ≥ α.react.

Proof. The claim holds initially because α.x = 0 for all
α. The only line that assigns a nonzero value to x is 15,
which preserves the claim because by definition, α.act ≥
α.react for all α. ¤

Lemma 4.2. For all α, α.y equals 0 or α.react or α.x.

Proof. The claim holds initially because α.y = 0 for all
α. The only lines that modify x are 4, 12, and 15. The only
lines that modify y are 3, 4, 12, and 15. By inspection of
the code, all of these lines trivially preserve the claim. ¤

Lemma 4.3. Let P denote the predicate that every node
in π.anc has a positive x value and every node that is neither

in π.anc nor a child of a node in π.anc has a zero x value.
Then P is a loop invariant of the up loop, the down loop,
and the main loop.

Proof. Let A denote π.anc and let B denote the set of
nodes that are neither in A nor children of the nodes in A.

Every iteration of the up loop moves π to its parent. To
avoid confusion, we use π to denote the old node (i.e., child)
and π′ to denote the new node (i.e., parent). An iteration
of the up loop removes π from A, adds π.ch to B, and sets
the x value of π.ch to 0. Therefore, it preserves P .

Every iteration of the down loop moves π to one of its chil-
dren. To avoid confusion, we use π to denote the old node
(i.e., parent) and π′ to denote the new node (i.e., child).
Suppose the down loop takes the first branch of the outer if
statement. Then it adds π′, which has a positive x value, to
A and removes π′.ch from B. Hence it preserves P . Suppose
the down loop takes the second branch of the outer if state-
ment. If line 12 is executed, P is preserved because line 12
preserves both A and B and only changes the x value of the
nodes in neither A nor B. Then lines 14 and 15 preserves P
because they add π′, which has a positive x value after line
15, to A and removes π′.ch from B. Hence, it preserves P .

The main loop preserves P because both the up loop and
the down loop preserve P . ¤

Lemma 4.4. For all α, α.y ≤ α.x.

Proof. The claim holds initially because α.x = α.y = 0
for all α. The only lines that modify the x or y field are
3, 4, 12, and 15. At lines 4, 12, and 15, the x and y fields
become the same value. It follows from Lemma 4.3 and the
guard of the up loop that just before line 3, π 6= root and
π.x > 0. It then follows from Lemmas 4.1 and 4.2 that line
3 preserves π.y ≤ π.x. ¤

We now introduce the notion of an active sequence to
facilitate our subsequent proofs. A sequence 〈a0, a1, . . . , ar〉,

where 0 ≤ r < k, is called i-active if aj = g(i + 1, k − j) for
all 0 ≤ j ≤ r.

Lemma 4.5. For every internal node α, the nonzero x
fields of the children of α form an i-active sequence, where
i = α.depth.

Proof. The claim holds initially because α.x = 0 for all
α. The only lines that modify the x field are 4, 12, and 15.
Lines 4 and 12 preserve the claim because the x fields of the
children of π all become 0. Line 15 preserves the claim (for
π.parent) because π.x becomes π.act , which by definition
equals g(i+1, k− j), where i = π.parent .depth and j equals
the number of children of π.parent that have a positive x
field. ¤

Lemma 4.6. Let P (α) denote the predicate that for all β
that are not ancestors of α, β.y ≤ β.react. Then P (π) holds
initially and P (π) is a loop invariant of the up loop, the
down loop, and the main loop.

Proof. The predicate P (π) holds initially because π =
root and α.y = 0 for all α. The up loop preserves P (π)
because every iteration first establishes π.y = π.react and
then moves π to its parent. The down loop preserves P (π)
because it does not set the y field to a nonzero value. The
main loop preserves P (π) because both the up loop and the
down loop preserve P (π). ¤

4.2 Colorings
In order to facilitate the presentation of an offline algo-

rithm in Section 4.3, we introduce the notion of colorings in
this section and the notion of consistent placements in the
next.

A coloring of T (recall that T is the tree of caches) is an
assignment of one of the colors {white, black} to every node
in T so that the following rules are observed: (1) root is
white, (2) every internal white node has exactly one black
child and k−1 white children, and (3) the children of a black
node are black. A coloring is called consistent (with ADV)
if for every α, if α.x > 0, then α is white.

For any coloring C and any pair of sibling nodes α and
β, we define swapc(C, α, β) (swap coloring) as the coloring
obtained from C by exchanging the color of each node in the
subtree rooted at α with that of the corresponding node in
the subtree rooted at β. (Note that the subtrees rooted at
α and β have identical structure.)

4.3 Consistent Placements
A placement is colorable if there exists a coloring C such

that: (1) for each white internal node α of T , the set of files
α.files are stored in (and fill) the caches associated with the
unique black child of α; (2) for each white leaf α of T , the
(singleton) set of files α.files is stored in (and fill) the cache
α. Note that in the preceding definition of a colorable place-
ment, the coloring C, if it exists, is unique. A placement is
called consistent if it is colorable and the associated coloring
is consistent.

For any placement P and any pair of siblings α and β, we
define swapp(P, α, β) (swap placement) as the placement ob-
tained from P by exchanging the contents of each cache in α
with that of the corresponding cache in β. Note that for any
colorable placement P with associated coloring C and any
pair of sibling nodes α and β, the placement swapp(P, α, β)
is colorable, and its associated coloring is swapc(C, α, β).

4.4 The Offline Algorithm OFF
For every internal node α, we maintain an additional vari-

able α.last defined as follows. First, we partition the execu-
tion of the adversary algorithm into epochs with respect to
α. The first epoch begins at the start of execution. Each
subsequent epoch begins when either line 4 or line 12 is ex-
ecuted with π = α. The variable α.last is updated at the
start of each epoch, when it is set to the child β of α for
which the line 15 is executed with π = β furthest in the
future. (If one or more children β of α are such that line
15 is never executed with π = β in the future, then α.last
is set to an arbitrary such child β.) Note that the variables
α.last are introduced solely for the purpose of analysis and
have no impact on the execution of ADV.

At any point in the execution of ADV, the values of the
last fields determine a unique coloring, denoted by COFF,
as follows: root is white and the black child of each internal
white node α is α.last .

We define an offline algorithm OFF that maintains a
placement POFF as follows. We initialize POFF to an ar-
bitrary consistent placement with associated coloring COFF.
We update POFF to swapp(POFF, α, β) whenever line 4 or
line 12 is executed, where α and β denote the values of
π.last before and after the execution of the line. The algo-
rithm OFF uses the placement POFF to serve each request
generated in line 18. The placement POFF is not updated
when OFF serves a request; POFF is updated only at lines
4 and 12.

Lemma 4.7. Throughout the execution of ADV, POFF is
colorable and has associated coloring COFF.

Proof. Immediate from the way POFF is updated when-
ever a last field is updated. ¤

Lemma 4.8. Execution of line 4 or line 12 preserves the
consistency of COFF.

Proof. Assume that COFF is consistent before line 4. So
π is white in COFF before line 4, because by Lemma 4.3, π.x
is positive before line 4. By the definition of COFF, before
line 4, π.last is black. Let α be π.last before line 4, and let
β be π.last after line 4. Before and after line 4, the x values
of the descendants of α are equal to 0. By Lemma 4.3, the
x values of all proper descendants of β are equal to 0 before
and after line 4. Since β.x = 0 after line 4, the x values of
all descendants of α and β are equal to 0 after line 4. Hence,
the swapp operation preserves the consistency of COFF. The
same argument applies to line 12. ¤

Lemma 4.9. Execution of line 15 preserves the consis-
tency of COFF.

Proof. Assume that COFF is consistent before line 15.
Line 14 implies that π 6= root just before line 15. Let π′

denote π.parent . By Lemma 4.3, π′.x > 0 and hence π′ is
white before line 15. Therefore, by Lemma 4.7, π′.last is the
black child of π′.

Let t denote the start of the current epoch for π′, i.e., t
is the most recent time at which π′.last was assigned. Just
after time t, the x values of all children of π′ were equal
to 0. By the definition of t, no child of π′ has been set to
0 since time t. By Lemma 3.1, every internal node has at

least one child with x equal to 0. Therefore, from time t
until after the execution of line 15, at most k − 1 children
of π′ have had their x value set to a nonzero value. (Note
that line 15 is the only line that sets x to a nonzero value.)
Thus, by the definition of last , π′.last .x remains 0 after the
execution of this line. Thus, π′.last 6= π. Since π′ is white
and π′.last is black in COFF, we conclude that π is white in
COFF. So COFF remains consistent even with the additional
constraint that π is required to be white. (Note that π.x is
set to a positive value by line 15.) ¤

Lemma 4.10. The placement POFF is always consistent.

Proof. We observe that COFF is always consistent, due
to Lemmas 4.8 and 4.9, and the observation that lines 4,
12, and 15 are the only lines that can affect the consistency
of COFF (because they are the only lines that modify the
last field or the x field of any node). It then follows from
Lemma 4.7 that POFF is always consistent. ¤

4.5 A Potential Function Argument
Let ON denote an arbitrary online b-feasible algorithm. In

this section, we use a potential function argument to show

that ON is Ω
ş

ν

ν
′

ť
- competitive, where

ν = min

ţ
λ

8
,
ln k

4
− 1

4

ű

and ν′ = λ
λ−1

. Let TON denote the total cost incurred by
ON. Similarly, we let TOFF denote the total cost incurred
by OFF, except that we exclude from TOFF the cost of ini-
tializing POFF. (This initialization cost is taken into account
in the proof of Theorem 1 below.) We define Φ, a potential
function, as:

Φ = ν · TOFF − ν′ · TON + (1)X

α∈π.anc∧α6=root

α.parent .diam · α.x +

X

α/∈π.anc

α.parent .diam · (α.x− α.y + α.load)

For convenience of exposition, we account for the cost of
moving from the empty placement to the first placement
separately.

Lemma 4.11. The cost incurred by swapp(P, α, β) is at
most 2 · kd−i · α.parent .diam, where i = α.depth.

Proof. The cost incurred is the cost of exchanging the
files placed in α and β with each other, which is at most
2 · α.cap · α.parent .diam = 2 · kd−i · α.parent .diam. Note
that α and β have the same capacity. ¤

Lemma 4.12. The predicate Φ ≤ 0 is a loop invariant of
the up loop.

Proof. Every iteration of the up loop moves π to its
parent. To avoid confusion, we use π to refer to the old
node (i.e., child) and we use π′ to refer to the new node
(i.e., parent). Consider the change in Φ in a single iteration
of the up loop. ON incurs no cost in the up loop. By the
definition of Φ, line 3 preserves Φ. By Lemma 4.4, line 4
does not increase Φ. Let i = π.depth. By Lemma 4.11,

after the execution of line 4, OFF incurs a cost of at most
c = 2 · kd−i−1 · π.diam to move from the current consistent
marking placement to the next. Thus, the total change in
Φ in an iteration is at most

ν · c− π′.diam · (π.y − π.load)

≤ ν · c− π′.diam · (π.react − π.deact)

= ν · c− π′.diam · (g(i, k)− g(i, 2k))

= ν · c− π′.diam · kd−i−1 · 1

4

≤ ν · c− λ

8
· c

≤ 0.

(In the derivation above, the first inequality is due to the
guard of the up loop and line 3, and the second inequality is
due to the assumption that the diameters of the nodes are
λ separated.) ¤

Lemma 4.13. The predicate Φ ≤ 0 is a loop invariant of
the down loop.

Proof. Every iteration of the down loop moves π to one
of its children. To avoid confusion, we use π to refer to the
old node (i.e., parent) and π′ to refer to the new node (i.e.,
child). ON incurs no cost in the down loop. We consider
the following three cases.

Suppose that the outer if statement takes the first branch.
In this case, OFF does not incur any cost. Thus, the change
in Φ is

π.diam · (π′.y − π′.load)

≤ π.diam · (π.react − π.react)

= 0,

where the inequality is due to Lemma 4.6 and the guard of
the outer if statement.

Suppose that the outer if statement takes the second
branch and that line 12 is not executed. In this case, OFF
does not incur any cost. Thus, the change in Φ is

π.diam · (π′.y − π′.load)

≤ π.diam · (π′.x− π′.load)

≤ 0,

where the first inequality is due to Lemma 4.4 and the sec-
ond inequality is due to lines 14 and 15.

Suppose that the outer if statement takes the second
branch and that line 12 is executed. By Lemma 4.11, in
this case, OFF incurs a cost of c = 2 · kd−i−1 · π.diam.

Thus, the change in φ(π) due to line 12 is at most

ν · c− π.diam ·
X

δ∈π.ch

(δ.x− δ.y)

≤ ν · c− π.diam ·
X

δ∈π.ch

(δ.x− δ.react)

= ν · c− π.diam ·
k−1X
j=1

(g(i + 1, k − j)− g(i + 1, k))

= ν · c− π.diam · kd−i−1
k−1X
j=1

ţ
1

2(k − j)
− 1

2k

ű

≤ ν · c−
ţ

ln k

4
− 1

4

ű
· c

≤ 0.

(In the above derivation, the first inequality follows from
Lemma 4.6 and the first equality follows from Lemma 4.5.)
By the analysis of the previous case (i.e., the outer if state-
ment takes the second branch but line 12 is not executed),
lines 14 and 15 do not increase Φ. Thus, every iteration of
the down loop preserves Φ ≤ 0. ¤

Lemma 4.14. Lines 18 to 20 preserve Φ ≤ 0.

Proof. The guard of the down loop ensures that there
exists a file in π.missing just before line 18. Thus, ON incurs
a cost at least π.parent .diam ≥ λ · π.diam at line 19. OFF
incurs a cost at most π.diam because it stores all the files
in π.missing ⊂ Si, i = π.depth, in a child of π. Let u be the
cache where the request is generated, and let A be the set
of nodes on the path from π to u, excluding π. Since ON
adds a file in π.missing to u, the change in Φ is at most

ν · π.diam − ν′ · λ · π.diam +
X
α∈A

α.parent .diam

≤ π.diam · (ν − ν′ · λ) + π.diam ·
X

j≥0

λ−j

≤ π.diam ·
ţ

ν − ν′ · λ +
λ

λ− 1

ű

≤ 0.

(In the above derivation, the last inequality follows from
ν′ = λ

λ−1
> 1

λ−1
+ 1

8
.) At line 19, ON is allowed to make

arbitrarily many updates to its own placement. Suppose an
update causes the load of some nodes to increase. Then by
the definition of load , the set of nodes with an increased load
value form a path from, say α, to a leaf, and ON incurs a
cost of at least α.parent .diam. Let the set of nodes on this
path be B. Since the diameters of the nodes on this path
are λ separated, the change of Φ is at most

X

β∈B

β.parent .diam − ν′ · α.parent .diam

≤ α.parent .diam ·
X

j≥0

λ−j − ν′ · α.parent .diam

=
λ

λ− 1
· α.parent .diam − ν′ · α.parent .diam

= 0.

The claim of the lemma then follows. ¤

Theorem 1. ON is Ω
ą

ν
ν′

ć
-competitive.

Proof. Initially, Φ = 0. By Lemmas 4.12, 4.13, and 4.14,
Φ ≤ 0 is a loop invariant of the main loop. Therefore, by
Lemmas 4.1 and 4.4, TON ≥ ν

ν′ · TOFF holds initially and is
a loop invariant of the main loop. Let c be the cost incurred
by OFF in moving from the empty placement to the first
placement. Note that TON serves every request with a cost at
least 1 (because the diameter of an internal node is at least
1). Hence, given an arbitrarily long sequence of requests,

TON grows unbounded. Therefore, we can make TON
TOFF+c

arbitrarily close to ν
ν′ by increasing the length N of the

request sequence generated by the program. ¤
The Ω

ą
log d

b

ć
bound on the competitive ratio for a capac-

ity blowup b = d1−ε, where ε > 0, claimed in the beginning
of Section 3, follows from d = 4bk and that OFF can choose
an arbitrarily large λ.

5. DISCUSSION
Cooperative caching has in fact found its application in ar-

eas other than distributed systems. For example, in NUCA
(NonUniform Cache Architecture), a switched network al-
lows data to migrate to different cache regions according to
access frequency [8]. Although NUCA only supports a single
processor at the time of this writing, multiprocessor NUCA
is being developed, with data replication as a possibility.

6. REFERENCES
[1] T. E. Anderson, M. D. Dahlin, J. N. Neefe, D. A.

Patterson, D. S. Rosselli, and R. Y. Wang. Serverless
network file systems. In Proceedings of the 15th
Symposium on Operating Systems Principles, pages
109–126, 1995.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed
paging for general networks. In Proceedings of the
Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 574–583, January 1996.

[3] Y. Bartal. On approximating arbitrary metrics by tree
metrics. In Proceedings of the 37th Annual IEEE
Symposium on Foundations of Computer Science,
pages 184–193, October 1996.

[4] Y. Bartal. Distributed paging. In A. Fiat and G. J.
Woeginger, editors, The 1996 Dagstuhl Workshop on
Online Algorithms, volume 1442 of Lecture Notes in
Computer Science, pages 97–117. Springer, 1998.

[5] C. M. Bowman, P. B. Danzig, D. R. Hardy,
U. Manber, and M. F. Schwartz. The Harvest
information discovery and access system. Computer
Networks and ISDN Systems, 28:119–125, 1995.

[6] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A.
Patterson. Cooperative caching: Using remote client
memory to improve file system performance. In
Proceedings of the First Symposium on Operating
Systems Design and Implementation, pages 267–280,
November 1994.

[7] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight
bound on approximating arbitrary metrics by tree
metrics. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, pages 448–455,
June 2003.

[8] C. K. Kim, D. Burger, and S. Keckler. An adaptive,
non-uniform cache structure for wire-delay dominated
on-chip caches. In Proceedings of the 10th
International Conference on Architectural Support for

Programming Languages and Operating Systems
(ASPLOS), pages 211–222, October 2002.

[9] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman.
Placement algorithms for hierarchical cooperative
caching. Journal of Algorithms, 38:260–302, 2001.

[10] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of
the ACM, 28:202–208, 1985.

[11] D. Wessels. Squid Internet object cache. Available at
URL http://squid.nlanr.net/squid, January 1998.

[12] D. Wessels and K. Claffy. RFC 2187: Application of
Internet Cache Protocol, 1997.

[13] N. E. Young. On-line file caching. Algorithmica,
33:371–383, 2002.

[14] L. Zhang, S. Floyd, and V. Jacobson. Adaptive Web
Caching. In Proceedings of the 1997 NLANR Web
Cache Workshop, 1997.

APPENDIX

A. AN UPPER BOUND
We show in this section that, given 2(d + 1) capacity

blowup, where d is the depth of the hierarchy, a simple
LRU-like algorithm, which we refer to as HLRU (Hierar-
chical LRU), is constant competitive. For the sake of sim-
plicity, we assume that every file has unit size and uniform
miss penalty. Our result, however, can be easily extended
to handle variable file sizes and nonuniform miss penalties
using a method similar to Landlord [13].

A.1 The HLRU Algorithm
Every cache in HLRU is 2(d + 1) times as big as the cor-

responding cache in OPT. HLRU divides every cache into
d + 1 equal-sized segments numbered from 0 to d. For a
hierarchy α, we define α.small to be the union of segment
α.depth of all the caches within α, and we define α.big to be
the union of β.small for all β ∈ α.desc.

For the rest of this section, we extend the definitions of
a copy and a placement (defined in Section 2.2) to internal
nodes as well. A copy is a pair (α, f) where α is a node and f
is file that is stored in α.small . A placement refers to a set of
copies. The HLRU algorithm, shown in Figure 2, maintains
a placement P. In HLRU, a node α uses a variable α.ts[f]
to keep track of the timestamp of a file f .

A.2 Analysis of the HLRU Algorithm
For any node α and file f , we partition time into epochs

with respect to α and f as follows. The first epoch begins
at the start of execution, which is assumed to be at time 1.
Subsequent epochs begin whenever line 11 is executed.

We define α.ts∗[f] to be the time of the most recent access
to file f in node α in the current epoch with respect to node
α and file f . If no such access exists, we define α.ts∗[f] to
be 0.

For convenience of analysis, we categorize the file move-
ments in HLRU into two types: retrievals and evictions.
Upon request of a file, the HLRU algorithm first performs a
retrieval (from the beginning of the code to line 5 of the first
iteration of the loop) of the file from the nearest cache that
has a copy. Each subsequent iteration of the loop performs
an eviction (from line 6 of an iteration to line 5 of the next
iteration) of a file from α.small to α.parent .small for some
node α.

{upon a request for f at (cache) α}
1 t := now;
2 do
3 flag := false;
4 P := P ∪ {(α, f)};
5 α.ts[f] := max(α.ts[f], t);
6 if capacity is violated at α.small then
7 f := file with smallest nonzero α.ts[f];
8 P := P\{(α, f)};
9 if f /∈ α.big then

10 t := α.ts[f];
11 α.ts[f] := 0;
12 α := α.parent ;
13 flag := true
14 fi
15 fi
16 while flag

Figure 2: The HLRU algorithm.

Lemma A.1. Before and after every retrieval or eviction,
for any node α and file f , f ∈ α.big iff β.ts[f] > 0 for some
β ∈ α.desc.

Proof. Initially, both sides of the equivalence are false.
If both sides of the equivalence are false, the only event that
truthifies either side is a retrieval of f at a cache u within
α, which in fact truthifies both sides. It remains to prove
that if both sides of the equivalence are true, and if one side
becomes false, then the other side becomes false.

The only event that falsifies the left side is an eviction
of the last copy of f in α.big from α.small . Prior to this
eviction, β.ts[f] = 0 for all proper descendants β of α (since
the equivalence holds for β) and α.ts[f] > 0. The eviction
then sets α.ts[f] to 0, falsifying the right side.

The only event that can falsify the right side is an eviction
of f from α.small such that, after the eviction, f 6∈ α.big .
(Note that eviction of f from β.small , for a proper descen-
dant β of α, cannot falsify the right side because such an
eviction ensures β.parent .ts[f] > 0.) Thus, falsification of
the right side implies falsification of the left side. ¤

Lemma A.2. Before and after every retrieval or eviction,
for any node α and file f ,

α.ts∗[f] = max
β∈α.desc

β.ts[f].

Proof. Initially, both sides of the equality are zero. By
the definition of α.ts∗[f], the value of α.ts∗[f] changes from
nonzero to 0 (i.e., a new epoch with respect to α and f
begins) at line 11. By the guard of the inner if statement,
f 6∈ α.big just before line 11. Hence, by Lemma A.1, β.ts[f]
is 0 for all β ∈ α.desc.

The value α.ts∗[f] increases due to some access of f at a
cache u within α. The equality holds because the max value
on the right side is at u.

Between the changes of α.ts∗[f], only eviction of f from
α can change the max (reset it to 0) on the right side of the
equality. This eviction also resets α.ts∗[f] to 0 because a
new epoch begins. ¤

Lemma A.3. Before and after every retrieval or eviction,
for any node α and file f , α.ts[f] ≤ α.ts∗[f]. Furthermore,
just after line 8, if f 6∈ α.big, then α.ts[f] = α.ts∗[f].

Proof. The first claim of the lemma follows immedi-
ately from Lemma A.2. For the second claim, note that
we are evicting the last copy of f in α.big from α.small . By
Lemma A.1, all proper descendants β of α have β.ts[f] = 0.
So α.ts[f] = α.ts∗[f] by Lemma A.2. ¤

In what follows, for the convenience of analysis, we define
root .parent to be a fake node that has every file, and we
define root .parent .diam to be the uniform miss penalty.

When a file is moved from cache u to v, for every node α on
the path from the least common ancestor of u and v to v ex-
cluding the former, we charge a pseudocost of α.parent .diam
to node α.

Lemma A.4. If a file movement (between two caches) has
actual cost C and charges a total pseudocost of C′, then

C ≤ C′ ≤ λ

λ− 1
C.

Proof. Suppose the file movement is from cache u to
cache v. Let α be the least common ancestor of u and v and
let B be the nodes on the path from α to v, excluding α.
Then

C

= α.diam

≤
X

β∈B

β.parent .diam

= C′

≤ α.diam ·
X

j≥0

λ−j

=
λ

λ− 1
· C.

¤
For any node α and file f , we define auxiliary variables

α.in[f] and α.out [f] for the purpose of our analysis. These
variables are initialized to 0. We increment α.in[f] whenever
retrieval of file f charges a pseudocost to node α. We incre-
ment α.out [f] whenever eviction of file f charges a pseudo-
cost to node α.

Lemma A.5. For any node α, the total pseudocost charged
to node α due to retrievals is

X

f

α.in[f] · α.parent .diam.

Proof. Follows from the observation that whenever a
pseudocost is charged to node α due to a retrieval, the pseu-
docost is α.parent .diam. ¤

Lemma A.6. For any node α, the total pseudocost charged
to node α due to an eviction is at most

X

f

α.out [f] · α.parent .diam.

Proof. Follows from the observation that whenever a
pseudocost is charged to node α due to an eviction, the
pseudocost is at most α.parent .diam. ¤

Lemma A.7. For any node α and file f ,

α.out [f] ≤ α.in[f].

Proof. We observe that if a pseudocost is charged to a
node α as a result of a retrieval, then the retrieval truthifies
f ∈ α.big . Similarly, if a pseudocost is charged to node α as
a result of an eviction, then the eviction falsifies f ∈ α.big .
It then follows that

α.out [f] ≤ α.in[f] ≤ α.out [f] + 1

because f 6∈ α.big initially. ¤

Lemma A.8. For any node α, the set α.big always con-
tains the most recently accessed 2 · α.cap files.

Proof. Let X denote the set of the most recently ac-
cessed 2 · α.cap files. We consider the places where a file is
added to X or removed from α.big .

A file f can be added to X only when f is requested at
a cache u within α. In this case, f is added to u.small and
is not evicted from u.small because it is the most recently
accessed item. Hence, f ∈ α.big .

A file f can be removed from α.big only when it is moved
from α.small to α.parent .small as the result of an eviction
and there is no other copy of f in α.big . This means that f is
chosen as the LRU item at line 7. Since f is the LRU item,
there are 2 · α.cap items g in α.small such that α.ts[f] <
α.ts[g] ≤ α.ts∗[g]. By Lemma A.3, α.ts[f] = α.ts∗[f] just
after line 8. It follows from the definition of ts∗ that f 6∈ X.
¤

In what follows, we use OPT to refer to an optimal offline
algorithm.

Lemma A.9. For any node α, the total pseudocost due
to retrievals charged to α by HLRU is at most twice the
pseudocost charged to α by OPT.

Proof. Fix a node α. For OPT, we say that a request
for a file f at a cache within α results in a miss if no copy
of f exists at any cache within α at the time of the re-
quest. For HLRU, a miss occurs if no copy of f is in α.big .
By Lemma A.8, HLRU incurs at most as many misses as
an LRU algorithm with capacity 2 · α.cap running on the
subsequence of requests originating from the caches within
α. (Note that LRU misses whenever HLRU misses.) By
the well-known result of Sleator-Tarjan [10], such an LRU
algorithm incurs at most twice as many misses as OPT.

Note that a miss results in a pseudocost of α.parent .diam
being charged to α. Therefore, the total pseudocost charged
to node α in OPT is at least the number of misses in OPT
times α.parent .diam. Furthermore, within HLRU, a pseu-
docost is charged to node α only on a miss. Therefore, the
total pseudocost charged to node α in HLRU is at most the
number of misses incurred by HLRU times α.parent .diam.
The claim of the lemma then follows. ¤

Lemma A.10. For any node a, the total pseudocost due
to evictions charged to α by HLRU is at most four times the
total pseudocost charged to node α by OPT.

Proof. Follows immediately from Lemmas A.5, A.6, A.7,
and A.9. ¤

Theorem 2. HLRU is constant competitive.

Proof. Follows immediately from Lemmas A.4 and A.10.
¤

