Efficient Adaptive Collect using Randomization

Hagit Attiya' Fabian Kuhi C. Greg Plaxtoh Mirjam Wattenhofet
Roger Wattenhofér

Abstract

An adaptivealgorithm, whose step complexity adjusts to the number of active processes, is attractive
for distributed systems with a highly-variable number of processes. The cornerstone of many adaptive
algorithms is an adaptive mechanism to collect up-to-date information from all participating processes.
To date, all known collect algorithms either have non-linear step complexity or they are impractical
because of unrealistic memory overhead.

This paper presents new randomized collect algorithms with asymptotically ofidithalstep com-
plexity and linear memory overhead only. In addition we present a new deterministic collect algorithm
that beats the best step complexity for previous polynomial-memory algorithms.

1 Introduction and Related Work

To solve certain problems, processes need to collect up-to-date information about the other participating
processes. For example, in a typigalulgentconsensus algorithm [11, 12], a process needs to announce its
preferred decision value and obtain the preferences of all other processes. Other problems where processes
need to collect values are in the area of atomic snapshots [1, 3, 9], mutual exclusion [2, 4, 6, 7], and renaming
[2]. A simple way that information about other processes can be communicated is to use an array of registers
indexed by process identifiers. An active process can update information about itself by writing into its
register. A process can collect the information it wants about other participating processes by reading the
entire array of registers. This také€gn) steps, where: is the total number of processes.

When there are only a few participating processes, it is preferable to be able to collect the required in-
formation more quickly. Aradaptivealgorithm is one whose step complexity is a function of the number
of participating processes. Specifically, if it performs at nidgt) steps when there afeparticipating pro-
cesses, we say that itisadaptive. An algorithm isvait-freeif all processes can complete their operations
in a finite number of steps, regardless of the behavior of the other processes [13].

Several adaptive, wait-free collect algorithms are known [2, 8, 9]. In particular, there is an algorithm
that features an asymptotically optim@a(k)-adaptive collect, but its memory consumption is exponential

* A preliminary version of this paper appeared in the Proceedings of the 18th Annual Conference on Distributed Computing
(DISC) 2004 [10].

! Department of Computer Science, The Technion, Haifa 32000, Israel. Email: hagit@cs.technion.ac.il.

2 Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland. Email:
{kuhn,wattenhofer@tik.ee.ethz.ch.

3 Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin, Texas 78712—0233.
Email: plaxton@cs.utexas.edu. Partially supported by NSF Grants CCR—0310970 and ANI-0326001. Also affiliated with Akamai
Technologies, Inc., Cambridge, MA 02142.

4 Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland. Email: mirjam.wattenhofer@inf.ethz.ch.

in the number of potential processes [9], which renders the algorithm impractical. Other algorithms have
polynomial (in the number of potential processes) memory complexity, but the collecBi@stssteps [9,

16]. (Moir and Anderson [16] employ a matrix structure to solve the renaming problem. The same structure
can be used to solve the collect problem, following ideas of [9].) The lower bound of Jayanti, Tan and
Toueg [14] implies that the step complexity of a collect algorithrf{&). This raises the question of the
existence of a collect algorithm that features an asymptotically optinia) step complexity and needs
polynomial memory size only.

This paper suggests that randomization can be used to make adaptive collect algorithms more efficient,
in contrast to known deterministic algorithms with either super-linear step complexity or unrealistic memory
overhead. We present a wait-free randomized algorithm with memory complexity that is lingastap
complexity that is linear irk for the collect operation, and step complexity that is nearly logarithmic in
for the first invocation of a store operation. The algorithm is randomized, and the step complexity bounds
hold “with high probability” as well as “in expectation.” We believe that randomization may bring a fresh
approach to the design of adaptive shared-memory algorithms.

Analogously to previous approaches, our randomized algorithm (Section 43plgessas introduced
by Moir and Anderson to govern the algorithmic decisions of processes [16]. A splitter has an associated
register. Various processes may visit the splitter to try to acquire this register. The splitter ensures that at most
one process succeeds in acquiring the register. In addition, the splitter partitions the unsuccessful processes
into two sets. ldeally, these two sets are equal, or approximately equal, in size. Using a deterministic splitter,
it is difficult to partition the unsuccessful processes into two approximately equal-sized sets. That being the
case, itis natural to considerandomizedsplitter that flips a fair coin to assign each unsuccessful process to
one of the two output partitions. As in the deterministic linear collect algorithm of [9], where deterministic
splitters are organized in a complete binary tree, we find it useful to study the behavior of a complete binary
tree of randomized splitters, which we refer to as a randomized splitter tree. The randomized splitter tree is
the basic building block of our randomized adaptive collect algorithm. The algorithm itself corresponds to a
cascaded sequence of randomized splitter trees of geometrically decreasing size, followed by a deterministic
backup structure. We prove that with high probability the backup structure is unused.

A binary tree of randomized splitters was previously used by Kim and Anderson [15] for adaptive mutual
exclusion.

In addition, Section 3 introduces a new wait-free, deterministic algorithm that improves the trade-off
between collect time and memory complexity: Using polynomial memory only, we achi&¥e collect.

For any integery > 1, the algorithm provides aTORE with O(k) step complexity, a&€OLLECT with
O(k?/((y —1)logn)) step complexity an@(n*!/((y — 1) logn)) memory complexity. Interestingly, by
choosingy accordingly, our deterministic algorithm achieves the bounds of both previously known algo-
rithms [9, 16].

All new algorithms build on the basic collect algorithm on a binary tree [9]. To employ this algorithm
in a more versatile manner than its original design, we rely on a new and simplified proof for the linear step
complexity ofcOLLECT (Section 3.1).

2 Model

We assume a standard asynchronous shared-memory model of computation. A system cangigts of
cessespy, - - -, Pn, COMmMunicating by reading from and writing to sharegisters

Processes are state machines, each with a (possibly infinite) set of local states, which includes a unique
initial state. In eachstep the process determines which operation to perform according to its local state, and

subsequently changes its local state according to the value returned by the operation.

A registerprovides two operationsiead, returning the value of the register; andite, changing the
register value to the value of its input. @dnfigurationconsists of the states of the processes and the values
of the registers. In thaitial configuration every process is in the initial state and all registers_areA
schedulds a (possibly infinite) sequengs, , p;,, . .. Of process identifiers. Aexecutionconsists of the
initial configuration and a schedule, representing the interleaving of steps by processes.

An implementatiorof an object of typeX provides for every operatio®P of X a set ofn procedures
by, ..., F,, one for each process. (Typically, the procedures are the same for all processes.) To execute
OP on X, procesg; calls procedurds;. The worst-case number of steps performed by some progess
executing procedurg; is thestep complexitpf implementingOP.

An operationOP; precede®perationOP; (andOP; followsoperationOP;) in an executiony, if the call
to the procedure dDP; appears inv after the return from the procedure ©P;.

Let o be a finite execution. Procegsis activeat the end oty if « includes a call of a procedurg
without a matching return.

Thetotal contentionduring « is the number of all processes that are active at the end of some prefix
of a. Let f be a non-decreasing function. An implementatiorfiadaptiveto total contention if the step
complexity of each invocation of its proceduresdns bounded from above by(k), wherek is the total
contention duringy.

For completeness, we also define the stronger notion of adaptivity to point contention, which is not
addressed in this paper. Theint contentiorduring an interval inx is the maximum number of processes
that were simultaneously active at some point in time during that interval. An implementatjén is
adaptive to point contentioif the step complexity of its procedures is bounded %), wherek is the
point contention during the interval of the procedure.

A collect algorithmprovides two operations: ATOREVal) by proces®; setsval to be the latest value
for p;. A COLLECT operation returns giew, a partial functiorl from the set of processes to a set of values,
whereV (p;) is the latest value stored by, for each process;. A COLLECT operationcopshould not read
from the future or miss a precedirggoREoperationsop Formally, the following validity properties hold
for every processg;:

— If V(p;) = L, then nosTOREOperation byp; precedesop.

— If V(p;) = v # L, thenv is the value of ssTOREOperationsopof p; that does not folloncop, and
there is nasTOREOperation byp; that followssopand precedesop.

3 Deterministic Adaptive Collect

3.1 The Basic Binary Tree Algorithm

Associated to each vertex in the complete binary tree of depthl is asplitter [16]: A process entering a
splitter exits with eithestop, left orright. It is guaranteed that if a single process enters the splitter, then it
obtainsstop, and if two or more processes enter the splitter, then there are two processes that obtain different
values. Thus the set of processes is “split” into smaller subsets, according to the values obtained.

To perform asTOREIN the algorithm of [9], a process writes its value in its acquired vertex. In case it
has no vertex acquired yet it starts at the root of the tree and moves down the data structure according to the
values obtained in the splitters along the path: If it receiviedtait moves to the left child, if it receives a

Figure 1: Traversing the basic binary tree.

right, it moves to the right child. A process marks each vertex it accesses by raising a flag associated with
the vertex. Figure 1 illustrates how a process traverses the basic binary treearaoperation.

We call a vertexmarked if its flag is raised. A processacquires a vertex, or stops in, if it receives
astop atv’s splitter. It then writes its id inta.id and its value irv.value. In Figure 1, a vertex is black
if it is acquired by some process, it is grey if it is marked, and white in all other cases. In later invocations
of STORE process immediately writes its value in.value, clearly leading to a constant step complexity.
This leaves us to determine the step complexity of the first invocatismoRE

In order to perform aCOLLECT, a process traverses the part of the tree containing marked vertices in
DFS order and collects the values written in the marked vertices.

A complete binary tree of deptlhh— 1 has2™ — 1 vertices, implying the following lemma.

Lemma 3.1. The memory complexity 6(2").

Lemma 3.2 ([9]). Each process writes its id in a vertex with depth at nostl and no other process writes
its id in the same vertex.

Lemma 3.3. The step complexity afOLLECT at most2k — 1.

Proof. In order to perform a collect, a process traverses the marked part of the tree. Hence, the step com-
plexity of a collect is equivalent to the number of marked (visited) vertices.

Let x; be the number of marked vertices in a tree, whiengrocesses access the root. The splitter
properties imply the following recursive equations:

T =2+ i1+ 1, (i>0 1)
T =X + Tp—; + 1, (i >0) 2)

~—

Equation (1) holds if a process stops in the splitter; otherwise, Equation (2) holds.
We prove the lemma by induction; note that the lemma trivially hold:fer 1. For the induction step,
assume the lemma is true fp< k, that is,z; < 2j — 1. Then we can rewrite Equation (1):

g <(2i—1)+Q2k—-i—1)—1)4+1<2k—1

A

~[logn]

N\

T /(v=1)Tlog n)

Figure 2: Organization of splitters in the cascaded trees algorithm.

and Equation (2) becomes:

o< (2i— 1)+ @2k —i)—1)+1<2k—1.

3.2 The Cascaded Trees Algorithm

We present a spectrum of algorithms, each providing a different trade-off between memory complexity and
step complexity. For an arbitrary constant- 1, thecascaded trees algorithprovides asTOREwWith O (k)
step complexity, @oLLECTwith O(k?/((y—1)logn)) step complexity an®(n"*1) memory complexity.

3.2.1 The Algorithm

The algorithm is performed on a sequencendf(y — 1)[logn]) complete binary splitter trees of depth
v[logn], denoted, . .., T, /(y—1)[0gn])- (TO keep the calculations simple, we assumeifiaig n| is an
integer and that is divisible by (v — 1)[logn|.) Except for the last tree, each leaf of tfEehas an edge to
the root of tre€l;,; (Figure 2).

To perform aSTORE a process writes in its acquired vertex. If it has not acquired a vertex yet, it starts
at the root of the first tree and moves down the data structure as in the binasytree(described in the
previous section). A process that does not stop at some vertex df;temmtinues to the root of the next

Algorithm 1 Cascaded trees: Node acquisition
1: v =root of T}
2: repeat
3. wv.mark=true

4. move= splitter(v) {returns eithestop, left, orright }
5. if move==left then

6: v = v.left-child

7. else ifmove==right then

8: v = v.right-child

9: i

10: until move== stop
11: v.id = id {write your identifie
12: returng)

tree. Note that both the right and the left child of a leaf in ffgel < i < n/((y —1)[logn]) — 1, are the
root of the next tree. Algorithm 1 presents the code for acquiring a vertex in the cascaded trees; note that the
code relies on the fact (proved below) that a process will olstaipin one of the trees and does not include
a condition to avoid “falling out” of the cascaded trees.
The splitter properties guarantee that no two processes stop at the same vertex.
To perform aCOLLECT, a process traverses the part of tigéeontaining marked vertices in DFS order
and collects the values written in the marked vertices. If any of the leaves afdreeanarked, the process
also collects in tre@; 1.

3.2.2 Analysis
We haven/((v — 1)[log n]) trees, each of depth|logn |, implying the following lemma.

Lemma 3.4. The memory complexity is

Let & be the number of processes that calbrEat least once an#; be the number of processes that
access the root of treg.

Lemma 3.5. At leastmin{k;, (y — 1)[logn|} processes do not exit from a leaf of trée for everys,
1<i<n/(y—1)[logn].

Proof. Letm,; be the number of marked leaves in tfEe Consider the sub-tréE that is induced by all the
paths from the root to the marked leavedbf

We first argue that a non-leaf vertexe T, with one marked child ir¥] corresponds to at least one
process that does not continu€ltq ;. If only one child valuelgft orright) is returned at, then either some
process obtainestop at v or some process did not return from the splitter associatedwitBtherwise,
processes reachingreturn botheft andright. Since only one path leads to a leaf, say, the one through the
left child, at least one process (that obtaimigght at v) does not access the right child ofand does not
reach a leaf of’;.

The number of vertices iff] with two children is exactlyn; — 1, since each node with two children
adds one to the number of paths to the leaves'in

To count the number of vertices with one child, we estimate the total number of verti¢gsuml then
subtractn,; — 1.

SinceT] is a subtree of a binary tree, the number of nodes at a level at most doubles the number of nodes
in the preceding level. Conversely, the number of vertices on each preceding level is at least half the number
at the current level. Starting above the leave§ fwhose number isn;, we therefore get the following
inequality for the number of non-leaf verticesof treeT:

meoz ST e kLt L

iy —1 yllogn|—[logm;]

where the number of ones in the equation follows from the fact that théreas depthy logn and after
[logm;] levels the number of vertices on the preceding level is at least one. The claim follows since

Lemma 3.6. A process writes its id in a vertex in trég, at the latest, for the smallest such thatk <
m - (y—1)[logn].

Proof. If £ < (v — 1)[logn|, then a process stops in trée, by Lemma 3.2, and the claim follows.
Assume(m — 1) - (y — 1)[logn] < k <m - (y — 1)[logn], for some integem > 1. By Lemma 3.5
at least(y — 1)[logn] processes do not exit from a leaf of trég for everyi, 1 < i < m — 1. Thus, at
most(y — 1)[logn]| processes access trég and by Lemma 3.2, a process stops in a vertex of figat
the latest. O

Thus a process stops after accessing at mo&t(y — 1)[logn])] trees. Since the depth of each tree
is v[log n] and each splitter requires a constant number of operations, it follows that the step complexity
of the first invocation o6TOREIS O(k/((y — 1)[logn]) - y[logn]) = O(v/(y — 1)k). All invocations
thereafter requir€®(1) steps.

By Lemma 3.3, the time to collect in trdg is 2k; — 1. By Lemma 3.6, all processes stop after at most
k/((v — 1)logn) trees. This implies the next lemma:

Lemma 3.7. The step complexity of @OLLECTis

2
of — M).
(v—1)logn
Remark: The cascaded-trees algorithm provides a spectrum of trade-offs between memory complexity
and step complexity. Choosing= 1 + 1/logn gives an algorithm wittO (k?) step complexity focoL-
LECT andO(n?) memory complexity; this matches the complexities of the matrix algorithm [16]. Setting

~v =n/logn + 1 yields a single binary tree of height namely, an algorithm where the step complexity of
COLLECTIs linear ink but the memory requirements are exponential, as in the algorithm of [9].

4 Adaptive Collect with Randomized Splitters

The algorithm presented in this section uses another kind of splitter, described in Section 4.1, that makes
a random choice in order to direct processes left and right. In Section 4.2 we analyze the behavior of a

7

Algorithm 2 Randomized Splitter
1. X =1id;

if Y then return randomlyight or left
Y =true
if (X ==1id;)then

returnstop
else

return randomlyight or left

fi

complete binary tree of such randomized splitters. In Section 4.3 we present our adaptive collect algorithm,
which utilizes a cascaded sequence of randomized splitter trees. In Section 4.4 we analyze this algorithm.
Our three main results are Theorem 4.10, which bounds the memory complexity of the algorithm, Theo-
rem 4.18, which bounds the step complexity of the first invocatiosT@RE and Theorem 4.19, which
bounds the step complexity @foLLECT. Most of our analysis is geared towards establishing the latter
pair of theorems. We remark that the constant factors associated with our bounds could be improved via a
more careful analysis. In general we have opted to simplify the presentation at the expense of such constant
factors.

4.1 A Randomized Splitter

Algorithm 2 presents the code defining the operation of our randomized splitter. If only one process enters
the splitter, it is guaranteed to stop. If two or more processes enter the splitter, then zero or one processes
stop, and the remaining processes each get a return vala#t of right, independently and uniformly at
random.

4.2 Randomized Splitter Trees

A randomized splitter treés a complete binary tree with a randomized splitter at each vertex. A process
enters a randomized splitter tree at the root and attempts to acquire the root vertex by entering the associated
randomized splitter. If this attempt is successful, the process stops at the root randomized splitter. Otherwise,
the process recursively descends to one of the two subtrees of the root depending on the value, left or right,
returned by the root randomized splitter. A process is said to stop in the tree if it successfully acquires some
vertex. A vertex that is visited by at least one process is said todrked

Randomized splitter trees are the basic building block of the randomized adaptive collect algorithm to be
presented in Section 4.3. In this section, we establish a number of basic probabilistic lemmas characterizing
the behavior of this building block. Throughout the remainder of Section 4, we find it convenient to employ
a shorthand notation to characterize the probability with which certain claims hold. In particular, when we
say that a claim holds “whp)”, wherea is a parameter, we mean that the probability that the claim fails
to hold is upper bounded by an arbitrary inverse polynomial.inn other words, the claim holds with
probability at least — a—¢, wherec is a positive constant that can be set arbitrarily large by appropriately
adjusting other constants in the relevant context.

A basic technical tool that we use is the following standard bound on the upper tail of the binomial
distribution. LetX denote a random variable drawn fraB{n, p), that is, assume thaf is the number of
successes observedrinndependent Bernoulli trials, each with success probahilitfhen the following

inequality holds for all nonnegative

1+0

At times it will be convenient to use the following weakened version of the preceding inequality, which
holds for alla > 1. This version may be derived from Equation (3) by observingdhat e!*° and setting
a=46+ 1.

66 P
Pr(X > (1+6)np) < ()Hé) 3)

e\ anp
Pr(X > anp) < (&) 4)
We also make use of the following bound on the lower tail of the binomial distribution, which holds for all
J in the intervall0, 1].
Pr(X < (1—8)np) < exp(—d’np/2) (5)

See [5] or [17], for example, for derivations of Equations (3) and (5).

For any pair of real-valued random variabl&sandY’, we say thatX dominatesy if for all reals z,
Pr(X > z) > Pr(Y > z). The following sequence of lemmas are concerned with the random experiment
in which b processes enter a randomized splitter tree widaves, whera andb are positive integers such
thatd < a.

Lemma 4.1. The number of processes leaving the tree is dominated by a random variable drawn from
2B(b,b/a).

Proof. Fix an arbitrary numbering of the processes from b.td-or any process, let Ey(z) denote the
event thatr leaves the tree, Igf; (z) denote the event thatdescends to a leaf and at least one other process
descends to the same leaf, andAg{(x) denote the event that descends to a leaf and at least one other
lower-numbered process descends to the same leaf. Let the random vArigbtp.,Y', Z7) denote the total
number of processessuch that evenky(x) (resp.,E1(x), E2(x)) occurs.

For any leafv, let the random variabl&/(v) denote the number of processes that descend tawleaf
Note thaty” = >_ 1y (,)=1 W(v) while Z = 3, ()~ W(v) — 1. Itfollows that2Z > Y, so the random
variable2Z dominatesy”. Furthermore} dominatesX since event?;(x) occurs whenever eveiify(x)
occurs. ThugZ dominatesX, and we can complete the proof of the lemma by showingZhatdominated
by a random variable drawn frof(b, b/a).

To see thatZ is dominated by a random variable drawn fr@hb, b/a), consider a modified version of
the random experiment in which no process stops or fails at an internal vertex of the randomized splitter
tree, i.e., each process descends randomly from the root until it reaches a leaf. For this modified random
experiment, lef),(x) denote the event that a procasdescends to the same leaf as at least one other lower-
numbered process. Let the random variaBBledenote the total number of processesuch thatF)(z)
occurs. Note that we can convert a run of the original experiment to a run of the modified experiment as
follows: For each processthat stops or fails at some internal vertei the original experiment, randomly
extend the path of downward fromv to a leaf. Observe that in such a pair of runs of the original and
modified experiment, for any processif F»(x) occurs in the original experiment théf (x) occurs in the
modified experiment. It follows thadt’ dominatesZ.

We now complete the proof by showing thidtis dominated by a random variable drawn fréth, b/a).
One way to run the modified experiment is to consider the processes one at a time in numerical order, and
to generate a uniformly random root-leaf path for each process. Running the experiment in this manner, we
see thatZ’ counts the number of times a process selects a previously selected path. Since the probability
any process selects a previously selected path is at fhestl)/a < b/a, Z’ is dominated by a random
variable drawn fromB (b, b/a). O

Lemma 4.2. The number of processes that leave the tree is upper boundedakisb?/a, O(loga))
whp(a).

Proof. By Lemma 4.1, it is sufficient to prove thatX is a random variable drawn frof(b, b/a), thenX
is at mostmax (262 /a, O(log a)) whp(a). In other words, we wish to prove that the probabilifyexceeds
max(4b%/a, clog a) can be driven below an arbitrary inverse polynomiat ioy making a sufficiently large
choice of the positive constant

To see this, let us first assume thatg a < 8b%/a and consider Equation (3) with = b, p = b/a, and

= 1. With this choice of the parameters, Equation (3) implies that the probaliligxceed2b? /a is at

most(e/4)?/a < (e/4)(¢/®)logsa — =" whered = (2 — log, €)¢/8 ~ 0.06966¢. Thus this probability can
be made smaller than an arbitrary inverse polynomial lity choosing the constantsufficiently large.

Now let us assume thatloga > 8b%/a. In this case, consider Equation (4) with= b, p = b/a, and
o= ac})# so thatanp = clog a. With this choice of parameters, Equation (4) implies that the probability
X exceeds:loga is at most(e/a)¢'°8%, Now observe thate > 8 > 2e sincecloga > 8b%/a. Thus the
probability thatX > cloga is at mos2—¢l°8¢ = ¢—¢, completing the proof. O

Lemma 4.3. If b = O(a'/?), then the number of processes that leave the tré€¥ 13 whp(a).

Proof. By Lemma 4.1, it is sufficient to prove that X is a random variable drawn frol(b,b/a) and
b = O(a'/?), then the probability tha exceeds a sufficiently large positive constant is less than an
arbitrary inverse polynomial in.
To see this, consider Equation (4) with= b, p = b/a, anda = 75 for some positive constaat With
this choice of parameters, Equation (4) implies that the probabiligxceeds: is at most

(55) = 0w,

ac

where the preceding equation follows from our assumptionitkat (¢!/3). This probability can be driven
below an arbitrary inverse polynomial inby making a sufficiently large choice of the positive constant
c.]

Lemma 4.4. If b = O(1) then the probability that no processes leave the trde-sO(1/a).

Proof. By Lemma 4.1, it is sufficient to prove that X is a random variable drawn from(b,b/a) and
b = O(1), then the probability thak’ > 1is O(1/a).

To see this, consider Equation (4) with= b, p = b/a, anda = 7. With this choice of parameters,
Equation (4) implies that the probabilify > 1 is at most?e/a, which isO(1/a) for b = O(1). O

Lemma 4.5. Let X denote arandom variable equal to the number of independent flips of a fair coin required
to obtainb — 1 heads. Then the number of marked vertices is dominated #yb.

Proof. Call a marked vertegoodif some process stops or fails at the vertex, bad otherwise. Note that
there are at mogtgood vertices. Below we complete the proof of the lemma by arguing that the number of
bad vertices is dominated by.

Note that two or more processes leave each bad vertex. Call a badwartkickyif all of the processes
leavingv descend to the same child af Call a bad vertexucky otherwise.

We claim that at mogi — 1 bad vertices are lucky. One way to see this is to reveal the downward paths
of all processes in a breadth-first manner starting at the root. While doing this, we maintain a partition of

10

the processes into equivalence classes based on the portions of their paths that have been revealed thus far.
Initially, all processes belong to a single equivalence class since all of their associated paths are empty. When
a lucky bad vertex is encountered, the equivalence class of processes descendiig partitioned into

two or three nonempty equivalence classes. (A three-way partition is possible because one process could
stop atv.) Suppose we encountefia— 1)th lucky bad vertex. Then at that point we have exakgingleton
equivalence classes, and so we cannot encounter another bad vertex. To complete the proof, note that each
bad vertex we encounter has probability at mig& of being unlucky, independent of the luckiness of any
previously identified bad vertices. It follows that the number of bad vertices is dominat&d by O

Lemma 4.6. The expected number of marked verticeS {5).
Proof. Immediate from Lemma 4.5. O
Lemma 4.7. The number of marked vertices(igb) whp(b).

Proof. Let the random variabl&X be as defined in the statement of Lemma 4.5. By Lemma 4.5, it is
sufficient to prove tha’ = O(b) whp(b). LetY denote the number of heads4a flips of a fair coin. In

order to establish the desired bound®nit is sufficient to prove that” > b whp(b). The latter claim is
immediate from Equation (5) with = 4b, p = 1/2, andé = 1/2. Remark: The inverse polynomial bound

on the failure probability claimed in this lemma is somewhat weaker than what is implied by Equation (5),
but is adequate for our purposes. O

Lemma 4.8. The number of marked verticesigb + log a) whp(a).

Proof. Let the random variabléX' be as defined in the statement of Lemma 4.5. By Lemma 4.5, it is
sufficient to prove tha’X = O(b + loga) whp(a). Let ¢ be a positive integer constant, and Yetdenote

the number of heads b + cloga flips of a fair coin. Lettingn = 4b + cloga, p = 1/2, andd = 1/2

in Equation (5), we find that the probability < b + % is at mostexp(—2 — <989 < exp(—“%%),

It follows that the number of flips required to obtdin- 1 heads is at mosth + O(loga) = O(b + loga)

whp(a). O

Lemma 4.9. The maximum depth of any marked verte®{$g b), both whygb) and expected.

Proof. The probability that two processes follow the same downward path to déptit most2—*. By a
union bound, the probability that any pair of therocesses follow the same downward path to dejsh
q; = O(b*27%). The whib) claim follows since a vertex at levéh- 1 can only be marked if two or more
processes follow the same downward path to déptfhe bound on the expectation follows since e
decrease geometrically with O

4.3 The Construction

Our randomized adaptive collect algorithm employs a cascaded sequence of randomized splitler trees
1 <i < ¢, wherel = O(loglogn), along with a backup array of size (See Figure 3.) Assume without
loss of generality that is a power oR. Then tre€l; hasn; = n - 2°~ leaves and its depth Isg n + 5 — 1.

As in Figure 2, for each tre@; such that < ¢, both children of all the leaves @f; are defined to be the

root of T;. 1. Both children of all the leaves @f, are defined to bail. On the first invocation of 8TORE
operation, a process entéfs and proceeds downward as described in Section 4.2 until it either stops at a
vertex of somel; — thereby successfully acquiring the register associated with that vertex — or Baves

In the latter case, the process raises a global flag (calledlow to indicate that the backup array is in

11

logn +5—1

n - 2577 leaves

n

backup array

Figure 3: Cascaded randomized splitters trees.

use, and acquires the array register corresponding to its ID. That is, pi@mpsres registerof the array,
wherel < i < n. In either case, the process completesdnerEoperation by writing the value into the
acquired register. SubsequamoOREOperations by the same process are completed in a constant number of
operations by writing into the register acquired previously. Of course, a process may fail at any point during
its execution.

The code for acquiring a vertex is similar to Algorithm 1, and appears in Algorithm 3.

The coLLECT works analogously to the previous algorithms. The marked vertic&% afe traversed
in DFS order. Then, if the root df; is marked, the marked vertices Bf are traversed, and so on. Finally,
if the flag of the arraydverflow is set, the entire backup array is read.

4.4 Analysis

We now analyze the performance of our adaptive collect algorithm in terms of the paramatets. The
memory complexity of the algorithm is straightforward to analyze.

Theorem 4.10. The memory complexity 3(n).

Proof. TheT;'s are geometrically decreasing in size, @ndhas sizeéd(n), so the total size of all th&;’s is
linear inn. The size of the backup array is also linearnin O

12

Algorithm 3 Cascaded randomized splitter trees: Node acquisition
1: v =root of T}
2: repeat
3. wv.mark=true
move=rand-splitter(v) {returns eithestop, left, orright }
if move==left then
v = v.left-child
else ifmove==right then
v = v.right-child
fi
10: until move==stop or v ==nil
11: if move==stop then
12: w.id =id {write your identifie}
13: return@)
14: fi
15: overflow=true {the backup array is us¢d
16: return(backupd])

© o N9 A

Our remaining goal is to bound the step complexity ofshierREandCOLLECT operations. To this end,
we first present a few auxiliary definitions and lemmas.

For all ¢ such thatl < ¢ < /, let k; denote the number of processes enteffpg Thusk = k;. In
addition, it is convenient to defing..; as the number of processes entering the backup array.

Throughout the remainder of this section, datenote a sufficiently large positive constant. Call a tree
markedif at least one of its vertices is marked, that#$js marked if and only if; > 0. Assign a color to
each tre€l; as follows. Each unmarked tree is white. If there is no markedfreseich thatt; < clogn,
then all marked trees are red. Otherwise, the markedriraéth the least index such thatk; < clogn is
purple, all (marked) trees with lower indices are red, and all marked trees with higher indices are blue.

In several of the proofs that follow, we make implicit use of the fact that any claim holdingrnwhp
wherel < < /¢, also holds whfn). This is because; is within a polylogarithmic factor of, and as such
is lower-bounded by a polynomial in

Lemma 4.11. If tree T; is red, thenk; 1 /n;1 < max(8(k;/n;)?, O(logn;)/n;) whp(n).

Proof. Lemma 4.2 implies thak; ;1 < max(4k?/n;, O(logn;)) whp(n;), and hence whim). The claim
follows by dividing through by:; and using the fact that; ;; = n;/2. O

It is convenient to define the following function for all positive integendb such that > b.
f(a,b) = max[1, (logloga) — loglog(2a/b)] (6)

Note thatf(a,b) = O(loglogb), and f(a,b) = O(1) for b < a'~¢, wheree denotes an arbitrarily small
positive constant.

Lemma 4.12. There areO(f(n, k)) red trees whpn).

Proof. If k&; < clogn, then there are no red trees, so the claim is trivial. In what follows, we assume
thatk; > clogn. By Lemma 4.11, whin), eitherk, is O(logn) or ks /ns is at most8(ky /n1)?. If ko

13

is O(logn), then assuming we choose the positive constasiifficiently large, there is exactly one red
tree. Otherwise, there are at least two red trees. So we may assume in what follokg'that at most
8(k1/n1)%. By Lemma 4.11, whin), eitherks is O(logn) or k3/n3 is at mostS (ks /n2)? < 83(k1/n1)*.

If k3 is O(logn), then assuming we choose the positive constanifficiently large, there are exactly two
red trees. Otherwise, there are at least three red trees. So we may assume in what follbyys:hatat
most83 (k1 /n1)*. Continuing in this manner, we find that afteiterations, either we have exhausted all of
the red trees, or

k:z/nz S 82i_1(k1/n1)2i

1 i

= §(8k1/n1)2 .
Thus we can obtain a wiip) upper bound the number of red trees by determining the maxifrauoh that
the preceding upper bound &fy/n; is at leastl /n, say, sincd /n is O(lon%) for anyi. Taking logarithms,
and usingk = k; andn; = 16n, we seek the maximumsuch that2’ log % > log%, or equivalently,

2% log %” < log §. Taking logarithms once again, and rearranging terms, we find thagtwhipe number of
red trees is at mosbg log £ — loglog 22 < f(n, k). O

Lemma 4.13.If T; is blue therk; = O(1) whp(n).

Proof. If T; is blue then there is a purple tr@g such thatj < i. Lemma 4.3 implies that;, is O(1)
whp(n). The claim follows sincé; < k;. O

Lemma 4.14. There areO(1) blue trees whin).

Proof. Assume that there are one or more blue trees and;lbe the blue tree with the least index. By
Lemma 4.13k; = O(1) whp(n). By repeated application of Lemma 4.4 we find that, conditional on
k; = O(1), the probability that there are more thanblue trees i<)(a~™) for any positive constant..

The claim of the lemma follows. O

Lemma 4.15. There areO(f(n, k)) marked trees whm).

Proof. Recall that every marked tree is either red, purple, or blue, and there is at most one purple tree. Thus
the claim follows from Lemmas 4.12 and 4.14 and the observatiorythat:) > 1. O

Lemma 4.16. We can choosésuch that! = O(loglogn) and whign) the backup array is unused.

Proof. Itis sufficient to prove that the total number of marked tred3(l®g log n) whp(n). This is imme-
diate from Lemma 4.15 sincB(n, k) = O(loglogn) for all . O

Lemma 4.17. The expected number of marked tree®{g (n, k)).

Proof. By our choice of/, the maximum number of marked treegJ$loglog n). Thus the desired bound
on the expected number of marked trees follows from Lemma 4.15. O

We are now ready to state and prove the two main theorems of this section.

Theorem 4.18. The step complexity of the first invocation®foRE satisfies the following upper bounds:
O((logn)loglogn) worst caseO(f(n, k)logn) whp(n); O(f(n,k)logk) whp(k); O(f(n,k)logk) ex-
pected.

14

Proof. Letthe random variabl& denote the the maximum depth of any marked node in the overall cascaded
tree structure. Note that in order to establish the step complexity bounds claimed in the lemma, it is sufficient
to establish that these bounds hold for the random vari&ble

Note that each tree h&¥(log n) depth. The worst case bound follows since there/areO(log log n)
trees. The whf) bound follows from Lemma 4.15. For the two remaining bounds, let us consider the
cases: < /n andk > /n separately.

First assume that < /n. At mostk processes enter any marked tree, so Lemma 4.9 implies that
whp(k) the maximum depth of any marked vertex within a marked Tre@.e., relative to the root of;)
is O(log k). Furthermoref(n, k) = O(1) for k < /n, so the number of marked trees($1) whp(n) by
Lemma 4.15. We conclude via a union bound that (#hghere areD(1) marked trees and that all marked
vertices in any marked tréE occur at depttO(log k) within 7;. It follows that X is O(log k) whp(k), as
required. To bound the expected valueof note that Lemma 4.17 implies that the expected number of
marked trees i©)(1). Furthermore, since at moktprocesses enter any marked tree, Lemma 4.9 implies
that the expected maximum depth of any marked node within any marked (e&jsk). It follows that
the expected value of is O(log k).

Now assume that > /n. In this caselogk = Q(logn), so it is sufficient to establish a bound of
O(f(n, k)logn), both whigk) and expected. But both of these bounds are immediate from oufravhp
bound. O

Theorem 4.19. The step complexity af OLLECT satisfies the following upper bound®:,(n) worst case;
O(k 4 logn) whp(n); O(k) whp(k); O(k) expected.

Proof. Let the random variabl& denote the total number of marked vertices in the randomized splitter
trees. Lemma 4.16 implies that in order to establish the step complexity bounds claimed in the lemma, it is
sufficient to establish that these bounds hold for the random varkable

TheO(n) worst case bound of is immediate from Theorem 4.10.

Lemma 4.2 implies that the sequencég$ associated with the red trees decreases (super-)geometrically
whp(n). Thus, Lemma 4.8 implies that the number of marked vertices in all red trég&)swhp(n). The
number of marked vertices in the purple tree, if anyDidogn) whp(n) by Lemma 4.8. The number of
marked vertices in all blue trees@log n) whp(n) by Lemmas 4.13 and 4.14, and the fact that the depth
of every tree i) (logn). ThusX = O(k + logn) whp(n).

Now let us prove tha = O(k) whp(k). If T} is red, therk = Q(logn), so we haveX = O(k +
logn) = O(k) whp(n), implying thatX = O(k) whp(k). Otherwise I is purple, and Lemma 4.7 implies
that the number of marked verticesTh is O(k) whp(k). Furthermore, Lemma 4.9 implies that wikp
there are no blue trees, 0= O(k) whp(k).

It remains to prove that the expectationXfis O(k). If T} is red, thenk = Q(logn) so X = O(k +
logn) = O(k) whp(n). The latter bound implies that the expectationXofs O(k), sinceX = O(n) in the
worst case. Iff} is not red then it is purple, sb = O(logn) and Lemma 4.17 implies that the expected
number of marked trees 3(1). By the expectation bound of Lemma 4.6, the expected value isfO (k)
times the expected number of marked trees, and heri@g:is O

5 Conclusions
We presented new deterministic and randomized adaptive collect algorithms. Table 1 compares the algo-

rithms presented in this paper with previous work. The algorithms are adaptive to sotctledntention
that is, to the maximum number of processes that were ever active during the execution. There are other

15

Step Complexity Memory
Algorithm COLLECT STORE Complexity
triangular matrix [16] O(k?) O(k) 0O(n?) deterministic
tree [9] O(k) O(k) o(2m) deterministic
cascaded trees (Sec. 3.2) | O(k?/(elogn)) O(k/e) O(n?*¢) | deterministic
randomized splitters (Sec. 4) O(k) O(f(n,k)logk) O(n) randomized

Table 1: Summary of the complexities achieved by different collect algorithms. See Equation (6) for the
definition of the functionyf.

contention definitions which are more fine-grained, such as point contentiorpoititecontentiorduring
an execution interval is the maximum number of processes that were simultaneously active at some point in
time during that interval. We believe that some of our new techniques carry over to algorithms that adapt to
point contention [2, 3, 8].

Our paper shows that it is possible to perfornc@LLECT operation inO(k) time with polynomial
memory using randomization. To determine the best possible step complexitpfoecCT achievable by
a deterministic algorithm with polynomial memory is an interesting open problem.

References

[1] Y. Afek and M. Merritt. Fast, wait-fre€2k — 1)-renaming. InProceedings of the 18th Annual ACM Symposium
on Principles of Distributed Computingages 105-112, 1999.

[2] Y. Afek, G. Strupp, and D. Touitou. Long-lived adaptive collect with applicationsPrbiceedings of the 40th
IEEE Symposium on Foundations of Computer Scignages 262—272, 1999.

[3] Y. Afek, G. Stupp, and D. Touitou. Long-lived and adaptive atomic snap-shot and immediate snapshot. In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Commauges 71-80, 2000.

[4] Y. Afek, G. Stupp, and D. Touitou. Long lived adaptive splitter and applicatioDsstributed Computing
15(2):67-86, 2002.

[5] N. Alon and J. H. Spenceihe Probabilistic MethodWiley, New York, NY, 1991.

[6] J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion: Major research trends since 1986.
Distributed Computingl6:75—-110, 2003.

[7] H. Attiya and V. Bortnikov. Adaptive and efficient mutual exclusiddistributed Computing15(3):177-189,
2002.

[8] H. Attiya and A. Fouren. Algorithms adaptive to point contentialournal of the ACM50(4):444-468, July
2003.

[9] H. Attiya, A. Fouren, and E. Gafni. An adaptive collect algorithm with applicatiddstributed Computing
15(2):87-96, 2002.

[10] H. Attiya, F. Kuhn, M. Wattenhofer, and R. Wattenhofer. Efficient adaptive collect using randomizatiero-In
ceedings of the 18th Annual Conference on Distributed Computaigme 3274 of_ecture Notes in Computer
Sciencepages 159-173. Springer, 2004.

[11] R. Guerraoui. Indulgent algorithms. Rroceedings of the 19th Annual ACM Symposium on Principles of
Distributed Computingnumber 289-297, 2000.

16

[12] R. Guerraoui and M. Raynal. A generic framework for indulgent consensuBrobeedings of the 23rd Inter-
national Conference on Distributed Computing Systerages 88—-95, 2003.

[13] M. Herlihy. Wait-free synchronizatiotACM Transactions on Programming Languages and Systed($):124—
149, January 1991.

[14] P.Jayanti, K. Tan, and S. Toueg. Time and space lower bounds for nonblocking implemengit#idislournal
on Computing30(2):438-456, 2000.

[15] Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual exclusioRrdoeedings of the 14th
International Symposium on Distributed Computiaglume 2180 ot.ecture Notes in Computer Scienpages
1-15, 2001.

[16] M. Moir and J. H. Anderson. Wait-free algorithms for fast, long-lived renam8ajence of Computer Program-
ming, 25(1):1-39, October 1995.

[17] R. Motwani and P. RaghavaRandomized Algorithm&ambridge University Press, Cambridge, UK, 1995.

17

