
Reconfigurable Resource Scheduling

C. Greg Plaxton1, Yu Sun2, Mitul Tiwari2, and Harrick Vin2

Department of Computer Science, University of Texas at Austin

{plaxton, sunyu, mitul, vin}@cs.utexas.edu

ABSTRACT
We consider a class of scheduling problems that we refer to
as reconfigurable resource scheduling. This class of prob-
lems is motivated by emerging applications that involve dy-
namically allocating a large number of shared resources to a
variety of services. We design efficient online algorithms for
certain problems in this class. Our goal is to obtain constant
competitive online algorithms where the online algorithm is
given a constant factor advantage in terms of the number of
resources. The main problem considered in this paper is as
follows. The input is a sequence of requests, each of which
is a set of unit jobs. Each job has a category, and needs to
be processed within a fixed delay bound from its arrival, or
else it is dropped and we incur a category-specific drop cost.
A job of a given category can only be executed on a resource
configured for that category. A resource can be reconfigured
at any time at a fixed reconfiguration cost. Our main result
is a constant competitive online algorithm for this problem,
which is obtained by the following layered approach. First,
we reduce our main problem to the special case in which all
jobs arrive at integral multiples of the delay bound. Second,
we reduce the latter problem to the special case of unit delay.
Third, we reduce the unit-delay problem to a caching prob-
lem that we refer to as file caching with remote reads. Our
solution to this caching problem generalizes certain existing
work in the area of file caching.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems - Sequencing
and Scheduling

General Terms
Algorithm, Performance
1Supported by NSF Grants CCR–0310970 and ANI–
0326001.
2Supported by NSF Grant ANI–0326001 and Texas Ad-
vanced Technology Program Grant 003658-0608-2003.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’06,July 30–August 2, 2006, Cambridge, Massachusetts, USA.
Copyright 2006 ACM 1-59593-452-9/06/0007 ...$5.00.

Keywords
Online computation, reconfigurable resource scheduling

1. INTRODUCTION
In emerging networked systems, it is common that re-

sources are shared by a variety of services or applications.
For example, a shared data center [10, 11] is a cluster of ma-
chines managed to provide multiple independent services.
As another example, emerging packet processing systems
based on programmable, multi-core network processors [1,
2, 19, 22] share cores among various applications. In both of
these examples, the loads on the different services fluctuate
with time in an unpredictable manner. A static partition
of the resources often fails to provide a satisfactory per-
formance guarantee. On the other hand, over-provisioning,
that is, providing a sufficient number of resources to meet
the peak load, can lead to underutilization of the resources.
A desirable alternative is to dynamically adjust the resource
allocation.

Motivated by the aforementioned applications, in this pa-
per we consider a class of scheduling problems that we refer
to as reconfigurable resource scheduling. The salient fea-
tures of this class are as follows: (1) there are jobs of dif-
ferent colors; (2) resources can be reconfigured to process
jobs of a certain color, where a reconfiguration incurs an
overhead, in terms of cost or time.

In this paper, we initiate the study of reconfigurable re-
source scheduling within the framework of competitive anal-
ysis (see the textbook by Borodin et al. [6] for a comprehen-
sive introduction of competitive analysis) by considering the
following specific problem in this realm. We are given a fi-
nite set of resources, each of which has an associated color,
and a sequence of requests, each of which is a set of unit
jobs. Each job has an associated color, and needs to be ex-
ecuted on a resource of the same color within a fixed delay
bound D from its arrival, or else it is dropped. At any time,
a resource can be reconfigured to a different color. The cost
to reconfigure a resource is ∆, and the cost to drop a job
of color ` is d`. The goal is to schedule the reconfigurations
of the resources and the executions of the jobs, in a way
that minimizes the total cost. In this paper, we give a con-
stant competitive online algorithm for this problem, where
we allow the online algorithm a constant factor advantage
in the number of resources. It is worth mentioning that the
competitive ratio we obtain does not depend on the various
problem parameters, that is, D, ∆, and d`’s.

We solve the main problem with a layered approach. First,
we use batching to reduce the main problem to the special

case in which jobs arrive at integral multiples of D. Second,
we reduce the latter problem to two cases: (1) ∆ < d`, for
all `, and (2) ∆ ≥ d`, for all `. We solve the first case
using a relatively simpler approach. For the second case,
we use a reshaping technique that enables us to reduce to
the special case in which D = 1. For the case D = 1, we
actually solve a more general variation that allows a per-
color reconfiguration cost ∆`, as long as ∆` ≥ d` for all
`. Third, we use a serialization technique to reduce the
case D = 1 to a caching problem that we refer to as file
caching with remote reads. This caching problem generalizes
the file caching problem studied by Cao and Irani [9] and
Young [23], and we solve it by modifying Young’s Landlord
algorithm.

2. RELATED WORK
Brucker [7, Chapter 9] surveys a class of offline scheduling

problems with context switch time, which they call changeover
time. In this class of problems, each job belongs to a certain
group, and between the executions of any two jobs in differ-
ent groups on the same machine, there is a changeover pe-
riod, during which the machine cannot process any job. Re-
sults for single and multiple machine problems with changeover
time are summarized. For a variant with identical machines,
equal sized groups, and equal processing and changeover
time, Brucker et al. [8] give a polynomial time offline algo-
rithm that decides whether there exists a schedule in which
all jobs are executed within a common delay bound.

In a recent position paper, Srinivasan et al. [20] discuss the
scheduling problems that arise in multi-core network proces-
sors, and consider the application of existing multiprocessor
scheduling algorithms in this domain. Various challenges
are pointed out and some initial ideas towards addressing
these concerns are presented. In [13], Kokku proposes a
scheduling algorithm, called Everest, for multi-core network
processors. The parameters considered are a per-service de-
lay bound, a per-service execution requirement, and a fixed
context switch time. The primary goal is to maximize the
number of packets processed within a service-specific delay
tolerance. Everest is shown to perform well in experiments.

Another interesting related scheduling problem is “schedul-
ing with rejection” [5, 16, 17]. In this problem, jobs can be
rejected at a certain cost. The objective is to minimize the
sum of (1) the makespan of the schedule for the executed
jobs, and (2) the total cost of the rejected jobs. Constant
competitive algorithms are given for both nonpreemptive
and preemptive versions of the problem.

A traffic regulator like leaky bucket [21] reduces the bursti-
ness in the network traffic. In this paper, we use a reshaping
technique to distribute each job to a specific round, which
can be viewed as a way to reduce the burstiness in the re-
quest sequence.

As indicated earlier, we generalize the file caching work
of Cao and Irani [9] and Young [23], which themselves can
be viewed as generalizations of the work in the classic disk
paging problem studied by Sleator and Tarjan [18]. In the
latter paper, which is the first work in the area of compet-
itive analysis, certain algorithms, such as LRU, are shown
to be constant competitive when given a constant factor
advantage in the cache size. The technique of giving the
online algorithm extra resources to achieve a better com-
petitive ratio has subsequently been referred to as resource
augmentation [12, 15].

Some other work related to our paging problem includes
k-server problem with excursions and page migration prob-
lem. Manasse et al. [14] consider k-server problem with ex-
cursions in which, a request can be satisfied remotely by
servers without moving any server to the requested vertex.
In page migration related problems, extensively studied in
the literature, the requested page can be accessed remotely
or moved to the requesting processor. Some closely related
work in this realm are k-page migration [4] and constrained
page migration [3]. In [4], Bartal et al. maintain k copies
of any page, however, local memories have unlimited capac-
ities. In [3], Albers and Koga consider page migration with
limited local memory capacity. There are some similarities
between their DLRU algorithm and our file caching algo-
rithm presented in Section 4.2. However, DLRU algorithm
is not applicable directly to solve our file caching problem.

3. PRELIMINARIES
In this section, we give problem definitions in Section 3.1

and the organization of the rest of the paper in Section 3.2.

3.1 Problem Definitions
For the reconfigurable resource scheduling problems con-

sidered in this paper, the input is a sequence of requests,
each of which consists of a (possibly empty) set of unit jobs.
Each job is characterized by a non-black color, a nonnega-
tive integer arrival time, and a positive integer delay bound.
For any job, we define an associated deadline to be its ar-
rival time plus its delay bound. A job has to be executed
on a resource of the same color between its arrival time and
its deadline, or else it is dropped. After a job arrives, it is
pending until it starts to get executed or dropped.

There is a finite set of resources on which jobs are ex-
ecuted. Resources are numbered from 0. Each resource is
associated with a color and can be reconfigured to a different
color at any time. Initially, all resources are colored black.

Any problem considered here proceeds in rounds num-
bered from 0. Each round i consists of four phases, in the
following order: (1) in the drop phase, jobs with deadline
i are dropped; (2) in the arrival phase, the ith request is
received; (3) in the reconfiguration phase, for each resource,
an algorithm decides whether to reconfigure to a different
color or not, and if so, to which color; (4) in the execution
phase, for each resource configured to color `, we execute up
to one pending job of color `.

For any request sequence σ, a schedule specifies the recon-
figurations, if any, and the job executions to perform in each
round. There is a drop cost to drop a request and a recon-
figuration cost to reconfigure a resource. The total cost of
a schedule is the sum of the total reconfiguration and drop
cost. The goal is to device a schedule of minimum cost for
a given request sequence σ.

Let S and S′ be any two schedules for a given request
sequence σ. We say S is resource competitive with S′ if, the
number of resources given to S is within a constant factor
of that given to S′, and the cost incurred by S is within a
constant factor of that incurred by S′.

An offline algorithm knows all requests in advance. An
online algorithm has to make decisions without knowing the
future requests. The competitive ratio of an algorithm A is
defined as the maximum ratio, over all request sequences σ,
of the cost incurred by A on σ to that incurred by an optimal
offline algorithm on σ. An algorithm A is defined to be c-

competitive if the competitive ratio is c. Any c-competitive
algorithm A is called constant competitive if c is a constant.
We say an algorithm A is resource competitive if, for any
request sequence σ, the schedule generated by A is resource
competitive with an optimal schedule.

The focus of this paper is to give resource competitive
online algorithms for some problems in the class of reconfig-
urable resource scheduling. For brevity of the presentation,
we introduce the [reconfig | drop | delay | batch] notation.
The reconfig field describes the details of the reconfigura-
tion cost. In this paper, the possible values for this field
are: a fixed reconfiguration cost denoted by ∆ and a per-
color reconfiguration cost denoted by ∆`. The drop field
describes the details of the drop cost. In this paper, there is
only one possible value: a per-color drop cost denoted by d`.
The delay field contains the details of the delay bound. In
this paper, the possible values are: a unit delay, namely 1,
and a fixed delay denoted by D. The batch field constrains
the arrival rounds of requests of color ` to occur at integral
multiples of the specified value. In this paper, the possible
values for this field are 1 and D.

With this notation, our main problem is denoted by [∆ |
d` | D | 1]. The special case in which jobs arrive at integral
multiples of D is denoted by [∆ | d` | D | D]. The special
case with D = 1 is denoted by [∆ | d` | 1 | 1].

3.2 Roadmap
The rest of the paper is organized as follows. Section 4 de-

fines and solves the problem file caching with remote reads.
Section 5 solves [∆` | d` | 1 | 1], where ∆` ≥ d`, by a re-
duction to file caching with remote reads. Section 6 solves
[∆ | d` | D | D] by reducing to special cases of [∆ | d` | 1 | 1].
Section 7 solves our main problem [∆ | d` | D | 1] by a re-
duction to [∆ | d` | D | D].

4. FILE CACHING WITH REMOTE READS
In this section, we introduce a new caching problem, re-

ferred to as file caching with remote reads, as a building
block of the final solution to our main problem. This prob-
lem is similar to the file caching problem studied by Cao and
Irani [9] and Young [23]. The difference is that, on a miss,
a remote read can be issued to serve the request instead of
having to write the requested file to the cache. We modify
the Landlord algorithm and its associated analysis given by
Young to solve our caching problem.

4.1 Problem Definition
We are given a universal set of files and a cache of a cer-

tain size. Each file x is characterized by a positive integer
size, denoted by size(x); a nonnegative read cost, denoted
by read(x); a nonnegative write cost, denoted by write(x).
Initially, the cache is empty. The input is a sequence of
requests, each of which is specified by a file (the file to be
accessed). To process a request x, an algorithm can first
perform an arbitrary long sequence of the following two ac-
tions: removing files from the cache with no cost, and writ-
ing the requested file x into the cache with cost write(x),
provided there is sufficient room. Then, if x is in the cache,
the algorithm incurs no further cost. Otherwise, the algo-
rithm performs a remote read, paying read(x). The goal is
to maintain the files in the cache so as to minimize the total
cost.

4.2 Algorithm
We present a variant of the Landlord algorithm, denoted

by LLL as follows. For each file x, maintain a real value
credit(x) (whether x is in the cache or not). Initially the
credit of any file is zero. On a request x, augment credit(x)
in the following way:

credit(x) := min(credit(x) + read(x),write(x)).

When credit(x) reaches write(x), if x is not in the cache,
repeatedly run the eviction procedure (to be described) until
there is room for x in the cache, and then add x to the cache.

The eviction procedure is as follows. Charge every file in
the cache rent until at least one file runs out of credit. More
formally, for each file x in the cache, decrease credit(x) by
δ ·size(x), where δ denotes the minimum credit per unit size
of any file in the cache. Evict from the cache any nonempty
subset of the files with zero credit.

4.3 Analysis
Before presenting the analysis, let us first introduce some

definitions. Let OFF denote an arbitrary offline algorithm.
Let A and L denote the cache of OFF and LLL, respec-
tively. Let m and n (n > 2m) denote the size of A and L,
respectively. We define a potential function

Φ = m
X

x

credit(x)+ (n−m+1)
X
x∈A

(write(x)− credit(x)).

Initially, because the credit of any file is zero, and both
caches are empty, the potential is zero. Because LLL main-
tains the invariant that 0 ≤ credit(x) ≤ write(x), the po-
tential is always nonnegative.

To analyze the performance of LLL, we execute LLL along-
side OFF. As in [23], we process each successive request with
OFF, and then with LLL. We then observe the effect of each
action on the potential.

Actions taken by OFF to serve a request x can be broken
down into a sequence of steps, with each step being one of
the following. OFF evicts a file from the cache; OFF writes
x to the cache; OFF performs a remote read for x. Actions
taken by LLL to serve a request to file x can be broken
down into a sequence of steps, with each step being one of
following. LLL augments the credit of x; LLL charges rent;
LLL evicts a file from the cache to make room for x; LLL
writes x to the cache; LLL performs a remote read for x.
Note that the credit augmentation is always performed and
performed first in serving any request.

For an arbitrary request x, the effect of each action taken
to serve x on the potential is given in Lemma 4.1 through
Lemma 4.6.

Lemma 4.1. If OFF performs a remote read, or LLL writes
a file into the cache, or LLL performs a remote read, Φ does
not change.

Proof. Since contents of A as well as, for any file x,
credit(x) do not change, Φ remains unchanged.

Lemma 4.2. If OFF writes x to the cache, Φ increases by
at most (n−m + 1) · write(x).

Proof. The first summation does not change. The sec-
ond summation increases by at most write(x) because 0 ≤
credit(x) ≤ write(x). Hence, Φ increases by at most (n −
m + 1) · write(x).

Lemma 4.3. If LLL augments the credit of x that is not
in A, Φ increases by at most m · read(x).

Proof. The first summation increases by at most read(x).
Because x ∈ A, the second term does not change. Hence, Φ
increases by at most m · read(x).

Lemma 4.4. If OFF evicts a file from the cache, Φ does
not increase.

Proof. The first summation does not change. The sec-
ond summation does not increase because write(x) ≥ credit(x).
Hence, Φ does not increase.

Lemma 4.5. If LLL augments the credit of x that is in A,
Φ decreases by at least (n−2m+1)s ≥ 0, where s ≤ read(x).
Particularly, if s < read(x), LLL does not perform a remote
read in serving x.

Proof. By the way the credit is augmented on an ac-
cess, the first summation increases by s, where s ≤ read(x).
Particularly, if s < read(x), after the credit augmentation,
credit(x) reaches write(x). LLL subsequently write x into
the cache and does not perform a remote read in serving
x. Because x ∈ A, the second summation decreases by
(n−m+1)s. Hence, Φ decreases by at least (n−2m+1)s ≥
0.

Lemma 4.6. If LLL charges rent to make room for x, Φ
does not increase.

Proof. The potential Φ decreases by δ times m·size(L)−
(n−m+1)·size(L ∩A), where size(X) denotes

P
x∈X size(x).

Note that size(L) > n − size(x) + 1 and size(L ∩A) ≤ m.
Because size(x) ≤ m , Φ decreases by at least m(n − m +
1)− (n−m+1)m = 0. In this case, Φ does not increase.

Consider any request sequence σ. Let CostOFF (σ) and
CostLLL(σ) denote the cost incurred by OFF and LLL on
σ, respectively. Let ReadCostOFF (σ) and ReadCostLLL(σ)
denote the read cost incurred by OFF and LLL in serving
σ, respectively. Let WriteCostOFF (σ) and WriteCostLLL(σ)
denote the write cost incurred by OFF and LLL in serving
σ, respectively.

Lemma 4.7. For any request sequence σ, the total increase
of Φ is at most

m · ReadCostOFF (σ) + (n−m + 1)WriteCostOFF (σ).

Proof. Consider the steps taken by OFF and LLL to
serve a request x. By Lemma 4.1 through Lemma 4.6, Φ
increases only in the following two cases. The first case,
OFF writes x to the cache. By Lemma 4.2, Φ increases
by at most (n − m + 1)write(x). In this case, the write
cost incurred by OFF in serving x is at least write(x). The
second case, LLL updates the credit of x that is not in A.
By Lemma 4.3, Φ increases by at most m · read(x). In this
case, the read cost incurred by OFF in serving x is read(x).
In either case, the increase of Φ in serving x is at most
m·ReadCostOFF (x)+(n−m+1)WriteCostOFF (x). Summing
up over all x’s, the lemma follows.

Lemma 4.8. For any request sequence σ, the total nega-
tive change of Φ is at least

(n− 2m + 1)(ReadCostLLL(σ)− ReadCostOFF (σ)).

Proof. We focus our attention on an arbitrary request x
for which LLL performs a remote read in serving x. Consider
the steps taken by OFF and LLL to serve x. As indicated
earlier, credit augmentation is always performed by LLL
in serving any file. When LLL augments the credit of x,
if x is in A, then Φ decreases by (n − 2m + 1)read(x) by
Lemma 4.5; otherwise, OFF incurs a read cost of read(x)
in serving x. In either case, (n − 2m + 1)ReadCostLLL(x)
is at most the decrease of Φ in serving x plus (n − 2m +
1)ReadCostOFF (x), so the decrease of Φ in serving x is at
least (n−2m+1)(ReadCostLLL(x)−ReadCostOFF (x)). Sum-
ming up over all such x’s, the lemma follows.

Lemma 4.9. For any request sequence σ,

WriteCostLLL(σ) ≤ ReadCostLLL(σ).

Proof. For any file x, we define an epoch as follows. An
epoch of x ends the moment x is kicked out of the cache. A
new epoch of x starts when the previous epoch ends. Fix any
copy x and any epoch i of x. By algorithm LLL, the credit
of x at the beginning of epoch i is zero. In epoch i, before
the credit reaches write(x), for each access on x, the credit
increases by at most read(x), and algorithm LLL incurs a
read cost of read(x). When the credit reaches write(x), algo-
rithm LLL writes x into the cache, incurring a write cost of
write(x). After that, algorithm does not incur any cost until
epoch i ends. Hence, the write cost incurred by LLL during
epoch i on x is at most the relevant read cost. Summing up
over all i’s and files, the lemma follows.

Theorem 1. Algorithm LLL is 2(n−m+1)
n−2m+1

-competitive.

Proof. Consider an arbitrary request sequence σ. By
Lemma 4.7, Lemma 4.8 and the fact that Φ is always non-
negative, we have

(n− 2m + 1)(ReadCostLLL(σ)− ReadCostOFF (σ))

≤ m · ReadCostOFF (σ) + (n−m + 1)WriteCostOFF (σ).

Because n > 2m, we obtain that

ReadCostLLL(σ) ≤ n−m + 1

n− 2m + 1
CostOFF (σ).

The lemma follows from the above inequality and Lemma 4.9.

5. UNIT DELAY
In this section we solve [∆` | d` | 1 | 1], where ∆` ≥ d`

for all `. Recall that it is characterized by a per-color con-
figuration cost ∆, a per-color drop cost d`, and a unit delay
bound. As indicated earlier, our solution to this problem
uses a reduction to file caching with remote reads, which is
defined and solved in Section 4.

5.1 Algorithm Serialize
Algorithm Serialize proceeds in three steps. In the first

step, given an arbitrary instance I of [∆` | d` | 1 | 1], we
construct an instance I ′ of file caching with remote reads
as follows. The cache size associated with I ′ is the same as
the number of resources associated with I. Each file (`, j)
associated with I ′ is characterized by a color `, a nonnegative
integer index j, a read cost d`, and a write cost ∆`. Let σ be
the input sequence associated with I. For any nonnegative
integer i, let σi be request i of σ. Let Xi = ∪`{(`, j) | 0 ≤

j < qi,`}, where qi,` is the number of color ` jobs in σi. Let
σ′

i be the sequence of requests obtained by ordering the files
in Xi arbitrarily. The input sequence σ′ associated with I ′

is obtained by concatenating σ′
i’s in increasing order of i.

In the second step, we use algorithm LLL (defined in Sec-
tion 4.2) to obtain a solution S′ for I ′. In the third step,
we construct a solution S for I from S′ in two substeps. In
the first substep, we construct another solution S′′ for I ′ as
follows. Let αi be the schedule for σ′

i in S′. We obtain βi,
the schedule of S′′ for σ′

i, by delaying the writes in αi to the
end of αi. The schedule S′′ is the concatenation of βi’s in
increasing order of i. In the second substep, we construct a
solution S for I as follows. Fix an arbitrary i. Now we de-
scribe the schedule of S in round i. For any k, S configures
resource k with color ` in round i, where ` is the color of the
file cached by S′′ in slot k at the beginning of σ′

i. In round
i, S executes as many jobs in σi as its configuration allows.

5.2 Analysis

Lemma 5.1. If there exists an offline solution T for I with
cost C and m resources, then there exists an offline solution
T ′ for I ′ with cost at most 4C and a cache of size m.

Proof. We construct T ′ round by round. Fix an arbi-
trary round i. For any color `, let Xi,` be the set of resources
configured with color ` by T in round i. The schedule of T ′

for σ′
i is constructed in the following two steps.

First, in T , we label the resources in round i. For each
color `, we label the resources in Xi,` in round i as follows.
If i = 0, we label the resources in Xi,` from 0 to |Xi,`| − 1
arbitrarily. If i > 0, we proceed as follows. For any resource
k in Xi,` that is configured with color ` in round i− 1, such
that the label of resource k in round i − 1 is in the range
[0, |Xi,`|), we let resource k inherit its label from round i−1.
For any remaining resource k in Xi,`, we assign to k an
arbitrary label in the range [0, |Xi,`|) that is not already
assigned to a resource in Xi,` in round i.

Second, we construct the schedule of T ′ for σ′
i from the la-

bels given to resources in round i in the first step. Through-
out σ′

i, we maintain the following cache contents: for any
nonnegative integer k, the page cached at location k is (`, j),
where ` is the color of resource k in round i of T , and j is the
label given to resource k in round i. (An exception occurs if
the color of resource k is black, in which case cache location
k is empty.)

We need to show that (1) the write cost incurred by T ′ is
at most four times the reconfiguration cost incurred by T ,
and (2) the read cost incurred by T ′ is at most the drop cost
incurred by T .

The proof of (1) proceeds in two steps. In the first step,
for each reconfiguration from color ` to color `′ in T , we give
∆` + ∆`′ units of credit. It is not hard to see that the total
number of credit associated with the reconfigurations in T
is twice the reconfiguration cost of T .

In the second step, we need to show that the write cost
incurred by T ′ is at most twice the total credit. Since T ′

maintains the same cache contents throughout each σ′
i, T ′

only incurs write cost on the boundaries of σ′
i’s. Hence, it is

sufficient to show that, for any positive integer i, the write
cost incurred by T ′ on the boundary between σ′

i−1 and σ′
i is

at most twice the credit associated with the reconfigurations
incurred by T between round i− 1 and round i.

Fix any nonnegative integer k. Consider any write in T ′

on the boundary between σ′
i−1 and σ′

i at location k, because
of a reconfiguration in T between round (i− 1) and round i
on resource k. It is easy to see that the write cost is at most
the credit associated with the reconfiguration.

Now consider writes in T ′ because of labeling of resources.
Fix an arbitrary color `. Let pi,` be the number of resources
that change color from color ` or to color ` from round i− 1
to round i in T . Let qi,` be the number of resources that
are configured with color ` in both round i − 1 and round
i in T , but changes labels from round i − 1 to round i. It
is easy to verify that the write cost incurred by T ′ on the
boundary between σ′

i−1 and σ′
i due to relabeling of resources

is
P

` qi,` · ∆`. It is also easy to verify that the total credit
associated with the reconfigurations incurred by T between
round i − 1 and round i is at least

P
` pi,` · ∆`. Hence, we

only need to show that qi,` ≤ pi,`, which is shown as follows.
Let Yi,` be the set of resources that are configured with

color ` and each of which has a label at least |Xi+1,`| in
round i. By the way we assign labels to resources in each
round, qi,` equals |Yi−1,`|. It is not hard to see that |Yi−1,`|
is at most max(0, |Xi−1,`| − |Xi,`|), which in turn is at most
pi,`. Hence, qi,` ≤ pi,`. Therefore, the write cost incurred
by T ′ on the boundary between σ′

i−1 and σ′
i is at most twice

the total credits associated with reconfigurations in T .
The proof of (2) proceeds as follows. Fix arbitrary ` and

i. Let ri,` be the number of color ` jobs in σi. Let ki,`

is the number of resources configured with color ` by T in
round i. So in round i, T pays a drop cost of at least d` ·
max(ri,` −ki,`, 0) on the color ` jobs in σi. From the way σ′

is constructed, the set of color ` files in σ′
i is {(`, j) | 0 ≤ j <

ri,`}. From the way T ′ is constructed, throughout σ′
i, the

set of color ` files cached by T ′ is {(`, j) | 0 ≤ j < ki,`}. So
T ′ pays a read cost of d` ·max(ri,`−ki,`, 0) on color ` files in
σ′

i. Hence the read cost incurred by T ′ on color ` files in σ′
i

is at most the drop cost incurred by T on the color ` jobs in
σi. Summing up over all `’s and i’s, the claim follows.

Lemma 5.2. The cost incurred by S is at most twice that
incurred by S′.

Proof. First, we establish that the cost incurred by S′′ is
at most twice that incurred by S′ as follows. Fix an arbitrary
i. Recall that αi and βi are the schedules of S′ and S′′ for
σ′

i, respectively. Because βi is obtained by delaying writes
in αi, the write cost incurred by S′′ in βi is the same as
that incurred by S′ in αi, and for files that are not written
in αi, the read cost incurred by S′′ are the same as that
incurred by S′. From the way σ′

i is constructed, each file in
σ′

i is unique. Let X be the set of files written by S′ in αi.
For each file (`, j) in X, S′′ incurs at most one read in βi.
Because d` ≤ ∆`, the read cost incurred by S′′ on X in βi is
at most the write cost incurred by S′ on X in αi. Hence, the
cost incurred by S′′ on σ′

i is at most twice the cost incurred
by S′ on σ′

i. Summing up over all i’s, the claim follows.
Second, we show that the cost incurred by S is at most

that incurred by S′′. To do this, we first show that the re-
configuration cost incurred by S is at most the write cost
incurred by S′′. It is not hard to verify that each reconfig-
uration of a resource to color ` performed by S corresponds
to a write of a color ` file by S′′. The claim then follows
from the fact that the cost to reconfigure a resource to color
` and to write a color ` file are both ∆`. We then establish
that the drop cost incurred by S is the same as the read cost

incurred by S′′. Fix arbitrary ` and i. Let ri,` be the num-
ber of color ` jobs in σi. From the way σ′

i is constructed, the
set of color ` files in σ′

i is {(`, j) | 0 ≤ j < ri,`}. Let ki,` be
the number of color ` files cached by S′′ at the beginning of
σ′

i. From the way βi is constructed, S′′ does not change the
cache contents during βi. So the read cost incurred by S′′

on color ` files in σ′
i is at least d` ·max(ri,` − ki,`, 0). By the

way S is constructed, the number of resources configured
with color ` in round i is also ki,`, and S executes as many
jobs as possible. So the drop cost incurred by S on color
` jobs in σi is d` · max(ri,` − ki,`, 0). Hence, the drop cost
incurred by S on color ` jobs in σi is at most the read cost
incurred by S′′ on color ` files in σ′

i. Summing up over all
`’s and i’s, the claim follows.

Theorem 2. Algorithm Serialize is resource competitive
for [∆` | d` | 1 | 1], where ∆` ≥ d` for all `.

Proof. Suppose there exists an offline solution T for I
with cost C and m resources. By Lemma 5.1, there exists
an offline solution T ′ for I ′ with at most cost 4C and a cache
of size m. By Theorem 1, given a constant factor advantage
in the number of resources, algorithm LLL is constant com-
petitive. Hence S′, the solution given by LLL for I ′, incurs
a cost of O(C) with a cache size of O(m). By Lemma 5.2
and the fact that the number of resources given to S is the
same as the cache size given to S′, we obtain that S incurs
a cost of O(C) with O(m) resources.

6. BATCHED ARRIVALS
In this section we solve [∆ | d` | D | D], which is char-

acterized by a fixed configuration cost ∆, a per-color drop
cost d`, a fixed delay bound D, and batched arrivals (jobs
arrive at integral multiples of D).

In this section, we reduce the [∆ | d` | D | D] to two cases:
(1) ∆ ≥ d`, for all `, and (2) ∆ < d`, for all `. We solve
the former case by a reduction to [∆ | d` | 1 | 1], which is
addressed in Section 5. The latter case is relatively simpler.
We solve the latter case to a reduction to a special case of
[∆ | d` | 1 | 1], referred to as rate-limited [∆ | d` | 1 | 1],
which is defined and solved in Appendix B.

6.1 Definitions
For any i, we define block i to be the D rounds starting

from round i · D. In the following, we focus our attention
on an arbitrary block i and the jobs that arrive in block i.

Let load(`) denote the number of color ` jobs. For conve-
nience, we number the jobs of color ` from 0 to load(`)− 1.
We define groups as follows. A group is a set of jobs, identi-
fied by a pair (`, j), where ` is a color and j is a nonnegative
integer. A group (`, j) consists of the following jobs of color
`: job j·D, job j·D+1, . . ., and job min((j+1)D, load(`))−1,

where 0 ≤ j <
l

load(`)
D

m
.

A group U = (`, j) is heavy if |U | · d` ≥ ∆, and light oth-
erwise. Any job x in a heavy (resp., light) group is referred
to as a heavy (resp., light) job. We denote the number
of heavy groups by h. For convenience, we sort colors in
descending order of per-color drop cost, breaking ties arbi-
trarily. We then sort heavy groups in descending order of
per-color drop cost, breaking ties by color, and then by car-
dinality. We sort light groups in the same way. We denote
heavy group j in the sorted order by Hj .

We denote the number of resources by n. We define n bins
indexed from 0 to n−1. Each bin has D slots numbered from
zero, where slot j corresponds to round j + i · D. A slot is
either free or claimed. At any instant, we denote the number
of free slots in bin k by free(k). Initially, all slots are free.
A slot can become claimed only in the distribute procedure,
which is defined as follows. Given two parameters, a set of
jobs X and an integer k, where 0 ≤ k < n and |X| ≤ free(k),
the procedure distribute maps all jobs in X to the |X| lowest
numbered free slots of bin k such that one job is mapped to
each slot. A slot becomes claimed when a job is assigned to
it.

6.2 Algorithm
In this section, we first introduce algorithm Reshape in

Section 6.2.1. After that, we give algorithm Split, which
uses Reshape as a subroutine. Algorithm Split solves [∆ |
d` | D | D].

6.2.1 Algorithm Reshape
Algorithm Reshape takes an input sequence σ for [∆ | d` |

D | D] as a parameter, and maps each job in σ to a round.
In other words, Reshape transforms an input sequence for
[∆ | d` | D | D] to an input sequence for [∆ | d` | 1 | 1] by
restricting each job to a certain round. Algorithm Reshape
proceeds block by block. Fix any nonnegative integer i. We
focus on the jobs that arrive in block i. Algorithm Reshape
for block i proceeds as follows.

1. Empty all bins.

2. For each j such that 0 ≤ j < min(n, h), we map the
jobs in Hj by invoking distribute(Hj , j).

3. Let j = n, k = 0, and B0, . . ., Bn−1 be the set of bins
in descending order of the number of free slots.

4. Let X = Hj . Let ` be the color of X, and p be the
index of bin Bk.

5. If d` · free(p) ≥ ∆,

(a) If |X| ≤ free(p), we perform the following steps.

i. We map the jobs in X by invoking distribute(X, p),
and then increment j.

ii. If j ≥ h, go to 6.

iii. We set X to Hj , and ` to the color of X.

(b) Otherwise, we map the jobs in Y by invoking
distribute(Y, p), and then we set X to X\Y , where
Y is any subset of X of size free(p).

(c) free(p) = 0, we perform the following steps.

i. We increment k.

ii. If k ≥ n, go to 6.

iii. Set p to be the index of Bk.

iv. If d` · free(p) < ∆, go to 6.

(d) Repeat 5a, 5b, and 5c.

6. For each group U with at least one job not mapped,
we map the remaining jobs in U to the beginning of
block i, such that one job is mapped to one round.

6.2.2 Algorithm Split
Algorithm Splitis defined as follows. Consider any input

sequence σ for [∆ | d` | D | D]. We break σ into two
subsequences α and β, where α only consists of the jobs
with drop cost at most ∆, and β consists of the remaining
jobs. We split the resources into two equal halves, where the
first half is used to execute only jobs in α, and the second
half is used to execute only jobs in β.

The schedule for α is obtained in the following two steps.
First, we construct an input α′ by applying algorithm Re-
shape on α. Second, we apply algorithm Serialize (defined
in Section 5.1) on α′ to determine the schedule.

The schedule for α is obtained in the following two steps.
First, we construct an input β′ by applying algorithm Re-
shape on β. Second, we apply algorithm RL-Serialize (de-
fined in Appendix B.1) on β′ to determine the schedule.

6.3 Analysis
We define a resource to be i-monochromatic if the re-

source k is configured with one color throughout block i,
and i-multichromatic otherwise. An i-monochromatic re-
source is (i, `)-monochromatic if the resource is configured
with color ` throughout block i. We assume that, for each
i-multichromatic resource, there are reconfigurations at the
beginning and end of block i. It is not hard to see that
this assumption at most triples the reconfiguration cost. A
reconfiguration is called an external reconfiguration if it is
made on the delay bound boundary, otherwise it is an in-
ternal reconfiguration.

A schedule S is reshape-friendly if, in S, any job x is either
dropped, or executed in the round to which x is mapped to
by algorithm Reshape.

Lemma 6.1. For any input sequence σ and any schedule
S for σ with cost C, there exists a reshape-friendly schedule
S′ for σ with cost O(C).

Proof sketch. Given any schedule S, we sketch how to trans-
form it to a reshape-friendly schedule S′. The transforma-
tion proceeds block by block. In the following we focus on
an arbitrary block i and the jobs that arrive in block i.

At a high level, the transformation for block i proceeds
in five steps as follows. First, we rearrange the schedule so
that jobs of the same color on the same resource are exe-
cuted in consecutive rounds. Second, we perform a label-
ing process that assigns jobs to groups (we will elaborate
this process later). Third, we perform a unifying process
that brings together the jobs in each heavy group Hj , for
0 ≤ j < min(n, h) (we will give the details of this process
later). Fourth, we drop light jobs on i-multichromatic re-
sources. Fifth, if n > h, we perform a repacking process,
which reschedules the jobs in {Hj | n ≤ j < h} in the same
way as they are reshaped by algorithm Reshape. In general,
each step preserves the properties obtained from previous
steps and adds more structures to the schedule. The first,
fourth, and fifth steps are straightforward. In the following
we present the details of the remaining steps .

The purpose of the second step, that is, the labeling pro-
cess, is to assign jobs to groups in a way that avoids some
extra reconfigurations that might otherwise be caused by
the unifying process. It works as follows. For each color
`, we scan schedules of resources in ascending order of re-
source indices and then the dropped jobs in an arbitrary

order to obtain a sequence α` of color ` jobs. We num-
ber the jobs in α` from zero. For any color ` and any j

such that 0 ≤ j <
l

load(`)
D

m
, we assign the following jobs

of α` to group (`, j): job j · D, job j · D + 1, . . ., and job
min((j + 1)D − 1, load(`)).

The unifying process proceeds in sorted order of heavy
groups. Now we describe the unifying process wrt. an ar-
bitrary heavy group (`, j) in the following two steps. First,
we pick a resource k on which we will unify jobs in group
(`, j) as follows. Let P be the set of resources not previ-
ously picked by the unifying process. If X is empty, we
terminate the unifying process. Otherwise, (1) if there ex-
ists a resource that schedules at least one job in group (`, j),
pick k to be the smallest index of such a resource; (2) oth-
erwise, if there exists an i-multichromatic resource, pick k
to be the index of such a resource; (3) otherwise, if there
exists an i-monochromatic resource, pick k to be the index
of such a resource configured with color `′ such that d`′ is
the smallest; (4) otherwise, terminate the unifying process.
Second, we unify the jobs in group (`, j) on resource k in
three substeps as follows. In the first substep, we shift the
jobs in (`, j) scheduled on resource k to the beginning of
block i. Other jobs on resource k are shifted towards the
end of block i. In the second substep, for each remaining
resource p, if there are jobs in (`, j) scheduled on p, transfer
them to resource k via swapping to ensure that all jobs in
(`, j) are scheduled continuously on resource k. In the third
substep, execute a set of jobs X on resource k via swapping
in the same fashion as in the second substep, where X is the
set of jobs in group (`, j) that are dropped by S. The jobs
swapped out are dropped.

We need to show that (1) S′ is reshape-friendly and (2)
the transformation does not increase the cost by more than
a constant factor. The proof of the former turns out to be
straightforward. In the following we give a high level idea
of the cost accounting. The first and fourth steps do not
increase cost. The second step does not incur any cost. To
account for the cost increase in the third step, that is, the
unifying process, we associated O(d`) units of credit with
each drop incurred by S, and O(∆) units of credit with
each reconfiguration incurred by S. We can then show that
the increased cost incurred by the unifying process can be
paid for by the total credit associated with the drops and
reconfigurations incurred by S. To account for the cost in-
crease in the fifth step, that is, the repacking process, we can
first show that, if jobs dropped by S are omitted from each
group, the cost increase incurred by the repacking process
is at most a constant factor of that incurred by S. We can
then show a similar result if jobs dropped by S are present
in each group. This completes the proof sketch.

Lemma 6.2. Algorithm Split is resource competitive for
[∆ | d` | D | D], where ∆ ≥ d`, for all `.

Proof. Consider any input σ for [∆ | d` | D | D], where
∆ ≥ d`, for all `. Suppose there exists an offline sched-
ule S for σ with cost C and m resources. By Lemma 6.1,
there exists a reshape-friendly schedule S′ for σ with cost
O(C) and O(m) resources. Let σ′ be a request sequence
obtained by applying algorithm Reshape on σ. Because S′

is reshape-friendly, there exists an offline schedule S′′ for σ′

that behaves exactly as S′.
The sequence σ′ can be viewed as a input sequence for

[∆ | d` | 1 | 1]. By Theorem 2, algorithm Serialize is re-
source competitive for [∆ | d` | 1 | 1]. Hence, algorithm
Serialize generates an online schedule T for σ′ that is re-
source competitive with S′′. Therefore, T incurs cost O(C)
with O(m) resources. For σ, algorithm Split first transforms
σ into σ′ using algorithm Reshape and then applies Serialize
to generate schedule T for σ′. The schedule T is also the
final schedule for σ.

In summary, if there exists an offline schedule S for σ with
cost C and m resources, then algorithm Split generates a
schedule T for σ with cost O(C) and O(m) resources. From
this claim, together with the fact that algorithm Split uses
half the resources to generate schedule T for σ, the lemma
follows.

The proof for Lemma 6.3 is analogous to the proof for
Lemma 6.2. In fact, the proof for Lemma 6.3 can be ob-
tained by replacing ∆ ≥ d` with ∆ < d`, [∆ | d` | 1 | 1]
with rate-limited [∆ | d` | 1 | 1] (see Appendix B), Serialize
with RL-Serialize (see Appendix B.1), and Theorem 2 with
Theorem 5 in the proof for Lemma 6.2.

Lemma 6.3. Algorithm Split is resource competitive for
[∆ | d` | D | D], where ∆ < d`, for all `.

Theorem 3. Algorithm Split is resource competitive for
[∆ | d` | D | D].

Proof. For any input sequence σ for [∆ | d` | D | D], we
partition σ into two subsequences α and β, where α consists
of the jobs with drop cost at most ∆, and β consists of the
remaining jobs. Let S be any offline schedule for σ. Let Sα

(resp., Sβ) be the schedule of S for α (resp., β). Obviously,
the cost incurred by each of Sα and Sβ is at most that
incurred by S.

Let T be the scheduled generated by algorithm Split for
σ. Let Tα (resp., Tβ) be the schedule of T for α (resp., β).
Since Split dedicates one half of the resources to α and the
other half to β, the cost incurred by T is the sum of the cost
incurred by Tα and Tβ , respectively.

By Lemma 6.2, Tα is resource competitive with Sα. By
Lemma 6.3, Tβ is resource competitive with Sβ . Hence, T is
resource competitive with S, and the theorem follows.

7. OUR MAIN RESULT
In this section, we solve our main problem, [∆ | d` | D | 1],

which is characterized by a fixed configuration cost ∆, a
per-color drop cost d`, a fixed drop cost D, and nonbatched
arrivals (request can arrive at any round). As indicated
earlier, our solution to this problem uses a reduction to [∆ |
d` | D | D], which is solved in Section 6.

7.1 Definitions
A half-block is defined as follows. Half-block i is the D

2

rounds starting from round i·D
2

. Consider any input se-
quence σ and any algorithm A. For any job x executed by
A, let i be the index of the half-block in which x arrives. We
say the execution of x is early if x is executed in half-block i,
punctual if executed in half-block i + 1, and late if executed
in half-block i + 2.

7.2 Algorithm Batch
Algorithm Batch is as follows. Given any input σ for [∆ |

d` | D | 1], we first construct an input σ′ for [∆ | d` | D
2
| D

2
]

by delaying any job x that arrives in half-block i in σ until
half-block i + 1, and we then apply algorithm Split (defined
in Section 6.2.2) on σ′ to obtain the schedule.

7.3 Analysis
We define a schedule S to be batch-friendly if all job exe-

cutions in S are punctual.

Lemma 7.1. Consider any input σ for [∆ | d` | D | 1]. If
there exists an offline schedule S for σ with cost C and m
resources, then there exists a batch-friendly offline schedule
S′ for σ with cost O(C) and O(m) resources.

Proof. The schedule S′ is constructed as follows. We
give 3m resources to S′. We use the first m resources of S′

to schedule only jobs whose executions are early in S, where
each reconfiguration and each early execution performed by
S are postponed by D

2
rounds. We use the second m re-

sources of S′ to schedule only jobs whose executions are
punctual in S, where each reconfiguration and each punc-
tual execution performed by S are performed in the same
round as in S. We use the third m resources of S′ to sched-
ule only jobs whose executions are late in S, where each
reconfiguration (except those made in the first half-block by
S) and each late execution performed by S are performed
D
2

rounds earlier.
In each of the three m resources, S′ incurs at most the

reconfiguration cost as that incurred by S. Hence, the total
reconfiguration cost incurred by S′ is at most three times
that incurred by S. It is not hard to see each job execu-
tion in S becomes a punctual execution in S′. Hence, S′

is batch-friendly and incurs at most the same drop cost as
that incurred by S. Therefore, the lemma follows.

Theorem 4. Algorithm Batch is resource competitive for
[∆ | d` | D | 1].

Proof. Consider any input σ for [∆ | d` | D | 1]. Sup-
pose there exists an offline schedule S for σ with cost C and
m resources. By Lemma 7.1, there exists a batch-friendly
schedule S′ for σ with cost O(C) and O(m) resources. Let
σ′ be a request sequence obtained by delaying the arrival
of each job that arrives in half-block i in σ until half-block
i + 1. Because S′ is batch-friendly, there exists an offline
schedule S′′ for σ′ that behaves exactly as S′.

The sequence σ′ can be viewed as a input sequence for
[∆ | d` | D

2
| D

2
]. By Theorem 3, algorithm Split is resource

competitive for [∆ | d` | D
2
| D

2
]. Hence, algorithm Split

generates an online schedule T for σ′ that is resource com-
petitive with S′′. Therefore, T incurs cost O(C) with O(m)
resources. For σ, algorithm Batch first transforms σ into σ′

by delaying the job arrivals and then applies algorithm Split
to generate schedule T for σ′. The schedule T is also the
final schedule for σ.

In summary, if there exists an offline schedule S for σ
with cost C and m resources, algorithm Batch generates
a schedule T for σ with cost O(C) and O(m) resources.
Therefore, algorithm Batch is resource competitive.

8. REFERENCES
[1] iFlow Family of Processors, Silicon Access.

http://www.siliconaccess.com.

[2] Intel IXP Family of Network Processors.
http://www.intel.com.

[3] S. Albers and H. Koga. Page migration with limited
local memory capacity. In Workshop on Algorithms
and Data Structures, pages 147–158, August 1995.

[4] Y. Bartal, M. Charikar, and P. Indyk. On page
migration and other relaxed task systems. In
Proceedings of the 8th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 43–52, January 1997.

[5] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela,
J. Sgall, and L. Stougie. Multiprocessor scheduling
with rejections. In Proceedings of the 7th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
95–113, January 1996.

[6] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press,
Cambridge, 1998.

[7] P. Brucker. Scheduling Algorithms. Springer-Verlag,
Berlin, 2001.

[8] P. Brucker, M. Y. Kovalyov, Y. M. Shafransky, and
F. Werner. Batch scheduling with deadlines on parallel
machines. Annals of Operation, 83:23–40, 1998.

[9] P. Cao and S. Irani. Cost-aware WWW proxy caching
algorithms. In Proceedings of the 1997 USENIX
Symposium on Internet Technology and Systems,
pages 193–206, December 1997.

[10] A. Chandra, W. Gong, and P. Shenoy. Dynamic
resource allocation for shared data centers using
online measurements. In Proceedings of the ACM
SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
pages 300–301, June 2003.

[11] J. S. Chase, D. Anderson, P. Thakar, A. Vahdat, and
R. Doyle. Managing energy and server resources in
hosting centers. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles, pages
103–116, October 2001.

[12] B. Kalyanasundaram and K. Pruhs. Speed is as
powerful as clairvoyance. Journal of the ACM,
47:617–643, 2000.

[13] R. Kokku. ShaRE: Run-time System for
High-performance Virtualized Routers. PhD thesis,
Department of Computer Science, University of Texas
at Austin, August 2005.

[14] M. S. Manasse, L. A. McGeoch, and D. D. Sleator.
Competitive algorithms for server problems. Journal
of Algorithms, 11:208–230, 1990.

[15] C. A. Phillips, C. Stein, E. Torng, and J. Wein.
Optimal time-critical scheduling via resource
augmentation. Algorithmica, pages 163–200, 2002.

[16] S. S. Seiden. More multiprocessor scheduling with
rejection. Technical Report Woe–16, TU Graz, 1997.

[17] S. S. Seiden. Randomization in On-line Computation.
PhD thesis, University of California, Irvine, 1997.

[18] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of
the ACM, 28:202–208, 1985.

[19] T. Spalink, S. Karlin, L. L. Peterson, and Y. Gottlieb.
Building a robust software-based router using network
processors. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles, pages
216–229, October 2001.

[20] A. Srinivasan, P. Holman, J. Anderson, S. K. Baruah,

and J. Kaur. Multiprocessor scheduling in
processor-based router platforms: Issues and ideas. In
Proceedings of the 2nd Workshop on Network
Processors, February 2003.

[21] J. S. Turner. New directions in communications (or
which way to the information age?). IEEE
Communications Magazine, 24(10):8–15, October
1986.

[22] H. Vin, J. Mudigonda, J. Jason, E. J. Johnson, R. Ju,
A. Kunze, and R. Lian. A programming environment
for packet-processing systems: Design considerations.
In Proceedings of the 3rd Workshop on Network
Processors and Applications, February 2004.

[23] N. E. Young. On-line file caching. In Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 82–86, January 1998.

APPENDIX

A. PREFIX PAGING
In this section, we define and solve a variant of the tra-

ditional disk paging problem, which we refer to as prefix
paging. Let m denote the cache size given to the offline
algorithm. In the prefix paging problem, every page is iden-
tified by a pair (`, j), where ` is a color and j is a nonneg-
ative integer index in the range 0 to m − 1. The input to
the prefix paging problem is a sequence of page requests.
This sequence is partitioned into contiguous segments of at
most m requests each. The requests of a segment involve
distinct pages and are presented in lexicographically sorted
order. Within any given segment, the following prefix prop-
erty holds: If there is a request (`, j) where j > 0, then
there is also a request (`, j − 1). The rules for processing
page requests are the same as in traditional disk paging.

A.1 Algorithm Mark
Given an arbitrary input to the prefix paging problem, we

partition the input into epochs as follows. If fewer than 2m
distinct pages are accessed in the input, then there is just
one epoch. Otherwise, the first epoch is the shortest prefix p
of the input such that the following two conditions hold: (1)
p corresponds to a whole number of segments; (2) p contains
accesses to at least 2m distinct pages. Having defined the
first epoch, we define the rest of the epochs by recursively
partitioning the remaining suffix of the input.

Our online algorithm, which uses a cache of size 3m, is a
kind of marking algorithm, similar in spirit to the class of
marking algorithms discussed, e.g., in [6, Section 3.5.1]. A
mark bit is associated with each cache location. Initially, all
cache locations are unmarked. During an epoch, a cache lo-
cation that is read is marked, and remains marked until the
beginning of the next epoch, at which point it is unmarked.
If the cache is full and we suffer a miss, then an arbitrary
page in an unmarked location is evicted. Note that such an
unmarked location is guaranteed to exist, since the defini-
tions of epoch and segment imply that, at all times, fewer
than 3m cache locations are marked.

A.2 Analysis

Lemma A.1. After a page is accessed, it stays in the cache
throughout the remainder of the processing of the current
epoch.

Proof. When a request for a page x is processed during a
given epoch, the cache location from which x is read becomes
marked, and remains marked until the end of the current
epoch. Therefore, page x is not evicted before the end of
the current epoch.

The following corollary is used in Appendix B.

Corollary A.1. Immediately after processing a given seg-
ment, the cache contains all of the pages accessed during the
segment.

Proof. This is immediate from Lemma A.1, since each
epoch consists of a whole number of segments.

Lemma A.2. Algorithm Mark is resource competitive for
the prefix paging problem.

Proof. By Lemma A.1, during any epoch, algorithm
Mark suffers at most one miss per distinct page accessed.
By the definitions of epoch and segment, fewer than 3m dis-
tinct pages are accessed during an epoch. Thus algorithm
Mark suffers fewer than 3m misses during any epoch.

Call an epoch complete if it contains accesses to at least
2m distinct pages, and incomplete otherwise. Note that at
most one epoch is incomplete. Since the offline algorithm
has a cache size of m, it at least 2m−m = m misses in each
complete epoch.

Combining the results of the preceding paragraphs, we
conclude that algorithm Mark is resource competitive on
any input with at least one complete epoch. It remains
to consider inputs consisting of a single incomplete epoch.
Fix such an input and let k denote the number of distinct
pages accessed. As argued earlier, algorithm Mark suffers
at most k misses. Furthermore, any offline algorithm suffers
at least k misses. So once again algorithm Mark is resource
competitive.

B. A RATE-LIMITED PROBLEM
In this section, we solve the special case of [∆ | d` | 1 | 1]

inn which at most m jobs arrive per round, where m is the
number of resources used by any offline algorithms. We
refer to this special case as rate-limited [∆ | d` | 1 | 1]. Our
algorithm for this special case is invoked by algorithm Split
in Section 6.2.2 in the case where ∆ < d`, for all `. The
more challenging case, where ∆ ≥ d`, for all `, is addressed
in Section 5.

B.1 Algorithm RL-Serialize
Our online algorithm, which we refer to as algorithm RL-

Serialize, uses 3m resources and proceeds in the following
three steps. First, given any instance I for unit delay with
restricted input, we construct an instance I ′ for prefix paging
as follows. The cache size associated with I ′ is equals the
number of resources associated with I. Let σ be the input
sequence associated with I. For any nonnegative integer i,
let σi be request i of σ. Let Xi = ∪`{(`, j) | 0 ≤ j <
qi,`}, where qi,` is the number of color ` jobs in σi. Let σ′

i

be a sequence of requests obtained by ordering the files in
Xi arbitrarily. The input sequence σ′ associated with I ′ is
obtained by concatenating the σ′

i’s in increasing order of i.
Second, we use algorithm Mark of Appendix A on σ′ to

generate a solution S′ for I ′.
Third, we construct a solution S for I from S′ as follows.

Fix an arbitrary nonnegative integer i. In the following we

describe the schedule of S in round i. Consider each non-
negative integer k such that 0 ≤ k < 3m. Let (`, j) be the
page cached at location k immediately after serving the last
request in σ′

i in S′. In S, we configure resource k with color
` in round i. In round i, S executes as many jobs as its new
configuration allows.

B.2 Analysis
We define a schedule S for unit delay with restricted input

to be drop-free if S does not incur any drop cost.

Lemma B.1. For any offline solution T for I, there exists
a drop-free solution T ′ for I such that the cost incurred by
T ′ is at most twice that incurred by T .

Proof. We construct T ′ from T round by round. The
schedule of T ′ for an arbitrary round i is constructed in the
following two steps. First, for each job x executed by T
in round i, we schedule x on resource k in round i, where
resource k is the resource on which x is executed in round
i in T . Second, while there exists a job x dropped by T in
round i, we schedule the job on an arbitrary idle resource,
that is, a resource on which no job is scheduled in round i;
note that such a resource can always be found since at most
m jobs arrive per round.

The schedule T ′ does not incur any drop cost. For any
color ` job dropped by T , T ′ reduces the drop cost by d`,
and increases the reconfiguration cost by at most 2∆. Since,
∆ < d`, for all `, the cost incurred by T ′ is at most twice
that incurred by T . Hence, the lemma follows.

We omit the proof for Lemma B.2 because it is analogous
to the proof for Lemma 5.1 and in fact simpler.

Lemma B.2. For any drop-free offline solution T for I
with cost C and m resources, there exists an offline solu-
tion T ′ for I ′ with cache size m and that makes at most 2C

∆
misses.

Lemma B.3. The cost incurred by S is at most ∆ times
the number of misses incurred by S′.

Proof. It is not hard to see that the reconfiguration cost
incurred by S is at most ∆ times the number of misses in-
curred by S′. It remains to show that the S does not incur
any drop cost.

Fix an arbitrary round i and color `. Let ki,` denote the
number of resources configured with color ` in round i in
S. Let pi,` denote the number of color ` pages in the cache
immediately after processing σ′

i in S′. Let qi,` denote the
number of color ` pages in σ′

i. By the construction of S from
S′, ki,` = pi,`. By Corollary A.1, pages in σ′

i are cached
immediately after processing σ′

i. Hence, pi,` = qi,`. By the
construction of σ′

i, qi,` equals the number of color ` jobs in
σi. Therefore, ki,` equals the the number of color ` jobs in
σi, that is, all jobs of color ` in σi are executed in S.

Theorem 5. Algorithm RL-Serialize is resource compet-
itive for unit delay with restricted input.

Proof. Consider any offline solution T for I with cost C
using m resources. By Lemma B.1, there exists a drop-free
offline solution for I with cost at most 2C using m resources.
By Lemma B.2, there exists an offline solution for I ′ with
at most 4C

∆
misses using m resources. By Lemma A.2, S′

incurs O(C
∆

) cost using 3m resources. By Lemma B.3, the
schedule S, that is, the solution generated by RL-Serialize,
incurs O(C) cost using 3m resources.

