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Abstract

Consider a distributed network with nodes arranged in a treeand each node having a local value. We
formulate an aggregation problem as the problem of aggregating values (e.g. summing values) from all
nodes to the requesting nodes in the presence of writes. The goal is to minimize the total number of
messages exchanged. The key challenges are to define a notionof “acceptable” aggregate values, and to
design algorithms with good performance that are guaranteed to produce such values. We formalize the
acceptability of aggregate values in terms of certain consistency guarantees. The aggregation problem
admits a spectrum of solutions that trade off between consistency and performance. We propose a lease-
based aggregation mechanism as a design point in this spectrum, and evaluate algorithms based on this
mechanism in terms of consistency and performance. With regard to consistency, we generalize the
definitions of strict and causal consistency, traditionally defined for distributed shared memory, for the
aggregation problem. We show that any lease-based algorithm provides strict consistency in sequential
executions, and causal consistency in concurrent executions. With regard to performance, we propose an
online lease-based algorithm, and show that, for sequential executions, the algorithm is5

2
-competitive

against an optimal offline lease-based algorithm, and5-competitive against an optimal offline algorithm
that provides strict consistency. The key highlight of the results is the design of an online algorithm that
effectively reduces the analysis to reasoning about a pair of neighboring nodes.
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1 Introduction

Information aggregation is a basic building block in many large-scale distributed applications such as system
management [12, 20, 25], service placement [11, 26], data sharing and caching [17, 22, 23, 28], file loca-
tion [9], grid resource monitoring [8], network monitoring [15], collecting readings from sensors [14, 16],
multicast tree formation [5, 18, 19], and naming and request routing [6, 7]. Many generic aggregation
frameworks [8, 19, 27] proposed for building such distributed applications allow scalable information ag-
gregation by forming one or more aggregation trees or hierarchies with machines as nodes, and by using an
aggregation function at each node to summarize the information from the nodes in the associated subtree.

Unfortunately, most of the existing aggregation frameworks use a static aggregation strategy that prop-
agates the new aggregate values on writes to a certain set of nodes, and information is aggregated from
those nodes on reads. A static aggregation strategy may perform well forsome workloads, but poorly for
others. An aggregation strategy tuned for read-dominated workloads is likely to consume high bandwidth
when applied to write-dominated workloads. For example, in Astrolabe [19],on writes, the new aggregate
values are propagated to all nodes so that the read requests at any node can be satisfied locally. Conversely,
a strategy tuned for write-dominated workloads is likely to suffer from unnecessary latency or imprecision
on read-dominated workloads. For example, in MDS-2 [8], no aggregation is performed on writes, but the
information is aggregated on reads. Furthermore, different nodes may exhibit activity at different times.
Therefore, a static aggregation strategy is not suitable for a generic aggregation framework.

SDIMS [27] proposes a hierarchical aggregation framework with a flexible API that allows applications
to control the update propagation, and hence, the aggregation aggressiveness of the system. SDIMS provides
knobs that an application needs to tune in advance. Though SDIMS exposes such flexibility to applications,
it requires applications to know the read and write access patterns a priorito choose an appropriate strategy.

In this work, we consider a distributed network with nodes arranged in a tree and each node having
a local value. We formulate the aggregation problem (formally defined in Section 2) as the problem of
aggregating values (e.g., computing min, max, sum, or average) from all the nodes to the requesting nodes
in the presence of writes. The goal is to minimize the total number of messages exchanged. The main
challenges are to define acceptable aggregate values, and to design algorithms with good performance that
produce acceptable aggregate values. There is a spectrum of solutionsthat trade off between consistency
and performance. We introduce a lease-based mechanism for aggregation algorithms as a design point in
this spectrum. The notion of a lease used in our mechanism is a generalization of that used in SDIMS.
Informally, a lease from a nodeu to its neighboring nodev works as follows. Let the removal of(u, v)
yields two trees,subtree(u, v) is defined to be one of the trees that containsu. Once the nodeu establishes
a lease tov, then, on a write at any node insubtree(u, v), u propagates the new aggregate value tov. A
lease-based aggregation algorithm can dynamically adapt propagation ofthe updated aggregate value on a
write, by setting and breaking leases appropriately.

We evaluate the lease-based aggregation algorithms in terms of consistency and performance. In terms of
consistency, we generalize the notions of strict and causal consistency, traditionally defined for distributed
shared memory [24, Chapter 6], for the aggregation problem. We show that any lease-based algorithm
provides strict consistency for sequential executions, and causal consistency for concurrent executions.

In terms of performance, we analyze the lease-based algorithms in the competitive analysis framework
[4]. In this framework, we compare the cost of an online algorithm with respect to an optimal offline
algorithm. An online aggregation algorithm executes each request without any knowledge of the future
requests. On the other hand, an offline aggregation algorithm has knowledge of all the requests in advance.
An online algorithm isc-competitiveif, for any request sequenceσ, the cost incurred by the online algorithm
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in executingσ is at mostc times that incurred by an optimal offline algorithm.
As is typical in the competitive analysis of distributed algorithms [2, 3], we focus on sequential exe-

cutions. In this paper we present an online lease-based aggregation algorithm RWW which, for sequential
executions, is52 -competitive against an optimal offline lease-based aggregation algorithm. Briefly, RWW
works as follows. The algorithmRWW sets the lease fromu to v during the execution of a request for
the aggregate value at a node insubtree(v, u), and breaks the lease after two consecutive write requests at
a node insubtree(u, v). To show the upper bound result, we use a potential function argument. Wealso
show that the result is tight by providing a matching lower bound. Further, we show that, for sequential
executions,RWW is 5-competitive against an optimal offline algorithm that provides strict consistency.

The key highlight of the results is the design of the lease-based mechanism and RWW that effectively
reduces the analysis to reasoning about a pair of neighboring nodes. This reduction allows us to formulate a
linear program of small size, independent of tree size, for the competitiveanalysis ofRWW.

Related Work. Various aggregation frameworks have been proposed in literature such as SDIMS [27],
Astrolabe [19], and MDS [8]. SDIMS is a hierarchical aggregation framework that utilizes DHT trees to
aggregate values. SDIMS provides a flexible API that allows applications todecide how far the updates to
the aggregate value due to the writes should be propagated. Astrolabe is aninformation management system
that builds a single logical aggregation tree over a given set of nodes. Astrolabe propagates all updates to the
aggregate value due to the writes to all the nodes, hence, allows all the reads to be satisfied locally. MDS-2
also forms a spanning tree over all the nodes. MDS-2 does not propagate updates on the writes, and each
request for an aggregate value requires all nodes to be contacted.

There are some similarities between our lease-based aggregation algorithm and prior caching work. In
CUP [21], Roussopoulos and Baker propose asecond-chancealgorithm for caching objects along the routing
path. The algorithm removes a cached object after two consecutive updates are propagated to the remote
locations due to the writes on that object at the source. The second-chance algorithm has been evaluated
experimentally, and shown to provide good performance. In the distributedfile allocation [3], Awerbuch et
al. consider replication algorithm for a general network. In their algorithm,on a read, the requested object is
replicated along the path from the destination to the requesting node. On a write, all copies are deleted except
the one at the writing node. Awerbuch et al. showed that their distributed algorithm has poly-logarithmic
competitive ratio for the distributed caching problem against an optimal centralized offline algorithm.

The concept of time-based leases has been proposed in literature to maintain consistency between the
cached copy and the source. This kind of leases has been applied in manydistributed applications such as
replicated file systems [13] and web caching [10].

Ahamad et al. [1] gave the formal definition of causal consistency for distributed message passing sys-
tem. The key difference between their setup and ours is in reading one value compared to aggregating values
from all the nodes.

Organization. In Section 2, we introduce definitions and aggregation problem statements.Section 3
defines the class of lease-based aggregation algorithms, and establishescertain properties of such algorithms.
In Section 4, we present our online lease-based aggregation algorithmRWW, and establish bounds on the
competitive ratio ofRWW with respect to sequential executions. In section 5, we establish that any lease-
based algorithm includingRWW is causally consistent with respect to arbitrary concurrent executions.

2 Preliminaries

Consider a finite set of nodes (i.e., machines) arranged in a tree networkT with reliable FIFO communica-
tion channels between neighboring nodes. We are also given an aggregation operator⊕ that is commutative,
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associative, and has an identity element0. For convenience, we write,x⊕y⊕z as⊕(x, y, z). For the sake
of concreteness in this paper, we assume that the local value associated with each node is a real value, and
the domain of⊕ is also real.

Theaggregate valueover a set of nodes is defined as⊕ computed over the local values of all the nodes
in the set. That is, the aggregate value over a set of nodes{v1, . . . , vk} is ⊕(v1.val , . . . , vk.val), where
vi.val is the local value of the nodevi. Theglobal aggregate valueis defined as the aggregate value over
the set of all the nodes in the treeT .

A request is a tuple (node, op, arg , retval ), wherenode is the node where the request is initiated,op

is the type of the request, eithercombine or write, arg is the argument of the request (if any), andretval

is the return value of the request (if any). To execute awrite request, an aggregation algorithm takes the
argument of the request and updates the local value at the requesting node. To execute acombine request,
an aggregation algorithm returns the global aggregate value at the requesting node. In the case of multiple
writes at a node, the constraints on the returned global aggregate value isspecified later in the paper.

Theaggregation problemis to execute a given sequence of requests with the goal of minimizing the total
number of messages exchanged among nodes. For any aggregation algorithmA and any request sequenceσ,
we defineCA(σ) as the total number of messages exchanged among nodes in executingσ by A. An online
aggregation algorithmA is c-competitive if for all request sequencesσ and an optimal offline aggregation
algorithmB, CA(σ) ≤ c · CB(σ).

We sayT is in quiescent state if (1) there is no pending request at any node; (2) there is no message
in transit across any edge; and (3) no message is sent until the next request is initiated. In short,T is in
quiescent state if there is no activity inT until the next request is initiated.

In a sequential execution of a request, the request is initiated in a quiescent state and is completed when
T reaches another quiescent state. In a sequential execution of a request sequenceσ, every requestq in σ is
executed sequentially. In a concurrent execution of a request sequence, a new request can be initiated and
executed while another request is being executed.

We refer to the aggregation problem in which the given request sequence is executed sequentially as
sequential aggregation problem.

The aggregation functionf is defined over a set of real values or over a set of write requests. For a setA
of real valuesx1, . . . , xm, f (A) is defined as⊕(x1, . . . , xm). For a setA of write requestsq1, . . . , qm, f (A)
is defined asf (A) = ⊕(q1.arg , . . . , qm.arg).

For a requestq in request sequenceσ, let A(σ, q) be the set of the most recent writes precedingq in σ

corresponding to each of the nodes inT . We say that an aggregation algorithm providesstrict consistencyin
executingσ if any combine requestq in σ returnsf (A(σ, q)) as the global aggregate value atq.node. Note
that this definition of strict consistency for an aggregation algorithm is a generalization of the traditional
definition of strict consistency for distributed shared memory systems (for further details, see [24, Chapter
6]).

We define an aggregation algorithm to benice if the algorithm provides strict consistency for sequential
executions.

The set of all nodes in treeT is represented bynodes(T ). For any edge(u, v), removal of(u, v) yields
two trees,subtree(u, v) is defined to be one of the trees that containsu.

3 Lease-based algorithms

In Figure 1, we present a mechanism for any lease-based aggregationalgorithm. The underlined function
calls represent stubs for policy decisions of lease setting and breaking.
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node u
var taken[] : array[v1, . . . , vk] of boolean;

granted [] : array[v1, . . . , vk] of boolean;
aval [] : array[v1, . . . , vk] of real; val : real;
uaw : set {int}; pndg : set {node};
snt [] : array[v1, . . . , vk] of set {node};
upcntr : int; sntupdates : set {{node, int, int}};

begin

T1 true → {combine}
1 oncombine(u);
2 foreach v ∈ tkn() do

3 uaw [v] := ∅; od

4 if u /∈ pndg →
5 if nbrs() \ tkn() = ∅ →
6 return gval();
7 � nbrs() \ tkn() 6= ∅ →
8 sendprobes(u);
9 snt [u] := nbrs() \ tkn(); fi fi

T2 true → {write q}
1 val := q.arg;
2 if grntd() 6= ∅ →
3 id := newid();
4 forwardupdates(u, id); fi

T3 � rcv probe() from w →
1 probercvd(w);
2 foreach v ∈ tkn() \ {w} do

3 uaw [v] := ∅; od

4 if w /∈ pndg →
5 if nbrs() \ {tkn() ∪ {w}} = ∅ →
6 sendresponse(w);
7 � nbrs() \ {tkn() ∪ {w}} 6= ∅ →
8 sendprobes(w);
9 snt [w] := nbrs() \ {tkn() ∪ {w}}; fi fi

T4 � rcv response(x,flag) from w →
1 responsercvd(flag, w);

2 aval [w] := x;
3 taken[w] := flag;
4 foreach v ∈ pndg do

5 snt [v] := snt [v] \ {w};
6 if snt [v] = ∅ →
7 pndg := pndg \ {v};
8 if v = u →
9 return gval();

10 � v 6= u →
11 sendresponse(v); fi fi od

T5 � rcv update(x, id) from w →
1 updatercvd(w);

2 aval [w] := x;
3 uaw [w] := uaw [w] ∪ id ;
4 if grntd() \ {w} 6= ∅ →
5 nid = newid();
6 sntupdates := sntupdates ∪ {w, id ,nid};
7 forwardupdates(w,nid);
8 � grntd() \ {w} = ∅ →
9 forwardrelease(); fi

T6 � rcv release(S) from w →
1 releasercvd(w);
2 granted [w] := false;
3 onrelease(w, S);

end

procedure sendprobes(node w)
pndg := pndg ∪ {w};
foreach v ∈ nbrs() \ {tkn() ∪ sntprobes() ∪ {w}} do

sendprobe() to v;od

procedure forwardupdates(node w, int id)
foreach v ∈ grntd() \ {w} do

sendupdate(subval(v), id) to v;od

procedure sendresponse(node w)
if (nbrs() \ {tkn() ∪ {w}} = ∅) →

granted [w] := setlease(w);fi
sendresponse(subval(w), granted [w]) to w;

boolean isgoodforrelease(node w)
return (grntd() \ {w} = ∅);

procedure onrelease(node w, set S)
Let id is the smallest id inS;
foreach v ∈ tkn() \ {w} do

Let A be the set of tuplesα in sntupdates

such thatα.node = v andα.sntid ≥ id ;
Let β be a tuple inA

such thatβ.rcvid ≤ α.rcvid , for all α in A;
Let S′ be the set of ids inuaw [v] with ids ≥ β.rcvid ;
uaw [v] := S′;
if isgoodforrelease(v) →

releasepolicy(v);fi od

forwardrelease();

procedure forwardrelease()
foreach v ∈ tkn() do

if isgoodforrelease(v) →
if taken[v] ∧ breaklease(v) →

taken[v] := false;
sendrelease(uaw [v]) to v;
uaw [v] := ∅;fi fi od

int newid()
upcntr := upcntr + 1;
return upcntr ;

real gval()
x := val ;
foreach v ∈ nbrs() do

x := f (x, aval [v]);od

return x;

real subval(node w)
x := val ;
foreach v ∈ nbrs() \ {w} do

x := f (x, aval [v]);od

return x;

set nbrs()
return the set of neighboring nodes;

set tkn()
return {v | v ∈ nbrs() ∧ taken[v] = true};

set grntd()
return {v | v ∈ nbrs() ∧ granted [v] = true};

set sntprobes()
return {snt [v1] ∪ · · · ∪ snt [vk]};

Figure 1: Mechanism for any lease-based algorithm. For the nodeu, {v1, . . . , vk} is the set of neighboring
nodes.
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Initially, for any nodeu, u.val := 0, u.uaw := ∅, u.pndg := ∅, u.upcntr := 0, u.sntupdates := ∅. For
each nodev in u.nbrs(), u.taken[v] := false, u.granted [v] := false, u.aval [v] := 0, andu.snt [v] := ∅.

3.1 Informal Overview

The status of the leases for an edge (u, v) is given by two boolean variablesu.taken[v] andu.granted [v].
Nodeu believes that the lease fromv to u is set if and only ifu.taken[v] holds. Also,u believes that the
lease fromu to v is set if and only ifu.granted [v] holds. Initially, for any two neighboring nodesu andv,
u.granted [v] does not hold.

The local value atu is stored inu.val . For each neighborvi of u, u.aval [vi] represents the aggregate
value computed over the set of nodes insubtree(vi, u). The following kinds of messages are sent by a
lease-based algorithm:probe, response, update, andrelease.

The variablesntupdates is a set of tuples, where each tuple represents forwardedupdate messages
corresponding to a receivedupdate message. Each tuple consists of three elements,node, rcvid , andsntid .
The first element,node, identifies the node from which theupdate message is received. The second element,
rcvid , is the identifier of the receivedupdate message, and the last element,sntid , is the identifier of the
corresponding sentupdate messages.

Informally, for any nodeu, a lease from a nodeu to its neighboring nodev works as follows. If
u.granted [v] holds then, on awrite request at any node insubtree(u, v), u propagates the new aggregate
value tov by sending anupdate message. To break the lease (that is, to falsifyu.granted [v]), a release()
message is sent fromv to u. On the other hand, ifu.granted [v] does not hold then, on acombine request
at any node insubtree(v, u), aprobe() message is sent fromv to u. As a result, aresponse message is sent
from u to v.

3.2 Properties of any lease-based algorithm for sequentialexecutions

We define alease graphG(Q) in a quiescent stateQ, as a directed graph with nodes as the nodes inT , and
for any edge (u, v) in T such thatu.granted [v] holds, there is a directed edge (u, v) in G(Q).

For any two distinct nodesu andv, we define theu-parent ofv as the parent ofv in treeT rooted atu.

Lemma 3.1 For a sequential execution of a request sequence, in any quiescent state, for any two neighbor-
ing nodesu andv, u.taken[v] = v.granted [u].

Proof. Consider any nodev in u.nbrs(). Variableu.taken[v] can be set totrue from false only in Line 3
of T4 if the flag in the receivedresponse message istrue. However, while sending theresponse message
from v to u with flag set totrue, v.granted [u] is set totrue in sendresponse().

While sending arelease message fromu to v, u.taken[v] is falsified inforwardrelease(). However, on
receiving therelease message atv, v.granted [u] is falsified in Line 2 ofT6. �

Lemma 3.2 For a sequential execution of a request sequence, in any quiescent state, for any nodeu and
any nodev in u.nbrs(), if u.granted [v] then, for all nodesw in u.nbrs() \ {v}, u.taken[w] holds.

Proof. By inspection of code,u.granted [v] can be set totrue only in the proceduresendresponse(). By
inspection of code ofsendresponse(), u.granted [v] can be set totrue only if u.nbrs()\{u.tkn()∪{v}} =
∅. That is,u.granted [v] can be set totrue only if, for all nodesw in u.nbrs() \ {v}, u.taken[w] holds.

Further, by inspection of code,u.taken[w] is setfalse only in the procedureforwardrelease(). By
inspection of code offorwardrelease(), u.taken[w] can be set tofalse only if, for all nodesv in u.nbrs() \
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{w}, u.granted [v] is false. That is, for any nodev in u.nbrs(), if u.granted [v] holds then, for any nodew
in u.nbrs() \ {v}, u.taken[w] is not falsified. �

Lemma 3.3 Consider a sequential execution of a request sequenceσ by a lease-based algorithm. For any
combine requestq in σ, initiated at nodeu in a quiescent stateQ, let A be the set of nodesv such that
v.granted [w] does not hold inQ, wherew is theu-parent ofv. In Q, for any nodev in T , if v.pndg = ∅
and for any nodew in v.nbrs(), v.snt [w] = ∅, then, during the execution ofq, (1) |A| probe messages are
sent, and any nodev in A receives aprobe message from theu-parent ofv; (2) |A| response messages are
sent; any nodev in A sends aresponse message to theu-parent ofv; (3) no update or release messages
are sent.

Proof. We prove part (1) by induction on the length of the path fromu to any nodev in A.
Base case (path length1). By inspection of code ofT1, probe messages are sent to all nodes inu.nbrs()\

{u.tkn() ∪ u.sntprobes() ∪ {u}}. Since in the quiescent stateQ, for any nodev in T and any nodew in
v.nbrs(), v.snt [w] = ∅, u.sntprobes() = ∅. Hence, aprobe message is sent to any nodev in u.nbrs() such
thatu.taken[v] does not hold. By Lemma 3.1, inQ, u.taken[v] = v.granted [u]. Hence, any nodev in A

such thatv is in u.nbrs() andv.granted [u] does not hold, receives aprobe message fromu.
Induction hypothesis. Any nodev in A such that the length of the path fromu to v is i receives aprobe

message from theu-parent ofv.
Induction step. Consider a nodev in A such that the length of the path fromu to v is (i + 1). Let the

u-parent ofv is w. By the definition ofA, v.granted [w] does not hold inQ. Hence, by Lemma 3.1 and
Lemma 3.2,w.granted [u-parent ofw] does not hold inQ. Thus,w is in A, and by induction hypothesisw
receives aprobe message fromw′. By inspection of code ofT3, w sends aprobe message to any nodew′

in w.nbrs() such thatw.taken[w′] does not hold. Sincew.taken[v] does not hold and the communication
channels are reliable,v receives aprobe message fromw, theu-parent ofv.

From above arguments, during the execution ofq at least|A| probe messages are sent. By the inspection
of code, any nodev in A ∪ {u} does not send anyprobe message to any node inv.tkn() \ {u-parent ofv}.
And so, it is straightforward to see that any nodev in nodes(T ) \ A does not receive anyprobe message.
Hence, during the execution ofq only |A| probe messages are sent.

We prove part (2) by reverse induction on the length of the path fromu to any nodev in A. Let the
maximum length of the path fromu to any nodev in A be l .

Base case. Consider a nodev in A such that the length of the path fromu to v is l . By part (1),v
receives aprobe message fromw, theu-parent ofv. In the quiescent stateQ, letB bev.nbrs() \ {v.tkn()∪
{u-parent ofv}}. By Lemma 3.1,B must be∅, otherwise, there would be a node inA with the length of
the path fromu equal tol + 1. By inspection of code ofT3, if B is empty, thenv sends back aresponse

message tow.
Induction hypothesis. Let any nodev in A with the length of path fromu equal toi, sends aresponse

message to theu-parent ofv.
Induction step. Consider a nodev in A such that the length of the path fromu to v is i − 1. Sincev is

in A, i − 1 must be greater than0. In Q, let B bev.nbrs() \ {v.tkn() ∪ {u-parent ofv}}.
By part (1),v receives aprobe message from theu-parent ofv. By given condition, inQ, v.sntprobes()

is empty. By inspection of code ofT3, if B is empty, thenv sends aresponse message back to theu-parent
of v. Hence, the induction step succeeds.

Otherwise,v sendsprobe messages to each of the node inB, and setsv.pndg = {u-parent ofv} and
v.snt [u-parent ofv] = B. Since we are dealing with sequential execution, no node initiates any request
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during the execution ofq. And so,v does not initiates any request or receives aprobe message during the
execution ofq. Hence,v.pndg ≤ 1.

By Lemma 3.1 and definition ofA, any node inB is also present inA. Further, the length of the path
from u to any node inB is i. Hence, by induction hypothesis, any nodew in B sends aresponse message to
v. By inspection of code ofT4, on receiving theresponse message,v removesw from v.snt [u-parent ofv].
If v.snt [u-parent ofv] becomes empty, thenv setsv.pndg = ∅, and sends aresponse message to the
u-parent ofv. Hence, the induction step succeeds.

(3) Follows from the inspection of code. �

Lemma 3.4 For any sequential execution of a request sequenceσ, in any quiescent state, for any nodeu,
(1) u.pndg = ∅; (2) for any nodev in u.nbrs(), u.snt [v] = ∅;

Proof. We prove by induction on the number of requests executed.
Base case: Initially, for any nodev, v.pndg = ∅ and for any nodew in v.nbrs(), v.snt [w] = ∅.
Induction hypothesis: In the quiescent stateQ just after execution ofi requests, for any nodev, v.pndg =

∅ and for any nodew in v.nbrs(), v.snt [w] = ∅.
Induction step: Consider the execution(i + 1)st requestq initiated inQ. If q is awrite request, then by

inspection of code, noprobe or response message are generated. Hence, for any nodev, v.pndg and any
nodew in v.nbrs(), v.snt [w] are not modified. Therefore, the execution of(i + 1)st request preserves the
claim of the lemma.

Otherwise,q is acombine request, say atu. Consider execution ofq. Let A be the set of nodesv such
thatv.granted [w] does not hold atQ, wherew = u-parent ofv.

By hypothesis, inQ, for any nodev, v.pndg = ∅ and for any nodew in v.nbrs(), v.snt [w] = ∅.
First, consider any nodev in nodes(T ) \ {A ∪ {u}}. By inspection of code, for any nodev, v.pndg

and for any nodew in v.nbrs(), v.snt [w] can be modified only inT1 (on acombine request atv), in T3 (on
receiving aprobe message), or inT4 (on receiving aresponse message). In sequential execution ofσ, v

does not initiate any request during the execution ofq. By Lemma 3.3, during the execution ofq, any node
in A receives aprobe message, and only|A| probe messages are sent. Hence,v does not receive anyprobe
message during the execution ofq. By definition ofA, u-parent of any node inA is in A∪ {u}. By Lemma
3.3, during the execution ofq, |A| response messages are generated and any node inA sends aresponse

message to theu-parent of the node. Hence,v does not receive anyresponse message during the execution
of q. Hence,v.pndg and for any nodew in v.nbrs(), v.snt [w] remain unchanged, that is,∅, during the
execution ofq.

Second, considerv = u. By inspection of code ofT1, if u.nbrs() \ u.tkn() = ∅, thenu returnsgval(),
and so,u.pndg and for any nodew in u.nbrs(), u.snt [w] remain unchanged, that is, remain∅. Further, by
Lemma 3.1 and Lemma 3.2,|A| = ∅. Hence, from the arguments in the previous paragraph, induction step
succeeds, and the lemma follows.

Otherwise, ifu.nbrs() \ u.tkn() 6= ∅. Then, sinceu.sntprobes() = ∅ by induction hypothesis,u
sends aprobe message to each of the node in the setu.nbrs() \ u.tkn(), andu addsu to u.pndg and sets
u.snt [u] = nodes.nbrs() \ u.tkn(). Since in a sequential execution, a new request can be generated only in
a quiescent state, no node generates any request untilq is completed. Hence,u does not generate any request
until q is completed, and by Lemma 3.3,u does not receive anyprobe message from any node. Therefore,
|u.pndg | ≤ 1. By definition ofA, any nodew in u.nbrs() \ u.tkn() is also inA. By Lemma 3.3,w sends
back aresponse message tou. By inspection of code ofT4, on receiving theresponse message,u removes
w from u.snt [u]. Whenu.snt [u] = ∅, that is,u has receivedresponse messages from all the nodes to whom
u has sent aprobe message, then,u setsu.pndg = ∅, and returnsgval().
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Finally, consider any nodev in A. By Lemma 3.3,v receives aprobe message from theu-parent ofv,
sayw. LetC bev.nbrs()\{v.tkn()∪{w}}. By inspection of code ofT3, if C = ∅, thenv sends aresponse

message tow, andv.pndg and for any nodew′ in v.nbrs(), v.snt [w′] remains unchanged, that is, remains
∅.

Otherwise, ifC 6= ∅. Then, sincev.sntprobes() = ∅, v sends aprobe message to each of the node inC.
By inspection of code ofT3, while sending aprobe messages,v addsw to v.pndg and setsv.snt [w] = C.
As argued in the preceding paragraph, in a sequential execution,|v.pndg | ≤ 1. By Lemma 3.3, any nodew′

in C sends back aresponse message tov. By inspection of code ofT4, on receiving theresponse message,
v removesw′ from v.snt [v]. Whenv.snt [w] = ∅, that is,v has receivedresponse messages from all the
nodes inC, then,w setsv.pndg = ∅, and sends aresponse message back tow.

Hence, after execution ofq, for any nodev in A, v.pndg = ∅ and for any nodew in v.nbrs(), v.snt [w] =
∅. �

Lemma 3.5 Consider a sequential execution of a request sequenceσ by a lease-based algorithm. For any
write requestq in σ initiated at nodeu in a quiescent stateQ, let A be the set of nodes inT reachable
fromu in G(Q). Then, during the execution ofq, (1) any nodev in A receives anupdate message from the
u-parent ofv; (2) |A| update messages are sent; and (3) noprobe or response messages are sent.

Proof. (1) We prove by induction on the length of the path fromu to any nodev in A.
Base case (path length1). By the inspection of code ofT2, update messages are sent to all nodes in

u.grntd(). That is, anupdate is sent to any nodev in A such that the length of the path fromu to v is 1.
Induction hypothesis. Any nodev in A such that the length of the path fromu to v is i, receives an

update message from theu-parent ofv.
Induction step. Consider a nodev in A such that the length of the path fromu tov is (i+1). By induction

hypothesis, theu-parent ofv, sayw, receives anupdate message. By definition ofA, w.granted [v] holds.
By inspection of code ofT5, w sends anupdate message tov. Since the communication channels are
reliable,v receives anupdate message fromw, theu-parent ofv.

(2) From above arguments, at least|A| update messages are sent. By the inspection of code, any node
v in A ∪ {u} does not send anyupdate message to any node inv.nbrs() \ {v.grntd() ∪ {u-parent ofv}}.
And so, it is straightforward to see that any nodev in nodes(T ) \ A does not receive anyupdate message.
Hence, during the execution ofq only |A| probe messages are sent.

(3) Follows from the inspection of code. �

Lemma 3.6 For any nodeu, u.granted [v] is set totrue only while sending aresponse message tov with
flag set totrue.

Proof. For any nodeu, u.granted [v] can be set totrue only in sendresponse procedure. By the inspection
of code, the lemma follows. �

Lemma 3.7 For any nodeu, u.granted [v] is set tofalse only on receiving arelease message fromv.

Proof. Follows from the inspection of code. �

For any request sequenceσ and any ordered pair of neighboring nodes(u, v), we defineσ(u, v) as fol-
lows: (1)σ(u, v) is a subsequence ofσ; (2) for anywrite requestq in σ such thatq.node is in subtree(u, v),
q is in σ(u, v); and (3) for anycombine requestq in σ such thatq.node is in subtree(v, u), q is in σ(u, v).
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Lemma 3.8 Consider a sequential execution of a request sequenceσ by a lease-based algorithm and any
two neighboring nodesu andv.

1. Let acombine requestq in σ(u, v) be initiated in a quiescent stateQ. If u.granted [v] does not hold
in Q, then in execution ofq, (i) a probe message is sent fromv to u; (ii) a response message is sent
from u to v; (iii) u.granted [v] can be set totrue while sending theresponse message fromv to u.
Otherwise, ifu.granted [v] holds, then in execution ofq, no messages are exchanged betweenu andv.

2. Let awrite requestq in σ(u, v) be initiated in a quiescent stateQ. If u.granted [v] does not hold in
Q, then in execution ofq, no messages are exchanged betweenu andv. Otherwise, ifu.granted [v]
holds inQ, then in execution ofq, (i) an update message is sent fromu to v; (ii) a release message
fromv to u can be sent; (iii) On receiving therelease message atu, u.granted [v] is set tofalse.

3. Let awrite requestq in σ(v, u) be initiated in a quiescent stateQ. If u.granted [v] holds inQ, then
in execution ofq, a release message can be sent fromv to u, and on receiving therelease message at
u, u.granted [v] is set tofalse.

4. In the execution of acombine request inσ(v, u), u.granted [v] is not affected.

Proof. Part (1) follows from Lemma 3.3, Lemma 3.4, and 3.6. Part (2) follows from Lemma 3.5, Lemma
3.7, and the inspection of code. Part (3) follows from Lemma 3.7 and the inspection of code. Part (4) follows
from Lemma 3.3, Lemma 3.4, and Lemma 3.6. �

u.granted [v] in Q Requestq in σ(u, v) u.granted [v] in Q′ Cost
false R false 2
false R true 2
false W false 0
false N false 0
true R true 0
true W false 2
true W true 1
true N false 1
true N true 0

Figure 2: For any two neighboring nodesu andv, possible changes in the value ofu.granted [v] and costs
incurred by any lease-based algorithm in executing any requestq from σ(u, v). Here,q is initiated in the
quiescent stateQ and completed in the quiescent stateQ′. A release message sent during the execution of
awrite request inσ(v, u) is associated with anoop (N) request.

Lemma 3.8 is summarized in Figure 2. Arelease message sent during the execution of awrite request
in σ(v, u) is associated with anoop (N) request in this figure.

In a sequential execution of a request sequenceσ by any lease-based algorithmA, for any ordered pair
of neighboring nodesu andv, we defineCA(σ, u, v), as the number of the following kinds of messages
exchanged betweenu andv: (1) probe messages fromv to u; (2) response messages fromu to v; (3)
update messages fromu to v; and (4)release messages fromv to u.

Lemma 3.9 Consider a sequential execution of a request sequenceσ by a lease-based algorithmA. For
any two neighboring nodesu andv, the total number of messages exchanged betweenu andv in executing
σ is the sum ofCA(σ, u, v) andCA(σ, v, u).
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Proof. Follows from the definitions ofCA(σ, u, v) andCA(σ, v, u). �

For any nodeu, let I(u) beI1(u) ∧ I2(u) ∧ I3(u), where

• I1(u): For the most recentwrite requestq atu, u.val = q.arg .

• I2(u): For anyupdate or response messagem from v to u, m.x = f (A), whereA is the set of most
recent write requests at each of the nodes insubtree(v, u).

• I3(u): For any quiescent stateQ and any nodev in u.tkn(), u.aval [v] = f (A(v)), whereA(v) is the
set of the most recentwrite request at each of the nodes insubtree(v, u).

Lemma 3.10 Consider a sequential execution of a request sequenceσ by a lease-based algorithm. For any
nodeu, if I1(u) andI3(u) hold just before anupdate messagem is sent fromu to any nodev in u.nbrs(),
thenm.x = A, whereA is the set of the most recentwrite requests at each of the nodes insubtree(u, v).

Proof. By Lemma 3.2, for any nodev in u.nbrs(), if u.granted [v] then, for all nodesw in u.nbrs() \ {v},
u.taken[w] holds.

For any nodew in u.nbrs(), let A(w) be the set of the most recentwrite requests precedingq in σ at
each of the nodes insubtree(w, u). By I3(u), if u.taken[w] then,u.aval [w] = f (A(w)).

By the inspection of code, for any nodev in u.grntd(), anupdate messagem is sent tov with m.x =
u.subval(v). Let{w1, . . . , wk} beu.nbrs()\{v} andB be the set of the most recentwrite requests at each
on the node insubtree(u, v).

m.x = subval(v)

= f (u.val , aval [w1], . . . , aval [wk]

= f (q.arg , f (A(w1)), . . . , f (A(wk)))

= f (B) (1)

In the above equation, the second equality follows from the definition of function subval(). The third
equality follows fromI1(u) andI3(u). The last equality follows from the fact thatsubtree(u, v) = {u} ∪
subtree(w1, u) ∪ · · · ∪ subtree(wk, u). �

Lemma 3.11 Consider a sequential execution of a request sequenceσ by a lease-based algorithm. For any
nodeu, I(u) is an invariant.

Proof.
Initially, there are nowrite request atu andu.tkn() is empty. Hence,I(u) holds.
{I(u)}T1{I(u)}. I1(u), I2(u), andI3(u) are not affected.
{I(u)}T2{I(u)}. Let thewrite requestq is initiated in the quiescent stateQ. In execution ofT2, I1(u) is

only affected in Line 1. By the inspection of code, Line 1 preservesI1(u). I3(u) is not affected in execution
of T2. If u.grntd() 6= ∅ in the quiescent stateQ, thenI2(u) is affected in the procedureforwardupdates(),
invoked in Line4. By Lemma 3.10,I2(u) is preserved in Line4.

Therefore,I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution ofT2.
{I(u)}T3{I(u)}. By the inspection of code,I1(u) andI3(u) are not affected.I2(u) is affected only

in the proceduresendresponse(), invoked in Line6 to send aresponse messagem to w. However, Line
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6 is executed only ifu.nbrs() \ {u.tkn() ∪ {w}} is empty. ByI3(u), for any nodev in u.nbrs(), if
u.taken[v], thenu.aval [v] = f (A), whereA is the set of the most recentwrite requests at each of the nodes
in subtree(v, u). As in the proof of Lemma 3.10,m.x = f (B), whereB is the set of the most recentwrite

requests at each of the node insubtree(u, w).
{I(u)}T4{I(u)}. I1(u) is not affected inT4. In T4, I3(u) is affected in Line2 andI2(u) is affected in

sendresponse() procedure, invoked in Line11.
In the following, for any nodew′ in u.nbrs(), let B(w′) be the set of the most recentwrite requests at

each of the node insubtree(w, u).
SinceI2(u) holds for the receivedresponse message, after execution of Line2, u.aval [w] = f (B),

whereB(w). Hence,I3(u) holds in the execution of Line2.
To argue thatI2(u) holds in Line11, we show that just before the execution of Line11, for each node

w′ in u.nbrs() \ {v}, u.aval [w′] = f (B(w′)).
By Lemma 3.3 and Lemma 3.5, aresponse message fromw is received during the execution of a

combine request, sayq. We can assume thatq.node 6= u, since Line11 is executed only ifq.node 6= u.
From Lemma 3.3,u is q.node-parent ofw andv is q.node-parent ofu. Letq be initiated in the quiescent

stateQ, and in quiescent stateQ, let A be the set of nodesu.nbrs() \ {u.tkn() ∪ {v}}.
Again by Lemma 3.3, during execution ofq, u sends aprobe message to each of the node inA and

receives aresponse message from each of them. For each the receivedresponse message fromw, as
argued above, after execution of Line2, u.aval [w] = f (B(w)). By the inspection of code ofT3, while
sendingprobe messages,u setsu.snt [v] = A. By the inspection of code ofT4, on receiving aresponse

message from a nodew, w is removed fromu.snt [v]. Hence, Line11 is executed only whenu has received
response messages from all the nodes inA. Hence, just before execution of11, for each of the nodew′ in
A, u.aval [w′] = B(w′). By I2, for each of the nodew′ in u.tkn(), u.aval [w′] = B(w′). Hence, just before
the execution of Line11, for each of the nodew′ in u.nbrs \ {v}, u.aval [w′] = B(w′). Hence, as in the
proof of Lemma 3.10, for theresponse messagem sent tov, m.x = f (C), whereC is the set of the most
recentwrite requests at each of the node insubtree(u, v).

{I(u)}T5{I(u)}. I1(u) is not affected in the execution ofT5.
I3(u) is affected only in Line 2. LetA be the set of the most recentwrite requests at each of the node in

subtree(w, u). By I2(u), m.x = f (A). After Line 2u.aval [w] = f (A). Hence,I3(u) is preserved in Line
2.

If u.grntd() 6= ∅ in quiescent stateQ, thenI2(u) is affected in the procedureforwardupdates(), invoked
in Line 7. By Lemma 3.10,I2(u) is preserved in Line 7.

Therefore,I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution ofT5.
{I(u)}T6{I(u)}. I1(u), I2(u), andI3(u) are not affected. Hence,I(u) is preserved. �

Lemma 3.12 Any lease-based aggregation algorithm is nice.

Proof. Follows from Lemma 3.3 and Lemma 3.11. �

From Lemma 3.12 and the definition of a nice aggregation algorithm, we have thatany lease-based
aggregation algorithm provides strict consistency in a sequential execution of any request sequence.

4 Competitive analysis results for sequential executions

We defineRWW as an online lease-based aggregation algorithm that follows the policy decisions shown in
Figure 3 for setting or breaking a lease.
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var lt : array[v1 . . . vk] of int;
granted : array[v1 . . . vk] of boolean;

procedure oncombine()
foreach v ∈ tkn() do

lt [v] := 2; od

procedure probercvd(node w)

foreach v ∈ tkn() \ {w} do

lt [v] := 2; od

boolean setlease(node w)
lg[w] := true;
return true;

procedure responsercvd(boolean flag,node w)

if flag ∧ (taken[w] = false) →
lt [w] := 2; fi

procedure updatercvd(node w)

if (grntd() \ {w} = ∅) ∧ lt [w] > 0 →
lt [w] := lt [w] − 1; fi

procedure releasepolicy(node v)

lt [v] := max(0, lt [v] − |uaw [v]|);
procedure releasercvd(node w)

lg[w] := false;
boolean breaklease(node w)

return(lt [w] = 0);

Figure 3: Policy decisions forRWW

4.1 Informal Overview of RWW

Briefly, RWW works as follows. For any edge(u, v), RWW sets the lease fromu to v during the execution
of a combine request in thesubtree(v, u), and breaks the lease after two consecutivewrite requests at any
nodes insubtree(u, v).

4.2 Properties ofRWW

For positive integersa andb, an online lease-based algorithmA is in the class of(a, b)-algorithmsif, in a
sequential execution of any request sequenceσ byA, for any edge(u, v),A satisfies the following condition:
(1) if u.granted [v] is false, then it is set totrue aftera consecutivecombine requests inσ(u, v); and (2) if
u.granted [v] is true, then it is set tofalse afterb consecutivewrite requests inσ(u, v).

Lemma 4.1 Consider a sequential execution of a request sequenceσ by RWW and any two neighboring
nodesu andv. Then, during the execution of any request fromσ(v, u), u.granted [v] is not affected.

Proof. First, consider the execution of anycombine request inσ(v, u). By Lemma 3.3 and Lemma 3.4,
no update or release messages are sent. Further, noresponse message fromu to v are sent. Hence,
u.granted [v] is not affected during the execution of anycombine request inσ(v, u).

Second, consider the execution of anywrite request inσ(v, u). By Lemma 3.5, noprobe or response

messages are sent. Further, noupdate message fromu to v is sent. By the inspection of code ofRWW, a
release message fromv to u can sent during execution of awrite request inσ(u, v). Hence,u.granted [v]
is not affected during the execution of anywrite request inσ(v, u). �

Let I4(u) be the following predicate. For any nodev in u.nbrs(), if u.taken[v] does not hold then,
u.uaw [v] = ∅. Otherwise, ifu.grntd() \ {v} = ∅ then,(u.lt [v] + |u.uaw [v]| = 2) ∧ u.lt [v] > 0; else
u.lt [v] = 2.

Lemma 4.2 Consider a sequential execution of a request sequence byRWW. For any nodeu, I4(u) is an
invariant.

Proof. Initially, for any nodev in u.nbrs(), u.taken[v] does not hold andu.uaw [v] = ∅.
{I4(u)}T1{I4(u)}. For any nodev in u.tkn(), u.lt [v] is set to2 in oncombine procedure andu.uaw [v]

is set to∅ in Line 3. Hence,I4(u) is preserved.
{I4(u)}T2{I4(u)}. I4(u) is not affected.
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{I4(u)}T3{I4(u)}. For any nodev in u.tkn() \ {w}, u.lt [v] is set to2 in probercvd() procedure and
u.uaw [v] is set to∅ in Line 3. Hence,I4(u) is preserved.

{I4(u)}T4{I4(u)}. By Lemma 3.3, aresponse message is received fromw as a result of an earlierprobe
message sent tow during execution of acombine request, sayq. By Lemma 3.3 again, in the quiescent state
Q in which q is initiated,u.taken[w] does not hold. Hence, ifI4(u) holds before execution ofT4 then,
u.uaw [w] is empty.

If flag is true then,u.lt [w] is set to2 in responsercvd() procedure, andu.taken[w] is set totrue in
Line 3. Sinceu.uaw [w] remains empty,I4(u) holds after execution ofT4.

{I4(u)}T5{I4(u)}. By Lemma 3.5 and 3.1,u receives anupdate message fromw iff u.taken[w] holds.
If u.grntd()\{w} = ∅ then,u.lt [w] is decremented by1 in updatercvd() procedure. Otherwise,u.lt [w]

is not affected. In Line3, |uaw [w]| is incremented by1. Hence, ifu.lt [w] remains greater than0, thenI4(u)
is preserved.

If u.lt [w] is decremented to0 then, arelease message is sent tow in forwardrelease() procedure invoked
in Line 9. In forwardrelease() procedure,u.taken[w] is set tofalse, andu.uaw [w] is set to∅. Hence,I4(u)
is preserved.

{I4(u)}T6{I4(u)}. Fix v to be an arbitrary node inu.nbrs() \ {w}.
By the inspection of code, ifu.grntd() \ {v} 6= ∅ then,u.lt [v] is not affected. Hence,I4(u) is preserved

in execution ofT6.
Now we argue that, ifu.grntd() \ {v} = ∅, then alsoI4(u) is preserved.
First, we argue that|S| = 2. By the inspection of code, arelease message from nodew to u is

sent only inforwardrelease() procedure containingw.uaw [u]. Since anyrelease message is sent only
if w.breaklease(u) returnstrue, w.lt [u] is 0 while sendingrelease message. SinceI4(u) holds before
execution ofT6, |S| = 2.

Second, we argue that inonrelease() procedure, the number of tuplesα in sntupdates with α.sntid

greater or equal to the smallestid in S is at most2. From the inspection of code, (1) identifiers of all received
update messages at nodew from u are added tow.uaw [u]; (2) identifiers of sentupdate messages fromu
are always incremented; (3) an identifier is not removed from the middle inw.uaw [u], that is, identifiers
in w.uaw [u] are contiguous; and (4) on receiving anupdate message, identifier of the forwardedupdate

message to nodew is added tosntupdates. Hence,S contains identifiers of last twoupdate messages sent
to w from u, that is,S contains two highest identifiers ofupdate messages sent tow. SinceS may contain
identifiers corresponding to theupdate messages due towrite requests atu, the number of tuplesα in
sntupdates with α.sntid greater or equal to the smallest id inS is at most2.

Third, because of above arguments,|A| is at most2, whereA is as defined inonrelease() procedure.
Fourth, we argue that|S′| is at most2. Identifiers of the receivedupdate messages are in increasing

order. Before receiving therelease message,u.granted [w] holds. On receiving anupdate message from
v, identifier of the receivedupdate message is added tou.uaw [v]. Sinceu.granted [w] holds, on receiving
anupdate with id , anupdate message is sent tow with nid , and a tuple{v, id ,nid} is addedsntupdates.
Hence, the size of the set of identifiers inu.uaw [v] (i.e., |S′|) with identifiers≥ β.rcvid , whereβ is as
defined inonrelease() procedure, is at most2.

Finally, we argue that|u.uaw [v]|+u.lt [v] = 2. Since before receiving therelease message,u.granted [w]
and I4(u) hold, u.lt [v] = 2 before the invocation ofreleasepolicy . In releasepolicy , u.lt [v] is set to
u.lt [v] − |u.uaw [v]|. Hence, after execution ofreleasepolicy , |u.uaw [v]| + u.lt [v] = 2.

If u.lt [v] becomes0 then, inforwardrelease() procedure,u.tkn[v] is setfalse, u.uaw [v] is set to∅, and
a release message is sent tov.

Hence,I4(u) is preserved in execution ofT6. �
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Lemma 4.3 Consider a sequential execution of a request sequenceσ by RWW and any two neighboring
nodesu andv. (1) In the quiescent state after execution of anycombine request inσ(u, v), u.granted [v]
holds. (2) In the quiescent state after execution of two consecutivewrite requests inσ(u, v), u.granted [v]
does not hold.

Proof. (1) Let the thecombine requestq is initiated in the quiescent stateQ and completed in the quiescent
stateQ′.

For the sake of brevity, we call the following kinds of messages as type-A messages: (1)probe messages
from v to u; (2) response messages fromu to v; (3) update messages fromu to v; and (4)release messages
from v to u.

If u.granted [v] in Q, then no type-A messages are sent during the execution ofq, and sou.granted [v]
holds inQ′.

Otherwise, ifu.granted [v] does not hold inQ, then by Lemma 3.3, during the execution ofq, aprobe

message is sent fromv to u and aresponse message is sent fromu to v. By inspection of code of
sendresponse, RWW’s function setlease is invoked. By inspection of code ofRWW, setlease always
returnstrue, and sou.granted [v] is set totrue. Hence, after execution ofq, u.granted [v] holds.

(2) Let the two consecutivewrite requests areq1 andq2, initiated in quiescent statesQ andQ′ respec-
tively. Let q2 is completed in the quiescent stateQ′′.

By Lemma 3.5, ifu.granted [v] does not hold inQ, then during the execution ofq1, no type-A messages
are exchanged betweenu andv. Hence,u.granted [v] is not affected and remainsfalse in Q′ andQ′′.

Otherwise, ifu.granted [v] in Q, then without loss of generality we can assume that the request preceding
q1 in σ(u, v) is acombine requestq.

Since, by Lemma 4.1, any request inσ(v, u) does not affectu.granted [v], without loss of generality we
can also assume that there are no request inσ(v, u) such that the request lies betweenq1 andq2 in σ.

By part (1), inQ, there is a path fromu to q.node (sayw) in the lease graphG(Q). Further, inQ,
w.uaw [u-parent ofw] is empty andw.lt [u-parent ofw] is 0. By Lemma 3.5,w receives anupdate message
during the execution ofq1. By the inspection of code ofT5, w.taken[u-parent ofw] holds inQ′. Hence, by
Lemma 3.2 and Lemma 3.1,u.granted [v] holds inQ′.

It is sufficient to show that during the execution ofq2, a release message is sent fromv to u, falsifying
u.granted [v].

Let A be the set of reachable nodes in the lease graphG(Q′) from u following the edge(u, v).
Let id(q1, w) be theid of theupdate message received atw during the execution ofq1.
First, we show that the following properties hold. Fixw to be an arbitrary node inA. (1) Nodew receives

an update message during the execution ofq1. (2) In quiescent stateQ′, w.uaw [u-parent ofw] contains
id(q1, w). (3) In quiescent stateQ′, if w.grntd() \ {u-parent ofw} is empty,|w.uaw [u-parent ofw]| = 1
andw.lt [u-parent ofw] = 1.

(1) By Lemma 3.5, noprobe or response messages are sent during the execution ofq1. By the inspection
of code, an edge is added in the lease graph only while sending and receiving aresponse message. Hence,
if an edge is present in the lease graphG(Q′), then the edge is also present in the lease graphG(Q). Hence,
by Lemma 3.5, each node inA receives anupdate message during the execution ofq1.

(2) From (1) and Lemma 3.5,w receives anupdate message fromu-parent ofw. From the inspection
of code ofT5, id(q1, w) is added tow.uaw [u-parent ofw]. In quiescentQ′, since the identifiers ofupdate

messages sent from theu-parent ofw tow are in increasing order andq1 is the latestwrite request,id(q1, w)
is the highest identifier inw.uaw [u-parent ofw]. Hence,w.uaw [u-parent ofw] containsid(q1, w).

(3) Without loss of generality assume thatw.grntd() \ {u-parent ofw} is empty. By (2), in quiescent
stateQ′, |w.uaw [u-parent ofw]| > 0.
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By the inspection of code,w.lt [u-parent ofw] > 0. Hence, by Lemma 4.2,|w.uaw [u-parent ofw]| ≤ 2.
By contradiction, we show that|w.uaw [u-parent ofw]| 6= 2. Assume that|w.uaw [u-parent ofw]| = 2

in Q′. By Lemma 4.2 and the inspection of code ofT5 andT6, if w.grntd() \ {u-parent ofw} is empty and
|w.uaw [u-parent ofw]| = 2, thenw.lt [u-parent ofw] is 0 in Q′. Hence,w must send arelease message to
theu-parent ofw and setw.taken[u-parent ofw] to false during the execution ofq1. But w is in A, hence,
contradiction.

Therefore,|w.uaw [u-parent ofw]| = 1, and by Lemma 4.2, (3) follows.
Second, We show the desired result by showing that every nodew in A, includingv, sends arelease

message tou-parent ofw containing{id(q1, w), id(q2, w)}.
We prove this claim by reverse induction on the length of the path fromu to any node inA. Let the

maximum length of the path fromu to any node inA be l .
Base case. Consider a nodew in A such that the length of the path fromu to w is l . By definition ofA,

w.grntd() \ {u-parent ofw} is empty. By Claim 2 and Claim 3,w.uaw [u-parent ofw] = {id(q1, w)} and
w.lt [u-parent ofw] = 1.

By Lemma 3.1 and Lemma 3.2,w is reachable fromq2.node in the lease graphG(Q′). Hence, by
Lemma 3.5, during the execution ofq2, w receives anupdate message from theu-parent ofw.

By inspection of code ofT5, updatercvd() function ofRWW is invoked. Inupdatercvd(), w.lt [u-parent ofw]
is set to0. By inspection of code ofT5, forwardrelease() procedure is invoked. By inspection of code of
RWW, breaklease() returnstrue. Hence,w.granted [u-parent ofw] is set tofalse and arelease message
is sent to theu-parent ofw containing{id(q1, w), id(q2, w)}.

Induction hypothesis. Let any nodew in A with the length of the path fromu to w is i, wherei > 1,
sends arelease message to theu-parent ofw containing{id(q1, w), id(q2, w)}.

Induction step. Consider a nodew in A such that the length of the path fromu to w is i − 1. As argued
in the base case, during the execution ofq2, w receives anupdate message from theu-parent ofw.

By property (2) and above arguments,w.uaw [u-parent ofw] containsid(q1, w) andid(q2, w).
By induction hypothesis, for each nodew′ in w.nbrs() such thatw is u-parent ofw′, w receives a

release message fromw′.
By the inspection of the code ofT6, after receiving arelease message from all the nodesw′ such

that w.granted [w′] in Q′, w setsw.lt [u-parent ofw] to 0, and sends arelease message tou-parent ofw
containing{id(q1, w), id(q2, w)}.

Therefore, during the execution ofq2, arelease message is sent fromv to u, falsifying u.granted [v]. �

Corollary 4.1 The algorithmRWW is a (1, 2)-algorithm.

Consider a sequential execution of an arbitrary request sequenceσ by RWW. For any quiescent state
Q, and for any ordered pair of neighboring nodes(u, v), we define the configuration ofRWW, denoted
FRWW(u, v), as follows: (1) ifQ is the initial quiescent state, thenFRWW(u, v) is0; (2) if the last completed
request inσ(u, v) is a combine request, thenFRWW(u, v) is 2; (3) if the last two completed requests
in σ(u, v) are acombine request followed by awrite request, thenFRWW(u, v) is 1; (4) if the last two
completed requests inσ(u, v) arewrite requests, thenFRWW(u, v) is 0.

Lemma 4.4 Consider a sequential execution of any request sequenceσ byRWW. For any quiescent state
Q, and for any ordered pair of neighboring nodes(u, v), FRWW(u, v) is greater than0 if and only if
u.granted [v] holds.
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Figure 4: States and state transitions for any pair of nodes(u, v) in executing requests fromσ′(u, v) (defined
in Lemma 4.6).

Proof. Follows from Lemma 4.1 and Lemma 4.3. �

Note thatRWW is a deterministic algorithm. In execution of any request fromσ(v, u), there are no
messages that contribute toCRWW(σ, u, v). We can prove the following lemma aboutRWW.

Lemma 4.5 In a sequential execution of any request sequenceσ, for any two neighboring nodesu andv,
CRWW(σ, u, v) = CRWW(σ(u, v), u, v).

Proof. Follows from Lemma 3.8 and Lemma 4.1. �

4.3 Competitive ratio of RWW

In this section we show thatRWW is 5
2 -competitive against an optimal offline lease-based algorithmOPT

for the sequential aggregation problem. We also show thatRWW is 5-competitive against a nice optimal
offline algorithm for the sequential aggregation problem. Further, we show that, for any(a, b)-algorithmA
operating on a sufficient long request sequenceσ, CA(σ) is at least52 timesCOPT(σ).

For any quiescent stateQ and ordered pair of neighboring nodes(u, v), we define the configuration of
OPT FOPT(u, v) to be1 if u.granted [v] holds; otherwise,0.

Lemma 4.6 Consider a sequential execution of a request sequenceσ by RWW and OPT. For any two
neighboring nodesu andv, CRWW(σ, u, v) is at most52 timesCOPT(σ, u, v).

Proof. Once a requestq in σ is initiated in a quiescent state, without loss of generality, we assume that
RWW executesq, and thenOPT executesq.

For the sake of brevity, we call the following kinds of messages as type-A messages: (1)probe messages
from v to u; (2) response messages fromu to v; (3) update messages fromu to v; and (4)release messages
from v to u. The rest of the messages are called type-B messages. Recall that,CA(σ, u, v) is the number of
type-A messages exchanged betweenu andv in executingσ by a lease-based algorithmA.

We construct a new request sequenceσ′(u, v) from σ(u, v) as follows: (1) insert anoop request in the
beginning and at the end ofσ(u, v); and (2) insert anoop request between every pair of successive requests
in σ(u, v).
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minimize : c

Φ(0, 2) − Φ(0, 0) + 2 ≤ 2 · c
Φ(1, 2) − Φ(0, 0) + 2 ≤ 2 · c
Φ(0, 0) − Φ(0, 0) ≤ 0
Φ(1, 2) − Φ(1, 0) + 2 ≤ 0
Φ(0, 0) − Φ(1, 0) ≤ 2 · c
Φ(1, 0) − Φ(1, 0) ≤ c

Φ(0, 0) − Φ(1, 0) ≤ c

Φ(0, 2) − Φ(0, 2) ≤ 2 · c
Φ(1, 2) − Φ(0, 2) ≤ 2 · c
Φ(0, 1) − Φ(0, 2) + 1 ≤ 0
Φ(1, 2) − Φ(1, 2) ≤ 0
Φ(0, 1) − Φ(1, 2) + 1 ≤ 2 · c
Φ(1, 1) − Φ(1, 2) + 1 ≤ c

Φ(0, 2) − Φ(1, 2) ≤ c

Φ(0, 2) − Φ(0, 1) ≤ 2 · c
Φ(1, 2) − Φ(0, 1) ≤ 2 · c
Φ(0, 0) − Φ(0, 1) + 2 ≤ 0
Φ(1, 2) − Φ(1, 1) ≤ 0
Φ(0, 0) − Φ(1, 1) + 2 ≤ 2 · c
Φ(1, 0) − Φ(1, 1) + 2 ≤ c

Φ(0, 1) − Φ(1, 1) ≤ c

Figure 5: LP formulation of the costs associated with state transitions.
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In the rest of the proof, first, for bothRWW andOPT, we argue that we can charge each of the type-A
messages to a request inσ′(u, v). Then, to prove the lemma, we use potential function arguments to show
thatCRWW(σ′(u, v), u, v) is at most52 timesCOPT(σ′(u, v), u, v).

ForRWW, from Lemma 4.5, we have,CRWW(σ, u, v) = CRWW(σ(u, v), u, v). ForRWW, we do not
charge any message to anoop request inσ′(u, v). Hence, we have,CRWW(σ, u, v) = CRWW(σ′(u, v), u, v).

For OPT, from lemma 3.3, during the execution of acombine request inσ(v, u), no type-A messages
are sent. Also from Lemma 3.5 and part 3 of Lemma 3.8, during the execution ofawrite request inσ(v, u)
by OPT, only a release message fromv to u can be sent. Consider a type-Arelease messagem sent
during the execution of awrite requestq in σ(v, u) by OPT. On receivingm, u.granted [v] is falsified.
From Lemma 3.5, Lemma 3.3, Lemma 3.6, and part 3 and 4 of Lemma 3.8,u.granted [v] is not set totrue

before executing anothercombine request inσ(u, v). Hence, at most one type-Arelease message can be
associated with anoop request. Thus, we can associate all type-A messages with a request inσ′(u, v).

Therefore, we can restrict our attention to messages sent in executing requests inσ′(u, v) in comparing
CRWW(σ, u, v) andCOPT(σ, u, v).

For the ordered pair(u, v), in Figure 4 (see appendix), we show a state diagram depicting possible
changes inFRWW(u, v) andFOPT(u, v) in executing a request fromσ′(u, v). In the state diagram, a state
labeledS(x, y) represent a state of the algorithms in whichFOPT(u, v) is x andFRWW(u, v) is y. Observe
that the changes inFRWW(u, v) in executing a request is deterministic as specified by the algorithm in Figure
3. On the other hand, the changes inFOPT(u, v) in executing a request is not known in advance. Hence,
more than one possible changes inFOPT(u, v) in executing a request are depicted by non-deterministic
state transitions. Recall that the cost of processing a request in a particular configuration for any lease-based
algorithm is given in Figure 2.

We define a potential functionΦ(x, y) as a mapping from a stateS(x, y) to a positive real number. The
amortized cost of any transition is defined as the sum of the change in potential ∆(Φ) and the cost ofRWW
in the transition. For any transition, we write that the amortized cost is at mostc times the cost ofOPT in the
transition, wherec is a constant factor. We solve these inequalities by formulating a linear program with an
objective function to minimizec (see Figure 5). By solving the linear program, we getc = 5

2 , Φ(0, 0) = 0,
Φ(0, 1) = 2, Φ(0, 2) = 3, Φ(1, 0) = 5

2 , Φ(1, 1) = 2, andΦ(1, 2) = 1
2 .

Hence, for any state transition due to the execution of a requestq from σ′(u, v), the amortized cost
is at most 5

2 times the cost ofOPT in the execution ofq. Recall that, in the initial quiescent state,
FRWW(u, v) andFOPT(u, v) are0, and the potential for any state is non-negative. Therefore, in execu-
tion of σ′(u, v), the total cost ofRWW is at most52 times that ofOPT. That is,CRWW(σ, u, v) is at most
5
2 timesCOPT(σ, u, v). �

Theorem 1 AlgorithmRWW is 5
2 -competitive with respect to any lease-based algorithm for the sequential

aggregation problem.

Proof. From lemma 4.6, in a sequential execution of a request sequenceσ, for any two neighboring nodes
u andv, CRWW(σ, u, v) is at most52 timesCOPT(σ, u, v). By symmetry,CRWW(σ, v, u) is at most52 times
COPT(σ, v, u). By lemma 3.9, the total number of messages exchanged betweenu andv in execution ofσ
by RWW is at most52 times that ofOPT. Summing over all the pairs of neighboring nodes, we get that
CRWW(σ) is at most52 timesCOPT(σ). Hence, the theorem follows. �

Theorem 2 AlgorithmRWW is5-competitive with respect to any nice algorithm for sequential aggregation
problem.
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Proof sketch.Let NOPT is the optimal nice algorithm for sequential aggregation problem.
Consider any pair of neighboring nodes(u, v). We compare the cost ofRWW andNOPT in executing

request sequencesσ(u, v) andσ(v, u) separately.
We define anepochas follows. An epoch ends with awrite to combine transition inσ(u, v), and a new

epoch starts at the same instant. By definition of a nice algorithm,NOPT provides strict consistency for
sequential execution problem. Hence,NOPT sends at least one message in the current epoch. By Lemma
4.3, the algorithmRWW incurs at most5 messages in any epoch. Summing over all the epochs, we get
that the cost ofRWW in executingσ(u, v) is at most5 times that ofNOPT. By symmetry, we also have
the cost ofRWW in executingσ(v, u) is at most5 times that ofNOPT. By summing over all the pair of
neighboring nodes, the desired result follows. �

Theorem 3 For any (a, b)-algorithmA operating on a sufficiently long request sequenceσ, CA(σ) is at
least 5

2 timesCOPT(σ).

Proof sketch. We give an adversarial request generating argument to show the desired result. Consider
an example of a tree consisting of just two nodesu andv such that there is an edge betweenu andv. The
adversarial request generating algorithmADV is as follows. For a givena andb, ADV generatesa combine

requests atv andb write requests atu. Using potential function arguments, we can show that for a sufficient
long request sequenceσ generated byADV, the cost of any(a, b)-algorithm in executingσ is at least52
times that of an offline algorithm, tailored to the request sequenceσ. �

5 Consistency results for concurrent executions

In this section we generalize the traditional definition of causal consistency[1] for the aggregation problem,
and show that any lease-based aggregation algorithm is causally consistent. As mentioned earlier, the key
difference between the setup in [1] and ours is in reading one value compared to aggregating values from all
the nodes.

5.1 Definitions

Request. For the convenience of the analysis of this section, we extend the definitionof a request from
Section 2 as follows. A requestq is a tuple (node, op, arg , retval , index ), where (1)node is the node
where the request is initiated; (2)op is the type of of the request,combine, gather , or write; (3) arg is the
argument of the request (if any); (4)retval is the return value of the request (if any); and (5)index is the
number of requests that are generated atq.node and completed beforeq is completed.

An aggregation algorithm executeswrite andcombine requests as described in Section 2. To execute a
gather request, an aggregation algorithm returns a setA of pairs of the form(node, index ) such that (1) for
each nodeu in T , there is a tuple(u, i) in A, wherei ≥ −1; (2) for any tuple(u, i) in A, if i ≥ 0, then there
is awrite requestq such thatq.node = u andq.index = i; and (3)|A| is equal to the number of nodes in
T .

Miscellaneous. For the convenience of analysis of this section, we extend the definition offunction
f from Section 2 as follows. In the extended definition,f can also take a set of pairsA of the form
(node, index ) as an argument, andf (A) = f (B), whereB is a set ofwrite requests such that for any
tuple(u, i) in A with i ≥ 0, there is awrite requestq in B with q.node = u andq.index = i.
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A combine-writesequence (set) is a sequence (set) of requests containing onlycombine and write

requests. Agather-writesequence (set) is a sequence (set) of requests containing onlygather andwrite

requests. LetA be a set of requests. Then,pruned(A, u) is a subset ofA such that, for any requestq in A,
q is in pruned(A, u) if and only if q.op = write or q.node = u.

For any sequence of requestsS and any requestq in S, we definerecentwrites(S, q) as a set of pairs
such that the size ofrecentwrites(S, q) is equal to the number of nodes inT , and for any nodeu in T : (1)
if q′ is the most recentwrite request atu precedingq in S, then(u, q′.index ) is in recentwrites(S, q); (2) if
there is nowrite request atu precedingq in S, in which case,(u,−1) is in recentwrites(S, q).

Let A be a gather-write set, andS be a linear sequence of all the requests inA. Then,S is called a
serializationof A if and only if, for anygather requestq in S, q.retval = recentwrites(S, q).

For any two request sequencesσ andτ , σ − τ is defined to be the subsequence ofσ containing all the
requestsq in σ such thatq is not present inτ . For any two request sequencesσ andτ , σ.τ is defined to beσ
appended byτ .

Compatibility . Let q1 be acombine or write request andq2 be agather or write request. Then,q1 and
q2 arecompatibleif and only if (1) q1.op = write andq1 = q2; or (2) q1.op = combine, q2.op = gather ,
q1.retval = f (q2.retval), and thenode, arg , andindex fields are equal forq1 andq2. A combine-write
sequenceσ and a gather-write sequenceτ are compatible if and only if (1)σ andτ are of equal length; and
(2) for all indicesi, σ(i) andτ(i) are compatible. LetA be a combine-write set andB be a gather-write set.
Then,A andB are compatible if and only if for any nodeu in T , there exists a linear sequenceS of all the
requests inpruned(A, u), and a linear sequenceS′ of all the requests inpruned(B, u) such thatS andS′

are compatible.
Causal Consistency. We definecausal ordering( ) among any two requestsq1 andq2 in a gather-

write execution-historyA as follows. First,q1
1
 q2 if and only if (1) q1.node = q2.node andq1.index <

q2.index ; or (2)q1 is a write request,q2 is agather request, andq2 returns(q1.node, q1.index ) in q2.retval .

Second,q1
i+1
 q2 if and only if there exists a requestq′ such thatq1

i
 q′

1
 q2. Finally, q1  q2 if and

only if there exists ani such thatq1
i
 q2.

The execution-history of an aggregation algorithmA is defined as the set of all requests executed by
A. A gather-write execution-historyA is causally consistentif and only if, for any nodeu in T , there
exists a serializationS of pruned(A, u) such thatS respects the causal ordering among all the requests
in pruned(A, u). A combine-write execution-historyA is causally consistent if and only if there exists a
gather-write execution-historyB such thatA andB are compatible andB is causally consistent.

5.2 Algorithm

In Figure 5.2, we present the mechanism for any lease-based aggregation algorithm withghost actions(in
the curly braces). The ghost actions are presented for the convenience of analysis.

For any nodeu, u.log is a ghost variable of the mechanism. For any nodeu, u.wlog is a subsequence of
u.log containing all thewrite requests inu.log .

Initially, for any nodeu, u.val := 0, u.uaw := ∅, u.pndg := ∅, u.upcntr := 0, u.sntupdates := ∅. For
each nodev in u.nbrs(), u.taken[v] := false, u.granted [v] := false, u.aval [v] := 0, u.snt [v] := ∅, and
u.log is empty.

Functionrequest(gather) generates and returns agather requestq as follows. q.node = u, q.op =
gather , q.arg = ∅, q.retval = recentwrites(u.log , q), andq.index is 1 plus the number of completed
requests atu. Functionrequest(write, q) generates and returns awrite requestq′ as follows.q′.node = u,
q′.op = write, q′.arg = q.arg , q′.retval = ∅, andq′.index is 1 plus the number of completed requests atu.
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node u
var taken : array[v1 . . . vk] of boolean;

granted : array[v1 . . . vk] of boolean;
aval : array[v1 . . . vk] of real; val : real;
uaw : set {int}; pndg : set {node};
foreach v ∈ pndg, snt [v] : set {node};
upcntr : int; snt : set {node};
sntupdates : set {{node, int, int}};

begin

T1 true → {combine}
1 oncombine(u);
2 foreach v ∈ tkn() do

3 uaw [v] := ∅; od

4 if u /∈ pndg →
5 if nbrs() \ tkn() = ∅ →
6 {appendrequest(gather) to log};
7 return gval();
8 � nbrs() \ tkn() 6= ∅ →
9 sendprobes(u);

10 snt [u] := nbrs() \ tkn(); fi fi

T2 true → {write q}
1 val := q.arg; {appendrequest(write, q) to log}
2 if grntd() 6= ∅ →
3 id := newid();
4 forwardupdates(u, id); fi

T3 � rcv probe() from w →
1 probercvd(w);

2 foreach v ∈ tkn() \ {w} do

3 uaw [v] := ∅; od

4 if w /∈ pndg →
5 if nbrs() \ {tkn() ∪ {w}} = ∅ →
6 sendresponse(w);
7 � nbrs() \ {tkn() ∪ {w}} 6= ∅ →
8 sendprobes(w);
9 snt [w] := nbrs() \ {tkn() ∪ {w}}; fi fi

T4 � rcv response(x,flag) from w →
{rcv response(wlogw ,flag) from w} →

1 responsercvd(flag, w);

2 aval [w] := x; {log := log.(wlogw − log)};
3 taken[w] := flag;
4 foreach v ∈ pndg do

5 snt [v] := snt [v] \ {w};
6 if snt [v] = ∅ →
7 pndg := pndg \ {v};
8 if v = u →
9 {appendrequest(gather) to log};

10 return gval();
11 � v 6= u →
12 sendresponse(v); fi fi od

T5 � rcv update(x, id) from w →
{rcv update(wlogw , id) from w } →

1 updatercvd(w);

2 aval [w] := x; {log := log.(wlogw − log)};
3 uaw [w] := uaw [w] ∪ id ;
4 if grntd() \ {w} 6= ∅ →
5 nid = newid();
6 sntupdates := sntupdates ∪ {w, id ,nid};
7 forwardupdates(w,nid);
8 � grntd() \ {w} = ∅ →
9 forwardrelease(); fi

T6 � rcv release(S) from w →
1 releasercvd(w);
2 granted [w] := false;
3 onrelease(w, S);

end

procedure sendprobes(node w)
pndg := pndg ∪ {w};
foreach v ∈ nbrs() \ {tkn() ∪ snt ∪ {w}} do

sendprobe() to v;od

procedure forwardupdates(node w, int id)
foreach v ∈ grntd() \ {w} do

sendupdate(subval(v), id) to v;
{sendupdate(wlog, id) to v};od

procedure sendresponse(node w)
if (nbrs() \ {tkn() ∪ {w}} = ∅) →

granted [w] := setlease(w);fi
sendresponse(subval(w), granted [w]) to w;
{sendresponse(wlog, granted [w]) to w; }

boolean isgoodforrelease(node w)
return (grntd() \ {w} = ∅);

procedure onrelease(node w, set S)
Let id is the smallest id inS;
foreach v ∈ tkn() \ {w} do

Let A be the set of tuplesα in sntupdates

such thatα.node = v andα.sntid ≥ id ;
Let β be a tuple inA

such thatβ.rcvid ≤ α.rcvid , for all α in A;
Let S′ be the set of ids inuaw [v] with ids ≥ β.rcvid ;
uaw [v] := S′;
if isgoodforrelease(v) →

releasepolicy(v);fi od

forwardrelease();

procedure forwardrelease()
foreach v ∈ tkn() do

if isgoodforrelease(v) →
if taken[v] ∧ breaklease(v) →

taken[v] := false;
sendrelease(uaw [v]) to v;
uaw [v] := ∅;fi fi od

int newid()
upcntr := upcntr + 1;
return upcntr ;

real gval()
x := val ;
foreach v ∈ nbrs() do

x := f (x, aval [v]);od

return x;

real subval(node w)
x := val ;
foreach v ∈ nbrs() \ {w} do

x := f (x, aval [v]);od

return x;

set nbrs()
return the set of neighboring nodes;

set tkn()
return {v | v ∈ nbrs() ∧ taken[v] = true};

set grntd()
return {v | v ∈ nbrs() ∧ granted [v] = true};

Figure 6: Mechanism for any lease-based algorithm with ghost actions. For the nodeu, {v1, . . . , vk} is the
set of neighboring nodes.
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5.3 Analysis

For each nodeu in T , we construct a gather-write sequenceu.gwlog fromu.log as follows: (1) ifu.log(i) is a
write request thenu.gwlog(i) = u.log(i); (2) if u.log(i) is acombineq1 then,u.gwlog(i) is agather q2 such
thatq2.node = q1.node, q2.op = gather , q2.index = q1.index , andq2.retval = recentwrites(u.log , q1).

For each nodeu in T , we constructu.log ′ andu.gwlog ′ from u.log andu.gwlog as follows. First,
initialize u.log ′ to u.log , andu.gwlog ′ to u.gwlog . Then, for each nodev in T exceptu repeat the following
steps: (1)u.log ′ = u.log ′.(v.wlog − u.log ′); (2) u.gwlog ′ = u.gwlog ′.(v.wlog − u.gwlog ′).

For any set of nodesA and a request sequenceσ, recent(A, σ) returns a set of|A| pairs such that, for
any nodeu ∈ A: (1) if q′ is the most recentwrite request atu in σ, then(u, q′.index ) is in recent(σ, q); (2)
if there is nowrite request atu in σ, then(u,−1) is in recent(S, q).

For a set of nodesA, a real valuex, and a request sequenceσ, we definecorresponds(A, x, σ) to be
true if and only if x = f (recent(A, σ)).

For a set of nodesA and a request sequenceσ, projectwrites(A, σ) returns the sub-sequence ofσ

containing all thewrite requests at any node inA.
For request sequencesσ and τ , prefix (σ, τ) is defined to betrue if and only if τ is a prefix ofσ.

Remark: An empty sequence is considered prefix of any other request sequence.

Lemma 5.1 For anyupdate or response messagem from any nodev to any neighboring nodeu, let S be
thev.wlog afterm has been sent. Then,prefix (S,m.wlog) holds.

Proof. By the inspection of code (forwardupdates() andsendresponse()), m.wlog = v.wlog whenm is
being sent. Sincev.wlog grows only at the end, the lemma follows. �

Lemma 5.2 For any twoupdate or response messagesm1 andm2 from a nodev to any neighboring node
u such thatm2 is sent afterm1, prefix (m2.wlog ,m1.wlog) holds.

Proof. By Lemma 5.1,m1.wlog is a prefix ofv.wlog afterm1 has been sent. By the inspection of code
(forwardupdates() andsendresponse()), m2.wlog = v.wlog whenm2 is being sent. Hence, the lemma
follows. �

Lemma 5.3 Just before the execution ofT4 (T5) at u, on receiving aresponse message (anupdate mes-
sage)m sent fromv, let σ be projectwrites(A,m.wlog) and τ be projectwrites(A, u.log), whereA =
subtree(v, u). Then, (1)prefix (σ, τ) holds; (2)projectwrites(nodes(T ) \ A,m.wlog − u.log) is an empty
set.

Proof. (1) We prove by induction on the number ofupdate or response messages fromv to u.
Base case. Sincev.granted [u] does not hold initially, the first message of our interest is aresponse

messagem. Sinceu receives anywrite requests inA only fromv, τ is empty. Hence,prefix (σ, τ) holds.
Induction step. Since communication channels are FIFO,(n + 1)st update or response messagem

reachesu afternth messagem ′. By induction hypothesis, just before receivingm ′, projectwrites(A, u.log)
is prefix ofprojectwrites(A,m ′.wlog). In line 2 of T4 (T5), u.log = u.log .(m ′.wlog − u.log), that is, all
thewrite requests inm ′.wlog not present inu.log are appended tou.log . Hence,projectwrites(A, u.log) =
projectwrites(A,m ′.wlog) after execution of Line2 of T4 (T5).

By Lemma 5.2,m ′.wlog is a prefix ofm.wlog . Hence, just before receivingm, projectwrites(A, u.log)
is a prefix ofprojectwrites(A,m.wlog).
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(2) LetB benodes(T )\A. By Lemma 5.1, Lemma 5.2, and part (1), at any instantprojectwrites(B, v.log)
is a prefix ofprojectwrites(B, u.log). By Lemma 5.1,m.wlog is a prefix ofv.wlog afterm has been sent.
Hence, just before receivingm, projectwrites(B,m.wlog) is a prefix ofprojectwrites(B, u.log). There-
fore,projectwrites(B,m.wlog − u.log) is empty. �

For any nodeu, let I(u) beI1(u) ∧ I2(u) ∧ I3(u), where

• I1(u): corresponds(A, u.gval(), u.log), whereA is the set of all nodes inT .

• I2(u): for anyupdate or response messagem fromu to any nodev in u.nbrs(), corresponds(A,m.x,m.wlog),
whereA is the set of all nodes insubtree(u, v).

• I3(u): for any nodev in u.nbrs(), corresponds(A, u.aval [v], u.log), whereA is the set of all nodes
in subtree(v, u).

Lemma 5.4 For any nodeu, if I1(u) andI3(u) hold just before anupdate or a response messagem is sent
fromu to a nodev in u.nbrs(), thencorresponds(A,m.x,m.wlog), whereA = subtree(u, v).

Proof. Initially, u.val is 0 andu.log is empty. Hence, initially,

u.val = f (recent({u}, u.log)) (2)

The only line of code that modifiesu.val is Line 1 ofT2. This line preserves equation 2. Hence, equation
2 holds just before sending anyupdate or response message.

In the following equation, let{v1, . . . , vk} = u.nbrs() \ {v} andSi = subtree(vi, u)

m.x = u.subval(v)

= f (u.val , u.aval [v1], . . . , u.aval [vk])

= f (f (recentwrites({u}, u.log)), f (recent(S1, u.log)), . . . , f (recent(Sk, u.log)))

= f (recent({u} ∪ S1 ∪ · · · ∪ Sk), u.log)

= f (recent(A, u.log))

= f (recent(A,m.wlog)) (3)

In the above equation, the first equality follows from the algorithm. The second equality follows from
the definition ofsubval(v). The third equality follows fromI3 and equation 2. The fourth and fifth equalities
follows from the fact that{u}, S1, . . . , Sk are disjoint sets of nodes and their union issubtree(T, u, v). The
last equality follows from the fact thatm.wlog = wlog andrecent(A, log) = recent(A,wlog).

Hence, the lemma follows. �

Lemma 5.5 For any nodeu, I(u) is an invariant.

Proof. Initially, for any nodeu, u.gval() is 0 andu.log is empty. Hence,I1(u) holds. There are noupdate

or response messages. Hence,I2(u) holds. For any nodev in u.nbrs(), u.aval [v] is 0 andu.log is empty.
Hence,I3(u) holds.

{I(u)}T1{I(u)}. In the execution ofT1, for any nodev in u.nbrs(), u.aval [v] andu.val remain un-
changed. Noupdate or response messages are generated in execution ofT1. No write request is added to
u.log . Hence,I1(u), I2(u), andI3(u) are not affected in execution ofT1.

23



{I(u)}T2{I(u)}. In the execution ofT2, only part of the code affectingI1(u) is the line1. Note
that Line1 does not affectI2(u) andI3(u). In the following equation, let{v1, . . . , vk} = u.nbrs() and
Si = subtree(T, vi, u).

f (u.aval [v1], . . . , u.aval [vk]) = f (f (recent(S1, u.log)), . . . , f (recent(Sk, u.log)))

= f (recent(S1, u.log) ∪ · · · ∪ recent(Sk, u.log))

= f (recent(S1 ∪ · · · ∪ Sk, u.log)

= f (recent(nodes(T ) \ {u}, u.log)) (4)

In the above equation, the first equality follows fromI3(u). The second equality follows from the fact
thatS1, . . . , Sk are disjoint sets of nodes.

Letq be thewrite request appended tou.log in Line1. After Line1, val is q.arg , and{q} is recent({u}, log).
Hence, after Line1,

u.val = f (recent({u}, u.log)) (5)

Therefore, after Line1,

u.gval() = f (u.val , u.aval [v1], . . . , u.aval [vk])

= f (u.val , f (u.aval [v1], . . . , u.aval [vk]))

= f (f (recent({u}, u.log)), f (recent(nodes(T ) \ {u}, u.log))

= f (recent({u}, u.log) ∪ recent(nodes(T ) \ {u}, u.log))

= f (recent(nodes(T ), u.log)) (6)

In the above equation, the first equality follows from the definition ofu.gval(). The second equality
follows from the associativity property off . The third equality follows from the equations 4 and 5.

Hence,corresponds(nodes(T ), u.gval(), u.log) holds after line1. That is,I1(u) holds after Line1.
Therefore, for each line of the code inT2 if I1(u)∧ I2(u)∧ I3(u) holds before the execution of the line then
I1(u) holds after the execution of the line.

In the execution ofT2, the only part of the code affectingI2(u) is the invocation of procedureforwardupdates()
in Line 4. By Lemma 5.4,I2(u) holds after Line4. Therefore, for each line of the code inT2 if I1(u) ∧
I2(u) ∧ I3(u) holds before the execution of the line thenI2(u) holds after the execution of the line.

In T2, I3(u) is not affected.
{I(u)}T3{I(u)}. I1(u) andI3(u) are not affected in the execution ofT3. Only part of the code that

affectsI2(u) is the invocation of proceduresendresponse() in Line 6. By Lemma 5.4,I2(node) holds after
line 6.

{I(u)}T4{I(u)}. Only lines that affectI(u) are Line2 and Line12. Line 2 does not affectI2(u), but
affectsI1(u) andI3(u) since the line modifiesu.aval [w] andu.log . First we show thatI3(u) is preserved
in Line 2, and so,I1(u) is also preserved.

Let m be theresponse message received andA be subtree(w, u). By part (1) of Lemma 5.3, after
the execution of Line2, u.aval [w] = m.x andrecent(A, u.log) = recent(A,m.wlog). Hence, byI2(u),
u.aval [w] = f (recent(A, u.log)).
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By part (2) of Lemma 5.3, for allv in u.nbrs() \ {w}, recent(B, u.log) is not affected, whereB =
subtree(v, u), and so,corresponds(B, u.aval [v], u.log) remains unchanged. Hence, along with the argu-
ments in the preceding paragraph,I3(u) is preserved in Line2, and so, preserved in the execution ofT4.

By part (2) of Lemma 5.3,recent({u}, u.log) is not affected. Therefore,I1(u) is also preserved in Line
2, and so, preserved in the execution ofT4.

Line 12 only affectsI2(u). By Lemma 5.4,I2(u) holds in Line12.
Therefore,I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution ofT4.
{I(u)}T5{I(u)}. Only lines that affectI(u) are Line2 and Line7. Line 2 does not affectI2(u), but

affectsI1(u) andI3(u). Line 7 affects onlyI2(u).
By part (2) of Lemma 5.3,recent({u}, u.log) is not affected in Line2. Therefore,I1(u) is preserved in

Line 2, and so, preserved in the execution ofT5.
Let m be theupdate message received andA be subtree(w, u). By part (1) of Lemma 5.3, after the

execution of Line2, u.aval [w] = m.x and recent(A, u.log) = recent(A,m.wlog). Hence, byI2(u),
u.aval [w] = f (recent(A, u.log)).

By part (2) of Lemma 5.3, for all nodesv in u.nbrs() \ {w}, recent(B, u.log) is not affected, where
B = subtree(v, u), and so,corresponds(B, u.aval [v], u.log) remains unchanged. Hence, along with the
arguments in the preceding paragraph,I3(u) is preserved in Line2, and so, preserved in the execution of
T5.

Line 7 affects onlyI2(u). By Lemma 5.4,I2(u) holds in Line7.
Therefore,I1(u) ∧ I2(u) ∧ I3(u) is preserved in the execution ofT5.
{I(u)}T6{I(u)}. In the execution ofT6, I1(u), I2(u), andI3(u) are not affected. Hence,I(u) is

preserved in the execution ofT6. �

For a request sequenceσ and a requestq, index (σ, q) returns the index ofq in σ if present, otherwise,
returns−1. For any request sequenceσ, and requestsq1 andq2 in σ, precedes(σ, q1, q2) is defined to be
true if and only if index (σ, q1) < index (σ, q2).

Lemma 5.6 Let q1 andq2 be anygather or write requests such thatq1.node = q2.node andq1.index <

q2.index . Then,q1 andq2 belong toq1.node.gwlog , andprecedes(q1.node.gwlog , q1, q2) holds.

Proof. From given condition,q1 andq2 belong toq1.node.log andprecedes(q1.node.log , q1, q2). By the
construction ofgwlog , the lemma follows. �

Lemma 5.7 Let u and v be distinct nodes and letq1 and q2 be write requests inv.gwlog such that
q2.node = v, precedes(v.gwlog , q1, q2), and q2 belongs tou.gwlog . Then,q1 belongs tou.gwlog and
precedes(u.gwlog , q1, q2).

Proof. By induction on the length of path fromv to u, sayl.
Base case.l = 1, that is, u and v are neighboring nodes. Letu receivesq2 in an update or a

response messagem, that is,q2 belongs tom.wlog and q2 does not belong tou.log just before receiv-
ing m. By the inspection of code,m.wlog = v.wlog . Hence, just beforem is sent,q2 belongs tov.log .
Sinceprecedes(v.log , q1, q2), precedes(m.wlog , q1, q2). If q1 is in u.log just before receivingm, then on
receivingm, q2 belongs tou.log , and so,precedes(u.gwlog , q1, q2) holds. Otherwise, on receivingm,
u.log = u.log .(u.log−m.wlogw ), and so,precedes(u.log , q1, q2) holds. Hence, by construction ofu.gwlog ,
precedes(u.gwlog , q1, q2) holds.

Induction hypothesis. For somei, such thatl = i, q1 belongs tou.gwlog andprecedes(u.gwlog , q1, q2).
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Induction step. Considerl = i + 1. Let w be the node such thatw belongs tou.nbrs() andv belongs
to subtree(T, w, u). Let u receivesq2 from w in anupdate or aresponse messagem. By the inspection of
code,q2 belongs tow.log , and so, by construction ofw.gwlog , q2 also belongs tow.gwlog . By induction
hypothesis and by construction ofw.gwlog , q1 belongs tow.log andprecedes(w.log , q1, q2) holds whenm
is sent. Sincem.wlog = w.wlog whenm is sent,q1 belongs tom.wlog andprecedes(m.log , q1, q2) holds.
As in the base case, regardless of whetherq1 belongs tou.log just before receivingm, q1 belongs tou.log

andprecedes(u.log , q1, q2) on receivingm. Hence, by construction ofu.gwlog , precedes(u.gwlog , q1, q2)
holds. �

Lemma 5.8 Letq1 andq2 begather requests such thatq1.node 6= q2.node, and for integeri > 1, q1
i
 q2.

Then, there is awrite requestq′ such thatq′.node = q1.node and for integerj, q1
j
 q′

i−j
 q2, where

i > j ≥ 1.

Proof. By contradiction. Assume that there is no suchwrite request atq1.node. Let q1
1
 . . .

1
 q′

1
 

q′′
1
 . . .

1
 q2 such thatq′′ is the first request in this chain that is not atq1.node. That is, in this chain,

q1, . . . , q
′ are atq.node. We can find such a request (q′′) sinceq2.node 6= q1.node. By causal ordering (

1
 )

definition,q′
1
 q′′ if and only if q′ is awrite request andq′′ is agather request. Hence, the contradiction.

Therefore, the lemma follows. �

Lemma 5.9 For any nodeu and i = 1, 2, let qi be a request such that(qi.op = write) ∨ (qi.op =
gather ∧ qi.node = u). Further assume thatq1  q2 and q2 belongs tou.gwlog . Then,q1 belongs to
u.gwlog andprecedes(u.gwlog , q1, q2) holds.

Proof. By definition, q1  q2 if and only if there existsi such thatq1
i
 q2. We prove the lemma by

induction oni.
Base case:i = 1, that is,q1

1
 q2. There are two casesq1

1
 q2 by rule(1) or by rule(2).

First case,q1
1
 q2 by rule (1), that is,q1.node = q2.node andq1.index < q2.index . There are two

cases,(a) u = q1.node; (b) u 6= q1.node. Case(a), that is,u = q1.node. By lemma 5.6,q1 andq2 belong
to u.gwlog , andprecedes(u.gwlog , q1, q2) holds. Case(b), that is,u 6= q1.node. Let v be q1.node. By
lemma 5.6,precedes(v.gwlog , q1, q2) holds. Sinceu 6= v, q1 andq2 arewrite requests. Sinceq2 belongs to
u.gwlog , by lemma 5.7,q1 is in u.gwlog andprecedes(u.gwlog , q1, q2) holds.

Second case,q1
1
 q2 by rule (2), that is, q1 is a write request andq2 is a gather request such

that q2 returns(q1.node, q1.index ) in q2.retval . Sinceq2 returns(q1.node, q1.index ), q1 is in u.log and
precedes(u.log , q1, q2) holds. By construction ofu.gwlog , q1 is in u.gwlog andprecedes(u.gwlog , q1, q2)
holds.

Induction step:q1
i
 q′

1
 q2. Consider the two cases, (1)(q′.op = write) ∨ (q′.op = gather ∧

q′.node = u), and (2)(q′.op = gather ∧ q′.node 6= u).
Case (1), that is,(q′.op = write) ∨ (q′.op = gather ∧ q′.node = u). By induction hypothesis,q′

belongs tou.gwlog , precedes(u.gwlog , q′, q2) holds. Also by induction hypothesis,q1 belongs tou.gwlog ,
precedes(u.gwlog , q1, q

′) holds. Hence,q1 belongs tou.gwlog , andprecedes(u.gwlog , q1, q2) holds.

Case (2), that is,(q′.op = gather ∧ q′.node 6= u). Let q′.node bev. Sinceq′.op = gather , q′
1
 q2

could only be by rule (1), that is,q2.node = v andq′.index < q2.index . Sincev 6= u, q2 must be awrite

request. By Lemma 5.6,precedes(v.gwlog , q′, q2) holds. Now consider the two possible cases forq1, (a)
q1.op = write, and (b)q1.op = gather ∧ q1.node = u. Case (a), that is,q1.op = write. By induction
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hypothesis,q1 belongs tov.gwlog andprecedes(v.gwlog , q1, q
′) holds. From above,q1 andq2 belong to

v.gwlog andprecedes(v.gwlog , q1, q2). By lemma 5.7,q1 belongs tou.gwlog andprecedes(u.gwlog , q1, q2).

Case (b), that is,q1.op = gather ∧ q1.node = u. Sinceq1.node 6= q′.node, q1
i
 q′, andq1 and

q′ are gather requests,i must be greater than1. By Lemma 5.8, there is awrite requestq′′ such that

q′′.node = u andq1
j
 q′′

i−j
 q′, for somej, i > j ≥ 1. By induction hypothesis,q′′ belongs tov.gwlog

andprecedes(v.gwlog , q′′, q′) holds. Hence, from above,precedes(v.gwlog , q′′, q2) holds. Sinceq′′ andq2

arewrite requests,q2.node = v, q2 belongs tou.gwlog , andprecedes(v.gwlog , q′′, q2) holds, by Lemma

5.7, precedes(u.gwlog , q′′, q2) holds. From above,q′′ belongs tou.gwlog andq1
j
 q′′ for somej ≥ 1.

Hence, by induction hypothesis,precedes(u.gwlog , q1, q
′′) holds. From above, it follows that,q1 belongs to

u.gwlog andprecedes(u.gwlog , q1, q2) holds. �

Lemma 5.10 For any nodeu, u.gwlog ′ respects the causal ordering among requests inu.gwlog ′.

Proof. We prove this lemma by induction on the number of iterations in the construction ofu.gwlog ′. For
the base case, by Lemma 5.9,u.gwlog respects the causal ordering among requests inu.gwlog . In each
iteration in the construction, the additional requests are added at the end ofu.gwlog ′. By Lemma 5.9 again,
this step preserves the causal ordering among requests inu.gwlog ′. �

Lemma 5.11 For any nodeu, u.log ′ andu.gwlog ′ are compatible.

Proof. We prove this lemma by induction on the number of iterations in the construction ofu.log ′ and
u.gwlog ′. For the base case, by Lemma 5.5,u.log andu.gwlog are compatible. In each iteration of the
construction, by the base case and the induction hypothesis, additional requests appended to both the request
sequences are mutually compatible. Hence,u.log ′ andu.gwlog ′ are compatible. �

Theorem 4 Let setA be the execution-history of any lease-based algorithmA. Then,A is causally consis-
tent.

Proof. Consider any nodeu in T . By construction,u.gwlog ′ is a serialization of all the requests inu.gwlog ′.
From this observation and Lemma 5.10,u.gwlog ′ is causally consistent. By construction,u.log ′ contains all
the requests inpruned(A, u). By Lemma 5.11,u.log ′ andu.gwlog ′ are compatible.

Hence, by definition,A is causally consistent. �
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