Online Aggregation over Trees

C. Greg Plaxtoh? Mitul Tiwari 3 Praveen Yalagandula

Abstract

Consider a distributed network with nodes arranged in aangkeach node having a local value. We
formulate an aggregation problem as the problem of aggregealues (e.g. summing values) from all
nodes to the requesting nodes in the presence of writes. dddeégto minimize the total number of
messages exchanged. The key challenges are to define aoidtimteptable” aggregate values, and to
design algorithms with good performance that are guardriteproduce such values. We formalize the
acceptability of aggregate values in terms of certain tescy guarantees. The aggregation problem
admits a spectrum of solutions that trade off between ctergig and performance. We propose a lease-
based aggregation mechanism as a design point in this speand evaluate algorithms based on this
mechanism in terms of consistency and performance. Witardetp consistency, we generalize the
definitions of strict and causal consistency, traditiondifined for distributed shared memory, for the
aggregation problem. We show that any lease-based algoptbvides strict consistency in sequential
executions, and causal consistency in concurrent exexutitfith regard to performance, we propose an
online lease-based algorithm, and show that, for sequentigutions, the algorithm i%—competitive
against an optimal offline lease-based algorithm, &edmpetitive against an optimal offline algorithm
that provides strict consistency. The key highlight of tesults is the design of an online algorithm that
effectively reduces the analysis to reasoning about a paieighboring nodes.

1 Department of Computer Science, University of Texas at Austin, Yedsity Station CO500, Austin, Texas 78712—-0233.

2 Email: plaxton@cs.utexas.edu. Supported by NSF Grant CCR—-0GH0RVANI-0326001.

3 Email: mitult@cs.utexas.edu. Supported by NSF Grant ANI-03260@1Taras Advanced Technology Program 003658-
0608-2003.

4 HP Labs, 1501 Page Mill Rd MS 1181, Palo Alto, California 94304. Emailveen.yalagandula@hp.com.

1 Introduction

Information aggregation is a basic building block in many large-scale distdlaygelications such as system
management [12, 20, 25], service placement [11, 26], data sharthgaaing [17, 22, 23, 28], file loca-
tion [9], grid resource monitoring [8], network monitoring [15], collectirgadings from sensors [14, 16],
multicast tree formation [5, 18, 19], and naming and request routing [6Mgny generic aggregation
frameworks [8, 19, 27] proposed for building such distributed applinatellow scalable information ag-
gregation by forming one or more aggregation trees or hierarchies withimescs nodes, and by using an
aggregation function at each node to summarize the information from the imotlee associated subtree.

Unfortunately, most of the existing aggregation frameworks use a statiegag@n strategy that prop-
agates the new aggregate values on writes to a certain set of nodesfanuhtion is aggregated from
those nodes on reads. A static aggregation strategy may perform webtrfue workloads, but poorly for
others. An aggregation strategy tuned for read-dominated workload®lg likconsume high bandwidth
when applied to write-dominated workloads. For example, in Astrolabe @i®lyrites, the new aggregate
values are propagated to all nodes so that the read requests at ayamdae satisfied locally. Conversely,
a strategy tuned for write-dominated workloads is likely to suffer from aassgary latency or imprecision
on read-dominated workloads. For example, in MDS-2 [8], no aggregatiperformed on writes, but the
information is aggregated on reads. Furthermore, different nodes xhdlyiteactivity at different times.
Therefore, a static aggregation strategy is not suitable for a genernegagign framework.

SDIMS [27] proposes a hierarchical aggregation framework with &illexX\PI that allows applications
to control the update propagation, and hence, the aggregation dgemess of the system. SDIMS provides
knobs that an application needs to tune in advance. Though SDIMSexxposch flexibility to applications,
it requires applications to know the read and write access patterns atpribioose an appropriate strategy.

In this work, we consider a distributed network with nodes arranged ineaatnel each node having
a local value. We formulate the aggregation problem (formally defined itid®e2) as the problem of
aggregating values (e.g., computing min, max, sum, or average) from albties mo the requesting nodes
in the presence of writes. The goal is to minimize the total number of messagiesnged. The main
challenges are to define acceptable aggregate values, and to desighralgwith good performance that
produce acceptable aggregate values. There is a spectrum of sothwmnsde off between consistency
and performance. We introduce a lease-based mechanism for aggreggorithms as a design point in
this spectrum. The notion of a lease used in our mechanism is a generaliZatiat ased in SDIMS.
Informally, a lease from a node to its neighboring node works as follows. Let the removal @i, v)
yields two treessubtree(u, v) is defined to be one of the trees that contain®nce the node establishes
a lease ta, then, on a write at any node kubtree(u, v), u propagates the new aggregate value.toA
lease-based aggregation algorithm can dynamically adapt propagatiom mbdated aggregate value on a
write, by setting and breaking leases appropriately.

We evaluate the lease-based aggregation algorithms in terms of consistdmparimrmance. Interms of
consistency, we generalize the notions of strict and causal consisteadiionally defined for distributed
shared memory [24, Chapter 6], for the aggregation problem. We shdvanlydease-based algorithm
provides strict consistency for sequential executions, and caussistency for concurrent executions.

In terms of performance, we analyze the lease-based algorithms in thettompaalysis framework
[4]. In this framework, we compare the cost of an online algorithm with eéespo an optimal offline
algorithm. An online aggregation algorithm executes each request withgutreowledge of the future
requests. On the other hand, an offline aggregation algorithm has kdgenvié all the requests in advance.
An online algorithm is--competitivef, for any request sequenee the cost incurred by the online algorithm

in executings is at mostc times that incurred by an optimal offline algorithm.

As is typical in the competitive analysis of distributed algorithms [2, 3], we domu sequential exe-
cutions. In this paper we present an online lease-based aggregatoithatgRW W which, for sequential
executions, i%-competitive against an optimal offline lease-based aggregation algorithieflyBRWW
works as follows. The algorithdRWW sets the lease from to v during the execution of a request for
the aggregate value at a nodesirbiree(v, u), and breaks the lease after two consecutive write requests at
a node insubtree(u,v). To show the upper bound result, we use a potential function argumenalsd/e
show that the result is tight by providing a matching lower bound. Furthersivow that, for sequential
executionsRWW is 5-competitive against an optimal offline algorithm that provides strict comgigte

The key highlight of the results is the design of the lease-based mechamisRWAW that effectively
reduces the analysis to reasoning about a pair of neighboring nodieged@uction allows us to formulate a
linear program of small size, independent of tree size, for the competitizlysis oRWW.

Related Work. Various aggregation frameworks have been proposed in literatuineasu8DIMS [27],
Astrolabe [19], and MDS [8]. SDIMS is a hierarchical aggregatiomnieevork that utilizes DHT trees to
aggregate values. SDIMS provides a flexible API that allows applicatiodsdime how far the updates to
the aggregate value due to the writes should be propagated. Astrolabafisraration management system
that builds a single logical aggregation tree over a given set of nodalébe propagates all updates to the
aggregate value due to the writes to all the nodes, hence, allows all tleetodaa satisfied locally. MDS-2
also forms a spanning tree over all the nodes. MDS-2 does not prtepagdates on the writes, and each
request for an aggregate value requires all nodes to be contacted.

There are some similarities between our lease-based aggregation algorithprica caching work. In
CUP [21], Roussopoulos and Baker proposeeond-chancalgorithm for caching objects along the routing
path. The algorithm removes a cached object after two consecutivéespal@ propagated to the remote
locations due to the writes on that object at the source. The secondechlyorithm has been evaluated
experimentally, and shown to provide good performance. In the distritfilgeallocation [3], Awerbuch et
al. consider replication algorithm for a general network. In their algorittnmg read, the requested object is
replicated along the path from the destination to the requesting node. On salldtgpies are deleted except
the one at the writing node. Awerbuch et al. showed that their distributexdithlgn has poly-logarithmic
competitive ratio for the distributed caching problem against an optimal ¢iepettaffline algorithm.

The concept of time-based leases has been proposed in literature to madmisistancy between the
cached copy and the source. This kind of leases has been applied irdistitputed applications such as
replicated file systems [13] and web caching [10].

Ahamad et al. [1] gave the formal definition of causal consistency farildised message passing sys-
tem. The key difference between their setup and ours is in reading oreeca@hpared to aggregating values
from all the nodes.

Organization. In Section 2, we introduce definitions and aggregation problem statenfaetsion 3
defines the class of lease-based aggregation algorithms, and estatgishiesproperties of such algorithms.
In Section 4, we present our online lease-based aggregation alg@MhW, and establish bounds on the
competitive ratio oRWW with respect to sequential executions. In section 5, we establish thatasey le
based algorithm includinBWW is causally consistent with respect to arbitrary concurrent executions.

2 Preliminaries

Consider a finite set of nodes (i.e., machines) arranged in a tree nefweitk reliable FIFO communica-
tion channels between neighboring nodes. We are also given an atignegperators that is commutative,

associative, and has an identity elem@nfor convenience, we write;dy®z as®(x, y, z). For the sake
of concreteness in this paper, we assume that the local value assodifitedet node is a real value, and
the domain ofp is also real.

Theaggregate valuever a set of nodes is defined@somputed over the local values of all the nodes
in the set. That is, the aggregate value over a set of nfdes. ., v} IS ®(vy.val, ..., vg.val), where
v;.val is the local value of the nodeg. Theglobal aggregate values defined as the aggregate value over
the set of all the nodes in the trée

A request is a tupler{ode, op, arg, retval), wherenode is the node where the request is initiated,
is the type of the request, eithesmbine or write, arg is the argument of the request (if any), andval
is the return value of the request (if any). To executer&e request, an aggregation algorithm takes the
argument of the request and updates the local value at the requediiegTmexecute aombine request,
an aggregation algorithm returns the global aggregate value at thestiegueode. In the case of multiple
writes at a node, the constraints on the returned global aggregate vahexified later in the paper.

Theaggregation problens to execute a given sequence of requests with the goal of minimizing the total
number of messages exchanged among nodes. For any aggregatiaghralgband any request sequence
we defineC'4 (o) as the total number of messages exchanged among nodes in exechyiogy An online
aggregation algorithmi is c-competitive if for all request sequencesand an optimal offline aggregation
algorithmB, C4(0) < ¢- Cp(0).

We sayT is in quiescent state if (1) there is no pending request at any node;gf@) fino message
in transit across any edge; and (3) no message is sent until the nagstasg initiated. In short]" is in
guiescent state if there is no activityIhuntil the next request is initiated.

In a sequential execution of a request, the request is initiated in a quistatnand is completed when
T reaches another quiescent state. In a sequential execution of atreggeence, every requesf in o is
executed sequentially. In a concurrent execution of a requestrsaejuee new request can be initiated and
executed while another request is being executed.

We refer to the aggregation problem in which the given request segusmxecuted sequentially as
sequential aggregation problem

The aggregation functiofiis defined over a set of real values or over a set of write requests seiA
of real valuescy, . .., z, f(A) is defined asd(z1, . .., x,,). FOr a setd of write requestsy, . . ., ¢m, f(A)
is defined ag(A4) = ©(q1.ar9, . .., ¢m-arg).

For a request in request sequence let A(o,) be the set of the most recent writes preceding o
corresponding to each of the nodeginWe say that an aggregation algorithm providi&:t consistencin
executingo if any combine requesy in o returnsf (A(o, ¢)) as the global aggregate valuejatode. Note
that this definition of strict consistency for an aggregation algorithm is argémation of the traditional
definition of strict consistency for distributed shared memory systemsuftrdr details, see [24, Chapter
6]).

We define an aggregation algorithm torieeif the algorithm provides strict consistency for sequential
executions.

The set of all nodes in treE is represented byodes(T'). For any edgéu, v), removal of(u, v) yields
two trees,subtree(u, v) is defined to be one of the trees that contains

3 Lease-based algorithms

In Figure 1, we present a mechanism for any lease-based aggreglgtioithm. The underlined function
calls represent stubs for policy decisions of lease setting and breaking.

node u
var taken|| : array(vi,...,vx] of boolean;
granted[] : array[vi,...,vx] of boolean;
aval[] : arraylvi,...,v;] of real; wal : real;
uaw : set {int}; pndg : set {node};
snt[] : array(vi,...,vg] of set {node};
upentr : int; sntupdates : set {{node, int, int}};
begin
true — {combine}
oncombine(u);
foreachv € tkn() do
vaw[v] := 0; od

ifu ¢ pndg —
if nbrs() \ thn() =0 —
return gval();
Onbrs() \ thkn() 0 —
sendprobes(u);
snt[u] :== nbrs() \ thn(); fi fi
true — {write q}
val := q.arg;
if grntd() #0 —
id := newid();
Sforwardupdates(u, id); fi
Orev probe() fromw —
probercvd (w);
foreachv € tkn() \ {w} do
waw(v] := 0; od
ifw ¢ pndg —
if nbrs() \ {tkn() U{w}} =0 —
sendresponse(w);
Onbrs() \ {thn() U {w}} # 0 —
sendprobes(w);
snt[w] := nbrs() \ {thkn() U {w}}; i fi
Orev response(z, flag) fromw —
responsercvd(flag, w);
aval|w] := x;
taken|w] := flag;
foreach v € pndg do
snt[v] := snt[v] \ {w};
if sntfv] =0 —
pndg := pndg \ {v};
ifv=u—
return gval();
Ov#u—
sendresponse(v); fi fi od
Orcv update(z, id) fromw —
updatercvd(w);
aval[w] := x;
vaw([w] := vawlw] U id;
if grntd() \ {w} #0 —
nid = newid();
sntupdates := sntupdates U {w, id, nid };
forwardupdates(w, nid);
Ogrntd() \{w} =0 —
forwardrelease(); fi
Orev release(S) fromw —
releasercvd(w);
granted|w] := false;
onrelease(w, S);
end

~ e ~ ~ | |
WP OONOURWNRT R OOONOUIRWNRAS OCONOUITRWNRPY® NWNRN OONOUTAWNP-

Figure 1: Mechanism for any lease-based algorithm.

nodes.

procedure sendprobes(node w)
pndg := pndg U {w};

foreach v € nbrs() \ {tkn() U sntprobes() U{w}} do

sendprobe() to v; od

procedure forwardupdates(node w, int id)
foreach v € grntd() \ {w} do
sendupdate(subval(v), id) tov; od

procedure sendresponse(node w)
if (nbrs() \ {tkn() U {w}} =0) —
granted[w] := setlease(w); fi
sendresponse(subval(w), granted|[w]) to w;

boolean isgoodforrelease(node w)
return (grntd() \ {w} = 0);

procedure onrelease(node w, set S)
Let id is the smallest id ir5;
foreach v € tkn() \ {w} do
Let A be the set of tuplea in sntupdates
such thatv.node = v anda.sntid > id;
Let 3 be a tuple inA
such thaf3.rcvid < a.rcvid, forall ain A;
Let S’ be the set of ids inaw[v] with ids > B.rcvid;
vaw[v] :== S’;
if isgoodforrelease(v) —
releasepolicy(v); fi od
forwardrelease();

procedure forwardrelease()
foreach v € tkn() do
if isgoodforrelease(v) —
if taken[v] A breaklease(v) —
taken[v] := false;
sendrelease(uaw(v]) tov;
vaw(v] := 0;fi fi od

int newid()
upentr = upentr + 1;
return upcntr;

real gval()
T := val;
foreach v € nbrs() do
z = f(z, avalv]); od
return z;

real subval(node w)
T = val;
foreach v € nbrs() \ {w} do
z = f(x, aval[v]); od
return z;

set nbrs()

return the set of neighboring nodes
set tkn()

return {v | v € nbrs() A taken[v] = true};
set grntd()

return {v | v € nbrs() A granted[v] = true};
set sntprobes()

return {snt[v1] U --- U snt[vg]};

4

For the npfle , . .., v} is the set of neighboring

Initially, for any nodeu, u.val := 0, u.uaw := 0, u.pndg := 0, u.upcntr := 0, u.sntupdates := (). For
each node in u.nbrs(), u.taken[v] := false, u.granted[v] := false, u.aval[v] := 0, andu.snt[v] := 0.

3.1 Informal Overview

The status of the leases for an edge| is given by two boolean variablestaken|[v] andu.granted|v].
Nodew believes that the lease fromto « is set if and only ifu.taken[v] holds. Also,u believes that the
lease fromu to v is set if and only ifu.granted[v] holds. Initially, for any two neighboring nodesandv,
u.granted|v] does not hold.

The local value at: is stored inu.val. For each neighbow; of u, u.aval[v;] represents the aggregate
value computed over the set of nodessirbtree(v;, u). The following kinds of messages are sent by a
lease-based algorithmrobe, response, update, andrelease.

The variablesntupdates is a set of tuples, where each tuple represents forwangédtc messages
corresponding to a receivegdate message. Each tuple consists of three elements,, rcvid, andsntid.
The first elementpode, identifies the node from which thedate message is received. The second element,
rcvid, is the identifier of the receivedpdate message, and the last elementtid, is the identifier of the
corresponding sentpdate messages.

Informally, for any nodeu, a lease from a node to its neighboring node works as follows. If
u.granted[v] holds then, on avrite request at any node isubtree(u, v), u propagates the new aggregate
value tov by sending anipdate message. To break the lease (that is, to falgifyranted[v]), a release()
message is sent fromto «. On the other hand, ifi.. granted[v] does not hold then, on @mbine request
at any node insubtree(v, u), aprobe() message is sent fromto u. As a result, aesponse message is sent
fromu tow.

3.2 Properties of any lease-based algorithm for sequentiaixecutions

We define dease graphG(Q) in a quiescent stat@, as a directed graph with nodes as the nodéds iand
for any edge, v) in T such that..granted[v] holds, there is a directed edge ¢) in G(Q).
For any two distinct nodes andv, we define the:-parent ofv as the parent af in treeT” rooted atu.

Lemma 3.1 For a sequential execution of a request sequence, in any quiesatfer any two neighbor-
ing nodesu andv, u.taken|v] = v.granted|u].

Proof. Consider any node in u.nbrs(). Variableu.taken[v] can be set tarue from false only in Line 3
of T, if the flag in the receivedesponse message isrue. However, while sending theesponse message
from v to u with flag set totrue, v.granted|u] is set totrue in sendresponse().

While sending aelease message from to v, u.taken[v] is falsified in forwardrelease(). However, on
receiving therelease message at, v.granted|u] is falsified in Line 2 ofT. O

Lemma 3.2 For a sequential execution of a request sequence, in any quiesasstfor any node: and
any nodev in u.nbrs(), if u.granted|v] then, for all nodesv in u.nbrs() \ {v}, u.taken]w] holds.

Proof. By inspection of codey.granted[v] can be set tarue only in the procedurgendresponse(). By
inspection of code ofendresponse(), u.granted[v] can be set torue only if u.nbrs() \ {u.thkn()U{v}} =
(). That is,u.granted[v] can be set tarue only if, for all nodesw in u.nbrs() \ {v}, u.taken|w] holds.
Further, by inspection of code.taken|w] is setfalse only in the procedurgorwardrelease(). By
inspection of code oforwardrelease(), u.taken|w] can be set téalse only if, for all nodesv in w.nbrs() \

5

{w}, u.granted[v] is false. That is, for any node in u.nbrs(), if u.granted|v] holds then, for any node
inu.nbrs() \ {v}, u.takenw] is not falsified. O

Lemma 3.3 Consider a sequential execution of a request sequernea lease-based algorithm. For any
combine requesty in o, initiated at nodeu in a quiescent staté), let A be the set of nodes such that
v.granted[w] does not hold irQ, wherew is theu-parent ofv. In @, for any nodev in T, if v.pndg = 0
and for any nodev in v.nbrs(), v.snt[w] = @, then, during the execution of (1) |A| probe messages are
sent, and any nodein A receives arobe message from the-parent ofv; (2) | A| response messages are
sent; any node in A sends aresponse message to the-parent ofv; (3) no update Or release messages
are sent.

Proof. We prove part (1) by induction on the length of the path freto any nodey in A.

Base case (path length. By inspection of code df’, probe messages are sent to all nodes.inbrs()\
{u.tkn() U u.sntprobes() U {u}}. Since in the quiescent stadg for any nodev in 7" and any nodev in
v.nbrs(), v.snt[w] = 0, u.sntprobes() = (). Hence, arobe message is sent to any noden u.nbrs() such
thatu.taken|[v] does not hold. By Lemma 3.1, @, u.taken|v] = v.granted|u]. Hence, any node in A
such thaw is in u.nbrs() andv.granted|u] does not hold, receivespaobe message fron.

Induction hypothesis. Any nodein A such that the length of the path framto v is ¢ receives arobe
message from the-parent ofv.

Induction step. Consider a noden A such that the length of the path fromto v is (i + 1). Let the
u-parent ofv is w. By the definition ofA, v.granted[w] does not hold inQ. Hence, by Lemma 3.1 and
Lemma 3.2w.granted [u-parent ofw] does not hold irQ). Thus,w is in A, and by induction hypothesis
receives grobe message fromw’. By inspection of code of’3, w sends arobe message to any node
in w.nbrs() such thatw.taken|[w’] does not hold. Since.taken[v] does not hold and the communication
channels are reliable,receives @robe message fronw, theu-parent ofv.

From above arguments, during the execution afleasi A| probe messages are sent. By the inspection
of code, any node in A U {u} does not send anyrobe message to any node intkn() \ {u-parent ofv}.
And so, it is straightforward to see that any nadm nodes(T) \ A does not receive anyrobe message.
Hence, during the execution gfonly |A| probe messages are sent.

We prove part (2) by reverse induction on the length of the path ficim any nodev in A. Let the
maximum length of the path fromto any nodev in A bel.

Base case. Consider a nodén A such that the length of the path fromto v is [. By part (1),v
receives @robe message fronw, theu-parent ofv. In the quiescent statg, let B bev.nbrs() \ {v.tkn() U
{u-parent ofv}}. By Lemma 3.1,B must bef), otherwise, there would be a nodednwith the length of
the path fromu equal tol + 1. By inspection of code of, if B is empty, therv sends back aesponse
message ta.

Induction hypothesis. Let any nodein A with the length of path fromu equal toi, sends aesponse
message to the-parent ofuv.

Induction step. Consider a nodeén A such that the length of the path fromto v isi — 1. Sincew is
in A, i — 1 must be greater thal In Q, let B bev.nbrs() \ {v.tkn() U {u-parent ofv}}.

By part (1),v receives arobe message from the-parent ofv. By given condition, inQ, v.snitprobes()
is empty. By inspection of code @, if B is empty, thery sends aresponse message back to theparent
of v. Hence, the induction step succeeds.

Otherwisey sendsprobe messages to each of the nodednand sets.pndg = {u-parent ofv} and
v.snt[u-parent ofv] = B. Since we are dealing with sequential execution, no node initiates anysteque

during the execution of. And so,v does not initiates any request or receiveg-@e message during the
execution ofy. Hencep.pndg < 1.

By Lemma 3.1 and definition oft, any node inB is also present itd. Further, the length of the path
from « to any node inB isi. Hence, by induction hypothesis, any nadé B sends aesponse message to
v. By inspection of code df’;, on receiving theeesponse messagey removesw from v.snt[u-parent ofv].

If v.snt[u-parent ofv] becomes empty, then setsv.pndg = 0, and sends aesponse message to the
u-parent ofv. Hence, the induction step succeeds.

(3) Follows from the inspection of code. d

Lemma 3.4 For any sequential execution of a request sequenda any quiescent state, for any node
(1) u.pndg = 0; (2) for any nodev in u.nbrs(), u.snt[v] = 0;

Proof. We prove by induction on the number of requests executed.

Base case: Initially, for any node v.pndg = () and for any nodev in v.nbrs(), v.snt[w] = (.

Induction hypothesis: In the quiescent st@tpist after execution afrequests, for any node v.pndg =
() and for any nodev in v.nbrs(), v.snt[w] = .

Induction step: Consider the executi@nt 1)st requesy initiated inQ. If ¢ is awrite request, then by
inspection of code, nprobe or response message are generated. Hence, for any nodepndg and any
nodew in v.nbrs(), v.snt[w] are not modified. Therefore, the executionof- 1)st request preserves the
claim of the lemma.

Otherwisey is a combine request, say at. Consider execution af. Let A be the set of nodes such
thatv.granted|[w] does not hold af), wherew = u-parent ofv.

By hypothesis, irQ, for any nodev, v.pndg = () and for any nodev in v.nbrs(), v.snt[w] = (.

First, consider any node in nodes(T') \ {A U {u}}. By inspection of code, for any node v.pndg
and for any nodev in v.nbrs(), v.snt[w] can be modified only i} (on acombine request av), in T3 (on
receiving aprobe message), or ifiy (on receiving aresponse message). In sequential executionogfv
does not initiate any request during the execution.dy Lemma 3.3, during the execution g@fany node
in A receives a@robe message, and on|yl| probe messages are sent. Henceloes not receive anyrobe
message during the executiongfBy definition of A, u-parent of any node id isin AU {u}. By Lemma
3.3, during the execution af, |A| response messages are generated and any nodé sends aesponse
message to the-parent of the node. Hence does not receive anyesponse message during the execution
of ¢. Hence,v.pndg and for any nodev in v.nbrs(), v.snt{w] remain unchanged, that i, during the
execution ofy.

Second, consider = u. By inspection of code ofy, if u.nbrs() \ w.tkn() = 0, thenu returnsgual(),
and sou.pndg and for any nodev in u.nbrs(), u.snt[w] remain unchanged, that is, remdinFurther, by
Lemma 3.1 and Lemma 3.24| = (). Hence, from the arguments in the previous paragraph, induction step
succeeds, and the lemma follows.

Otherwise, ifu.nbrs() \ u.tkn() # 0. Then, sinceu.sntprobes() = 0 by induction hypothesisy
sends grobe message to each of the node in thewetrs() \ w.tkn(), andu addsu to u.pndg and sets
u.snt[u] = nodes.nbrs() \ u.tkn(). Since in a sequential execution, a new request can be generated only in
a quiescent state, no node generates any requesy imtibmpleted. Hence, does not generate any request
until ¢ is completed, and by Lemma 3.3,does not receive anyrobe message from any node. Therefore,
|u.pndg| < 1. By definition of A, any nodew in w.nbrs() \ u.tkn() is also inA. By Lemma 3.3w sends
back aresponse message ta. By inspection of code df;, on receiving theesponse messagey removes
w fromw.snt[u]. Whenu.snt[u] = 0, that is,u has receivedesponse messages from all the nodes to whom
u has sent arobe message, them, setsu.pndg = (), and returngval().

7

Finally, consider any node in A. By Lemma 3.3p receives grobe message from the-parent ofv,
sayw. LetC bev.nbrs()\ {v.tkn()U{w}}. By inspection of code df3, if C' = (), thenv sends aesponse
message ta, andv.pndg and for any nodev’ in v.nbrs(), v.snt[w’] remains unchanged, that is, remains
0.

Otherwise, ifC' # (). Then, since.sntprobes() = (), v sends @robe message to each of the nodein
By inspection of code of’;, while sending arobe messages; addsw to v.pndg and set.snt[w] = C.
As argued in the preceding paragraph, in a sequential execlutipndg| < 1. By Lemma 3.3, any node’
in C sends back asponse message to. By inspection of code df;, on receiving theesponse message,
v removesw’ from v.snt[v]. Whenv.snt[w] = 0, that is,v has receivedesponse messages from all the
nodes inC', then,w setsv.pndg = (), and sends a&sponse message back to.

Hence, after execution qf for any nodey in A, v.pndg = () and for any node in v.nbrs(), v.snt[w] =
0. O

Lemma 3.5 Consider a sequential execution of a request sequernea lease-based algorithm. For any
write requesty in ¢ initiated at nodeu in a quiescent staté), let A be the set of nodes i reachable
fromwu in G(Q). Then, during the execution gf (1) any node in A receives arupdate message from the
u-parent ofv; (2) |A| update messages are sent; and (3) pwbe or response messages are sent.

Proof. (1) We prove by induction on the length of the path frarto any nodey in A.

Base case (path lengih. By the inspection of code df;, update messages are sent to all nodes in
u.grntd(). Thatis, anupdate is sent to any node in A such that the length of the path frairto v is 1.

Induction hypothesis. Any nodein A such that the length of the path fromto v is i, receives an
update message from the-parent ofv.

Induction step. Consider a nodén A such that the length of the path framo v is (:+1). By induction
hypothesis, the-parent ofv, sayw, receives anipdate message. By definition of, w.granted|v] holds.

By inspection of code of’5, w sends arupdate message t@. Since the communication channels are
reliable,v receives anipdate message fronw, thewu-parent ofv.

(2) From above arguments, at leadt update messages are sent. By the inspection of code, any node
vin AU {u} does not send anypdate message to any node innbrs() \ {v.grntd() U {u-parent ofv}}.
And so, it is straightforward to see that any nadie nodes(T") \ A does not receive anypdate message.
Hence, during the execution gfonly |A| probe messages are sent.

(3) Follows from the inspection of code. d

Lemma 3.6 For any nodeu, u.granted[v] is set totrue only while sending aesponse message to with
flag set totrue.

Proof. For any node, u.granted[v] can be set térue only in sendresponse procedure. By the inspection
of code, the lemma follows. O

Lemma 3.7 For any nodeu, u.granted[v] is set tofalse only on receiving aelease message from.

Proof. Follows from the inspection of code. O

For any request sequeneeand any ordered pair of neighboring nodesv), we defines (u, v) as fol-
lows: (1)o(u,v) is a subsequence of (2) for anywrite request in o such that.node is in subtree(u, v),
qisino(u,v); and (3) for anycombine requesy in o such thay.node is in subtree(v, u), g isino(u,v).

Lemma 3.8 Consider a sequential execution of a request sequertpga lease-based algorithm and any
two neighboring nodes andwv.

1. Let acombine requesty in o(u, v) be initiated in a quiescent stat@. If u.granted|[v] does not hold
in @, then in execution qf, (i) a probe message is sent fromto u; (ii) a response message is sent
from u to v; (iii) w.granted[v] can be set tarue while sending theesponse message from to w.
Otherwise, ifu.granted[v] holds, then in execution @f no messages are exchanged betweandw.

2. Let awrite requesty in o(u,v) be initiated in a quiescent statg. If u.granted|v] does not hold in
@, then in execution af, no messages are exchanged betweamd v. Otherwise, ifu.granted|v]
holds inQ, then in execution of, (i) an update message is sent fromto v; (ii) a release message
from v to u can be sent; (i) On receiving theslease message at, u.granted[v] is set tofalse.

3. Let awrite requesty in o (v, u) be initiated in a quiescent stat@. If u.granted[v] holds in@, then
in execution ofy, a release message can be sent franto u, and on receiving theelease message at
u, u.granted|v] is set tofalse.

4. In the execution of ambine request ino (v, u), u.granted[v] is not affected.

Proof. Part (1) follows from Lemma 3.3, Lemma 3.4, and 3.6. Part (2) follows framina 3.5, Lemma
3.7, and the inspection of code. Part (3) follows from Lemma 3.7 and thedtiep of code. Part (4) follows

from Lemma 3.3, Lemma 3.4, and Lemma 3.6. O
u.granted[v] in Q | Requesy in o(u,v) | u.granted[v]in Q" | Cost
false R false 2
false R true 2
false % false 0
false N false 0
true R true 0
true w false 2
true A% true 1
true N false 1
true N true 0

Figure 2: For any two neighboring nodesindv, possible changes in the valuewf§ranted|v] and costs
incurred by any lease-based algorithm in executing any requiesin o (u, v). Here,q is initiated in the
quiescent stat€ and completed in the quiescent stgle A release message sent during the execution of
awrite request inv (v, u) is associated with aocop (N) request.

Lemma 3.8 is summarized in Figure 2.78lcase message sent during the execution afréte request
in o(v, u) is associated with acop (N) request in this figure.

In a sequential execution of a request sequenbg any lease-based algorithdy for any ordered pair
of neighboring nodes andv, we defineC4(c, u,v), as the number of the following kinds of messages
exchanged betweem and v: (1) probe messages from to u; (2) response messages from to v; (3)
update messages from to v; and (4)release messages from to u.

Lemma 3.9 Consider a sequential execution of a request sequeniog a lease-based algorithtd. For
any two neighboring nodesandv, the total number of messages exchanged betweear v in executing
o is the sum o€ 4 (o, u,v) andC 4(o, v, u).

Proof. Follows from the definitions of’ 4 (o, u, v) andC 4 (o, v, u). O
For any nodey, let I(u) be I (u) A Ix(u) A I3(u), where

e I, (u): For the most recentrite requesy atu, u.val = q.arg.

e I5(u): For anyupdate or response messagen fromv tou, m.xz = f(A), whereA is the set of most
recent write requests at each of the nodesuiitree (v, u).

e I3(u): For any quiescent statg¢ and any node in w.tkn(), u.aval[v] = f(A(v)), whereA(v) is the

set of the most recentrite request at each of the nodessithtree(v, u).
Lemma 3.10 Consider a sequential execution of a request sequenmea lease-based algorithm. For any
nodeu, if I; (uv) and I3(u) hold just before ampdate messagen is sent fromu to any nodev in w.nbrs(),
thenm.z = A, whereA is the set of the most receat-ite requests at each of the nodessimbtree(u, v).

Proof. By Lemma 3.2, for any node in u.nbrs(), if u.granted[v] then, for all nodesv in u.nbrs() \ {v},
u.taken|w] holds.

For any nodew in u.nbrs(), let A(w) be the set of the most receatite requests precedingin o at
each of the nodes isubtree(w, u). By I3(u), if u.taken[w] then,u.aval|w] = f(A(w)).

By the inspection of code, for any noden u.grntd(), anupdate messagen is sent tov with m.x =
u.subval(v). Let{wy, ..., wi} beu.nbrs() \ {v} andB be the set of the most recemtite requests at each
on the node ikubtree(u, v).

m.x = subval(v)
= f(uw.wal, avallwi],. .., aval[wy]

= flg.arg, f(A(w1)), ., f(A(wr)))
= f(B) (1)

In the above equation, the second equality follows from the definition aftiom subval(). The third
equality follows from/; (u) andI3(u). The last equality follows from the fact thatbiree(u,v) = {u} U
subtree(wy, u) U - - - U subtree(wy, u). O

Lemma 3.11 Consider a sequential execution of a request sequenmea lease-based algorithm. For any
nodeu, I(u) is an invariant.

Proof.

Initially, there are naurite request at. andu.tkn() is empty. Hencel (u) holds.

{I(w)}T1{I(u)}. I (u), Io(u), andl3(u) are not affected.

{I(u)}T2{I(u)}. Letthewrite requesty is initiated in the quiescent stadg In execution offy, I (u) is
only affected in Line 1. By the inspection of code, Line 1 presefyés). I3(u) is not affected in execution
of Ty. If u.grntd() # 0 in the quiescent stat@, thenl,(u) is affected in the procedurferwardupdates(),
invoked in Line4. By Lemma 3.10/>(u) is preserved in Lind.

Therefore[; (u) A Io(u) A I3(u) is preserved in the execution .

{I(u)}T5{I(u)}. By the inspection of codd]; (u) andIs(u) are not affected.,(u) is affected only
in the procedureendresponse(), invoked in Line6 to send aresponse messagen to w. However, Line

10

6 is executed only ifu.nbrs() \ {u.tkn() U {w}} is empty. ByIs(u), for any nodev in u.nbrs(), if
u.taken[v], thenu.aval[v] = f(A), whereA is the set of the most receant-ite requests at each of the nodes
in subtree(v,u). As in the proof of Lemma 3.10n.z = f(B), whereB is the set of the most recentrite
requests at each of the nodesimbtree(u, w).

{I(uw)}Ty{I(w)}. I (u) is not affected irly. In Ty, Is(u) is affected in Line2 and I3 (u) is affected in
sendresponse() procedure, invoked in Lingl.

In the following, for any nodev’ in w.nbrs(), let B(w') be the set of the most recemtite requests at
each of the node isubtree(w, u).

SinceI(u) holds for the receivedesponse message, after execution of LiRe u.aval|w] = f(B),
whereB(w). Hence,l3(u) holds in the execution of Ling.

To argue that’z(u) holds in Linell, we show that just before the execution of Lihk for each node
w' inw.nbrs() \ {v}, v.aval[w'] = f(B(w')).

By Lemma 3.3 and Lemma 3.5, r@sponse message fromw is received during the execution of a
combine request, say. We can assume thatnode # u, since Linell is executed only ifj.node # w.

From Lemma 3.3y is q.node-parent ofw andv is ¢g.node-parent ofu. Letq be initiated in the quiescent
state@, and in quiescent statg, let A be the set of nodes.nbrs() \ {u.tkn() U {v}}.

Again by Lemma 3.3, during execution ¢f © sends aprobe message to each of the nodeAnand
receives aresponse message from each of them. For each the receivegbnse message fromw, as
argued above, after execution of LiBeu.aval[w] = f(B(w)). By the inspection of code dfs, while
sendingprobe messagesy setsu.snt[v] = A. By the inspection of code df, on receiving aresponse
message from a node, w is removed fromu.snt[v]. Hence, Linel1 is executed only when has received
response messages from all the nodesAn Hence, just before execution bf, for each of the node’ in
A, u.aval[w'] = B(w'). By I, for each of the node’ in u.tkn(), u.aval[w'] = B(w'). Hence, just before
the execution of Lind 1, for each of the node’ in u.nbrs \ {v}, u.aval[w'] = B(w’). Hence, as in the
proof of Lemma 3.10, for theesponse messagen sent tov, m.z = f(C), whereC'is the set of the most
recentwrite requests at each of the nodesimbtree(u, v).

{I(uw)}T5{I(w)}. I (u) is not affected in the execution @§.

I3(u) is affected only in Line 2. Lefl be the set of the most recemtite requests at each of the node in
subtree(w, u). By Is(u), m.x = f(A). After Line 2u.aval[w] = f(A). Hence,I3(u) is preserved in Line
2.

If w.grntd() # () in quiescent stat€), thenl,(u) is affected in the proceduferwardupdates(), invoked
in Line 7. By Lemma 3.10/>(u) is preserved in Line 7.

Therefore,I1 (u) A Io(u) A I3(u) is preserved in the execution .

{I(w)}T{I(w)}. I (u), Iz(u), andl3(u) are not affected. Hencé(w) is preserved. O

Lemma 3.12 Any lease-based aggregation algorithm is nice.

Proof. Follows from Lemma 3.3 and Lemma 3.11. O

From Lemma 3.12 and the definition of a nice aggregation algorithm, we havarihdease-based
aggregation algorithm provides strict consistency in a sequential exeaitamy request sequence.

4 Competitive analysis results for sequential executions

We defineERWW as an online lease-based aggregation algorithm that follows the policyahscghown in
Figure 3 for setting or breaking a lease.

11

var [t : array|v ... v of int;
granted : array|[v; ...vi] of boolean;

procedure oncombine()
foreach v € tkn() do
lt[v] := 2; od
procedure probercvd(node w)
foreach v € tkn() \ {w} do

lt[v] := 2; od
boolean setlease(node w)
lg[w] := true;

return true;

procedure responsercvd(boolean flag, node w)
if flag N (taken[w] = false) —
ltlw] :=2; fi
procedure updatercvd(node w)
if (grntd() \ {w} = 0) A lt{w] >0 —
lt[w] := ltfw] — 1; fi
procedure releasepolicy(node v)

It[v] := maz(0, lt[v] — |uaw[v]]);
procedure releasercvd(node w)
lg[w] := false;

boolean breaklease(node w)
return(lt[w] = 0);

Figure 3: Policy decisions fAdRWW

4.1 Informal Overview of RWW

Briefly, RWW works as follows. For any edde, v), RWW sets the lease fromto v during the execution
of a combine request in theubtree(v, u), and breaks the lease after two consecutivée requests at any
nodes insubtree(u, v).

4.2 Properties ofRWW

For positive integera andb, an online lease-based algorith#nis in the class ofa, b)-algorithmsif, in a
sequential execution of any request sequeniog A, for any edgéu, v), A satisfies the following condition:
(1) if u.granted[v] is false, then it is set tarue aftera consecutivecombine requests i (u, v); and (2) if
u.granted|v] is true, then it is set tdfalse afterb consecutivavrite requests i (u, v).

Lemma 4.1 Consider a sequential execution of a request sequenmgRWW and any two neighboring
nodesu andwv. Then, during the execution of any request fiofn, u), u.granted[v] is not affected.

Proof. First, consider the execution of amymbine request ino(v,u). By Lemma 3.3 and Lemma 3.4,
no update Or release messages are sent. Further, :%eponse message from: to v are sent. Hence,
u.granted|v] is not affected during the execution of acymbine request ins (v, u).

Second, consider the execution of amyite request ino (v,). By Lemma 3.5, n@robe or response
messages are sent. Further,update message from to v is sent. By the inspection of code BWW, a
release message from to u can sent during execution ofwarite request ino(u, v). Henceu.granted|v)
is not affected during the execution of amyite request in (v, u). O

Let I4(u) be the following predicate. For any noden u.nbrs(), if u.taken[v] does not hold then,
w.uawlv] = 0. Otherwise, ifu.grntd() \ {v} = 0 then, (u.lt[v] + |u.uawv]| = 2) Aw.lt[v] > 0; else
w.ltjv] = 2.

Lemma 4.2 Consider a sequential execution of a request sequen®®WBW. For any nodeu, I,(u) is an
invariant.

Proof. Initially, for any nodev in w.nbrs(), u.taken[v] does not hold and.uaw[v] = 0.
{I4(u)}T1{I4(u)}. For any node in w.tkn(), u.lt[v] is set to2 in oncombine procedure and.uaw [v]
is set tof) in Line 3. Hence,I4(u) is preserved.
{I4(u)}To{I4(u)}. I4(u) is not affected.

12

{I4(u)}T3{14(u)}. For any node in u.tkn() \ {w}, u.lt[v] is set to2 in probercvd() procedure and
w.uaw[v] is set to in Line 3. Hence,l4(u) is preserved.

{I4(u)}T4{I4(u)}. By Lemma 3.3, aesponse message is received fromas a result of an earligrobe
message sent to during execution of aombine request, say. By Lemma 3.3 again, in the quiescent state
@ in which ¢ is initiated, u.taken|[w] does not hold. Hence, if;(u) holds before execution d¢f, then,
u.uaw|w| is empty.

If flag is true then,u.lt[w] is set to2 in responsercvd() procedure, and.taken|[w] is set totrue in
Line 3. Sinceu.uaw|[w] remains empty/,4(u) holds after execution df}.

{I4(uw)}T5{14(u)}. By Lemma 3.5 and 3.1 receives anpdate message fromw iff u.taken|w] holds.

If u.grntd()\{w} = 0 then,u.lt[w] is decremented byin updatercvd() procedure. Otherwise, [t [w]
is not affected. In Ling, |uaw|w]| is incremented by. Hence, ifu.lt[w] remains greater thah thenl,(u)
is preserved.

If u.lt[w] is decremented t@then, arelease message is senttoin forwardrelease() procedure invoked
in Line 9. In forwardrelease() procedurey.taken[w] is set tofalse, andu.uaw|w] is set to). Hence,l4(u)
is preserved.

{I4(u)}T{I4(u)}. Fix v to be an arbitrary node ia.nbrs() \ {w}.

By the inspection of code, if.grntd() \ {v} # 0 then,u.lt[v] is not affected. Hencd,(u) is preserved
in execution off.

Now we argue that, ifi.grntd() \ {v} = 0, then alsdly(u) is preserved.

First, we argue thatS| = 2. By the inspection of code, elease message from node to u is
sent only inforwardrelease() procedure containing.uawlu]. Since anyrelease message is sent only
if w.breaklease(u) returnstrue, w.lt[u] is 0 while sendingrelease message. Sincé;(u) holds before
execution offg, |S| = 2.

Second, we argue that imnmrelease() procedure, the number of tuplesin sntupdates with a.sntid
greater or equal to the smallgstin S is at mos2. From the inspection of code, (1) identifiers of all received
update messages at node from v are added ta.uaw|u]; (2) identifiers of sentpdate messages from
are always incremented; (3) an identifier is not removed from the middiedaw|u], that is, identifiers
in w.uaw(u] are contiguous; and (4) on receiving apdate message, identifier of the forwardegdate
message to node is added tosntupdates. Hence,S contains identifiers of last twopdate messages sent
to w from u, that is,S contains two highest identifiers apdate messages sent to. SinceS may contain
identifiers corresponding to thepdate messages due torite requests at;, the number of tuples: in
sntupdates With «.sntid greater or equal to the smallest idSnis at most2.

Third, because of above argument$) is at most2, whereA is as defined imnrelease() procedure.

Fourth, we argue thdts’| is at most2. Identifiers of the receivedpdate messages are in increasing
order. Before receiving theclease messagey. granted|w] holds. On receiving ampdate message from
v, identifier of the receivedpdate message is added touaw[v]. Sinceu.granted[w] holds, on receiving
anupdate with id, anupdate message is sent to with nid, and a tupl€{v, id, nid} is addedsntupdates.
Hence, the size of the set of identifiersunuaw(v] (i.e., |S’|) with identifiers> (.rcvid, whereg is as
defined inonrelease() procedure, is at mogt

Finally, we argue that.. uaw[v]|+u.lt[v] = 2. Since before receiving thelease messagey. granted [w]
and I4(u) hold, u.lt[v] = 2 before the invocation ofeleasepolicy. In releasepolicy, w.lt[v] iS set to
w.lt[v] — |u.uawv]|. Hence, after execution etleasepolicy, |u.uawv]| + u.lt[v] = 2.

If u.lt[v] become9) then, inforwardrelease() procedurey.tkn[v] is setfalse, u.uaw(v] is set tof), and
arelease message is sent 0

Hence,l,(u) is preserved in execution @f. O

13

Lemma 4.3 Consider a sequential execution of a request sequenmgRWW and any two neighboring
nodesu andwv. (1) In the quiescent state after execution of amyibine request ino(u, v), u.granted|v)
holds. (2) In the quiescent state after execution of two consecutiite requests ino (u, v), u.granted|v)
does not hold.

Proof. (1) Let the thecombine requesy is initiated in the quiescent stafgand completed in the quiescent
state)’.

For the sake of brevity, we call the following kinds of messages as typesSages: (1)robe messages
fromwv to u; (2) response messages from to v; (3) update messages from to v; and (4)release messages
fromv to u.

If w.granted[v] in @, then no type-A messages are sent during the executignasfd sou.granted|v]
holds inQ’.

Otherwise, ifu.granted|v] does not hold irQ, then by Lemma 3.3, during the executiongofa probe
message is sent from to v and aresponse message is sent from to v. By inspection of code of
sendresponse, RWW's function setlease is invoked. By inspection of code &AWW, setlease always
returnstrue, and sou.granted[v] is set totrue. Hence, after execution @f u.granted|v] holds.

(2) Let the two consecutiverite requests arg; andq., initiated in quiescent stat€$ andQ’ respec-
tively. Let g5 is completed in the quiescent st&)é.

By Lemma 3.5, ifu.granted|v] does not hold ir@), then during the execution gf, no type-A messages
are exchanged betweerandv. Henceu.granted[v] is not affected and remaifalse in Q' andQ”.

Otherwise, ifu.granted|v] in @, then without loss of generality we can assume that the request preceding
q1 in o(u,v) is acombine requesy.

Since, by Lemma 4.1, any requestitw, u) does not affect. granted[v], without loss of generality we
can also assume that there are no requestdnu) such that the request lies betwegrandg, in o.

By part (1), inQ, there is a path fromu to ¢.node (sayw) in the lease grapliz(Q). Further, inQ,
w.uaw[u-parent ofw] is empty andwv.lt[u-parent ofw] is 0. By Lemma 3.5 receives anipdate message
during the execution af;. By the inspection of code df;, w.taken|u-parent ofw] holds in@’. Hence, by
Lemma 3.2 and Lemma 3.4, granted[v] holds in@'.

It is sufficient to show that during the executiong@f a release message is sent fromto u, falsifying
u.granted|v].

Let A be the set of reachable nodes in the lease g€) from u following the edg€u, v).

Let id(q1,w) be theid of the update message received atduring the execution aof; .

First, we show that the following properties hold. ko be an arbitrary node iA. (1) Nodew receives
an update message during the execution@f (2) In quiescent stat€)’, w.uaw|u-parent ofw| contains
id(q1,w). (3) In quiescent stat€)’, if w.grntd() \ {u-parent ofw} is empty,|w.uaw[u-parent ofw]| = 1
andw.lt[u-parent ofw] = 1.

(1) By Lemma 3.5, n@robe or response messages are sent during the executian oBy the inspection
of code, an edge is added in the lease graph only while sending andmgaeiesponse message. Hence,
if an edge is present in the lease grap(Y’), then the edge is also present in the lease géafh). Hence,
by Lemma 3.5, each node i receives anipdate message during the executiongef

(2) From (1) and Lemma 3.5y receives arupdate message from-parent ofw. From the inspection
of code ofT5, id(q1,w) is added taw.uaw[u-parent ofw]. In quiescenty’, since the identifiers ofpdate
messages sent from theparent ofw to w are in increasing order angl is the latestrite requestid(q;, w)
is the highest identifier im.uaw[u-parent ofw]. Hencew.uaw[u-parent ofw] containsid (g1, w).

(3) Without loss of generality assume thatgrntd() \ {u-parent ofw} is empty. By (2), in quiescent
state@’, |w.uaw[u-parent ofw]| > 0.

14

By the inspection of codey.t[u-parent ofw] > 0. Hence, by Lemma 4.2w.uaw[u-parent ofw]| < 2.

By contradiction, we show thatv.uaw [u-parent ofw]| # 2. Assume thatw.uaw [u-parent ofw]| = 2
in . By Lemma 4.2 and the inspection of codelgfandTg, if w.grntd() \ {u-parent ofw} is empty and
|w.uaw[u-parent ofw]| = 2, thenw.lt[u-parent ofw] is 0 in Q'. Hencew must send aelease message to
theu-parent ofw and setw.taken[u-parent ofw] to false during the execution af;. Butw is in A, hence,
contradiction.

Therefore|w.uaw[u-parent ofw]| = 1, and by Lemma 4.2, (3) follows.

Second, We show the desired result by showing that every noideA, includingv, sends arelease
message ta-parent ofw containing{id(q1, w), id(g2, w)}.

We prove this claim by reverse induction on the length of the path ficimany node inA. Let the
maximum length of the path fromto any node inA bel.

Base case. Consider a nogdén A such that the length of the path framto w is [. By definition of 4,
w.grntd() \ {u-parent ofw} is empty. By Claim 2 and Claim 3y.uaw[u-parent ofw] = {id(q:,w)} and
w.lt[u-parent ofw] = 1.

By Lemma 3.1 and Lemma 3.2, is reachable fromy,.node in the lease grapld:(Q’). Hence, by
Lemma 3.5, during the execution @f, w receives arnpdate message from the-parent ofw.

By inspection of code df’5, updatercvd() function of RWW is invoked. Inupdatercvd(), w.lt[u-parent ofw]
is set to0. By inspection of code df5, forwardrelease() procedure is invoked. By inspection of code of
RWW, breaklease() returnstrue. Hencew.granted[u-parent ofw] is set tofalse and arelease message
is sent to thes-parent ofw containing{id(q:, w), id(q2, w)}.

Induction hypothesis. Let any nodein A with the length of the path from to w is i, wherei > 1,
sends aelease message to the-parent ofw containing{id(q:, w), id(q2, w)}.

Induction step. Consider a nodein A such that the length of the path framto w is7 — 1. As argued
in the base case, during the executioQfw receives arnpdate message from the-parent ofw.

By property (2) and above argumenisuaw [u-parent ofw| containsid (g, w) andid(ga, w).

By induction hypothesis, for each nodé in w.nbrs() such thatw is u-parent ofw’, w receives a
release message from’.

By the inspection of the code df, after receiving arelease message from all the nodes such
that w.granted[w'] in Q', w setsw.lt[u-parent ofw] to 0, and sends eelease message ta-parent ofw
containing{id(q1, w), id(gz, w)}.

Therefore, during the execution @f, a release message is sent fromto u, falsifying u.granted[v]. O

Corollary 4.1 The algorithmRWW is a (1, 2)-algorithm.

Consider a sequential execution of an arbitrary request sequebg&WW. For any quiescent state
@, and for any ordered pair of neighboring nodesv), we define the configuration &fWW, denoted
Frww (u,v), as follows: (1) ifQ is the initial quiescent state, théfww (u, v) is0; (2) if the last completed
request ino(u,v) is a combine request, thefryww (u,v) is 2; (3) if the last two completed requests
in o(u,v) are acombine request followed by avrite request, therFrww (u, v) is 1; (4) if the last two
completed requests n(u, v) arewrite requests, thefigww (v, v) is 0.

Lemma 4.4 Consider a sequential execution of any request sequemgeRWW. For any quiescent state
@, and for any ordered pair of neighboring nodés, v), Frww (u,v) is greater than0 if and only if
u.granted|v] holds.

15

Figure 4: States and state transitions for any pair of n¢des) in executing requests froai (u, v) (defined
in Lemma 4.6).

Proof. Follows from Lemma 4.1 and Lemma 4.3. O

Note thatRWW is a deterministic algorithm. In execution of any request frofn,), there are no
messages that contributed@ww (o, u, v). We can prove the following lemma abdRtVW.

Lemma 4.5 In a sequential execution of any request sequender any two neighboring nodasand v,
CRWV\/(O', u, ’U) = Cwa(U(u, U), u, 1)).

Proof. Follows from Lemma 3.8 and Lemma 4.1. O

4.3 Competitive ratio of RWW

In this section we show th&WW is g-competitive against an optimal offline lease-based algorifii
for the sequential aggregation problem. We also showRR&W is 5-competitive against a nice optimal
offline algorithm for the sequential aggregation problem. Further, we shat, for any(a, b)-algorithm.4
operating on a sufficient long request sequenc€ 4 (o) is at Ieastg timesCopr(0).

For any quiescent statg and ordered pair of neighboring nodes v), we define the configuration of
OPT Fopr(u,v) to bel if u.granted[v] holds; otherwise).

Lemma 4.6 Consider a sequential execution of a request sequenog RWW and OPT. For any two
neighboring nodes andv, Crww (o, u, v) is at mostg timesCopr(o, u,v).

Proof. Once a request in ¢ is initiated in a quiescent state, without loss of generality, we assume that
RWW executeg, and therOPT executeg;.

For the sake of brevity, we call the following kinds of messages as typesSages: (1)robe messages
fromwv to u; (2) response messages from to v; (3) update messages from to v; and (4)release messages
from v to u. The rest of the messages are called type-B messages. Recdll ifiatu, v) is the number of
type-A messages exchanged betweemdwv in executings by a lease-based algorithr

We construct a new request sequenbte:, v) from o (u,v) as follows: (1) insert aoop request in the
beginning and at the end ef«, v); and (2) insert aoop request between every pair of successive requests
ino(u,v).

16

minimize

O OO O © U OV OV VOO OO oo voo O v O
A AN A A AN [\l A AN (o]

VIVIEVIEVIEVEVEVIEVIEVIEVIEVIEVIEVIEVIEVEVIEVIEVIEVIEVIEVI

[a e (o] i — (o] A AN

++ o+ + o+ + + o+ +

Py Ny R N Ty Ty i et R T e et et et T s e i R N

O OO OO OO AN AN AN A A~~~ — -
S I 1 1 0 S A A4 1SS~ —H -~
S N N N N N e e e e e S e e e e e e e N N

LSS IS LS S =S L S =L L= S S~ L= S LS LS S

e i e R N T N N N i N e N e N T N e N e N N N T
NN o oo o aa A~ a T aa N oS o H
[P e P R e R R e Yl e S B o S B S i i e S B o S R S
S’ S e N e e e e e e e e e e e e e e N N N

LSS IS L= L S S = L= = = S B S S LS S S S LS S

Figure 5: LP formulation of the costs associated with state transitions.

17

In the rest of the proof, first, for boRWW andOPT, we argue that we can charge each of the type-A
messages to a requestdf(u, v). Then, to prove the lemma, we use potential function arguments to show
that Crww (0’ (u, v), u, v) is at most3 timesCopr (o’ (u, v), u, v).

ForRWW, from Lemma 4.5, we hav&/rww (o, u,v) = Crww (o (u,v),u,v). ForRWW, we do not
charge any message taaop requestin’(u, v). Hence, we hav&rww (o, u, v) = Crww (0’ (u, v), u, v).

For OPT, from lemma 3.3, during the execution otambine request ino(v, u), no type-A messages
are sent. Also from Lemma 3.5 and part 3 of Lemma 3.8, during the executemate request ins (v, u)
by OPT, only arelease message fromv to v can be sent. Consider a typesAlease messagen sent
during the execution of arite requesty in o(v,u) by OPT. On receivingm, u.granted[v] is falsified.
From Lemma 3.5, Lemma 3.3, Lemma 3.6, and part 3 and 4 of Lemma.3:8nted[v] iS not set totrue
before executing anothepmbine request ino(u,v). Hence, at most one type-fAlease message can be
associated with aoop request. Thus, we can associate all type-A messages with a requést,in).

Therefore, we can restrict our attention to messages sent in execujingste ino’(u, v) in comparing
Crww (0, u,v) andCopr(0, u,v).

For the ordered paifu, v), in Figure 4 (see appendix), we show a state diagram depicting possible
changes iFrww (u, v) and Fopr(u,v) in executing a request fromd (u, v). In the state diagram, a state
labeledS(x, y) represent a state of the algorithms in whi€hpr (u, v) is x and Frww (u, v) is y. Observe
that the changes iirww (u, v) in executing a request is deterministic as specified by the algorithm in Figure
3. On the other hand, the changesfigpr(u, v) in executing a request is not known in advance. Hence,
more than one possible changesHppr(u,v) in executing a request are depicted by non-deterministic
state transitions. Recall that the cost of processing a request in a [grticafiguration for any lease-based
algorithm is given in Figure 2.

We define a potential functiof(x, y) as a mapping from a stat§z, y) to a positive real number. The
amortized cost of any transition is defined as the sum of the change in pbieffiaand the cost BRWW
in the transition. For any transition, we write that the amortized cost is atatioses the cost c©OPT in the
transition, where: is a constant factor. We solve these inequalities by formulating a lineargprogith an
objective function to minimize (see Figure 5). By solving the linear program, we get % ®(0,0) =0,
®(0,1) =2, ®(0,2) = 3, ®(1,0) = 2, ®(1,1) = 2, and®(1,2) = 3.

Hence, for any state transition due to the execution of a requésim o' (u, v), the amortized cost
is at mostg times the cost ofOPT in the execution ofy. Recall that, in the initial quiescent state,
Frww (u,v) and Fopr(u,v) are0, and the potential for any state is non-negative. Therefore, in execu-
tion of o’(u, v), the total cost oRWW is at most3 times that ofOPT. That is,Crww (o, u, v) is at most
2 timesCopr (0, u, v). O

Theorem 1 AlgorithmRWW is g-competitive with respect to any lease-based algorithm for the sequential
aggregation problem.

Proof. From lemma 4.6, in a sequential execution of a request sequericeany two neighboring nodes

u andv, Crww (0, u, v) is at most% timesCopr(o, u,v). By symmetryCrww (o, v, u) is at most% times
Copr(0o,v,u). By lemma 3.9, the total number of messages exchanged beineth in execution ofe

by RWW is at mostg times that ofOPT. Summing over all the pairs of neighboring nodes, we get that
Crww (o) is at most% timesCopr(0). Hence, the theorem follows. O

Theorem 2 AlgorithmRWW is 5-competitive with respect to any nice algorithm for sequential aggregation
problem.

18

Proof sketch.Let NOPT is the optimal nice algorithm for sequential aggregation problem.

Consider any pair of neighboring nodes v). We compare the cost ®WW andNOPT in executing
request sequencesu, v) ando (v, u) separately.

We define arepochas follows. An epoch ends withwrite to combine transition ino(u, v), and a new
epoch starts at the same instant. By definition of a nice algorith@®T provides strict consistency for
sequential execution problem. Hen®&)PT sends at least one message in the current epoch. By Lemma
4.3, the algorithmRWW incurs at most messages in any epoch. Summing over all the epochs, we get
that the cost oORWW in executingo (u, v) is at mosts times that ofNOPT. By symmetry, we also have
the cost ofRWW in executings (v, u) is at mosts times that ofNOPT. By summing over all the pair of
neighboring nodes, the desired result follows. O

Theorem 3 For any (a, b)-algorithm A operating on a sufficiently long request sequeac€’4 (o) is at
least3 timesCopr (o).

Proof sketch. We give an adversarial request generating argument to show thedlesgult. Consider
an example of a tree consisting of just two nodesndv such that there is an edge betweeandv. The
adversarial request generating algoritAmV is as follows. For a given andb, ADV generates combine
requests at andb write requests at. Using potential function arguments, we can show that for a sufficient
long request sequeneegenerated byADV, the cost of anya, b)-algorithm in executingr is at Ieastg
times that of an offline algorithm, tailored to the request sequence O

5 Consistency results for concurrent executions

In this section we generalize the traditional definition of causal consisféhfiyr the aggregation problem,
and show that any lease-based aggregation algorithm is causally consfstementioned earlier, the key
difference between the setup in [1] and ours is in reading one value cedfmeaggregating values from all
the nodes.

5.1 Definitions

Request For the convenience of the analysis of this section, we extend the defioftimmequest from
Section 2 as follows. A requesgtis a tuple @ode, op, arg, retval, index), where (1)node is the node
where the request is initiated; (2)p is the type of of the requestpmbine, gather, or write; (3) arg is the
argument of the request (if any); (4)tval is the return value of the request (if any); and {bjex is the
number of requests that are generategl abde and completed beforgis completed.

An aggregation algorithm executesgite and combine requests as described in Section 2. To execute a
gather request, an aggregation algorithm returns assef pairs of the form(node, index) such that (1) for
each node: in T', there is a tupléu, i) in A, wherei > —1; (2) for any tuple(u,) in A, if ¢ > 0, then there
is awrite requesy such thayy.node = v andq.index = i; and (3)| A| is equal to the number of nodes in
T.

Miscellaneous For the convenience of analysis of this section, we extend the definititumofion
f from Section 2 as follows. In the extended definitighcan also take a set of pair$é of the form
(node, index) as an argument, ant{ A) = f(B), whereB is a set ofwrite requests such that for any
tuple (u, i) in A with i > 0, there is awrite requesy in B with g.node = v andq.index = i.

19

A combine-writesequence (set) is a sequence (set) of requests containing@nbjine and write
requests. Agather-writesequence (set) is a sequence (set) of requests containingahby and write
requests. Letl be a set of requests. Themmuned (A, u) is a subset o such that, for any requegtin A,
qisin pruned(A,u) if and only if g.op = write or g.node = u.

For any sequence of requestsaand any request in S, we definerecentwrites(S, q) as a set of pairs
such that the size afecentwrites(S, q) is equal to the number of nodesTh and for any node: in 7: (1)
if ¢’ is the most recenbrite request at. precedingy in S, then(u, ¢'.index) is in recentwrites(S, q); (2) if
there is nowrite request at preceding; in S, in which case(u, —1) is in recentwrites (S, q).

Let A be a gather-write set, anl be a linear sequence of all the requestsiinThen, .S is called a
serializationof A if and only if, for anygather requesy in S, g.retval = recentwrites(S, q).

For any two request sequencesndr, o — 7 is defined to be the subsequencerafontaining all the
requests in o such thay is not present irr. For any two request sequeneeandr, o.7 is defined to be
appended by.

Compatibility . Letg; be acombine or write request and, be agather or write request. Theny; and
g2 arecompatibleif and only if (1) ¢1.0p = write andq; = go; Or (2) q1.0p = combine, q2.0p = gather,
q1.retval = f(qo.retval), and thenode, arg, andindez fields are equal fog; andg,. A combine-write
sequence and a gather-write sequenceare compatible if and only if (1 andr are of equal length; and
(2) for all indicesi, o () andr (i) are compatible. Lel be a combine-write set arfél be a gather-write set.
Then, A and B are compatible if and only if for any nodein T, there exists a linear sequeng®f all the
requests irpruned (A, u), and a linear sequenc® of all the requests ipruned(B,) such thatS and S’
are compatible.

Causal Consistency We definecausal ordering(~~) among any two requests andgs in a gather-

write execution-histony as follows. Firstg; 5> g2 ifand only if (1) qg1.node = go.node andqy.index <
qz2.index; Or (2) q1 is a write requesyys is agather request, and, returns(q;.node, q;.index) in ga.retval.

Secondy; s g2 if and only if there exists a requegtsuch thaig;, ~» ¢ > qo. Finally, ¢1 ~ g9 if and

only if there exists ari such that; ~~ g¢».

The execution-history of an aggregation algorithiris defined as the set of all requests executed by
A. A gather-write execution-historyl is causally consistenif and only if, for any nodeu in T', there
exists a serializatio$ of pruned(A, u) such thatS respects the causal orderirg among all the requests
in pruned(A,w). A combine-write execution-historyl is causally consistent if and only if there exists a
gather-write execution-histori such thatd and B are compatible ané is causally consistent.

5.2 Algorithm

In Figure 5.2, we present the mechanism for any lease-based atigmegjgorithm withghost actiongin
the curly braces). The ghost actions are presented for the coneerdéanalysis.

For any nodeu, u.log is a ghost variable of the mechanism. For any nede wlog is a subsequence of
u.log containing all thewrite requests inu.log.

Initially, for any nodeu, u.val := 0, u.uaw := 0, u.pndg := 0, w.upcntr := 0, u.sntupdates :
each node in u.nbrs(), u.taken|v] := false, u.granted|v] := false, u.aval[v] := 0, uw.snt[v] :
u.log is empty.

Functionrequest(gather) generates and returnsgather requesty as follows. g.node = u, q.op =
gather, q.arg = 0, q.retval = recentwrites(u.log,q), andq.index is 1 plus the number of completed
requests ati. Functionrequest(write, q) generates and returnsuaite requesty’ as follows.q'.node = u,
q.op = write, ¢ .arg = q.arg, ¢'.retval = (), andq’.index is 1 plus the number of completed requests.at

= (). For
=@, and

20

node u

var taken : array[vi ...vy] of boolean;
granted : arraylv; ...vy] of boolean;
aval : array[vi ...vg] of real; wal : real,
uaw : set {int}; pndg : set {node};
foreach v € pndg, snt[v] : set {node};
upentr : int; snt : set {node};
sntupdates : set {{node,int,int}};

procedure sendprobes(node w)
pndg := pndg U {w};
foreach v € nbrs() \ {tkn() U snt U{w}} do
sendprobe() to v; od

procedure forwardupdates(node w, int id)
foreach v € grntd() \ {w} do

besi
T i%i::a — {combine} sendupdate(subval(v), id) to v;
oncombine(u); {sendupdate(wlog, id) tov}; od
foreachv € tkn() do
wawlv] = 0; od procedure sendresponse(node w)

ifu ¢ pndg — if (nbrs() \ {tk‘n() @] {w}} =0) —
if nbrs() \ thkn() = 0 — granted|w] := setlease(w); fi
{appendrequest(gather) to log}; ?e”dgesponw(?ubval (w), grar[ttcjt)i [w]) tc}{ w;
’ log, granted|w]) t0 w;
return gval(); sendresponse(w

Onbrs() \ thn() # 0 —
sendprobes(u);
snt[u] = nbrs() \ thn(); fi fi
true — {write q}
val := g.arg; {appendrequest(write, q) o log}
if grntd() 0 —
id := newid();
forwardupdates(u, id); fi
Orev probe() fromw —

boolean isgoodforrelease(node w)
return (grntd() \ {w} = 0);

N =

procedure onrelease(node w, set S)
Letid is the smallest id irf;
foreach v € tkn() \ {w} do
Let A be the set of tuplea in sntupdates
such thatv.node = v anda.sntid > id;
Let 3 be a tuple inA

mm\lmmbwmptﬁbwwr—\w QOWoO~NOOA~WNPE

%(ﬁ);tkn() \ {w} do such thai3.rcvid < a.rcvid, for all o in A;
Let S’ be the set of ids inaw[v] with ids > B.rcvid;
uaw[v] := 0; od

uaw(v] :== S’;
if isgoodforrelease(v) —
releasepolicy(v); fi od

ifw ¢ pndg —
if nors() \ {thkn() U {w}} =0 —

sendresponse(w); Trel :
Oinbrs() \ {tkn() U {w}} # 0 — forwardrelease();
sendprobes(w);
snt[w] := nbrs() \ {tkn() U {w}}; fi i P‘Vf"ced“ﬁe forfljrdf;lw“()
Ty Orcv response(z, flag) fromw — orfegc 121 € l"() o
{rcv response(wlogy, flag) fromw} — 1 15900 forrelease(v) —
1 responsercvd(flag, w); if taken[v] A breaklease(v) —
2 aval[w] := z; {log := log.(wlogw — log)}; taken(v] := false;)
3 taken[w] := flag; sendrelease(uaw(v]) tov;
4 foreach v € pndg do uawl] = §;fiflod
N
7 ndg := pndg \ {v}; upcntr = upcntr + 1;
8 ipf vg_. u i g ’ return upcntr;
9 {appendrequest(gather) to log};
10 return gval(); real.gval(l?
11 Ov#u— ?-*Whv € nbrs() d
12 sendresponse(v); fi fi od O;e_icf(g aleE;S])' 03
Ts Orev update(z, id) fromw — l"etl.l_ 7 ’
{rcv update(wlogy, id) fromw } — i
! updatercud(w); real subval(node w)
2 aval[w] := z; {log := log.(wlogw — log)}; v val:
i :Lfa;%]d():\ufg}!ﬂ; %_dj foreach v € nbrs() \ {w} do
5 nid = newid(); z = f(x, aval[v]); od
6 sntupdates := sntupdates U {w, id, nid }; return z;
7 forwardupdates(w, nid);
8 O grntd() \ {w} = 0 — set nbrs() .
9 forwardrelease(); fi return the set of neighboring nodges
Ts Orev release(S) fromw — set ttkn() b A tak —¢ i
1 releasercud (w); I;e urtr(; {v | v € nbrs() A taken[v] = true};
2 granted[w] := false; se girn 0 b A tedlv] = t)
3 onrelease(w, S); return {v | v € nbrs() A granted[v] = true};
end
Figure 6: Mechanism for any lease-based algori@dim with ghost actiangh& nodeu, {vy, ..., v} is the

set of neighboring nodes.

5.3 Analysis

For each node in T', we construct a gather-write sequencgwlog fromw.log as follows: (1) ifu.log(i) is a
write request them. gwlog (i) = w.log(i); (2) if u.log (i) is acombiney; then,u.gwlog(7) is agather g2 such
thatge.node = q1.node, q2.0p = gather, ga2.index = qy.index, andgz.retval = recentwrites(u.log, q1).

For each node: in T, we constructu.log’ and u.gwlog’ from w.log and u.gwlog as follows. First,
initialize u.log’ to u.log, andu.gwlog’ to u.gwlog. Then, for each nodein T' exceptu repeat the following
steps: (Lu.log’ = u.log’.(v.wlog — wu.log"); (2) u.gwlog’ = u.gwlog’.(v.wlog — u.gwlog’).

For any set of noded and a request sequengerecent(A, o) returns a set ofA| pairs such that, for
any nodeu € A: (1) if ¢ is the most recenbrite request at in o, then(u, ¢'.index) is in recent(c, q); (2)
if there is nowrite request at. in o, then(u, —1) is in recent(S, q).

For a set of nodesl, a real valuer, and a request sequeneewe definecorresponds(A, x, o) to be
true if and only if z = f(recent(A4, o)).

For a set of nodes! and a request sequenee projectwrites(A, o) returns the sub-sequence ®f
containing all thewrite requests at any node ih.

For request sequencesand 7, prefiz(o,7) is defined to berue if and only if 7 is a prefix ofo.
Remark: An empty sequence is considered prefix of any other request sequenc

Lemma 5.1 For any update or response messagen from any nodes to any neighboring node, let S be
thev.wlog after m has been sent. Thepyefiz (.S, m.wlog) holds.

Proof. By the inspection of codef¢rwardupdates() and sendresponse()), m.wlog = v.wlog whenm is
being sent. Since.wlog grows only at the end, the lemma follows. O

Lemma 5.2 For any twoupdate or response messages; andmy from a nodev to any neighboring node
u such thatmy is sent aftemn,, prefiz(mg.wlog, my.wlog) holds.

Proof. By Lemma 5.1,m;.wlog is a prefix ofv.wlog after my has been sent. By the inspection of code
(forwardupdates() and sendresponse()), mg.wlog = v.wlog whenmy is being sent. Hence, the lemma
follows. O

Lemma 5.3 Just before the execution 8 (15) at u, on receiving aresponse message (ampdate mes-
sage)m sent fromo, let o be projectwrites(A, m.wlog) and be projectwrites(A, u.log), where A =
subtree(v, u). Then, (L)prefiz(o, 7) holds; (2) projectwrites(nodes(T') \ A, m.wlog — wu.log) is an empty
set.

Proof. (1) We prove by induction on the number@jdate or response messages from to u.

Base case. Since granted|u] does not hold initially, the first message of our interest ig@onse
messagen. Sinceu receives anyurite requests ird only fromo, 7 is empty. Henceprefiz (o, 7) holds.

Induction step. Since communication channels are FIFO+ 1)st update or response messagen
reaches: afternth messagen’. By induction hypothesis, just before receiving, projectwrites(A, u.log)
is prefix of projectwrites(A, m’.wlog). In line 2 of Ty (T5), u.log = w.log.(m'.wlog — u.log), that is, all
the write requests inm’.wlog not present inu.log are appended t@.log. Hence projectwrites(A, u.log) =
projectwrites(A, m’.wlog) after execution of Lin& of T} (T5).

By Lemma 5.2yn’.wlog is a prefix ofm.wlog. Hence, just before receiving, projectwrites(A, u.log)
is a prefix ofprojectwrites(A, m.wlog).

22

(2) Let B benodes(T)\ A. By Lemma5.1, Lemma 5.2, and part (1), at any instanjectwrites(B, v.log)
is a prefix ofprojectwrites(B, u.log). By Lemma 5.1m.wlog is a prefix ofv.wlog afterm has been sent.
Hence, just before receiving, projectwrites(B, m.wlog) is a prefix of projectwrites(B, u.log). There-
fore, projectwrites(B, m.wlog — u.log) is empty. O

For any nodey, let I(u) be I (u) A Ia(u) A I3(u), where
o I1(u): corresponds(A,u.guval(),u.log), whereA is the set of all nodes if.

e I5(u): foranyupdate or response messagen fromw to any node in u.nbrs(), corresponds(A, m.x, m.wlog),
whereA is the set of all nodes isubtree(u, v).

e I3(u): for any nodev in u.nbrs(), corresponds(A, u.aval[v],u.log), whereA is the set of all nodes
in subtree(v, u).

Lemma 5.4 For any nodey, if I; (u) and3(u) hold just before amupdate or a response messagen is sent
fromu to a nodev in w.nbrs(), thencorresponds(A, m.x, m.wlog), whereA = subtree(u,v).

Proof. Initially, u.val is 0 andu.log is empty. Hence, initially,
wwal = f(recent({u},u.log)) 2)

The only line of code that modifiesval is Line 1 of 7. This line preserves equation 2. Hence, equation
2 holds just before sending amgdate or response message.

In the following equation, lefvy, ..., vp} = u.nbrs() \ {v} andsS; = subtree(v;, u)
m.x = u.subval(v)
= f(u.val,u.avallv1],. .., u.aval[vg])

f(f (recentwrites({u}, u.log)), f (recent(S1, u.log)), . .., f (recent(Sk, u.log)))
f(recent({u} US1 U---USk),u.log)

= f(recent(A,u.log))

= f(recent(A, m.wlog)) (3)

In the above equation, the first equality follows from the algorithm. Therskeguality follows from
the definition ofsubval(v). The third equality follows fronds and equation 2. The fourth and fifth equalities

follows from the fact thaf{u}, Si, . .., Sk are disjoint sets of nodes and their uniosigtree(T, u,v). The
last equality follows from the fact that.wlog = wlog andrecent(A, log) = recent(A, wlog).
Hence, the lemma follows. O

Lemma 5.5 For any nodeu, I(u) is an invariant.

Proof. Initially, for any nodeu, u.gval() is 0 andu.log is empty. Hencel; (u) holds. There are napdate
or response messages. Hencé;(u) holds. For any node in u.nbrs(), u.aval[v] is 0 andu.log is empty.
Hence,l3(u) holds.

{I(u)}T1{I(u)}. In the execution of}, for any nodev in u.nbrs(), u.aval[v] andu.val remain un-
changed. Naipdate or response messages are generated in executiol;ofNo write request is added to
u.log. Hence I (u), I2(u), andI3(u) are not affected in execution @ .

23

{I(u)}T5{I(u)}. In the execution ofl;, only part of the code affecting; (u) is the linel. Note
that Line1 does not affectz(u) and I3(u). In the following equation, lefv, ..., vt} = u.nbrs() and
S; = subtree(T, v;, u).

f(u.aval[v1], ..., u.avallvg]) = f(f(recent(S1,u.log)), ..., f(recent(Sk,u.log)))
= f(recent(Sy,u.log) U---U recent(Sk, u.log))
= f(recent(S1U---U Sk, u.log)
= f(recent(nodes(T') \ {u},u.log)) 4)

In the above equation, the first equality follows frdg{w). The second equality follows from the fact
thatSy, ..., S, are disjoint sets of nodes.

Letq be thewrite request appended tolog in Line 1. After Line 1, val is q.arg, and{q} is recent({u}, log).
Hence, after Lind,

wwal = f(recent({u},u.log)) (5)

Therefore, after Liné,

w.gval() = f(w.val,u.avallv1],. .., uw.aval[vg])

/(
f(u.val, f(u.aval[v1], . .., w.aval[vg]))

= f(f(recent({u},u.log)), f (recent(nodes(T) \ {u},u.log))

= f(recent({u},u.log) U recent(nodes(T) \ {u},u.log))

= f(recent(nodes(T),u.log)) (6)

In the above equation, the first equality follows from the definitionugfval(). The second equality
follows from the associativity property ¢t The third equality follows from the equations 4 and 5.

Hence, corresponds(nodes(T'), u.gval(), u.log) holds after linel. That is, [;(u) holds after Linel.
Therefore, for each line of the codeTn if I;(u) A I>(u) A Is(u) holds before the execution of the line then
I (u) holds after the execution of the line.

In the execution of », the only part of the code affectirfg(«) is the invocation of proceduyerwardupdates()
in Line 4. By Lemma 5.4,I5(u) holds after Lined. Therefore, for each line of the codeTh if I;(u) A
I>(u) A I3(u) holds before the execution of the line thefu) holds after the execution of the line.

In T3, I3(u) is not affected.

{I(u)}T3{I(w)}. I;(u) andI3(u) are not affected in the execution 8. Only part of the code that
affectsI(u) is the invocation of procedurendresponse() in Line 6. By Lemma 5.4/>(node) holds after
line 6.

{I(u)}T4{I(u)}. Only lines that affecf (u) are Line2 and Linel2. Line 2 does not affecf,(u), but
affects/; (u) andI3(u) since the line modifies. aval[w] andu.log. First we show thafs(u) is preserved
in Line 2, and so,/; (u) is also preserved.

Let m be theresponse message received antl be subtree(w,u). By part (1) of Lemma 5.3, after
the execution of Lin&, u.aval[w] = m.z andrecent(A, u.log) = recent(A, m.wlog). Hence, byls(u),
u.aval[w] = f(recent(A,u.log)).

24

By part (2) of Lemma 5.3, for alb in w.nbrs() \ {w}, recent(B,u.log) is not affected, wherd? =
subtree(v, u), and so,corresponds(B, u.aval[v], u.log) remains unchanged. Hence, along with the argu-
ments in the preceding paragragh(u) is preserved in Lin&, and so, preserved in the executioriZaf

By part (2) of Lemma 5.3recent ({u}, u.log) is not affected. Thereford; () is also preserved in Line
2, and so, preserved in the executiori/gf

Line 12 only affectsl,(u). By Lemma 5.4/5(u) holds in Linel2.

Therefore,[; (u) A Iz(u) A I3(u) is preserved in the execution ©f.

{I(u)}T5{I(u)}. Only lines that affect (u) are Line2 and Line7. Line 2 does not affecfs(u), but
affectsl;(u) andIs(u). Line 7 affects onlyls(u).

By part (2) of Lemma 5.3yecent({u}, u.log) is not affected in Lin&. Therefore[; (u) is preserved in
Line 2, and so, preserved in the executioriZgf

Let m be theupdate message received antlbe subtree(w,w). By part (1) of Lemma 5.3, after the
execution of Line2, w.aval[w] = m.z and recent(A,u.log) = recent(A, m.wlog). Hence, byls(u),
u.aval[w] = f(recent(A,u.log)).

By part (2) of Lemma 5.3, for all nodesin u.nbrs() \ {w}, recent(B,u.log) is not affected, where
B = subtree(v,u), and so,corresponds(B,u.aval[v],u.log) remains unchanged. Hence, along with the
arguments in the preceding paragrapfiu) is preserved in Lin&, and so, preserved in the execution of
Ts.

Line 7 affects onlyl(u). By Lemma 5.4/5(u) holds in Line7.

Therefore,[1 (u) A Io(u) A Is(u) is preserved in the execution 6.

{I(u)}Ts{I(u)}. In the execution oflg, I;(u), I2(u), andI3(u) are not affected. Hencd,(u) is
preserved in the execution 6§. O

For a request sequeneeand a request, index(o, q) returns the index of in o if present, otherwise,
returns—1. For any request sequenee and requestg; andg, in o, precedes(o, q1,q2) is defined to be
true if and only if index (o, q1) < index(o, g2).

Lemma 5.6 Letg; and gy be anygather or write requests such thag .node = ¢o.node and ¢; .index <
g2.index. Then,q; andgs belong tog; .node.gwlog, and precedes(q;.node.gwlog, q1, g2) holds.

Proof. From given conditiong; andg, belong tog;.node.log and precedes(qy.node.log, q1,q2). By the
construction ofywlog, the lemma follows. O

Lemmab5.7 Let » and v be distinct nodes and lef; and ¢» be write requests inv.gwlog such that
g2.node = v, precedes(v.gwlog, q1,q2), and gz belongs tou.gwlog. Then,q; belongs tou.gwlog and
precedes(u.gwlog, q1,q2).

Proof. By induction on the length of path fromto u, sayl.

Base case.l = 1, that is,u and v are neighboring nodes. Let receivesgs in an update or a
response messagen, that is, ¢, belongs tom.wlog and ¢, does not belong ta.log just before receiv-
ing m. By the inspection of coden.wlog = v.wlog. Hence, just beforen is sent,qs belongs tov.log.
Sinceprecedes(v.log, q1,q2), precedes(m.wlog, q1,q2). If ¢1 is inu.log just before receivingn, then on
receivingm, g2 belongs tou.log, and so,precedes(u.gwlog, q1,q2) holds. Otherwise, on receiving,
u.log = u.log.(u.log — m.wlog,), and soprecedes(u.log, q1, q2) holds. Hence, by construction ofgwlog,
precedes(u.gwlog, q1, q2) holds.

Induction hypothesis. For sonigsuch that = i, ¢; belongs tou. gwlog andprecedes(u.gwlog, q1, q2).

25

Induction step. Considér= i + 1. Letw be the node such that belongs tou.nbrs() andv belongs
to subtree(T, w,u). Letu receivesy, from w in anupdate or aresponse messagen. By the inspection of
code,q» belongs tow.log, and so, by construction a@b.gwlog, ¢» also belongs tav.gwlog. By induction
hypothesis and by construction@f gwlog, ¢; belongs tow.log and precedes(w.log, q1, q2) holds whenm
is sent. Sincen.wlog = w.wlog whenm is sent,g; belongs tom.wlog andprecedes(m.log, ¢1, g2) holds.
As in the base case, regardless of whethdrelongs tou.log just before receivingn, ¢; belongs tou.log
andprecedes(u.log, q1, q2) on receivingm. Hence, by construction af.gwlog, precedes(u.gwlog, q1,q2)
holds. O

Lemma 5.8 Letq; andg, be gather requests such that .node # ¢2.node, and for integer > 1, ¢; &y Q.
Then, there is avrite requesty’ such thaty.node = ¢1.node and for integerj, ¢ ~~ ¢~ g2, where
i>i>1.

Proof. By contradiction. Assume that there is no suchite request aty;.node. Let g; RN R q 5

q’ RN S g2 such thaty” is the first request in this chain that is notgatnode. That is, in this chain,
q1,...,q are atg.node. We can find such a requesgt’] sinceqs.node # q1.node. By causal ordering«%)

definition, ¢’ > ¢" if and only if ¢’ is awrite request and” is a gather request. Hence, the contradiction.
Therefore, the lemma follows. O

Lemma 5.9 For any nodeu andi = 1,2, let ¢; be a request such thdy;.op = write) V (¢;.op =
gather A ¢;.node = u). Further assume thaj; ~~ ¢» and g2 belongs tou.gwlog. Then,q; belongs to
u.gwlog and precedes(u.gwlog, g1, q2) holds.

Proof. By definition, g; ~~ ¢ if and only if there exists such thaty, KA g2 We prove the lemma by
induction on.
Base casei = 1, that is,¢; R g2. There are two caseg RS g2 by rule (1) or by rule(2).

First caseg; > g2 by rule (1), that is,q1.node = gq2.node andgq;.index < qq.index. There are two
cases(a) u = qi.node; (b) u # q1.node. Case(a), thatis,u = g;.node. By lemma 5.64; andg, belong
to u.gwlog, and precedes(u.gwlog, q1,q2) holds. Cas€b), that is,u # ¢i.node. Letv be gi.node. By
lemma 5.6 precedes(v.gwlog, q1, ¢2) holds. Since: # v, g1 andgs arewrite requests. Since, belongs to
u.gwlog, by lemma 5.7¢; is in u.gwlog andprecedes(u.gwlog, q1, g2) holds.

Second caseyg; SR g2 by rule (2), that is, q; is a write request andy, is a gather request such
that ¢o returns(q;.node, q1.index) in go.retval. Sincegq, returns(q;.node, g1.index), ¢ is in u.log and
precedes(u.log, q1, g2) holds. By construction ofi.gwlog, ¢ is in u.gwlog and precedes(u.gwlog, q1, q2)
holds. .

Induction step:q; ~+ ¢ RS q2. Consider the two cases, (1)'.op = write) V (¢'.op = gather A
¢ .node = u), and (2)(¢'.op = gather A ¢'.node # u).

Case (1), that is(q’.op = write) V (¢'.op = gather A ¢'.node = wu). By induction hypothesisy’
belongs tou.gwlog, precedes(u.gwlog, ¢, q2) holds. Also by induction hypothesig, belongs tou.gwlog,
precedes(u.gwlog, q1, ¢') holds. Henceg; belongs tou.gwlog, andprecedes(u.gwlog, g1, g2) holds.

Case (2), that is(q’.op = gather A ¢'.node # u). Let¢'.node bew. Sinceq’.op = gather, ¢’ RR g2
could only be by rule (1), that igp.node = v andq’.index < qo.index. Sincev # u, ¢ must be awrite
request. By Lemma 5.Grecedes(v.gwlog, ¢, ¢2) holds. Now consider the two possible casesdar(a)
gi1.op = write, and (b)q1.op = gather A q1.node = u. Case (a), that isj;.op = write. By induction

26

hypothesisg; belongs tov.gwlog and precedes(v.gwlog, q1,q’) holds. From aboveg; andg, belong to
v.gwlog andprecedes(v.gwlog, q1, q2). By lemma5.7¢; belongs ta:.gwlog andprecedes(u.gwlog, g1, q2).

Case (b), that isqi.op = gather A qi.node = u. Sinceq;.node # ¢'.node, ¢ ~ ¢', andg; and
q are gather requests; must be greater thah. By Lemma 5.8, there is arite requesty” such that
¢".node = uwandgq <~ ¢’ < ¢, for somej,i > j > 1. By induction hypothesis;” belongs tov.gwlog
andprecedes(v.gwlog, q”, ¢') holds. Hence, from aboveyecedes(v.gwlog, ¢”, ¢2) holds. Since/” andg
are write requestsgs.node = v, g belongs tou.gwlog, andprecedes(v.gwlog, q”, ¢2) holds, by Lemma

5.7, precedes(u.gwlog, q", g2) holds. From above;” belongs tou.gwlog and ¢ 45 ¢ for somej > 1.
Hence, by induction hypothesigyecedes(u.gwlog, g1, ¢") holds. From above, it follows thaf; belongs to
u.gwlog andprecedes(u.gwlog, q1, q2) holds. O

Lemma 5.10 For any nodeu, u.gwlog’ respects the causal ordering among requests. ifwlog’.

Proof. We prove this lemma by induction on the number of iterations in the constructioryofog’. For
the base case, by Lemma 580gwlog respects the causal ordering among requestsdtwlog. In each
iteration in the construction, the additional requests are added at the engudég’. By Lemma 5.9 again,
this step preserves the causal ordering among requesiguiiiog’. O

Lemma 5.11 For any nodeu, u.log’ andu.gwlog’ are compatible.

Proof. We prove this lemma by induction on the number of iterations in the constructian@f and
u.gwlog’. For the base case, by Lemma Su5log andu.gwlog are compatible. In each iteration of the
construction, by the base case and the induction hypothesis, additiqnabte appended to both the request
sequences are mutually compatible. Hencéyg’ andu. gwlog’ are compatible. O

Theorem 4 Let setA be the execution-history of any lease-based algorithnThen, A is causally consis-
tent.

Proof. Consider any node in 7. By constructiony. gwlog’ is a serialization of all the requestsirywlog’.
From this observation and Lemma 5.10qwlog’ is causally consistent. By constructian/og’ contains all
the requests ipruned(A,w). By Lemma 5.11u.log" andu.gwlog’ are compatible.

Hence, by definitionA is causally consistent. O

References

[1] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto. Chosamory: Definitions, imple-
mentation, and programmin@istributed Computing9(1):37-49, 1995.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for generetworks.Journal of Algorithms
28(1):67-104, 1998.

[3] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed file allocatitnformation and Compu-
tation, 185(1):1-40, 2003.

[4] A. Borodin and R. El-Yaniv. Online computation and competitive analysiSambridge University
Press, 1998.

27

[5] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstrong an Singh. SplitStream: High-
bandwidth multicast in a cooperative environment.18th ACM Symposium on Operating Systems
Principles pages 298-313, October 2003.

[6] J. Challenger, P. Dantzig, and A. lyengar. A scalable and higtdjlase system for serving dynamic
data at frequently accessed web sitesPioceedings of the 1998 High Performance Networking and
Computing Conferen¢gpages 1-30, November 1998.

[7] R. Cox, A. Muthitacharoen, and R. T. Morris. Serving DNS usingearpto-peer lookup service. In
Proceedings of the 1st International Workshop on Peer-to-Pede@ggpages 155-165, March 2002.

[8] K. Czajkowski, C. Kesselman, S. Fitzgerald, and I. T. Foster. Gfigtiation services for distributed
resource sharing. IRroceedings of the 10th IEEE International Symposium on High Perfocma
Distributed Computingpages 181-194, August 2001.

[9] M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, &rzheng. PRACTI replication.
In USENIX Symposium on Networked Systems Design and Implementéaip2006.

[10] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive Leases: Argjrconsistency mechanism for the world
wide web.|IEEE Transactions on Knowledge and Data Engineeritff5):1266-1276, 2003.

[11] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARPawhitecture for secure resource
peering. In19th ACM Symposium on Operating Systems Princijplages 133-148, October 2003.

[12] Ganglia: Distributed monitoring and execution systdrnt p: / / gangl i a. sour cef or ge. net .

[13] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant raeedm for distributed file cache
consistency. IrM2th ACM Symposium on Operating Systems Princiglages 202—-210, December
1989.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusidrscalable and robust communi-
cation paradigm for sensor networks. Rroceedings of the 6th Annual International Conference on
Mobile Computing and Networkingages 56—67, August 2000.

[15] N. Jain, P. Yalagandula, M. Dahlin, and Y. Zhang. INSIGHT: Atdizited monitoring system for
tracking continuous queries. Work-in-Progress Session at SOSP 2Qfges 23-26, October 2005.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAGtidy aggregation service for
ad-hoc sensor networks. Proceedings of the 5th Symposium on Operating Systems Design and
ImplementationDecember 2002.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. SheiAkscalable content addressable net-
work. In Proceedings of ACM SIGCOMM Conferenpages 161-172, August 2001.

[18] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Applicatiosl- multicast using content-
addressable networks. Proceedings of the 3rd International COST264 Workshop on Networke
Group Communicatiarpages 14—-29, November 2001.

[19] R. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robudtsamalable technology for dis-
tributed system monitoring, management, and data mink@M Transactions on Computer Systems
21(2):164-206, 2003.

28

[20] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. InfoSpdsing a logic language for system health
monitoring in distributed systems. roceedings of the 2002 ACM SIGOPS European Workshop
September 2002.

[21] M. Roussopoulos and M. Baker. CUP: Controlled update prdpaga peer-to-peer networks. In
USENIX Annual Technical Conferengages 167-180, June 2003.

[22] A. Rowstron and P. Druschel. Pastry: Scalable, decentralizedtdocation, and routing for large-
scale peer-to-peer systems.Rroceedings of Middlewargages 329-350, November 2001.

[23] I. Stoica, R. T. Morris, D. R. Karger, M. F. Kaashoek, and Hldkrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. Aroceedings of ACM SIGCOMM Conferenpages
149-160, August 2001.

[24] A. S. TanenbaumDistributed Operating SystemPBrentice-Hall, 1995.

[25] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An inféionglane for networked systems. In
Proceedings 2nd Workshop on Hot Topics in NetwaR@/ember 2003.

[26] R. Wolski, N. Spring, and J. Hayes. The network weather servicelistributed resource perfor-
mance forecasting service for metacomputingpurnal of Future Generation Computing Systems
15(5-6):757-768, 1999.

[27] P. Yalagandula and M. Dahlin. A scalable distributed information managéesystem. IfProceedings
of ACM SIGCOMM Conferengpages 379—-390, 2004.

[28] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: Araistructure for fault-tolerant wide-
area location and routing. Technical Report UCB/CSD-01-1141, URebsy, 2001.

29

