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Abstract

We address a hierarchical generalization of the well-known disk paging problem. In the
hierarchical cooperative caching problem, a set of n machines residing in an ultrametric space
cooperate with one another to satisfy a sequence of read requests to a collection of read-only
files. A seminal result in the area of competitive analysis states that the ”least recently used”
(LRU) paging algorithm is constant-competitive if it is given a constant-factor blowup in ca-
pacity over the offline algorithm. Does such a constant-competitive deterministic algorithm,
with a constant-factor blowup in the machine capacities, exist for the hierarchical cooperative
caching problem? In this paper, we present a deterministic hierarchical generalization of LRU
that is constant-competitive when the capacity blowup is linear in d, the depth of the cache
hierarchy. Furthermore, we exhibit an infinite family of depth-d hierarchies such that any ran-
domized hierarchical cooperative caching algorithm with capacity blowup b has competitive
ratio Ω(log d

b ) against an oblivious adversary. Thus, our upper and lower bounds imply a tight
bound of Θ(d) on the capacity blowup required to achieve constant competitiveness.
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1 Introduction
In the classic disk paging problem, which has been extensively studied, we are given a cache and
a sequence of requests for pages. When a page is requested, we incur a miss if it is not already
present in the cache. In the event of a miss, we are required to load the requested page into the
cache, which may necessitate the eviction of another page. Our goal is to minimize the cost of
processing the request sequence, where the cost is defined as the number of misses incurred. A
caching algorithm is online if it processes each successive request with no knowledge of future
requests. A caching algorithm is offline if it is given the entire request sequence in advance.

An online algorithm is c-competitive if, for all request sequences τ , the cost incurred by the
online algorithm to process τ is at most c times that incurred by an optimal offline algorithm. In
the seminal paper introducing the notion of competitive analysis, Sleator and Tarjan [13] show that
LRU (Least-Recently-Used) and several other online deterministic caching algorithms are k

k−h+1
-

competitive, where k is the cache capacity of the online algorithm and h is the cache capacity of
the offline algorithm. They also show that k

k−h+1
is the best competitive ratio that can be achieved

by any deterministic online caching algorithm. Young [16] proposes the LANDLORD algorithm
that achieves competitive ratio k

k−h+1
for a case where the files being cached have nonuninform

sizes and retrieval costs. Note that LRU and LANDLORD are constant-competitive assuming a
constant-factor capacity blowup over the corresponding optimal offline algorithm.

In cooperative caching [9], a set of caches cooperate in serving requests for each other and in
making caching decisions. The benefits of cooperative caching have been supported by several
studies. For example, the Harvest cache [7] introduces the notion of a hierarchical arrangements
of caches. Harvest uses the Internet Cache Protocol [15] to support discovery and retrieval of
documents from other caches. The Harvest project later became the public domain Squid cache
system [14]. Adaptive Web Caching [17] builds a mesh of overlapping multicast trees; the popular
files are pulled down towards their users from their origin servers. In local-area network environ-
ments, the xFS [1] system utilizes workstations cooperating with each other to cache data and to
provide serverless file system services.

A cooperative caching scheme can be roughly divided into three components: placement,
which determines where to place copies of files, search, which directs each request to an appro-
priate copy of the requested file, and consistency, which maintains the desired level of consistency
among the various copies of a file. In this paper, we study the placement problem, and we assume
that a separate mechanism enables a cache to locate a nearest copy of a file, free of cost, and we
assume that files are read-only (i.e., copies of a file are always consistent).

We focus on a class of networks where the cost of communication among caches is speci-
fied by an ultrametric distance function, the precise definition of which is given in Section 2. An
ultrametric corresponds to a kind of hierarchical distance function. For this reason, we call the
cooperative caching problem in networks with ultrametric distance function the hierarchical co-
operative caching (HCC) problem. This is an important problem because many actual networks
have a hierarchical or approximately hierarchical structure. Furthermore, various caching schemes
[7, 8, 14] for a wide area network suggest arranging caches hierarchically. Therefore, we believe
that an ultrametric is appropriate for modeling the distance function among caches distributed over
a wide area network.

Ultrametrics are equivalent up to a constant-factor to the hierarchically well-separated tree
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(HST) metrics, as introduced by Bartal [3]. Refining earlier results by Bartal [3, 5], Fakcharoen-
phol et al. [10] have shown that any metric space can be approximated by the HST metrics with a
logarithmic distortion. Hence, many results for the HST metrics imply corresponding results for
arbitrary metric spaces, at the expense of an extra logarithmic factor.

For the case where the access distribution of each file at each cache is fixed and known in
advance, Korupolu et al. [12] provide a polynomial-time algorithm for the HCC problem that
minimizes the average retrieval cost and does not require a capacity blowup. In addition, they
provide a faster constant-factor approximation algorithm that does not require a capacity blowup.
On the other hand, the assumption in Korupolu et al. [12] of a fixed access distribution is rather
strong. Furthermore, even in applications where the access distribution is relatively stable, it may
be expensive to track.

Since the HCC problem generalizes the disk paging problem mentioned earlier, we cannot hope
to achieve constant competitiveness for the HCC problem without at least a constant-factor capac-
ity blowup. Our main motivation in pursuing the present research has been to determine whether
there exists a constant-competitive algorithm with a constant-factor capacity blowup for the HCC
problem. Since the LANDLORD algorithm by Young is designed for files with non-uniform re-
trieval cost, one could think of applying LANDLORD to solve the HCC problem. However, simply
running LANDLORD at each cache does not provide a good competitive ratio for the HCC problem,
since LANDLORD is not designed to exploit the benefits of cooperation among caches. As stated in
Young [16], the focus of LANDLORD “is on simple local caching strategies, rather than distributed
strategies in which caches cooperate to cache pages across a network”.

In this paper, we show that if an online algorithm is given a sufficiently large capacity blowup,
then constant competitiveness can be achieved. In Section 4, we present a deterministic hierar-
chical generalization of LRU that is constant-competitive when the capacity blowup is linear in
d, the depth of the cache hierarchy. We content ourselves by dealing with files of unit sizes only.
However, a hierarchical generalization of LANDLORD can be used to deal with files of nonuniform
sizes.

Furthermore, we exhibit an infinite family of depth-d hierarchies such that any randomized
online HCC algorithm with a capacity blowup b has competitive ratio Ω(log d

b
) against an oblivious

adversary. In particular, we construct a hierarchy with a sufficiently large depth and show that an
oblivious adversary can generate an arbitrarily long request sequence such that the randomized
online HCC algorithm incurs a cost Ω(log d

b
) times that of an optimal offline algorithm. In terms of

n, the number of caches, our lower bound result shows that the competitive ratio of any randomized
HCC algorithm is Ω(log log n − log b). Our upper and lower bounds imply a tight bound of Θ(d)
on the capacity blowup required to achieve constant competitiveness.

Several paging problems (e.g., distributed paging, file migration, and file allocation) have been
considered in the literature, some of which are related to the HCC problem (e.g., see the survey
paper by Bartal [4] for the definitions of these problems). In particular, the HCC problem can be
formulated as the read-only version of the distributed paging problem on ultrametrics. And the
HCC problem without replication is a special case of the constrained file migration problem where
the cost accessing a file at distance d is equal to the cost of migrating the file a distance of d. Most
existing work on these problems focuses on upper bound results, and lower bound results only
apply to algorithms without a capacity blowup. For example, for the distributed paging problem,
Awerbuch et al. [2] show that, given polylog(n,∆) capacity blowup, there exists a deterministic
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polylog(n,∆)-competitive algorithm for general networks, where ∆ is the normalized diameter of
the network. For the constrained file migration problem, if we let m denote the total capacity of
the n caches, Bartal [3] gives a deterministic lower bound of Ω(m), a randomized lower bound
of Ω(logm), and a randomized upper bound of O((logm) log2 n). Applying the recent result of
Fakcharoenphol et al. [10], the latter upper bound may be improved to O((logm) log n).

The rest of this paper is organized as follows. Section 2 provides some preliminary definitions.
Section 3 presents our lower bound. Section 4 presents our upper bound.

2 Preliminaries
Assume that we are given a set of caches, each with a specified nonnegative capacity, and a distance
function h that specifies the cost of communication between any pair of caches. Such a distance
function is a metric if it is nonnegative, symmetric, satisfies the triangle inequality, and h(u, v) = 0
if and only if u = v for all caches u and v. A metric distance function h is an ultrametric if
h(u, v) ≤ max(h(u,w), h(v, w)) for all caches u, v, and w; note that the latter condition subsumes
the triangle inequality.

We now describe another method to specify a distance function over a set of caches. In this
method, the distance function is encoded as a rooted tree where each node of the tree has an
associated nonnegative diameter. There is a one-to-one correspondence between the set of caches
and the leaves of the tree, and each leaf has a diameter of zero. The diameter of any node is required
to be less than that of its parent. The distance between two caches is then defined as the diameter
of the least common ancestor of the corresponding leaves. It is well-known (and easy to prove)
that a distance function can be specified by a tree in this manner if and only if it is an ultrametric.
We say that such a tree is λ-separated, where λ > 1, if the diameter of any node is at least λ times
that of any of its children.

In all of the caching problems addressed in this paper, we assume that the distance function
specifying the cost of communication is an ultrametric, and we adopt the tree view of an ultrametric
discussed in the preceding paragraph. The main advantage of this view is that it enables us to
leverage standard tree terminology in our technical arguments. Table 1 lists a number of useful
definitions based on tree terminology.

Notation Meaning
root the root of the tree

α.parent the parent of α, where α 6= root
α.ch children of α
α.anc the ancestors of α (including α)
α.desc the descendants of α (including α)
α.depth the depth of α, where the root is considered to be at depth 0
α.diam the diameter of α
α.caches the set of caches in the subtree rooted at α

α.cap the total capacity of the caches in α.caches

Table 1: Some useful notation. The variable α refers to a tree node.
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In the caching problems addressed in this paper, we refer to the objects to be cached as files.
The files are assumed to be read-only, so we do not need to deal with the issue of consistency
maintenance. Each file is assumed to be indivisible; we do not consider schemes in which a
copy of a file may be broken into fragments and spread across multiple caches. Each file f has a
specified size, denoted size(f), and penalty, denoted penalty(f). We assume that any file can fit
in any cache, that is, the maximum file size is assumed to be at most the minimum cache capacity.
The penalty associated with a file represents the cost per unit size to retrieve the file when it is not
stored anywhere in the tree of caches, and is assumed to exceed the diameter of the tree.

A copy is a pair (u, f) where u is a cache and f is a file with size at most the capacity of u. A
set of copies is called a placement. If (u, f) belongs to a placement P , we say that a copy of f is
placed at u in P . A placement P is b-feasible if the total size of the files placed in any cache is at
most b times the capacity of the cache.

A caching algorithm maintains a placement. Initially, the placement is empty. Two basic
operations, delete and add, may be used to update a given placement P . A delete operation removes
a copy from P ; the algorithm incurs no cost for such a deletion. In an add operation, a copy (u, f)
is added to P . If, prior to the add, P does not place a copy of f at any cache, then the cost of the
add is defined to be penalty(f). Otherwise, the cost is size(f) · dist(u, v), where v is the closest
cache at which a copy of f is placed. A caching algorithm A is b-feasible if it always maintains a
b-feasible placement.

A request is a pair (u, f) where u is a cache and f is a file. To process such a request, a
caching algorithm performs an arbitrary sequence of add and delete operations, subject only to the
constraint that (u, f) belongs to at least one of the placements traversed.

The HCC problem is to process a given sequence of requests with the goal of minimizing cost.
For any (randomized) HCC algorithm A, and any request sequence τ , we define TA(τ) as the
(expected) cost for A to process τ . An online HCC algorithm A is c-competitive if for all request
sequences τ and 1-feasible HCC algorithms B, TA(τ) ≤ c · TB(τ). (Remark: The asymptotic
bounds established in this paper are unchanged if we allow an additive slack in the definition of
c-competitiveness, as in [6, Chapter 1].)

An HCC algorithm is b-quasifeasible if it maintains a b-feasible placement before and after
processing a request, and while processing a request, removal of at most one copy of a file from
its placement makes its placement b-feasible. Observe that any b-quasifeasible HCC algorithm is
a (b + 1)-feasible HCC algorithm. In Section 4, we present a deterministic constant-competitive
O(d)-quasifeasible online HCC algorithm; by the preceding observation, our algorithm is O(d)-
feasible.

An HCC algorithm is nice if on a request (u, f), it first adds a copy (u, f) to its placement and
then performs an arbitrary sequence of add and delete operations.

Observe that a nice (b + 1)-feasible HCC algorithm A can simulate any b-feasible HCC algo-
rithm B by first retrieving the requested copy, and then exactly following the steps of algorithm
B. In performing this simulation, algorithm A incurs at most twice the cost of algorithm B.
Hence, any b-feasible c-competitive HCC algorithm can be converted into a nice (b + 1)-feasible
2c-competitive HCC algorithm. (Remark: With additional care it may be possible to argue that the
factor of 2 appearing in the preceding observation can be eliminated.) In Section 3 we prove that
for any nice b-feasible randomized online HCC algorithm A, there exists a request sequence τ and
a 1-quasifeasible offline HCC algorithm B such that TA(τ) = Ω(log d

b
) · TB(τ). By the foregoing
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observation, together with that of the preceding paragraph, we can conclude that the competitive
ratio of any b-feasible randomized online HCC algorithm is Ω(log d

b
).

3 The Lower Bound
In this section, we present a lower bound that holds for an arbitrary nice randomized b-feasible
online HCC algorithm ON, where b is a positive integer. The lower bound holds for ON with
respect to the trees drawn from an infinite family of k-ary, depth d trees, parameterized by integers
d and k such that d = 8bk − 1. We denote a tree from this family by T (d, k). Furthermore, the
diameter of an internal node, α, of tree T (d, k) is set to be λd−i−1, where λ = max(15

7
,Ω(log k)),

i = α.depth, and 0 ≤ α.depth < d. Recall from the previous section that the diameter of a leaf
is 0. For any file f placed in T (d, k), penalty(f) is set to be λ · root .diam. Note that T (d, k) is a
λ-separated tree.

The lower bound discussed above is established in Sections 3.2 through 3.8. Section 3.1 illus-
trates some of the central ideas to be used in the proof of the lower bound by addressing a simpler
problem. It is not necessary to read Section 3.1 before continuing to Section 3.2, but it might
provide some useful intuition.

3.1 A Simple Lower Bound Result
In the present section, we restrict attention to instances of the HCC problem satisfying the follow-
ing characteristics.

• There are n caches, each with capacity `, where ` is a positive integer.

• Each pair of distinct caches are unit distance apart. Note that such a uniform metric space
is a special case of an ultrametric; it corresponds to a one-level hierarchy in which the root
(which does not have an associated cache) is at distance 1/2 to each of its n children (the
caches), and the shortest path between any pair of caches goes through the root.

• There are two sets of ` unit-sized files X and Y , and every access is to a file in X ∪ Y .

• Each file in X ∪ Y has the same associated penalty ρ = Ω(log n).

In addition, we make the following simplifying assumptions.

• The online algorithm is deterministic. We make this assumption primarily for ease of presen-
tation. The Ω(log n) lower bound presented in this section is easily generalized to hold for
randomized online algorithms. The proof of our main lower bound is generalized to handle
the randomized case.

• The capacity blowup b afforded to the online algorithm is 1. Our assumption that b = 1
allows for an easy Ω(`) lower bound argument, since the adversary can restrict all accesses
to a single cache, and the results of Sleator and Tarjan [13] then imply an Ω(`) lower bound.
But the results of Sleator and Tarjan also imply that if we allow b to be a constant greater than
one, this approach cannot yield a non-constant lower bound. In fact, as we show in Section 4,
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it is possible to give a constant-competitive algorithm for the general HCC problem if the
capacity blowup b is at least the depth of the hierarchy. Since we are currently focusing on
the special case of a constant-depth hierarchy, we cannot hope to establish a non-constant
lower bound on the competitive ratio while allowing an arbitrary constant capacity blowup
b.

Given the foregoing assumptions, we now sketch a proof of an Ω(log n) lower bound on the
competitive ratio. At the end of this section, we briefly indicate how the ideas used to prove this
Ω(log n) lower bound are generalized in Sections 3.2 through 3.8 to establish our main lower bound
for the HCC problem.

Fix an online algorithm A. Our objective is to produce a request sequence σ and an offline
algorithmB such thatA’s cost to serve σ is Ω(log n) times that ofB. Initially, the offline algorithm
B loads one of its caches with the files in the set X , and loads each of the remaining caches with
the files in the set Y . Note that the offline algorithm B incurs Θ((ρ + n)`) cost to establish this
initial configuration. We generate a sufficiently long request sequence σ so that the cost incurred
by A exceeds the initial configuration cost of B by an Ω(log n) factor. This allows us to ignore the
initial configuration cost of B in the remainder of this proof sketch.

The offline algorithm B maintains the invariant that one cache holds the set of files X , and
every other cache holds the set of files Y . Typically, the configuration of B does not change
when a read request is processed. Occasionally, B selects a new cache to hold X , and updates its
configuration accordingly, paying Θ(`) cost. These updates toB’s configuration partition time into
epochs. Within each epoch, we ensure that the online algorithm A’s cost to service each request
is Ω(log n) times that of B. Furthermore, we ensure that the total cost paid by A within each
completed epoch is Ω(` log n). Since the cost required by B to update its configuration at the end
of each epoch is Θ(`), the desired lower bound follows.

To ensure that the online algorithm A’s cost to service each request within an epoch is Ω(log n)
times that of the offline algorithmB,B maintains a partition of the n caches into two sets U and V .
At the beginning of the epoch, all of the caches are in the set U . During the epoch, B periodically
shifts caches from U to V . The epoch ends when there is exactly one cache remaining in U . The
offline algorithm B ensures that the cache belonging to U throughout the epoch is the one that
stores X in this epoch. Consequently, during the epoch, a request for a file in Y at a cache in
V costs B nothing. At a general point within the epoch, the next request to be appended to σ is
determined in the following manner.

• First, if some file x in X is not stored in any of A’s caches, then a request is generated for x
at a particular fixed cache, say the cache with the lowest numerical identifier. In this case A
pays at least ρ = Ω(log n) to service the request, while B pays at most one unit.

• Second, if there exists a file y in Y that is not stored by A at some cache v in V , then we
generate a request for y at v. In this case A pays at least one unit to service the request, while
B pays zero.

• Otherwise, there exists (by a simple averaging argument) a cache u in U at which A stores
at least |X|/|U | files belonging to the set X . The offline algorithm shifts u from U to V , and
a request is generated for a file y in Y that A does not currently store at u. As argued in the
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next paragraph, as long as |U | > 1, we are able to ensure that the cache u shifted to V is not
the cache that the offline algorithm B is using to store X in the current epoch. Therefore, A
pays at least one unit to service the request, while B pays zero.

Therefore, in every case, A’s cost to service a request within an epoch is Ω(log n) times that of B.
To maintain the invariant that U contains the cache w currently used by the offline algorithm

B to store X , w is chosen in an adversarial manner. Informally, the online algorithm is forced to
play a shell game in each epoch, where the shells are the n caches and the online algorithm makes
successive guesses as to the identity of w. Since the online algorithm is deterministic, w can be
chosen to be the nth guess of the online algorithm.

It remains to prove that the total cost paid by the online algorithm A within each completed
epoch is Ω(` log n). As we have argued above, A stores at least |X|/|U | files belonging to the set
X in cache u when u is shifted to V . Since no other cache is shifted to V until A stores all of Y in
u, A incurs a cost at least |X|/|U | before V grows again. Thus the total cost incurred by A during
a completed epoch is at least |X| ·

∑
2≤i≤n 1/i = Ω(` log n), establishing the desired lower bound.

In the sections that follow, we establish our main lower bound by generalizing the shell game
described above to ultrametrics corresponding to complete, regular trees of non-constant depth.
The basic intuition is that the online algorithm is forced to play many shell games in parallel, one
corresponding to each node of the tree. The adversarial nature of the shell games ensures that the
online algorithm generally makes incorrect guesses related to the hierarchical configuration main-
tained by the offline algorithm. These incorrect guesses erode the capacity advantage b enjoyed by
the online algorithm: By employing a sufficiently deep tree, the online algorithm can be forced to
devote all of the space in certain caches to files associated with such incorrect guesses. The next
request is introduced at such a cache.

3.2 ADV Algorithm
In Figure 1, we present an algorithm for an oblivious adversary [6, Chapter 4], ADV, that con-
structs a request sequence σ of any given length N . The following definitions are useful for devel-
oping the ADV algorithm.

• For any nonnegative integer i and positive integer j, let

g(i, j) = kd−i ·
(
i− 1

8k
+

1

4j

)
.

• For any node α, we define associated “reactivation” and “deactivation” values α.react =
g(α.depth, k) and α.deact = g(α.depth, 2k).

• We define the “activation” value of α, denoted α.act , as g(α.depth, r) where r = |{β : β ∈
α.parent .ch : β.x = 0}|. Note that α.act is a function of the program state, since it depends
on the values of certain program variables (i.e., β.x for all β in α.parent .ch).

• We fix d+ 1 disjoint sets of unit-sized files F (i), 0 ≤ i ≤ d, such that |F (i)| = dkd−i−1e for
0 ≤ i ≤ d. Each request in the request sequence σ generated by ADV involves a file drawn
from these sets.
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{initially, N ≥ 0, count = 0, π = root , root .x = root .y = root .act = g(0, k),
α.x = α.y = 0 for all α 6= root , and σ is empty}

1 while count < N do {main loop}
2 while π.load < π.deact do {up loop}
3 π.y := π.react ;
4 for every child δ of π, set both δ.x and δ.y to 0;
5 π := π.parent
6 od; {end of up loop}
7 while π.missing = ∅ do {down loop}
8 if a child δ of π satisfies δ.x > 0 ∧ δ.load ≥ δ.react then
9 π := δ

10 else
11 if π has exactly one child with x equal to 0 then
12 for every child δ of π, set both δ.x and δ.y to 0
13 fi;
14 π := a child δ of π such that δ.x = 0 ∧ δ.load ≥ δ.act ;
15 set both π.x and π.y to π.act
16 fi
17 od; {end of down loop}
18 append to σ a request for an element in π.missing at an arbitrary cache in π.caches;
19 count := count + 1
20 od {end of main loop}

Figure 1: The ADV algorithm. We remark that the y field maintained at each node has no impact
on the computation of the request sequence σ. (To see this, note that the y field is written, but never
read.) The y field has been introduced to facilitate our analysis.

• We define α.placed as the set of distinct files placed by ON in α.caches after processing the
request sequence given by the program variable σ. Since ON is a randomized algorithm,
α.placed is a random set.

• We define α.load as the expected value of |(∪0≤i<α.depthF (i)) ∩ α.placed |.

• We define α.missing as the set of all files f in F (α.depth) and Pr(f ∈ α.placed) ≤ 1
2
.

Algorithm ADV is oblivious since it constructs the request sequence without examining the
random bits used by ON during its execution. Whenever line 18 of ADV is executed, a request
is appended to σ and ON processes this request. The main technical result to be established in
this section is that, for N sufficiently large, TON(σ) is Ω(log d

b
) times TA(σ) for an optimal 1-

quasifeasible offline algorithm A.

3.3 Correctness of ADV
We show in this section that ADV is well-defined (i.e., π 6= root just before line 5, π is not a leaf
just before line 8, and line 14 finds a child) and that each round terminates with the generation of
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a request. For the sake of brevity, in our reasoning below, we call a predicate a global invariant if
it holds everywhere in ADV (i.e., it holds initially and it holds between any two adjacent lines of
the pseudocode in Figure 1).

Lemma 3.1 Let I1 denote that every internal node has a child with x field equal to 0, I2 denote
that π is a node, and I3 denote that π.load ≥ π.deact . Then I1 ∧ I2 is a global invariant and I3
holds everywhere in the down loop.

Proof: The predicate I1 ∧ I2 holds initially because π = root and α.x = 0 for all α, and I3 holds
just before the down loop due to the guard of the up loop. We next show that every line of code
outside the down loop preserves I1 ∧ I2 (i.e., if I1 ∧ I2 holds before the line, then it holds after the
line) and every line of code in the down loop preserves I1 ∧ I2 ∧ I3.

Each line of code outside the down loop preserves I1 because such lines do not assign a nonzero
value to an x field. The only line that affects I2 is line 5. We observe that π 6= root just before line
5, due to the guard of the up loop and the observation that root .load ≥ root .deact = 0. Hence,
line 5 preserves I2. It follows that every line of code outside the down loop preserves I1 ∧ I2.

In the down loop, the only line that affects I1 is 15, but I3 and the inner if statement establish
that π has at least two children with x field equal to 0 just before line 14. Hence, if I1 ∧ I3 holds
before line 15, then I1 holds after line 15.

We now argue that for each line of code in the down loop if I1 ∧ I2 ∧ I3 holds before execution
of the line then I2 holds after execution of the line. It is sufficient to prove that π.depth < 8bk − 1
(i.e., π is not a leaf) just before line 8 and that if the assignment statement of line 14 is executed,
the RHS is well-defined (i.e., some child δ of π satisfies δ.x = 0 and δ.load ≥ δ.act). To establish
the former claim, let us assume to the contrary that π.depth = 8bk − 1 just before line 8. (Note
that I2 implies that π.depth cannot take on a higher value.) By the guard of the down loop, the
probability that π.placed contains the lone file in F (8bk− 1) is at least 1

2
. Furthermore, I3 implies

that π.load ≥ π.deact = g(8bk−1, 2k) = b− 1
8k

. It follows that the expected number of files stored
by ON in the cache associated with the leaf π is at least b − 1

8k
+ 1

2
> b, which is a contradiction

since π.cap = 1 and ON is b-feasible. Hence, π.depth < 8bk − 1 just before line 8.
We now argue that if the assignment statement of line 14 is executed, the RHS is well-defined.

Let A = {α : α ∈ π.ch ∧ α.x = 0} and B = {β : β ∈ π.ch ∧ β.x > 0}. Let r denote |A| and i
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denote π.depth. We observe that∑
α∈A

α.load

=
∑
α∈π.ch

α.load −
∑
β∈B

β.load

≥ π.load +
|F (i)|

2
−
∑
β∈B

β.load

≥ π.deact +
|F (i)|

2
−
∑
β∈B

β.react

= g(i, 2k) +
kd−i−1

2
−
∑
β∈B

g(i+ 1, k)

= kd−i · i
8k

+
kd−i−1

2
− (k − r) · kd−i−1 · (i+ 2)

8k

= r · kd−i−1 ·
(
i

8k
+

1

4r
+

1

4k

)
.

(In the derivation above, the first inequality is due to the definition of load and the guard of the
down loop, i.e, for each file f in |F (i)|, Pr(f ∈ α.placed) > 1

2
, and the second inequality is due to

I3 and the guard of the outer if statement. Formula for |F (i)| is valid in the second equality since
i < 8bk − 1.) Hence, by an averaging argument (note that r > 0 by I1), there exists a child δ of π
such that δ.x = 0 and

δ.load

≥ kd−i−1 ·
(
i

8k
+

1

4r

)
= δ.act .

Hence, the RHS of line 14 evaluates to a node.
Recall that we wish to show that every line of code in the down loop preserves I1 ∧ I2 ∧ I3.

Thus far we have established that for each line of code in the down loop, if I1∧I2∧I3 holds before
execution of the line then I1 ∧ I2 holds after execution of the line. It remains to show that for each
line of code in the down loop, if I1 ∧ I2 ∧ I3 holds before execution of line then I3 holds after
execution of the line. The only lines in the down loop that affect I3 are 9 and 14. By I2, π is a node
and by definition, α.react ≥ α.deact and α.act ≥ α.deact for all α. Hence, if I2∧ I3 holds before
lines 9 and 14, then I3 holds after both of these lines.

This completes our proof of the lemma. �

Lemma 3.2 The up loop terminates.

Proof: Every iteration of the up loop moves π to its parent, and root .load ≥ root .deact by
definition. Hence, the up loop terminates. �
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Lemma 3.3 The down loop terminates.

Proof: Every iteration of the down loop moves π to one of its children. By I2 of Lemma 3.1, π is
always a well defined node. Hence, the down loop terminates. �

Lemma 3.4 After generating a sequence σ of N requests, ADV terminates.

Proof: Follows from Lemmas 3.2 and 3.3. �

3.4 Some Properties of ADV
We first prove some properties of ADV that follow directly from its structure. For the sake of
brevity, for a property that is a global invariant, we sometimes only state the property but omit
stating that the property holds everywhere.

Lemma 3.5 For all α, α.x = 0 or α.x ≥ α.react .

Proof: The claim holds initially because α.x = 0 for all α. The only line that assigns a nonzero
value to x is 15, which preserves the claim because by definition, α.act ≥ α.react for all α. �

Lemma 3.6 For all α, α.y equals 0 or α.react or α.x.

Proof: The claim holds initially because α.y = 0 for all α. The only lines that modify x are 4, 12,
and 15. The only lines that modify y are 3, 4, 12, and 15. By inspection of the code, all of these
lines trivially preserve the claim. �

Lemma 3.7 Let P denote the predicate that every node in π.anc has a positive x value and every
node that is neither in π.anc nor a child of a node in π.anc has a zero x value. Then P is a loop
invariant of the up loop, the down loop, and the main loop.

Proof: Let X denote π.anc and let Y denote the set of nodes that are neither in X nor children of
the nodes in X .

Every iteration of the up loop moves π to its parent. To avoid confusion, we use π to denote
the old node (i.e., child) and π′ to denote the new node (i.e., parent). An iteration of the up loop
removes π from X , adds π.ch to Y , and sets the x value of π.ch to 0. Therefore, it preserves P .

Every iteration of the down loop moves π to one of its children. To avoid confusion, we use π
to denote the old node (i.e., parent) and π′ to denote the new node (i.e., child). Suppose the down
loop takes the first branch of the outer if statement. Then it adds π′, which has a positive x value,
to X and removes π′.ch from Y . Hence it preserves P . Suppose the down loop takes the second
branch of the outer if statement. If line 12 is executed, P is preserved because line 12 leaves X
and Y unchanged and only changes the x value of the nodes in neither X nor Y . Then lines 14 and
15 preserves P because they add π′, which has a positive x value after line 15, to X and removes
π′.ch from Y . Hence, it preserves P .

The main loop preserves P because both the up loop and the down loop preserve P . �
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Lemma 3.8 For all α, α.y ≤ α.x.

Proof: The claim holds initially because α.x = α.y = 0 for all α. The only lines that modify
the x or y field are 3, 4, 12, and 15. At lines 4, 12, and 15, the x and y fields become the same
value. It follows from Lemma 3.7 and the guard of the up loop that just before line 3, π 6= root
and π.x > 0. It then follows from Lemmas 3.5 and 3.6 that line 3 preserves π.y ≤ π.x. �

We now introduce the notion of an active sequence to facilitate our subsequent proofs. A
sequence 〈a0, a1, . . . , ar〉, where 0 ≤ r < k, is called i-active if aj = g(i + 1, k − j) for all
0 ≤ j ≤ r.

Lemma 3.9 For every internal node α, the nonzero x fields of the children of α form an i-active
sequence, where i = α.depth.

Proof: The claim holds initially because α.x = 0 for all α. The only lines that modify the x field
are 4, 12, and 15. Lines 4 and 12 preserve the claim because the x fields of the children of π
all become 0. Line 15 preserves the claim (for π.parent) because π.x becomes π.act , which by
definition equals g(i + 1, k − j), where i = π.parent .depth and j equals the number of children
of π.parent that have a positive x field. �

Lemma 3.10 Let P (α) denote the predicate that for all β that are not ancestors of α, β.y ≤
β.react . Then P (π) holds initially and P (π) is a loop invariant of the up loop, the down loop, and
the main loop.

Proof: The predicate P (π) holds initially because π = root and α.y = 0 for all α. The up loop
preserves P (π) because every iteration first establishes π.y = π.react and then moves π to its
parent. The down loop preserves P (π) because it does not set the y field to a nonzero value. The
main loop preserves P (π) because both the up loop and the down loop preserve P (π). �

3.5 Colorings
In order to facilitate the presentation of an offline algorithm in Section 3.6, we introduce the notion
of colorings in this section and the notion of consistent placements in the next.

A coloring of T (d, k) (recall that T (d, k) is the tree of caches) is an assignment of one of the
colors {white, black} to every node in T (d, k) so that the following rules are observed: (1) root is
white, (2) every internal white node has exactly one black child and k − 1 white children, and (3)
the children of a black node are black. A coloring is called consistent (with ADV) if for every α,
if α.x > 0, then α is white.

For any coloring C and any pair of sibling nodes α and β, we define swapc(C, α, β) (swap
coloring) as the coloring obtained from C by exchanging the color of each node in the subtree
rooted at α with that of the corresponding node in the subtree rooted at β. (Note that the subtrees
rooted at α and β have identical structure.)
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3.6 Consistent Placements
A placement is colorable if there exists a coloring C such that: (1) for each white internal node α
of T (d, k), the set of files F (α.depth) are stored in (and fill) the caches associated with the unique
black child of α; (2) for each white leaf α of T (d, k), the (singleton) set of files F (α.depth) is
stored in (and fill) the cache α. Note that in the preceding definition of a colorable placement,
the coloring C, if it exists, is unique. A placement is called consistent if it is colorable and the
associated coloring is consistent.

For any placement P and any pair of siblings α and β, we define swapp(P, α, β) (swap place-
ment) as the placement obtained from P by exchanging the contents of each cache in α with that
of the corresponding cache in β. (It is convenient to assume that the children of each node in
T (d, k) are ordered from left to right. This induces an overall left to right ordering of α.caches
and β.caches . For all i, the ith cache in α.caches corresponds to the ith cache in β.caches .) Note
that for any colorable placement P with associated coloring C and any pair of sibling nodes α and
β, the placement swapp(P, α, β) is colorable, and its associated coloring is swapc(C, α, β).

3.7 The Offline Algorithm OFF
For every internal node α, we maintain an additional variable α.last defined as follows. First, we
partition the execution of the adversary algorithm into epochs with respect to α. The first epoch
begins at the start of the execution. Each subsequent epoch begins when either line 4 or line 12 is
executed with π = α. The variable α.last is updated at the start of each epoch, when it is set to
the child β of α for which line 15 is executed with π = β furthest in the future. (If one or more
children β of α are such that line 15 is never executed with π = β in the future, then α.last is set
to an arbitrary such child β.) Note that the variables α.last are introduced solely for the purpose
of analysis and have no impact on the execution of ADV.

At any point in the execution of ADV, the values of the last fields determine a unique coloring,
denoted by COFF, as follows: root is white and the black child of each internal white node α is
α.last .

We define a 1-quasifeasible offline algorithm OFF that maintains a placement POFF as follows.
We initialize POFF to an arbitrary consistent placement with associated coloring COFF. We update
POFF to swapp(POFF, α, β) whenever line 4 or line 12 is executed, where α and β denote the
values of π.last before and after the execution of the line. Whenever line 18 is executed, a request
is generated and the algorithm OFF uses the placement POFF to process this request. On a request
(u, f), if there is not already a copy of file f at u, OFF creates a copy (u, f) in order to process the
request and then immediately discards the copy. Note that the capacity constraint can be violated
at u by one unit when the copy (u, f) is created, but the capacity is satisfied before processing the
next request. Hence, the placement POFF remains the same before and after line 18, and POFF is
updated only at lines 4 and 12.

Lemma 3.11 Throughout the execution of ADV, POFF is colorable and has associated coloring
COFF.

Proof: Immediate from the way POFF is updated whenever a last field is updated. �
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Lemma 3.12 Execution of line 4 or line 12 preserves the consistency of COFF.

Proof: Assume that COFF is consistent before line 4. So π is white in COFF before line 4, because
by Lemma 3.7, π.x is positive before line 4. By the definition of COFF, before line 4, π.last is
black. Let α be π.last before line 4, and let β be π.last after line 4. Before and after line 4,
the x values of the descendants of α are equal to 0. By Lemma 3.7, the x values of all proper
descendants of β are equal to 0 before and after line 4. Since β.x = 0 after line 4, the x values of
all descendants of α and β are equal to 0 after line 4. Hence, the swapp operation preserves the
consistency of COFF. The same argument applies to line 12. �

Lemma 3.13 Execution of line 15 preserves the consistency of COFF.

Proof: Assume that COFF is consistent before line 15. Line 14 implies that π 6= root just before
line 15. Let π′ denote π.parent . By Lemma 3.7, π′.x > 0 and hence π′ is white before line 15.
Therefore, by construction of ADV, π′.last is the black child of π′.

Let t denote the start of the current epoch for π′, i.e., t is the most recent time at which π′.last
was assigned. Just after time t, the x values of all children of π′ were equal to 0. By the definition
of t, no child of π′ has been set to 0 since time t. By Lemma 3.1, every internal node has at least
one child with x equal to 0. Therefore, from time t until after the execution of line 15, at most k−1
children of π′ have had their x value set to a nonzero value. (Note that line 15 is the only line that
sets x to a nonzero value.) Thus, by the definition of last , π′.last .x remains 0 after the execution
of line 15. Thus, π′.last 6= π. Since π′ is white and π′.last is black in COFF, we conclude that π is
white in COFF. So COFF remains consistent even with the additional constraint that π is required
to be white. (Note that π.x is set to a positive value by line 15.) �

Lemma 3.14 The placement POFF is always consistent.

Proof: Lines 4, 12, and 15 are the only lines that can affect the consistency of COFF since they are
the only lines that modify the last field or the x field of any node. From Lemmas 3.12 and 3.13,
these lines preserve the consistency of COFF. From Lemma 3.11 it follows that POFF is always
consistent. �

3.8 A Potential Function Argument

In this section, we use a potential function argument to show that ON is Ω
(
ν
ν′

)
-competitive, where

ν = min

(
λ

16
,
ln k

8
− 1

8

)
and ν ′ = λ

λ−1
. Let T ′OFF(σ) denote the total cost incurred by OFF to process request sequence σ,

except that we exclude from T ′OFF(σ) the cost of initializing POFF. (This initialization cost is taken
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into account in the proof of Theorem 1 below.) We define Φ, a potential function, as:

Φ = ν · T ′OFF(σ)− ν ′ · TON(σ) + (1)∑
α∈π.anc∧α 6=root

α.parent .diam · α.x+∑
α/∈π.anc

α.parent .diam · (α.x− α.y + α.load)

Lemma 3.15 The cost incurred by swapp(P, α, β) is at most 2 · kd−i · α.parent .diam, where
i = α.depth.

Proof: The cost incurred is the cost of exchanging the files placed in α and β with each other,
which is at most 2 · α.cap · α.parent .diam = 2 · kd−i · α.parent .diam. Note that α and β have the
same capacity. �

Lemma 3.16 The predicate Φ ≤ 0 is a loop invariant of the up loop.

Proof: Every iteration of the up loop moves π to its parent. To avoid confusion, we use π to refer to
the old node (i.e., child) and we use π′ to refer to the new node (i.e., parent). Consider the change
in Φ in a single iteration of the up loop. ON incurs no cost in the up loop. By the definition of Φ,
line 3 preserves Φ. By Lemma 3.8, line 4 does not increase Φ. Let i = π.depth. By Lemma 3.15,
after the execution of line 4, OFF incurs a cost of at most c = 2 · kd−i−1 · π.diam to move from
the current consistent placement to the next. Thus, the total change in Φ in an iteration is at most

ν · c− π′.diam · (π.y − π.load)

≤ ν · c− π′.diam · (π.react − π.deact)

= ν · c− π′.diam · (g(i, k)− g(i, 2k))

= ν · c− π′.diam · kd−i−1 · 1

8

≤ ν · c− λ

16
· c

≤ 0.

(In the derivation above, the first inequality is due to the guard of the up loop and line 3, and the
second inequality is due to the assumption that T (d, k) is λ-separated.) �

Lemma 3.17 The predicate Φ ≤ 0 is a loop invariant of the down loop.

Proof: Every iteration of the down loop moves π to one of its children. To avoid confusion, we
use π to refer to the old node (i.e., parent) and π′ to refer to the new node (i.e., child). ON incurs
no cost in the down loop. We consider the following three cases.

Suppose that the outer if statement takes the first branch. In this case, OFF does not incur any
cost. Thus, the change in Φ is

π.diam · (π′.y − π′.load)

≤ π.diam · (π.react − π.react)

= 0,

15



where the inequality is due to Lemma 3.10 and the guard of the outer if statement.
Suppose that the outer if statement takes the second branch and that line 12 is not executed. In

this case, OFF does not incur any cost. Thus, the change in Φ is

π.diam · (π′.y − π′.load)

= π.diam · (π′.x− π′.load)

≤ 0,

where the equality is due to line 15 and the inequality is due to lines 14 and 15.
Suppose that the outer if statement takes the second branch and that line 12 is executed. By

Lemma 3.15, in this case, OFF incurs a cost of c = 2 · kd−i−1 · π.diam, where i = π.depth. Thus,
the change in Φ due to line 12 is at most

ν · c− π.diam ·
∑
δ∈π.ch

(δ.x− δ.y)

≤ ν · c− π.diam ·
∑
δ∈π.ch

(δ.x− δ.react)

= ν · c− π.diam ·
k−2∑
j=0

(g(i+ 1, k − j)− g(i+ 1, k))

= ν · c− π.diam · kd−i−1

k−2∑
j=0

(
1

4(k − j)
− 1

4k

)
≤ ν · c−

(
ln k

8
− 1

8

)
· c

≤ 0.

(In the above derivation, δ.x and δ.y denotes the values just before the execution of line 12, the first
inequality follows from Lemma 3.10, the first equality follows from Lemma 3.9, and the second
inequality follows from the fact that Hk−1 > ln k, where Hk−1 denotes the (k − 1)th harmonic
number, that is, Hk−1 =

∑k−1
i=1

1
i
.) By the analysis of the previous case (i.e., the outer if statement

takes the second branch but line 12 is not executed), lines 14 and 15 do not increase Φ. Thus, every
iteration of the down loop preserves Φ ≤ 0. �

Lemma 3.18 Lines 18 to 19 preserve Φ ≤ 0.

Proof: Let the request appended to σ in line 18 be (u, f). The guard of the down loop ensures that
f is in π.missing . Algorithm OFF incurs cost at most π.diam to process such a request because it
stores all the files in F (π.depth) in a child of π, and π.missing ⊆ F (π.depth).

Since ON is nice, it processes a request (u, f) in two phases as follows: in the first phase, ON
adds a copy (u, f) to its placement; in the second phase, ON performs an arbitrary sequence of
add and delete operations. If π is equal to root , then ON incurs expected cost at least λ

2
· π.diam

in the first phase since the miss penalty associated with any file is λ · root .diam. If π is not equal
to root , then ON incurs expected cost at least 1

2
· π.parent .diam = λ

2
· π.diam in the first phase.
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Thus, in either case, ON incurs expected cost at least λ
2
· π.diam it the first phase. Let X be the

set of nodes on the path from π to u, excluding π. Note that α.load , for α ∈ X , may increase by 1
during the first phase.

The change in Φ due to the first phase of ON and due to OFF in processing a request is at most

ν · π.diam − ν ′ · λ · π.diam

2
+
∑
α∈X

α.parent .diam

≤ π.diam ·
(
ν − ν ′ · λ

2

)
+ π.diam ·

∑
j≥0

λ−j

≤ π.diam ·
(
ν − ν ′ · λ

2
+

λ

λ− 1

)
= π.diam ·

(
ν − λ2 − 2λ

2(λ− 1)

)
≤ π.diam · λ

16
·
(

15− 7λ

λ− 1

)
≤ 0,

(In the above derivation, the second last inequality follows from ν ≤ λ
16

and the last inequality
follows from λ ≥ 15

7
.)

For analyzing the second phase of ON in processing a request, it is convenient to view the ran-
domized online algorithm ON as a probability distribution over a collection of deterministic online
algorithms. For each such deterministic algorithm A, we define an associated potential function
ΦA as in Equation 1, but with TON(σ) replaced by the cost incurred by A on σ, denoted TA(σ), and
each term α.load appearing in the second summation replaced by |(∪0≤i<α.depthF (i))∩α.placedA|,
where α.placedA denotes the set of distinct files placed by A in α.caches after processing the re-
quest sequence σ. We denote |(∪0≤i<α.depthF (i)) ∩ α.placedA| by α.loadA. Note that TON(σ) is
the expected value of TA(σ) when A is chosen at random from the probability distribution asso-
ciated with ON. Similarly, for any node α, α.load is the expected value of α.loadA and Φ is the
expected value of ΦA. Thus it is sufficient to prove that for any A, each individual operation (i.e.,
each addition or deletion of a file) performed by A during the second phase does not increase ΦA.
For deletions, this claim is immediate since all terms in ΦA are unchanged except that terms of the
form α.loadA may decrease by one. When a file is added, the set of nodes with an increased loadA
value form a path P from some node, say α, to a leaf, and A incurs a cost of α.parent .diam. Let
the set of nodes on path P be Y . (Note that root does not belong to Y since root .load is always
zero.) Since the diameters of the nodes of P are λ-separated, the change in ΦA is at most

−ν ′ · α.parent .diam +
∑
β∈Y

β.parent .diam

≤ −ν ′ · α.parent .diam + α.parent .diam ·
∑
j≥0

λ−j

= −ν ′ · α.parent .diam +
λ

λ− 1
· α.parent .diam

= 0.
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The claim of the lemma then follows. �

Lemma 3.19 ON is Ω
(
ν
ν′

)
-competitive.

Proof: Initially, Φ = 0. By Lemmas 3.16, 3.17, and 3.18, Φ ≤ 0 is a loop invariant of the
main loop. Therefore, by Lemmas 3.5 and 3.8, TON(σ) ≥ ν

ν′ · T ′OFF(σ) holds initially and is a
loop invariant of the main loop. Let C be the cost incurred by OFF in moving from the empty
placement to the first placement. Note that ON serves every request with a cost at least 1 (because
the diameter of an internal node is at least 1). Hence, TON(σ) tends to∞ as N (the length of the
request sequence σ) tends to∞. Therefore, we can ensure that TON(σ)

T ′
OFF(σ)+C

= Ω
(
ν
ν′

)
by choosing

N sufficiently large. �

Theorem 1 ON is Ω
(
log d

b

)
-competitive.

Proof: Recall that λ is Ω(log k). Hence, ν = Θ(log k) and ν ′ = Θ(1). Lemma 3.19 then implies
that ON is Ω(log k)-competitive. The theorem follows since d = 8bk − 1, that is, k = Θ(d/b). �

It is also possible to express the preceding lower bound in terms of the number of caches n
and the capacity blowup b. Since, n = kd and d = 8bk − 1, we have n = k8bk−1. Solving these
equations for k (e.g., using bootstrapping), we find that k = Θ( logn

b(log logn−log b
) and hence,

log k = Θ(log log n− log b− log(log log n− log b))

= Θ(log log n− log b).

It follows that ON is Ω(log log n− log b)-competitive.

4 An Upper Bound
We show in this section that, given O(d) capacity blowup, where d is the depth of the cache hier-
archy, a simple LRU-like algorithm, which we refer to as Hierarchical LRU (HLRU), is constant-
competitive with respect to an optimal offline algorithm OPT. For the sake of simplicity, we
assume that every file has unit size and uniform miss penalty. Our result can easily be extended to
handle variable file sizes and nonuniform miss penalties using an approach similar to LANDLORD

[16].

4.1 The HLRU Algorithm
In this section we present a 2(d + 1)-quasifeasible HLRU algorithm that is constant-competitive
with respect to OPT. HLRU divides every cache into d+ 1 equal-sized segments numbered from
0 to d. (For generalizing our results to variable sized files, the segments should be contiguous. For
the case of unit sized files considered here, the segments need not be contiguous.) For a node α,
we define α.small to be the union of segment α.depth of all the caches in α.caches , and we define
α.big to be the union of β.small for all β ∈ α.desc.
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For the rest of this section, we extend the definitions of a copy and a placement (defined in
Section 2) to internal nodes as well. A copy is a pair (α, f) where α is a node and f is a file that is
stored in α.small . A placement refers to a set of copies. The HLRU algorithm, shown in Figure 2,
maintains a placement P . Note that when a copy (α, f) is added to P in line 4, file f is added to
α.small . In HLRU, a node α uses a variable α.ts [f ] to keep track of the timestamp of a file f .
For the convenience of presentation, we define root .parent to be a fake node that has every file in
root .parent .small (and hence also in root .parent .big), and we define root .parent .diam to be the
uniform miss penalty.

{On a request (α, f )}
1 t := now;
2 do
3 flag := false;
4 P := P ∪ {(α, f)};
5 α.ts [f ] := max(α.ts [f ], t);
6 if capacity is violated at α.small then
7 f := file with smallest nonzero α.ts [f ];
8 P := P\{(α, f)};
9 if f /∈ α.big then

10 t := α.ts [f ];
11 α.ts [f ] := 0;
12 α := α.parent ;
13 flag := true
14 fi
15 fi
16 while flag

Figure 2: The HLRU algorithm.

4.2 Analysis of the HLRU Algorithm
For any node α and file f , we partition time into epochs with respect to α and f as follows. The
first epoch begins at the start of the execution, which is defined to be time 1. Subsequent epochs
begin just after the execution of line 11.

We define α.ts∗[f ] to be the time of the most recent access to file f in a cache in α.caches in
the current epoch with respect to node α and file f . If no such access exists, we define α.ts∗[f ] to
be 0.

For the convenience of analysis, we categorize the file movements in HLRU into two types:
retrievals and evictions. On a request (u, f ), the HLRU algorithm first performs a retrieval (this
corresponds to the block of code from the beginning of the code to line 5 of the first iteration of the
loop) of f from the nearest cache v that has a copy. Let α be the least common ancestor of u and
v. Then the cost of such a retrieval is α.diam. Let X denote the set of nodes on the path from α to
u, excluding α but including u. For every node β in X , we charge a pseudocost of β.parent .diam
to node α for such a retrieval.
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Each subsequent iteration of the loop performs an eviction (this corresponds to the block
of code from line 6 of an iteration to line 5 of the next iteration) of a file from α.small to
α.parent .small for some node α. We charge a pseudocost of α.parent .diam to α for such an
eviction.

The only cost incurred by OPT is due to retrievals. Let OPT adds (or retrieves) a copy (u, f)
by fetching f from v, α be the least common ancestor of u and v, and X be the set of nodes on the
path from from α to u, excluding α but including u. Then the cost of such a retrieval is α.diam.
For every node β in X , we charge a pseudocost of β.parent .diam to node α for such a retrieval by
OPT.

For any node α and file f , we define auxiliary variables α.in[f ] and α.out [f ] for the purpose
of our analysis. These variables are initialized to 0. We increment α.in[f ] whenever a retrieval of
file f charges a pseudocost to node α. We increment α.out [f ] whenever eviction of file f charges
a pseudocost to node α.

Lemma 4.1 Before and after every retrieval or eviction, for any node α and file f , f ∈ α.big iff
β.ts [f ] > 0 for some β ∈ α.desc.

Proof: Initially, both sides of the equivalence are false. If both sides of the equivalence are false,
then according to the code in Figure 2, the only event that sets either side to true is a retrieval of f
at a cache u in α.caches , which in fact sets both sides to true. It remains to prove that if both sides
of the equivalence are true, and if one side becomes false, then the other side becomes false.

The only event that falsifies the left side is an eviction of the last copy of f in α.big from
α.small . Prior to this eviction, β.ts [f ] = 0 for all proper descendants β of α (note that the
equivalence holds for β) and α.ts [f ] > 0. The eviction then sets α.ts [f ] to 0, falsifying the right
side.

The only event that can falsify the right side (i.e., line 11) is an eviction of f from α.small such
that, after the eviction, f 6∈ α.big . Note that eviction of f from β.small , for a proper descendant
β of α, cannot falsify the right side because such an eviction ensures β.parent .ts [f ] > 0 (line 5).
Thus, falsification of the right side implies falsification of the left side. �

Lemma 4.2 Before and after every retrieval or eviction, for any node α and file f ,

α.ts∗[f ] = max
β∈α.desc

β.ts [f ].

Proof: Initially, both sides of the equality are zero. By the definition of α.ts∗[f ], the value of
α.ts∗[f ] changes from nonzero to 0 (i.e., a new epoch with respect to α and f begins) after line
11. By the guard of the inner if statement, f 6∈ α.big just before line 11. Hence, by Lemma 4.1,
β.ts [f ] is 0 for all β ∈ α.desc.

The value α.ts∗[f ] increases due to some access of f at a cache u in α.caches . The equality
holds because the max value on the right side is at u.

Between the changes of α.ts∗[f ], only the eviction of f from α.big can change the max (reset
it to 0) on the right side of the equality. This eviction also resets α.ts∗[f ] to 0 because a new epoch
begins. �
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Lemma 4.3 Before and after every retrieval or eviction, for any node α and file f , α.ts [f ] ≤
α.ts∗[f ]. Furthermore, just after line 8, if f 6∈ α.big , then α.ts [f ] = α.ts∗[f ].

Proof: The first claim of the lemma follows immediately from Lemma 4.2. For the second claim,
note that we are evicting the last copy of f in α.big from α.small . By Lemma 4.1, all proper
descendants β of α have β.ts [f ] = 0. So α.ts [f ] = α.ts∗[f ] by Lemma 4.2. �

Lemma 4.4 If a file movement (between two caches) has actual cost C and charges a total pseu-
docost of C ′, then

C ≤ C ′ ≤ λ

λ− 1
C.

Proof: Suppose the file movement is from cache u to cache v. Let α be the least common ancestor
of u and v and let B be the nodes on the path from α to v, excluding α but including u. Then

C

= α.diam

≤
∑
β∈B

β.parent .diam

= C ′

≤ α.diam ·
∑
j≥0

λ−j

=
λ

λ− 1
· C.

�

Lemma 4.5 For any node α, the total pseudocost charged to node α due to retrievals is∑
f

α.in[f ] · α.parent .diam.

Proof: Follows from the observation that whenever a pseudocost is charged to node α due to a
retrieval, the pseudocost is α.parent .diam. �

Lemma 4.6 For any node α, the total pseudocost charged to node α due to evictions is at most∑
f

α.out [f ] · α.parent .diam.

Proof: Follows from the observation that whenever a pseudocost is charged to node α due to an
eviction, the pseudocost is at most α.parent .diam. �

Lemma 4.7 For any node α and file f ,

α.out [f ] ≤ α.in[f ].
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Proof: We observe that if a pseudocost is charged to a node α as a result of a retrieval, then
f /∈ α.big before the retrieval and f ∈ α.big after the retrieval. Similarly, if a pseudocost is
charged to node α as a result of an eviction, then the eviction falsifies f ∈ α.big . It then follows
that

α.out [f ] ≤ α.in[f ] ≤ α.out [f ] + 1

because f 6∈ α.big initially. �

Lemma 4.8 For any node α, α.big always contains the most recently accessed 2 · α.cap files by
α.caches .

Proof: Let X denote the set of the most recently accessed 2 · α.cap files. We consider the places
where a file is added to X or removed from α.big .

A file f can be added to X only when f is requested at a cache u in α.caches . In this case, f
is added to u.small and is not evicted from u.small because it is the most recently accessed item.
Hence, f ∈ α.big .

A file f can be removed from α.big only when it is moved from α.small to α.parent .small as
the result of an eviction and there is no other copy of f in α.big . This means that f is chosen as
the LRU item at line 7. Since f is the LRU item, there are 2 · α.cap items g in α.small such that
α.ts [f ] < α.ts [g] ≤ α.ts∗[g]. By Lemma 4.3, α.ts [f ] = α.ts∗[f ] just after line 8. It follows then
from the definition of ts∗ that f 6∈ X . �

Lemma 4.9 For any node α, the total pseudocost due to retrievals charged to α by HLRU is at
most twice the pseudocost charged to α by OPT.

Proof: Fix a node α. For OPT, we say that a request for a file f at a cache in α.caches results
in a miss if no copy of f exists at any cache in α.caches at the time of the request. For HLRU,
a miss occurs if no copy of f is in α.big . By Lemma 4.8, HLRU incurs at most as many misses
as an LRU algorithm with capacity 2 · α.cap running on the subsequence of requests originating
from the caches in α.caches . (Note that LRU misses whenever HLRU misses.) By the well-known
result of Sleator and Tarjan [13], such an LRU algorithm incurs at most twice as many misses as
OPT.

Note that a miss results in a pseudocost of α.parent .diam being charged to α. Therefore,
the total pseudocost charged to node α in OPT is at least the number of misses in OPT times
α.parent .diam. Furthermore, within HLRU, a pseudocost is charged to node α only on a miss.
Therefore, the total pseudocost charged to node α in HLRU is at most the number of misses
incurred by HLRU times α.parent .diam. The claim of the lemma then follows. �

Lemma 4.10 For any node α, the total pseudocost charged to α by HLRU is at most four times
the total pseudocost charged to α by OPT.

Proof: Follows immediately from Lemmas 4.5, 4.6, 4.7, and 4.9. �

Theorem 2 HLRU is constant-competitive.

Proof: Follows immediately from Lemmas 4.4 and 4.10. �
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