
Online Aggregation over Trees

C. Greg Plaxton, Mitul Tiwari
University of Texas at Austin

Praveen Yalagandula
HP Labs

Abstract

Consider a distributed network with nodes ar-
ranged in a tree, and each node having a lo-
cal value. We formulate an aggregation prob-
lem as the problem of aggregating values (e.g.,
summing values) from all nodes to the request-
ing nodes in the presence of writes. The goal is
to minimize the total number of messages ex-
changed. The key challenges are to define a
notion of “acceptable” aggregate values, and to
design algorithms with good performance that
are guaranteed to produce such values. We for-
malize the acceptability of aggregate values in
terms of certain consistency guarantees simi-
lar to traditional consistency models defined in
the distributed shared memory literature. The
aggregation problem admits a spectrum of so-
lutions that trade off between consistency and
performance. The central question is whether
there exists an algorithm in this spectrum that
provides strong performance and good consis-
tency guarantees. We propose a lease-based ag-
gregation mechanism, and evaluate algorithms
based on this mechanism in terms of consis-
tency and performance. With regard to consis-
tency, we generalize the definitions of strict and
causal consistency for the aggregation problem.
We show that any lease-based aggregation al-
gorithm provides strict consistency in sequen-
tial executions, and causal consistency in con-
current executions. With regard to performance,
we propose an online lease-based aggregation
algorithm, and show that, for sequential exe-
cutions, the algorithm is constant-competitive

against any offline algorithm that provides strict
consistency. Our online lease-based aggregation
algorithm is presented in the form of a fully dis-
tributed protocol, and the aforementioned con-
sistency and performance results are formally
established with respect to this protocol. Thus,
we provide a positive answer to the central ques-
tion posed above.

1 Introduction

Information aggregation is a basic building
block in many large-scale distributed applica-
tions such as system management [10, 22], ser-
vice placement [9, 23], file location [5], grid re-
source monitoring [7], network monitoring [13],
and collecting readings from sensors [14]. Cer-
tain generic aggregation frameworks [7, 18, 24]
proposed for building such distributed applica-
tions allow scalable information aggregation by
forming tree like structures with machines as
nodes, and by using an aggregation function at
each node to summarize the information from
the nodes in the associated subtree.

Some of the existing aggregation frameworks
use strategies optimized for certain workloads.
For example, in MDS-2 [7], the information is
aggregated only on reads, and no aggregation
is performed on writes. This kind of strategy
performs well for write-dominated workloads,
but suffers from unnecessary latency or impreci-
sion on read-dominated workloads. On the other
hand, Astrolabe [18] employs the other extreme
form of strategy in which, on a write at a node

u in the tree, each nodev on the path fromu
to the root node recomputes the aggregate value
for the subtree rooted at nodev, and the new ag-
gregate values are propagated to all the nodes.
This kind of strategy performs well for read-
dominated workloads, but consumes high band-
width when applied to write-dominated work-
loads. Furthermore, instead of these two ex-
treme forms of workloads, the workload may
fluctuate and different nodes may exhibit activ-
ity at different times. Therefore, a natural ques-
tion to ask is whether one can design an aggre-
gation strategy that is adaptive and works well
for varying workloads.

SDIMS [24] proposes a hierarchical aggrega-
tion framework with a flexible API that allows
applications to control the update propagation,
and hence, the aggregation aggressiveness of the
system. Though SDIMS exposes such flexibility
to applications, it requires applications to know
the read and write access patterns a priori to
choose an appropriate strategy (see our discus-
sion on related work for further details). Thus,
SDIMS leaves an open question of how to adapt
the aggregation strategy in an online manner as
the workload fluctuates.

In this work, we design an online aggrega-
tion algorithm, and show that the total num-
ber of messages required to execute a given set
of requests is within a constant factor of the
minimum number of messages required to ex-
ecute the requests. We give the complete algo-
rithm description in the abstract protocol nota-
tion [11], and also believe that our algorithm is
practical.

Broader Perspective. The ever increasing
complexity of developing large-scale distributed
applications motivates a research agenda based
on the identification of key distributed primi-
tives, and the design of reusable modules for
such primitives. To promote reuse, these mod-
ules should be “self-tuning”, that is, should pro-
vide near optimal performance under wide range
of operating conditions. As indicated earlier, ag-
gregation is useful in many applications. In this

work we design a distributed protocol for ag-
gregation that provides good performance guar-
antees under any operating conditions. Our fo-
cus on tree networks is not limiting since many
large-scale distributed applications tend to be hi-
erarchical (tree-like) in nature for scalability. If
the network is not a tree, one can use standard
techniques to build a spanning tree. For ex-
ample, in SDIMS [24], nodes are arranged in
a distributed hash table (DHT), and trees em-
bedded in the DHT are used for the aggrega-
tion; these trees are automatically repaired in
the face of failures. The present work can be
viewed as a case study within the broader re-
search agenda alluded to above. The techniques
developed here may find application in the de-
sign of self-tuning modules for other primitives.

Problem Formulation. In order to describe
our results we next present a brief description
of the problem formulation; see Section 2 for
a detailed description. We consider a distributed
network with nodes arranged in an unrooted tree
and each node having a local value. We formu-
late the aggregation problem as the problem of
aggregating values (e.g., computing min, max,
sum, or average) from all the nodes to the re-
questing nodes in the presence of writes. The
goal is to minimize the total number of messages
exchanged.

The main challenges are to define acceptable
aggregate values in presence of concurrent re-
quests, and to design algorithms with good per-
formance that produce the acceptable aggregate
values. We define the acceptability of the ag-
gregate values in terms of certain consistency
guarantees. There is a spectrum of solutions that
trade off between consistency and performance.
We introduce a mechanism that uses the concept
of leases for aggregation algorithms. Any ag-
gregation algorithm that uses this mechanism is
called lease-based aggregation algorithm. The
notion of a lease used in our mechanism is a gen-
eralization of that used in SDIMS [24].

Results. We evaluate the lease-based aggre-
gation algorithms in terms of consistency and

2

performance. In terms of consistency, we gener-
alize the notions of strict and causal consistency,
traditionally defined for distributed shared mem-
ory [21, Chapter 6], for the aggregation prob-
lem. We show that any lease-based aggrega-
tion algorithm provides strict consistency for se-
quential executions, and causal consistency for
concurrent executions.

In terms of performance, we analyze the
lease-based algorithms in the competitive analy-
sis framework [20]. In this framework, we com-
pare the cost of an online algorithm with respect
to an optimal offline algorithm. An online ag-
gregation algorithm executes each request with-
out any knowledge of the future requests. On the
other hand, an offline aggregation algorithm has
knowledge of all the requests in advance. An
online algorithm is-competitiveif, for any re-
quest sequence�, the cost incurred by the online
algorithm in executing� is at most times that
incurred by an optimal offline algorithm.

As is typical in the competitive analysis of
distributed algorithms [2, 3], we focus on se-
quential executions. In this paper we present
an online lease-based aggregation algorithmRWW which, for sequential executions, is52 -
competitive against an optimal offline lease-
based aggregation algorithm. We use a po-
tential function argument to show this result.
We also show that the result is tight by pro-
viding a matching lower bound. Further, we
show that, for sequential executions,RWW is 5-
competitive against an optimal offline algorithm
that provides strict consistency.

The three main contributions of the work are
as follows. First, we design an online aggre-
gation algorithm and show that our algorithm
achieves good competitive ratio for sequential
executions. Second, we define the notion of
causal consistency for the aggregation problem.
Third, we show that our algorithm satisfies the
definition of causal consistency for concurrent
executions.

An interesting highlight of the techniques is
the design of the aggregation algorithm that ef-

fectively reduces the analysis to reasoning about
a pair of neighboring nodes. This reduction al-
lows us to formulate a linear program of small
size, independent of tree size, for the analysis.

Related Work. Various aggregation frame-
works have been proposed in the literature such
as SDIMS [24], Astrolabe [18], and MDS [7].
SDIMS is a hierarchical aggregation frame-
work that utilizes DHT trees to aggregate val-
ues. SDIMS provides a flexible API that al-
lows applications to decide how far the updates
to the aggregate value due to the writes should
be propagated. In particular, SDIMS supports
Update-local, Update-all, andUpdate-upstrate-
gies. In Update-local strategy, a write affects
only the local value. In Update-all strategy, on
a write, the new aggregate value is propagated
to all the nodes. In Update-up strategy, on a
write, the new aggregate value is propagated to
the root node of the hierarchy. Astrolabe is an
information management system that builds a
single logical aggregation tree over a given set
of nodes. Astrolabe propagates all updates to
the aggregate value due to the writes to all the
nodes, hence, allows all the reads to be satisfied
locally. MDS-2 also forms a spanning tree over
all the nodes. MDS-2 does not propagate up-
dates on the writes, and each request for an ag-
gregate value requires all nodes to be contacted.

There are some similarities between our
lease-based aggregation algorithm and prior
caching work. Due to the space limitations,
here we are describing the most relevant work.
In CUP [19], Roussopoulos and Baker propose
a second-chancealgorithm for caching objects
along the routing path. The algorithm removes
a cached object after two consecutive updates
are propagated to the remote locations due to
the writes on that object at the source. The
second-chance algorithm has been evaluated ex-
perimentally, and shown to provide good per-
formance. In the distributed file allocation [3],
Awerbuch et al. consider replication algorithm
for a general network. In their algorithm, on
a read, the requested object is replicated along

3

the path from the destination to the requesting
node. On a write, all copies are deleted except
the one at the writing node. Awerbuch et al.
showed that their distributed algorithm has poly-
logarithmic competitive ratio for the distributed
caching problem against an optimal centralized
offline algorithm.

The concept of time-based leases has been
proposed in literature to maintain consistency
between the cached copy and the source. This
kind of leases has been applied in many dis-
tributed applications such as replicated file sys-
tems [12] and web caching [8].

Ahamad et al. [1] gave the formal definition of
causal consistency for distributed message pass-
ing system. The key difference between their
setup and ours is in reading one value compared
to aggregating values from all the nodes.

There are several efforts to deal with numeri-
cal error in the aggregate value such as [4, 16].
However, in our knowledge, none of these work
give a competitive online algorithm for the ag-
gregation problem, and neither of them address
the issue of ordering semantics in concurrent ex-
ecutions. In [4], Bawa et al. defined semantics
for various scenarios such as approximate ag-
gregation in a faulty environment calledapprox-
imate single-site validity. They designed algo-
rithms that provide such semantics, and evalu-
ated their algorithms experimentally. In [16],
Olston and Widom consider one level hierarchy
and propose a new class of replication system
TRAPP that allows user to control the tradeoff
between precision (numerical error) and perfor-
mance in terms of communication overhead.

Organization. In Section 2 we introduce def-
initions and aggregation problem statements. In
Section 3 we give an informal description of our
algorithm and analysis. In Section 4 we define
the class of lease-based aggregation algorithms,
and establish certain properties of such algo-
rithms. In Section 5 we present our online lease-
based aggregation algorithmRWW, and estab-
lish bounds on the competitive ratio ofRWW
for sequential executions. In Section 6 we de-

fine the notion of a causally consistent aggre-
gation algorithm, and establish that any lease-
based algorithm, includingRWW, is causally
consistent.

Due to space limitations, this submission fo-
cuses on conveying the main ideas underlying
our results, and some proofs are omitted. The 5-
page appendix alluded to below provides some
additional proof details, along with a complete
description of algorithmRWW. A complete
version of our work, which includes all proofs,
is available online [17].

An appendix has been submitted to the
program chair.

2 Preliminaries

Consider a finite set of nodes (i.e., machines) ar-
ranged in a tree networkT with reliable FIFO
communication channels between neighboring
nodes. We are also given an aggregation op-
erator� that is commutative, associative, and
has an identity element0. For convenience, we
write,x�y�z as�(x; y; z). For the sake of con-
creteness in this paper, we assume that the local
value associated with each node is a real value,
and the domain of� is also real.

The aggregate valueover a set of nodes is
defined as� computed over the local values
of all the nodes in the set. That is, the aggre-
gate value over a set of nodesfv1; : : : ; vkg is�(v1:val ; : : : ; vk:val), wherevi:val is the local
value of the nodevi. Theglobal aggregate value
is defined as the aggregate value over the set of
all the nodes in the treeT .

A request is a tuple (node; op; arg; retval),
where node is the node where the request is
initiated, op is the type of the request, eitherombine or write, arg is the argument of the
request (if any), andretval is the return value of
the request (if any). To execute awrite request,
an aggregation algorithm takes the argument of
the request and updates the local value at the re-
questing node. To execute aombine request,

4

an aggregation algorithm returns a value. Note
that this definition admits the trivial algorithm
that returns0 on anyombine request. We de-
fine certain correctness criteria for aggregation
algorithms later in the paper. Roughly speaking,
the returned value on aombine request corre-
sponds to the global aggregate value.

Theaggregation problemis to execute a given
sequence of requests with the goal of minimiz-
ing the total number of messages exchanged
among nodes. For any aggregation algorithmA
and any request sequence�, we defineCA(�) as
the total number of messages exchanged among
nodes in executing� by A. An online aggrega-
tion algorithmA is -competitive if for all re-
quest sequences� and an optimal offline aggre-
gation algorithmB,CA(�) � �CB(�) [6, Chap-
ter 1].

We sayT is in quiescent state if (1) there is
no pending request at any node; (2) there is no
message in transit across any edge; and (3) no
message is sent until the next request is initiated.
In short,T is in quiescent state if there is no
activity in T until the next request is initiated.

In a sequential execution of a request, the
request is initiated in a quiescent state and is
completed whenT reaches another quiescent
state. In a sequential execution of a request se-
quence�, every requestq in � is executed se-
quentially. In a concurrent execution of a re-
quest sequence, a new request can be initiated
and executed while another request is being ex-
ecuted. We refer to the aggregation problem in
which the given request sequence is executed se-
quentially assequential aggregation problem.

The aggregation functionf is defined over a
set of real values or over a set of write requests.
For a setA of real valuesx1; : : : ; xm, f (A) is
defined as�(x1; : : : ; xm). For a setA of write
requestsq1; : : : ; qm, f (A) is defined asf (A) =�(q1:arg ; : : : ; qm:arg).

For any requestq in a request sequence�, letA(�; q) be the set of the most recent writes pre-
cedingq in � corresponding to each of the nodes
in T . We say that an aggregation algorithm pro-

vides strict consistencyin executing� if anyombine requestq in � returns f (A(�; q)) as
the global aggregate value atq:node. Note that
this definition of strict consistency for an aggre-
gation algorithm is a generalization of the tra-
ditional definition of strict consistency for dis-
tributed shared memory systems (for further de-
tails, see [21, Chapter 6]). We define an ag-
gregation algorithm to benice if the algorithm
provides strict consistency for sequential execu-
tions.

The set of all nodes in treeT is represented
by nodes(T). For any edge(u; v), removal of(u; v) yields two trees,subtree(u; v) is defined
to be one of the trees that containsu.

For any request sequence� and any ordered
pair of neighboring nodes(u; v), we define�(u; v) as follows: (1)�(u; v) is a subsequence
of �; (2) for anywrite requestq in � such thatq:node is in subtree(u; v), q is in�(u; v); and (3)
for anyombine requestq in � such thatq:node
is in subtree(v; u), q is in �(u; v).
3 Informal Overview

In this section we present an informal overview
of our algorithm and analysis.

Recall that on a combine request at a nodeu,u returns a value. Roughly speaking, the value
corresponds to the global aggregate value. In
order to do that,u contacts other nodes and col-
lects the local values from all the other nodes.
Note that we can minimize the number of mes-
sages by performing aggregation at intermediate
nodes, also referred as in-network aggregation.

However, for a combine-dominated work-
load, one may wish to propagate an updated
local value on a write request to minimize the
number of messages exchanged on a combine.
On the other hand, for a write-dominated work-
load, such propagation tend to be wasteful. In
order to facilitate adaptation of how many mes-
sages to send on a combine request versus a
write request, we propose a lease mechanism.

5

r

s

t u

w

v

r

s

t u

w

v

(a) (b)

Figure 1: An example tree network.

Here, we illustrate our lease mechanism for just
two nodesu andv connected by an edge, and
a scenario in which combine requests are initi-
ated atv and write requests are initiated atu. It
turns out that the other scenario is symmetric.
(See Section 4 for the complete description of
the mechanism.)

If the lease fromu to v is present, then on
a write request atu, u propagates the new lo-
cal value tov by sending an update message.
Hence, in the presence of this lease, a combine
request atv is executed locally. On the other
hand, if the lease fromu to v is not present, then
on a combine request atv, a probe message is
sent fromv to u. As a result, a response mes-
sage containing the local value atu is sent fromu to v. Further, in this case, a write request atu is executed locally. Note that on a combine-
dominated scenario, presence of the lease is ben-
eficial. However, on a write-dominated sce-
nario,v may receive many updates whilev is not
initiating any request. In that case,v can break
the lease by sending a release message tou.

In order to make the lease mechanism work
for a tree network in a desirable way, we en-
force two lease invariants. Consider the tree net-
work in Figure 1 as an example. The presence
of a lease on an edge is denoted by a dotted line.
To illustrate the first invariant, consider a com-
bine requestq at nodew with leases as in Figure
1(a). During the execution ofq, w sends mes-
sages and collects the local values from all the
other nodes. If the lease fromt to u is present,
thenu need not send any message tot. How-
ever, this would work only ift has leases fromr
ands. Our first invariant ensures that the lease
from t to u is not set unlesst has leases from

all the other neighboring nodes. Second invari-
ant ensures that the lease fromt to u can not be
broken ifu has given a lease to any other neigh-
boring node, say nodew in Figure 1(b).

Given this lease mechanism, an aggregation
algorithm can adapt how far an updated value
should be propagated on a write request by set-
ting and breaking leases appropriately. The next
question is how to set and break the leases dy-
namically in an optimal manner. We answer
this question by providing an online lease-based
aggregation algorithmRWW (see Section 5).
Roughly,RWW works as follows. For an edge(u; v), RWW sets the lease fromu to v dur-
ing the execution of a combine request at any
node insubtree(v; u), and breaks the lease af-
ter two consecutive write requests at any node
in subtree(u; v). Using a potential function ar-
gument, we show thatRWW is 52 -competitive
against any offline lease-based algorithm for se-
quential executions. We also show that this
bound is tight by providing lower bound ar-
guments. Further, we show thatRWW is 5-
competitive against any offline algorithm that
provides strict consistency for sequential execu-
tions.

With respect to consistency guarantees, we
show that any lease-based aggregation algo-
rithm provides strict consistency for sequential
executions. For concurrent executions, it is dif-
ficult to provide strict or sequential consistency.
Causal consistency is considered to be the next
weaker consistency model for the distributed
shared memory environment [21, Chapter 6]. At
first, it is not clear how to generalize the causal
consistency definitions for the aggregation prob-
lem.

We define the causal consistency for the ag-
gregation problem and show that any lease-
based algorithm provides causal consistency for
concurrent executions (see Section 6). First, we
introduce a new type of ghost requestsgather to
associate a combine request with a set of write
requests. The concept of gather requests is sim-
ilar to the way of associating a read request

6

with a unique write request in analyzing dis-
tributed shared memory [1, 15]. Second, we de-
fine causal ordering among gather and write re-
quests. Third, we extend the lease-based mech-
anism by adding ghost variables and ghost ac-
tions. Finally, we use an invariant style proof
technique to show that any lease-based algo-
rithm provides causal consistency in two steps.
In the first step, we show that a ghost log main-
tained at each node, containing gather and write
requests, respects causal ordering among re-
quests. In the second step, we show that there is
one-to-one correspondence between gather and
combine requests, that is, for each gather request
there is a combine request and vice-versa, such
that the return value of the combine request is
same as aggregation function computed over the
set of write requests returned by the gather re-
quest.

4 Lease-Based Algorithms

In Section 3 we gave a high level description of
an aggregation mechanism based on the concept
of leases. See Figure 2 for the formal description
of this mechanism; the underlined function calls
represent stubs for policy decisions of lease set-
ting and breaking. Throughout the remainder of
this paper, any aggregation algorithm that uses
this mechanism and defines the policy functions
is said to belease-based.

The status of the leases for an edge (u; v) is
given by two boolean variablesu:taken[v℄ andu:granted [v℄. Node u believes that the lease
from v tou is set if and only ifu:taken[v℄ holds.
Also, u believes that the lease fromu to v is
set if and only ifu:granted [v℄ holds. The local
value atu is stored inu:val . For each neighborvi of u, u:aval [vi℄ represents the aggregate value
computed over the set of nodes insubtree(vi; u).
The following kinds of messages are sent by a
lease-based algorithm:probe, response, update,
andrelease.

Informally, for any nodeu, a lease from a

nodeu to its neighboring nodev works as fol-
lows. If u:granted [v℄ holds then, on awrite
request at any node insubtree(u; v), u propa-
gates the new aggregate value tov by sending anupdate message. To break the lease (that is, to
falsify u:granted [v℄), arelease()message is sent
from v to u. On the other hand, ifu:granted [v℄
does not hold then, on aombine request at any
node insubtree(v; u), aprobe() message is sent
from v to u. As a result, aresponse message is
sent fromu to v.

4.1 Properties of any Lease-Based
Algorithm for Sequential Execu-
tions

We define alease graphG(Q) in a quiescent
stateQ, as a directed graph with nodes as the
nodes inT , and for any edge (u; v) in T such
thatu:granted [v℄ holds, there is a directed edge
(u; v) in G(Q). For any two distinct nodesu andv, we define theu-parent ofv as the parent ofv
in treeT rooted atu.

Lemma 4.1 Consider a sequential execution of
a request sequence� by a lease-based algorithm
and any two neighboring nodesu andv.

1. Let aombine requestq in �(u; v) be initi-
ated in a quiescent stateQ. If u:granted [v℄
does not hold inQ, then in execution ofq, (i) a probe message is sent fromv tou; (ii) a response message is sent fromu
to v; (iii) u:granted [v℄ can be set totrue
while sending theresponse message fromv to u; and (iv) noupdate or release mes-
sages are sent. Otherwise, ifu:granted [v℄
holds, then in execution ofq, no messages
are exchanged betweenu andv.

2. Let awrite requestq in �(u; v) be initiated
in a quiescent stateQ. If u:granted [v℄ does
not hold inQ, then in execution ofq, no
messages are exchanged betweenu andv.
Otherwise, ifu:granted [v℄ holds inQ, then

7

node uvar taken[℄ : array[v1; : : : ; vk℄ of boolean;granted [℄ : array[v1; : : : ; vk ℄ of boolean;aval [℄ : array[v1; : : : ; vk ℄ of real; val : real;uaw : set fintg; pndg : set fnodeg;snt [℄ : array[v1; : : : ; vk℄ of set fnodeg;upntr : int; sntupdates : set ffnode; int; intgg;init val := 0; uaw := ;; pndg := ;; upntr := 0;sntupdates := ;;8v 2 nbrs(); taken[v℄ := false;granted [v℄ := false; aval [v℄ := 0; snt [v℄ := ;;beginT1 true ! fombineg
1 onombine(u);
2 foreah v 2 tkn() do
3 uaw [v℄ := ;; od
4 if u =2 pndg !
5 if nbrs() n tkn() = ; !
6 return gval();
7 � nbrs() n tkn() 6= ; !
8 sendprobes(u);
9 snt [u℄ := nbrs() n tkn(); � �T2 true ! fwrite qg
1 val := q:arg ;
2 if grntd() 6= ; !
3 id := newid();
4 forwardupdates (u; id); �T3 � rv probe() fromw !
1 probervd(w);
2 foreah v 2 tkn() n fwg do
3 uaw [v℄ := ;; od
4 if w =2 pndg !
5 if nbrs() n ftkn() [fwgg = ; !
6 sendresponse(w);
7 � nbrs() n ftkn() [fwgg 6= ; !
8 sendprobes(w);
9 snt [w℄ := nbrs() n ftkn() [fwgg; � �T4 � rv response(x;ag) fromw !
1 responservd(ag ; w);
2 aval [w℄ := x;
3 taken[w℄ := ag;
4 foreah v 2 pndg do
5 snt [v℄ := snt [v℄ n fwg;
6 if snt [v℄ = ; !
7 pndg := pndg n fvg;
8 if v = u!
9 return gval();

10 � v 6= u!
11 sendresponse(v); � � odT5 � rv update(x; id) fromw !
1 updatervd(w);
2 aval [w℄ := x;
3 uaw [w℄ := uaw [w℄ [id ;
4 if grntd() n fwg 6= ; !
5 nid = newid();
6 sntupdates := sntupdates [fw; id ;nidg;
7 forwardupdates (w;nid);
8 � grntd() n fwg = ; !
9 forwardrelease(); �T6 � rv release(S) fromw !
1 releaservd(w);
2 granted [w℄ := false;
3 onrelease(w;S);end

proedure sendprobes(node w)pndg := pndg [fwg;foreah v 2 nbrs() n ftkn() [sntprobes() [fwgg do
sendprobe() to v;odproedure forwardupdates (node w; int id)foreah v 2 grntd() n fwg do
sendupdate(subval(v); id) to v;odproedure sendresponse(node w)if (nbrs() n ftkn() [fwgg = ;) !granted [w℄ := setlease(w);�

sendresponse(subval(w); granted [w℄) tow;boolean isgoodforrelease(node w)return (grntd() n fwg = ;);proedure onrelease(node w; set S)
Let id is the smallest id inS;foreah v 2 tkn() n fwg do

LetA be the set of tuples� in sntupdates
such that�:node = v and�:sntid � id ;

Let � be a tuple inA
such that�:rvid � �:rvid; for all � in A;

LetS0 be the set of ids inuaw [v℄ with ids � �:rvid;uaw [v℄ := S0;if isgoodforrelease(v) !releasepoliy(v);� odforwardrelease();proedure forwardrelease()foreah v 2 tkn() doif isgoodforrelease(v) !if taken[v℄ ^ breaklease(v) !taken[v℄ := false;
sendrelease(uaw [v℄) to v;uaw [v℄ := ;;� � odint newid()upntr := upntr + 1;return upntr ;real gval()x := val ;foreah v 2 nbrs() dox := f (x; aval [v℄);odreturn x;real subval(node w)x := val ;foreah v 2 nbrs() n fwg dox := f (x; aval [v℄);odreturn x;set nbrs()return the set of neighboring nodes;set tkn()return fv j v 2 nbrs() ^ taken[v℄ = trueg;set grntd()return fv j v 2 nbrs() ^ granted [v℄ = trueg;set sntprobes()return fsnt [v1℄ [� � � [snt [vk℄g;

Figure 2: Mechanism for any lease-based algorithm. For the nodeu, fv1; : : : ; vkg is the set of
neighboring nodes.

8

in execution ofq, (i) an update message is
sent fromu tov; (ii) a release message fromv to u can be sent; (iii) on receiving therelease message atu, u:granted [v℄ is set tofalse; and (iv) noprobe or response mes-
sages are sent.

3. Let awrite requestq in �(v; u) be initi-
ated in a quiescent stateQ. If u:granted [v℄
holds in Q, then in execution ofq, arelease message can be sent fromv to u,
and on receiving therelease message atu,u:granted [v℄ is set tofalse.

4. In the execution of aombine request in�(v; u), u:granted [v℄ is not affected.

Proof. See Appendix A. �
Lemma 4.1 is summarized in Figure 4 (see

Appendix A). A release message sent during
the execution of awrite request in�(v; u) is as-
sociated with anoop (N) request in this figure.

For any nodeu, we defineI1(u), I2(u), andI3(u) as follows. (1)I1(u): For the most re-
centwrite requestq at u, u:val = q:arg ; (2)I2(u): For anyupdate or response messagem
from any neighboring nodev to u, m:x = f (A),
whereA is the set of most recent write requests
at each of the nodes insubtree(v; u); and (3)I3(u): For any quiescent stateQ and any nodev
in u:tkn(), u:aval [v℄ = f (A(v)), whereA(v)
is the set of the most recentwrite request at
each of the nodes insubtree(v; u). Let I(u) beI1(u) ^ I2(u) ^ I3(u).
Lemma 4.2 Consider a sequential execution of
a request sequence� by a lease-based algo-
rithm. For any nodeu, I(u) is an invariant.

Proof. See [17]. �
Lemma 4.3 Any lease-based aggregation algo-
rithm is nice.

Proof. See Appendix A. �
From Lemma 4.3 and the definition of a nice

aggregation algorithm, we have that any lease-
based aggregation algorithm provides strict con-
sistency in a sequential execution.

5 Competitive Analysis Re-
sults for Sequential Execu-
tions

We defineRWW as an online lease-based ag-
gregation algorithm that follows the policy de-
cisions shown in Figure 5 (see Appendix B) for
setting or breaking a lease.

Informally,RWW works as follows. For any
edge(u; v), RWW sets the lease fromu to v
during the execution of aombine request at
any node in thesubtree(v; u), and breaks the
lease after two consecutivewrite requests at any
nodes insubtree(u; v).

For positive integersa andb, an online lease-
based algorithmA is in the class of(a; b)-
algorithmsif, in a sequential execution of any
request sequence� by A, for any edge(u; v),A satisfies the following condition: (1) ifu:granted [v℄ is false, then it is set totrue aftera consecutiveombine requests in�(u; v); and
(2) if u:granted [v℄ is true, then it is set tofalse
afterb consecutivewrite requests in�(u; v).
Lemma 5.1 The algorithmRWW is a (1; 2)-
algorithm.

Proof. See Appendix B. �
5.1 Competitive Ratio ofRWW
In this section we show thatRWW is 52 -
competitive against an optimal offline lease-
based algorithmOPT for the sequential aggre-
gation problem (see Theorem 1). We also show

9

thatRWW is 5-competitive against a nice opti-
mal offline algorithm for the sequential aggre-
gation problem (see Theorem 2). Further, we
show that, for any lease-based aggregation algo-
rithmA, there exist a request sequence� and an
offline algorithm such that, in a sequential exe-
cution of�, the cost ofA is at least52 times that
of the offline algorithm (see Theorem 3).

For any ordered pair of neighboring nodesu
andv, we definetype(u; v) messages as the fol-
lowing kinds of messages exchanged betweenu and v: (1) probe messages fromv to u; (2)response messages fromu to v; (3) update mes-
sages fromu to v; and (4) release messages
from v to u. For a lease-based algorithmA and
a request sequence�, we defineCA(�; u; v), as
the number oftype(u; v) messages in execution
of � by A. Note that the total number of mes-
sages exchanged betweenu andv is the sum ofCA(�; u; v) andCA(�; v; u).

Consider a sequential execution of an arbi-
trary request sequence� by RWW. For any
quiescent stateQ, and for any ordered pair of
neighboring nodes(u; v), we define the con-
figuration of RWW, denotedFRWW(u; v), as
follows: (1) if Q is the initial quiescent state,
thenFRWW(u; v) is 0; (2) if the last completed
request in�(u; v) is a ombine request, thenFRWW(u; v) is 2; (3) if the last two completed
requests in�(u; v) are aombine request fol-
lowed by awrite request, thenFRWW(u; v) is 1;
(4) if the last two completed requests in�(u; v)
arewrite requests, thenFRWW(u; v) is 0.

For any quiescent stateQ and ordered pair
of neighboring nodes(u; v), we define the
configuration ofOPT FOPT(u; v) to be 1 ifu:granted [v℄ holds; otherwise,0.
Lemma 5.2 Consider a sequential execution of
a request sequence� by RWW and OPT.
For any two neighboring nodesu and v,CRWW(�; u; v) is at most52 timesCOPT(�; u; v).
Proof sketch. Once a requestq in � is initi-
ated in a quiescent state, without loss of gen-
erality, we assume thatRWW executesq, and

R

R

W

R

W

W

R
R

R

W

W

RS(1, 0)

S(0, 0) S(0, 2)

S(1, 2) S(1, 1)

S(0, 1)
W

N, W N
N

W, N
R, N

W, N R, N
N

N

Figure 3: States and state transitions for any
pair of nodes(u; v) in executing requests from�0(u; v) (defined in Lemma 5.2).

thenOPT executesq. We construct a new re-
quest sequence�0(u; v) from �(u; v) as follows:
(1) insert anoop request in the beginning and
at the end of�(u; v); and (2) insert anoop re-
quest between every pair of successive requests
in �(u; v).

In the rest of the proof, first, for bothRWW andOPT, we argue that we can charge
each of the type(u; v) messages to a re-
quest in�0(u; v). Then, to prove the lemma,
we use potential function arguments to show
that CRWW(�0(u; v); u; v) is at most 52 timesCOPT(�0(u; v); u; v).

For RWW, we can show thatCRWW(�; u; v) = CRWW(�(u; v); u; v) (see
Lemma B.3 in Appendix B). ForRWW, for any
requestq in �(u; v), we charge all the messages
incurred in executingq by RWW to the same
requestq in �0(u; v). We do not charge any mes-
sage to anoop request in�0(u; v). Hence, we
have,CRWW(�; u; v) = CRWW(�0(u; v); u; v).
For OPT, first, for any requestq in �(u; v),
we charge all type(u; v) messages incurred
in executingq by OPT to the same requestq in �0(u; v). Second, we can show that anytype(u; v) message incurred in execution of�(v; u) can be charged to somenoop request
in �0(u; v). Thus, for bothRWW andOPT,
we can charge alltype(u; v) messages to
requests in�0(u; v) respectively. Therefore,

10

we can restrict our attention to messages sent
in executing requests in�0(u; v) in comparingCRWW(�; u; v) andCOPT(�; u; v).

For the ordered pair(u; v), in Figure 3, we
show a state diagram depicting possible changes
in FRWW(u; v) andFOPT(u; v) in executing a re-
quest from�0(u; v). In the state diagram, a state
labeledS(x; y) represent a state of the algo-
rithms in whichFOPT(u; v) isx andFRWW(u; v)
is y. Observe that the changes inFRWW(u; v) in
executing a request is deterministic as specified
by the algorithm in Figure 5. On the other hand,
the changes inFOPT(u; v) in executing a request
is not known in advance. Hence, more than one
possible changes inFOPT(u; v) in executing a
request are depicted by non-deterministic state
transitions. Recall that the cost of processing
a request in a particular configuration for any
lease-based algorithm is given in Figure 4 (see
Appendix A).

We define a potential function�(x; y) as a
mapping from a stateS(x; y) to a positive real
number. The amortized cost of any transition is
defined as the sum of the change in the poten-
tial �(�) and the cost ofRWW in the transi-
tion. For any transition, we write that the amor-
tized cost is at most times the cost ofOPT in
the transition, where is a constant factor. We
solve these inequalities by formulating a linear
program with an objective function to minimize (see Figure 6 in Appendix B). By solving
the linear program, we get = 52 , �(0; 0) =0, �(0; 1) = 2, �(0; 2) = 3, �(1; 0) = 52 ,�(1; 1) = 2, and�(1; 2) = 12 .

Hence, for any state transition due to the ex-
ecution of a requestq from �0(u; v), the amor-
tized cost is at most52 times the cost ofOPT
in the execution ofq. Recall that, in the ini-
tial quiescent state,FRWW(u; v) andFOPT(u; v)
are 0, and the potential for any state is non-
negative. Therefore, in execution of�0(u; v), the
total cost ofRWW is at most52 times that ofOPT. That is,CRWW(�; u; v) is at most52 timesCOPT(�; u; v). �

Theorem 1 AlgorithmRWW is 52 -competitive
with respect to any lease-based algorithm for
the sequential aggregation problem.

Proof. From Lemma 5.2, in a sequential ex-
ecution of a request sequence�, for any two
neighboring nodesu and v, CRWW(�; u; v) is
at most 52 timesCOPT(�; u; v). By symmetry,CRWW(�; v; u) is at most52 timesCOPT(�; v; u).
Hence, the total number of messages exchanged
betweenu andv in execution of� by RWW is
at most 52 times that ofOPT. Summing over
all the pairs of neighboring nodes, we get thatCRWW(�) is at most52 timesCOPT(�). Hence,
the theorem follows. �
Theorem 2 Algorithm RWW is 5-competitive
with respect to any nice algorithm for the se-
quential aggregation problem.

Proof sketch.LetOPTN be the optimal nice al-
gorithm for the sequential aggregation problem.
Consider any pair of neighboring nodes(u; v).
We compare the cost ofRWW andOPTN in
executing request sequences�(u; v) and�(v; u)
separately.

First, consider the execution of requests in�(u; v). We define anepochas follows. The
first epoch starts at the beginning of the re-
quest sequence. An epoch ends with awrite toombine transition in�(u; v), and a new epoch
starts at the same instant. By the definition of
a nice algorithm,OPTN provides strict con-
sistency for the sequential execution problem.
Hence,OPTN sends at least one message in
the any epoch. We are able to show that the
algorithmRWW sends at most5 messages in
any epoch (follows from Lemma B.2). Sum-
ming over all the epochs, we get that the cost
of RWW in executing�(u; v) is at most5 times
that ofOPTN. By symmetry, the cost ofRWW
in executing�(v; u) is at most5 times that ofOPTN. By summing over all the pair of neigh-
boring nodes, the desired result follows. �

11

Theorem 3 For any lease-based algorithmA,
there exist a request sequence� and an offline
algorithm such that the costA in executing� is
at least52 times that of the offline algorithm.

Proof sketch. We give an adversarial request
generating argument to sketch the desired result.
Consider an example of a tree consisting of just
two nodesu andv such that there is an edge be-
tweenu andv. The adversarial request generat-
ing algorithmADV is as follows. The algorithmADV generatesa ombine requests atv such
that there is a lease fromu to v after execution ofa-th request. And then,ADV generatesb write
requests atu such that there is no lease fromu
to v after execution ofb-th request. Using poten-
tial function arguments, we can show that, for a
sufficient long request sequence� generated byADV, the cost ofA in executing� is at least52
times that of an optimal offline algorithm, which
is tailored to the request sequence�. �
6 Consistency Results for

Concurrent Executions

In this section we generalize the traditional def-
inition of causal consistency [1] for the aggre-
gation problem, and show that any lease-based
aggregation algorithm is causally consistent. As
mentioned earlier, the key difference between
the setup in [1] and ours is in reading one value
compared to aggregating values from all the
nodes. See Section 3 for an informal discussion
on this section.

6.1 Definitions

Request. For the convenience of the analysis of
this section, we extend the definition of a request
from Section 2 as follows. A requestq is a tuple
(node; op; arg ; retval ; index), where (1)node is
the node where the request is initiated; (2)op is
the type of of the request,ombine, gather , or

write; (3) arg is the argument of the request (if
any); (4)retval is the return value of the request
(if any); and (5)index is the number of requests
that are generated atq:node and completed be-
fore q is completed.

An aggregation algorithm executeswrite andombine requests as described in Section 2. To
execute agather request, an aggregation al-
gorithm returns a setA of pairs of the form(node; index) such that (1) for each nodeu inT , there is a tuple(u; i) in A, wherei � �1;
(2) for any tuple(u; i) in A, if i � 0, then there
is awrite requestq such thatq:node = u andq:index = i; and (3)jAj is equal to the number
of nodes inT .

Miscellaneous. For the convenience of anal-
ysis of this section, we extend the definition of
functionf from Section 2 as follows. In the ex-
tended definition,f can also take a set of pairsA of the form(node; index) as an argument, andf (A) = f (B), whereB is a set ofwrite requests
such that for any tuple(u; i) in A with i � 0,
there is awrite requestq in B with q:node = u
andq:index = i.

A combine-writesequence (set) is a sequence
(set) of requests containing onlyombine andwrite requests. Agather-writesequence (set)
is a sequence (set) of requests containing onlygather andwrite requests. LetA be a set of
requests. Then,pruned(A; u) is a subset ofA such that, for any requestq in A, q is inpruned(A; u) if and only if q:op = write orq:node = u.

For any sequence of requestsS and any
requestq in S, we definereentwrites(S; q)
as a set of pairs such that the size ofreentwrites(S; q) is equal to the number of
nodes inT , and for any nodeu in T : (1) if q0
is the most recentwrite request atu precedingq
in S, then(u; q0:index) is in reentwrites(S; q);
(2) if there is no write request atu pre-
ceding q in S, in which case,(u;�1) is inreentwrites(S; q).

Let A be a gather-write set, andS be a lin-
ear sequence of all the requests inA. Then,

12

S is called aserialization of A if and only
if, for any gather requestq in S, q:retval =reentwrites(S; q).

For any two request sequences� and� , �� �
is defined to be the subsequence of� containing
all the requestsq in � such thatq is not present
in � . For any two request sequences� and� , �:�
is defined to be� appended by� .

Compatibility . Let q1 be aombine or write
request andq2 be a gather or write request.
Then, q1 and q2 are compatible if and only
if (1) q1:op = write and q1 = q2; or (2)q1:op = ombine, q2:op = gather , q1:retval =f (q2:retval), and thenode, arg, andindex fields
are equal forq1 and q2. A combine-write se-
quence� and a gather-write sequence� are
compatible if and only if (1)� and� are of equal
length; and (2) for all indicesi, �(i) and�(i) are
compatible. LetA be a combine-write set andB
be a gather-write set. Then,A andB are com-
patible if and only if for any nodeu in T , there
exists a linear sequenceS of all the requests inpruned(A; u), and a linear sequenceS 0 of all the
requests inpruned(B; u) such thatS andS 0 are
compatible.

Causal Consistency. We definecausal or-
dering () among any two requestsq1 and q2
in a gather-write execution-historyA as follows.

First, q1 1 q2 if and only if (1) q1:node =q2:node andq1:index < q2:index ; or (2) q1 is
a write request,q2 is agather request, andq2 re-
turns(q1:node; q1:index) in q2:retval . Second,q1 i+1 q2 if and only if there exists a requestq0
such thatq1 i q0 1 q2. Finally, q1 q2 if and

only if there exists ani such thatq1 i q2.
The execution-history of an aggregation al-

gorithm is defined as the set of all requests
executed by the algorithm. A gather-write
execution-historyA is causally consistentif and
only if, for any nodeu in T , there exists a serial-
izationS of pruned(A; u) such thatS respects
the causal ordering among all the requests
in pruned(A; u). A combine-write execution-
history A is causally consistent if and only if

there exists a gather-write execution-historyB
such thatA and B are compatible andB is
causally consistent.

6.2 Algorithm

In Figure 7 (see appendix), we present the mech-
anism for any lease-based aggregation algorithm
with ghost actions(in the curly braces). The
ghost actions are presented for the convenience
of analysis.

For any nodeu, u:log is a ghost variable. For
any nodeu, u:wlog is a subsequence ofu:log
containing all thewrite requests inu:log.

Initially, for any node u, u:val := 0,u:uaw := ;, u:pndg := ;, u:upntr := 0,u:sntupdates := ;. For each nodev in u:nbrs(),u:taken[v℄ := false, u:granted [v℄ := false,u:aval [v℄ := 0, u:snt [v℄ := ;, and u:log is
empty.

Functionrequest(ombine) generates and re-
turns aombine requestq0 as follows.q0:node =u, q0:op = ombine, q0:arg = ;, q0:retval =gval(), and q0:index is 1 plus the num-
ber of completed requests atu. Functionrequest(write; q) generates and returns awrite
requestq0 as follows. q0:node = u, q0:op =write, q0:arg = q:arg , q0:retval = ;, andq0:index is 1 plus the number of completed re-
quests atu.

6.3 Analysis

For each nodeu in T , we construct a gather-
write sequenceu:gwlog from u:log as fol-
lows: (1) if u:log(i) is a write request thenu:gwlog(i) = u:log(i); (2) if u:log(i) is
a combine q1 then, u:gwlog(i) is a gatherq2 such thatq2:node = q1:node, q2:op =gather , q2:index = q1:index , andq2:retval =reentwrites(u:log; q1).

For each nodeu in T , we constructu:log 0
and u:gwlog 0 from u:log and u:gwlog as fol-
lows. First, initialize u:log 0 to u:log, andu:gwlog 0 to u:gwlog. Then, for each nodev

13

in T exceptu repeat the following steps: (1)u:log 0 = u:log 0:(v:wlog�u:log 0); (2)u:gwlog 0 =u:gwlog 0:(v:wlog � u:gwlog 0).
For any set of nodesA and a request sequence�, reent(A; �) returns a set ofjAj pairs such

that, for any nodeu 2 A: (1) if q0 is the most
recentwrite request atu in �, then(u; q0:index)
is in reent(�; q); (2) if there is nowrite request
atu in �, then(u;�1) is in reent(S; q).

For a set of nodesA, a real valuex, and a request sequence�, we defineorresponds(A; x; �) to betrue if and only ifx = f (reent(A; �)).
For any node u, (1) I1(u):orresponds(A; u:gval(); u:log), whereA is the

set of all nodes inT ; (2) I2(u): for anyupdate
or response messagem from u to any nodev in u:nbrs(), orresponds(A;m:x;m:wlog),
whereA is the set of all nodes insubtree(u; v);
and (3) I3(u): for any nodev in u:nbrs(),orresponds(A; u:aval [v℄; u:log), where A is
the set of all nodes insubtree(v; u). Let I(u) beI1(u) ^ I2(u) ^ I3(u).

See [17] for the proofs of the following two
lemmas.

Lemma 6.1 For any nodeu, I(u) is an invari-
ant.

For a request sequence� and a requestq, index(�; q) returns the index ofq in � if
present, otherwise, returns�1. For any re-
quest sequence�, and requestsq1 andq2 in �,preedes(�; q1; q2) is defined to betrue if and
only if index(�; q1) < index(�; q2).
Lemma 6.2 For any nodeu and i = 1; 2, let qi
be a request such that(qi:op = write)_(qi:op =gather ^ qi:node = u). Further assume thatq1 q2 andq2 belongs tou:gwlog. Then,q1 be-
longs tou:gwlog and preedes(u:gwlog; q1; q2)
holds.

Lemma 6.3 For any nodeu, u:gwlog 0 respects
the causal ordering among requests inu:gwlog 0.

Proof. We prove this lemma by induction on
the number of iterations in the construction ofu:gwlog 0. For the base case, by Lemma 6.2,u:gwlog respects the causal ordering among re-
quests inu:gwlog. In each iteration in the con-
struction, the additional requests are added at the
end ofu:gwlog 0. By Lemma 6.2 again, this step
preserves the causal ordering among requests inu:gwlog 0. �
Lemma 6.4 For any node u, u:log 0 andu:gwlog 0 are compatible.

Proof. We prove this lemma by induction on the
number of iterations in the construction ofu:log 0
andu:gwlog 0. For the base case, by Lemma 6.1,u:log andu:gwlog are compatible. In each it-
eration of the construction, by the base case and
the induction hypothesis, additional requests ap-
pended to both the request sequences are mutu-
ally compatible. Hence,u:log 0 andu:gwlog 0 are
compatible. �
Theorem 4 Let setA be the execution-history
of any lease-based algorithmA. Then,A is
causally consistent.

Proof. Consider any nodeu in T . By con-
struction,u:gwlog 0 is a serialization of all the
requests inu:gwlog 0. From this observation
and Lemma 6.3,u:gwlog 0 is causally consistent.
By construction,u:log 0 contains all the requests
in pruned(A; u). By Lemma 6.4,u:log 0 andu:gwlog 0 are compatible. Hence, by definition,A is causally consistent. �
7 Discussion

What we have done in this paper is a useful case
study in the design and analysis of self-tuning
distributed algorithm for an important key prim-
itive. Although we have focussed on fault-free
case, we can extend some of our results to faulty
environment, especially with respect to causal

14

consistency, by keeping track of time-stamps
with writes.

An open problem for future research is to de-
sign a self-tuning algorithm for the approximate
aggregation problem, where one allows a cer-
tain numerical error in the aggregate value, and
analyze the algorithm in competitive analysis
framework.

References
[1] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and

P. W. Hutto. Causal memory: Definitions, imple-
mentation, and programming.Distributed Comput-
ing, 9:37–49, 1995.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed
paging for general networks.Journal of Algorithms,
28:67–104, 1998.

[3] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive
distributed file allocation.Information and Compu-
tation, 185:1–40, 2003.

[4] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Mot-
wani. The price of validity in dynamic networks.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 515–
526, June 2004.

[5] N. Belaramani, M. Dahlin, L. Gao, A. Nayate,
A. Venkataramani, P. Yalagandula, and J. Zheng.
PRACTI replication. InUSENIX Symposium on
Networked Systems Design and Implementation,
May 2006.

[6] A. Borodin and R. El-Yaniv. Online Computation
and Competitive Analysis. Cambridge University
Press, Cambridge, UK, 1998.

[7] K. Czajkowski, C. Kesselman, S. Fitzgerald, and
I. T. Foster. Grid information services for distributed
resource sharing. InProceedings of the 10th IEEE
International Symposium on High Performance Dis-
tributed Computing, pages 181–194, August 2001.

[8] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive
Leases: A strong consistency mechanism for the
world wide web.IEEE Transactions on Knowledge
and Data Engineering, 15:1266–1276, 2003.

[9] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat.
SHARP: An architecture for secure resource peer-
ing. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pages 133–148, Oc-
tober 2003.

[10] Ganglia: Distributed monitoring and execution sys-
tem. http://ganglia.sourceforge.net .

[11] M. G. Gouda. Elements of Network Protocol De-
sign. John Wiley & Sons, New York, 1998.

[12] C. Gray and D. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consis-
tency. InProceedings of the 12th ACM Symposium
on Operating Systems Principles, pages 202–210,
December 1989.

[13] N. Jain, P. Yalagandula, M. Dahlin, and Y. Zhang.
INSIGHT: A distributed monitoring system for
tracking continuous queries. InWork-in-Progress
Session at SOSP 2005, pages 23–26, October 2005.

[14] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: A tiny aggregation service for ad-
hoc sensor networks. InProceedings of the 5th
Symposium on Operating Systems Design and Im-
plementation, December 2002.

[15] J. Misra. Axioms for memory access in asyn-
chronous hardware systems.ACM Transactions on
Programming Languages and Systems, 8:142–153,
1986.

[16] C. Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over
replicated data. InProceedings of the 26th Interna-
tional Conference on Very Large Data Bases, pages
144–155, September 2000.

[17] C. G. Plaxton, M. Tiwari, and P. Yala-
gandula. Online aggregation over trees.
www.cs.utexas.edu/˜mitult/agg.pdf .

[18] R. Renesse, K. P. Birman, and W. Vogels. As-
trolabe: A robust and scalable technology for dis-
tributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems,
21:164–206, 2003.

[19] M. Roussopoulos and M. Baker. CUP: Controlled
update propagation in peer-to-peer networks. In
USENIX Annual Technical Conference, pages 167–
180, June 2003.

[20] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules.Communications of
the ACM, 28:202–208, 1985.

[21] A. S. Tanenbaum.Distributed Operating Systems.
Prentice-Hall, 1995.

[22] M. Wawrzoniak, L. Peterson, and T. Roscoe.
Sophia: An information plane for networked sys-
tems. InProceedings of the 2nd Workshop on Hot
Topics in Networks, November 2003.

[23] R. Wolski, N. Spring, and J. Hayes. The net-
work weather service: A distributed resource per-
formance forecasting service for metacomputing.
Journal of Future Generation Computing Systems,
15:757–768, 1999.

[24] P. Yalagandula and M. Dahlin. A scalable dis-
tributed information management system. InPro-
ceedings of the ACM SIGCOMM Conference, pages
379–390, August/September 2004.

15

