
Competitive Weighted Matching

in Transversal Matroids

Nedialko B. Dimitrov⋆ and C. Greg Plaxton⋆⋆

University of Texas at Austin
1 University Station C0500
Austin, Texas 78712–0233

{ned,plaxton}@cs.utexas.edu

Abstract. Consider a bipartite graph with a set of left-vertices and a
set of right-vertices. All the edges adjacent to the same left-vertex have
the same weight. We present an algorithm that, given the set of right-
vertices and the number of left-vertices, processes a uniformly random
permutation of the left-vertices, one left-vertex at a time. In processing a
particular left-vertex, the algorithm either permanently matches the left-
vertex to a thus-far unmatched right-vertex, or decides never to match
the left-vertex. The weight of the matching returned by our algorithm is
within a constant factor of that of a maximum weight matching.

1 Introduction

Motivated by applications related to auctions, mechanism design, and revenue
management, Babaioff et al. recently introduced a generalization of the secretary
problem called the online matroid problem [1]. In the online matroid problem,
the goal is to build a maximum weight independent set, but we are constrained
from knowing the full input to the problem. Instead, a uniformly random permu-
tation of the matroid elements is revealed, one element at a time, and we must
immediately decide whether to include the revealed element in the independent
set. In such a setting, an online algorithm is said to be c-competitive if it is able
to produce an independent set with weight within a factor of c of the weight of a
maximum weight independent [2]. We say that an online algorithm is competitive
if it is c-competitive for some constant c.

Babaioff et al. present competitive algorithms for the online matroid problem
on bounded left-degree transversal matroids and graphic matroids. They also
present a reduction showing that if we have a competitive algorithm for a matroid
M , then we can construct a competitive algorithm for a truncated version of M .
Babaioff et al. leave open the general online matroid problem and the central case
of transversal matroids. As discussed later in this section, the case of transversal
matroids unifies the existing results on the online matroid problem. In this paper
we present a competitive online algorithm for weighted matching in transversal

⋆ Supported by an MCD Fellowship from the University of Texas at Austin.
⋆⋆ Supported by NSF Grants CCF–0635203 and ANI–0326001.



matroids, generalizing the results of Babaioff et al. Along with the reduction
in Babaioff et al., our results also lead to competitive algorithms on truncated
transversal matroids.

Informally, the online weighted transversal matroid matching problem can be
described as follows. Consider a bipartite graph, with a set of left-vertices and
a set of right-vertices. All edges adjacent to the same left-vertex have the same
weight – we associate this weight with the left-vertex. The weighted transver-
sal matroid matching problem (WTMM) asks us to find a maximum weight
matching in this bipartite graph, and is solvable with the standard matroid
greedy algorithm. In the online weighted transversal matroid matching problem
(OWTMM), we are initially given only the total number of left-vertices, and
then a uniformly random permutation of the left-vertices is revealed, one left-
vertex at a time. When a vertex is revealed, we learn of both its weight and
its incident edges. Upon seeing a particular left-vertex, without knowing the
details of the remaining unrevealed left-vertices, we must immediately decide
which right-vertex to match it to, if any. An open problem left by Babaioff et
al. is to find an algorithm for OWTMM returning a matching with expected
weight within a constant of the optimal matching in the corresponding WTMM
problem. Theorem 1 presents such an algorithm.

In the literature, a transversal matroid is often specified by a set of ele-
ments E, and a set of subsets A1, . . . , An of E [8]. A subset I = {a1, . . . , ak}
of E is considered independent if there is an injective function f mapping I to
{A1, . . . , An} such that x ∈ f(x) for all inputs x. In our presentation, the set of
elements E corresponds to the left-vertices, the sets A1, . . . , An correspond to
the right-vertices, and there is an edge between an element of E and a set Aj if
the element belongs to the set. An independent set then corresponds to a set of
left-vertices for which there exists a matching to the right-vertices.

Perhaps the most well studied online matroid problem is the secretary prob-
lem, which first appeared as a folklore problem in the 1950’s and has a long
history [4, 5]. The problem was first solved by Lindley, who also presents a com-
petitive algorithm for the secretary problem [9]. Competitive algorithms also
exist for uniform matroids [7], bounded left-degree transversal matroids, graphic
matroids, and truncated matroids [1]. For general matroids, the best known
competitive ratio is O(log r) where r is the rank of the matroid [1].

With the exception of truncated matroids, where the result depends on
Karger’s matroid sampling theorem [6], all of the matroids for which a com-
petitive algorithm is known are a special case of the transversal matroid. For
example, the secretary problem is a transversal matroid with a single right-
vertex. The uniform matroid of rank r is a transversal matroid on a complete
bipartite graph with r right-vertices. Of course, bounded left-degree transversal
matroids are a special case of the transversal matroids. And, finally, the compet-
itive results for graphic matroids follow from a reduction to bounded-left degree
transversal matroids. Thus, indeed, transversal matroids play a central role to
the theory. For some remarks on the strong connection between general matroids
and transversal matroids, see Section 8.



(a) Example 1 (b) Example 2

Fig. 1. Two example transversal matroids exhibiting the tension between using sam-
pled heavy left-vertices for pricing and over-pricing the right-vertices. The figures are
meant only to be illustrative, but can be extended to become counter-examples for
certain pricing strategies. In 1(a), we do not want to price all the right-vertices at 2,
since we would miss many left-vertices of weight 1. In 1(b), we want to price the bottom
right-vertex at 2, since otherwise we would miss the infinite weight left-vertex.

1.1 Algorithm Motivations

Recall that the secretary problem is OWTMM with a single right-vertex and
consider the following classic algorithm for the secretary problem. We sample
the first m/2 left-vertices we see, rejecting all of them, but recording their edge
weights. We set a price for the right-vertex equal to the maximum weight edge
we see in the sample. We then match the right-vertex with the first non-sampled
left-vertex whose edge weight exceeds the price, if we see such a left-vertex. The
algorithm is competitive since with probability at least 1/4, the second heaviest
edge is sampled and the heaviest edge is not sampled.

This simple sample-and-price algorithm is the motivation for most of the
competitive algorithms known for online matroid problems, again with the ex-
ception of truncated matroids. However, extending this algorithm to work for
all, general transversal matroids is not straightforward. For example, Babaioff
et al. show that a sample-and-price algorithm with an adaptive sampling time
which sets the same price for all the right-vertices does not work. Babaioff et
al. also show that a more complicated scheme, where the price required of a
non-sampled left-vertex is determined by a circuit of sampled left-vertices also
does not work.

One of the main issues that arises in trying to generalize the sample-and-
price algorithm is a tension between the need to use sampled heavy left-vertices
to price the right-vertices and the requirement that we not over-price too many
right-vertices. Consider the example in Figure 1(a). If in the sample we see the
left-vertex of weight 2, we should not over-price all the right-vertices at 2, since
that prevents us from matching a large number of vertices of weight 1. The figure
is only meant as an illustration, but can be extended to a counter-example by
adding log m clones of the left-vertex of weight 2. On the other hand, consider the
example in Figure 1(b). If we do not set a price of 2 for the bottom-most right-
vertex, we would prematurely match that right-vertex to a left-vertex of weight



1 instead of the infinite weight left-vertex. It is natural to consider more complex
pricing schemes, such as dynamic prices that change throughout processing, or
picking a random subset of the neighbors of a heavy left-vertex and pricing only
those neighbors. However, it is both unclear if such schemes are effective and
it is difficult to analyze them as they often introduce complicated probabilistic
dependencies. It is this tension that leads Babaioff et al. to consider bounded
left-degree transversal matroids.

For our results, we avoid the difficulties arising from more complex schemes
with the concept of “candidate edges.” The candidate edges we introduce have
the following important properties. First, each left-vertex i has exactly zero or
one candidate edges, uniquely determined by the sampled left-vertices heavier
than i. In other words, given the sampled left-vertices heavier than i, the candi-
date edge is the same regardless of whether i is sampled, or where in the random
order of non-sampled vertices it appears. Second, the candidate edges of the
sampled left-vertices constitute a matching that is within a constant-factor of
the max-weight matching on the sampled subgraph.

The analysis following from our definition of candidate edges is essentially
the original sample-and-price analysis from the secretary problem, but applied to
each right-vertex separately. The algorithm prices right-vertices using only the
candidate edges. Furthermore, a non-sampled left-vertex can only be matched
using its candidate edge. For a particular right-vertex, as in the secretary prob-
lem, we hope that the second-heaviest left-vertex with a candidate edge to the
right-vertex is sampled, but the heaviest left-vertex with a candidate edge to the
right vertex not sampled. Similarly to the secretary problem, this happens with
at least 1/4 probability.

The overall argument structure is as follows. In Section 2, we define some
useful notation. In Section 3, we define candidate edges and show that they
constitute a matching with weight within a constant factor of optimal on the
sampled subgraph. In Section 4, to avoid any confusion from probabilistic de-
pendencies, we analyze sampled and non-sampled matchings through counting
arguments. Our counting argument immediately imply that a matching resulting
from candidate edges of non-sampled left-vertices has expected weight within a
constant factor of the expected weight of the matching of candidate edges of sam-
pled left-vertices. In Section 5, we show that the expected weight of the sampled
candidate edge matching is within a constant factor of the max-weight matching
on the entire graph. This completes the main technical arguments, since the non-
sampled matching is within a constant factor of the sampled matching, which is
within a constant of the optimal matching on the whole graph. In Section 6, we
present a small but clarifying intermediate algorithm between the final online
algorithm and the counting arguments presented earlier. Finally, in Section 7,
we present the online algorithm and conclude the analysis.



2 Definitions

In this section, we formally define some quantities and notation we will use
throughout the paper.

Fix a set of n right-vertices, numbered 0 to n − 1.
Fix a set of m left-vertices, where each left-vertex i is described by a triple

of 1) a real number weight, w(i) 2) a unique integer ID and 3) a subset of the
right vertices, Right(i). We define a total order on the left-vertices: we say a
left-vertex i is less than a left-vertex i′ if w(i) > w(i′) or w(i) = w(i′) and i
has a smaller unique integer ID. We draw the reader’s attention to the fact that
smaller left-vertices have greater weight. From here on, we use the integers to
denote the left-vertices, with 0 denoting the minimum left-vertex, 1 denoting
the second minimum left-vertex and so forth. We draw the reader’s attention to
the fact that the ordering on the left-vertices is the same as the ordering on the
corresponding integers.

For a nonempty subset A of left-vertices or right-vertices let Min(A) return
the minimum vertex, as defined by the corresponding total order.

An edge is a pair (i, j), where i is a left-vertex and j belongs to Right(i).
A matching is a set of edges M such that each vertex appears in at most one
edge. For a matching M , let Left(M), Right(M), denote the left-vertices, right-
vertices, in the matching, respectively.

For a set of left-vertices, A, we say w(A) =
∑

i∈A w(i). For a matching M ,
we say w(M) = w(Left(M)).

To facilitate our proofs, we define the following notation. For a subset of
left-vertices L, let Prefix(L, i) = {i′ ∈ L | i′ < i}. Similarly, for a matching M ,
let Prefix(M, i) = {(i′, j) ∈ M | i′ < i}.

3 Algorithm A

In this section we define candidate edges and show the two main properties
discussed in Section 1.1. The first property, “each left-vertex i has exactly zero
or one candidate edges, uniquely determined by the sampled left-vertices heavier
than i” corresponds to Lemmas 1 and 2. The second property, “the candidate
edges of the sampled left-vertices constitute a matching that is within a constant-
factor of the max-weight matching on the sampled subgraph” corresponds to
Lemma 5.

First, we define a function Cands(i,M) that receives a left-vertex i and a
matching M , and returns an edge set. The Cands(i,M) function is as follows:

M ′ := Prefix(M, i)
A := Right(i) − Right(M ′)
if A = ∅

return ∅
else

return {(i,Min(A))}



Lemma 1. For any left-vertex i and matching M , Cands(i,M) either returns
the empty set, or {(i, j)}, where j is a right-vertex unmatched in Prefix(M, i).

Proof. Follows from the definition of Cands. ⊓⊔

Lemma 2. For any left-vertex i and matchings M and M ′ with Prefix(M, i) =
Prefix(M ′, i), we have Cands(i,M) = Cands(i,M ′).

Proof. Follows from the definition of Cands. ⊓⊔

We now define an algorithm for WTMM. Algorithm AlgA(L) takes a subset
of left-vertices L and returns a matching and the algorithm is performed as
follows:

M := ∅
for i in increasing order in L

M := M ∪ Cands(i,M)
return M

Recall that the total order on left-vertices is defined such that i is less than i′ if
w(i) > w(i′) or w(i) = w(i′) and i has a smaller unique integer ID.

Lemma 3. For a subset of left-vertices L, let M = AlgA(L), then M is a
matching on L and M = ∪k∈LCands(k,M).

Proof. We prove the lemma by first proving the following loop invariant in
AlgA(L): M is a matching on Prefix(L, i) and M = ∪k∈Prefix(L,i)Cands(k,M).

The claimed invariant hold initially since M := ∅ and i = Min(L). Suppose
the claim is true for M and i on entering the loop on which we process i. Let
M ′ = M ∪ Cands(i,M) and i′ be the next left-vertex in order from L.

Let A = Cands(i,M). We split the analysis in two cases. First, suppose
A = ∅. Then, M ′ = M and the claim holds for M ′ and i′ simply because it holds
for M and i. Second, suppose A = {(i, j)}, for a right-vertex j unmatched in
Prefix(M, i) (Lemma 1). Since Prefix(L, i′) = Prefix(L, i) ∪ {i}, the first part of
the invariant holds.

For the second part of the invariant, we have M ′ = M ∪ Cands(i,M) =
⋃

k∈Prefix(L,i) Cands(k,M) ∪ Cands(i,M) =
⋃

k∈Prefix(L,i′) Cands(k,M), which

equals
⋃

k∈Prefix(L,i′) Cands(k,M ′). The second equality holds because the loop

invariant holds for M and i, the third equality holds by the definition of i′; and
the final equality holds by Lemma 2. This proves the invariant.

The lemma statement follows from following the same reasoning as in the
inductive step above, but taken for the final iteration of the loop. ⊓⊔

Lemma 4. Let M∗ be a max-weight matching on L and M be the matching
returned by AlgA(L). If (i, j) ∈ M∗ and i is unmatched in M , then there is a i′

such that (i′, j) ∈ M and w(i′) ≥ w(i).



Proof. By Lemma 3, M = ∪k∈LCands(k,M). Since i is not matched in M and
by Lemma 1, we have ∅ = Cands(i,M). By the definition of Cands, the empty
set can only be returned if Right(i) ⊆ Right(Prefix(M, i)). In other words, every
right-vertex in Right(i) is matched to a left-vertex less than i in M , completing
the proof. ⊓⊔

Lemma 5. Let M∗ be a max-weight matching on L, and M be the matching
returned by AlgA(L). Then w(M) ≥ 1

2w(M∗).

Proof. By summing the inequality in Lemma 4 over left-vertices matched in
M∗ − M , we have w(M) ≥ w(M∗ − M). By definition of intersection, we have
w(M) ≥ w(M∗∩M). Combining the two inequalities, we have 2w(M) ≥ w(M∗).

⊓⊔

4 Counting Arguments

In this section, to avoid confusion with probabilistic dependencies, we analyze
sampled and non-sampled matchings through counting arguments. As stated in
Section 1.1, our counting arguments, in specific Lemma 13, immediately imply
that a matching resulting from candidate edges of non-sampled left-vertices has
expected weight at least 1/4 of the expected weight of the matching of candidate
edges of sampled left-vertices. From this section we only export Lemma 6, which
is used to connect the counting arguments with the final online algorithm, and
Lemma 13.

Let α be a binary string and αi be the ith character in the string. Intuitively,
the reader should think of a 0 in the ith position of α as sampling the left-vertex
i and of a 1 in the ith position as not sampling i. For two binary strings α and
β, let αβ denote concatenation. For a binary string α of length at most m, we
define the sets of edges M0(α),M2(α), E0(α) recursively as follows.

M0(ǫ) = E0(ǫ) = ∅

M2(α) = Cands(|α|,M0(α))

M0(α0) = M0(α) ∪ M2(α)

M0(α1) = M0(α)

E0(α0) = E0(α)

E0(α1) = E0(α) ∪ M2(α)

Finally, we also define E1(α) = M0(α)∪E0(α) and M1(α) to be {(i, j) ∈ E0(α) |
j appears at most once in E0(α)}. It is not difficult to show that M0(α), M1(α)
and M2(α) are matchings while E0(α) and E1(α) are sets of edges.

We give the reader a loose intuitive interpretation of these definitions. Intu-
itively, one can think of processing the left-vertices in order of increasing weight
as we increase the length of α. Then, M2(α) represents the |α|th candidate edge;



M0(α) represents a matching created from the sampled left-vertices; E0(α) rep-
resents a set of edges created from the non-sampled left-vertices such that each
non-sampled left-vertex appears at most once; E1(α) represents a set of all can-
didate edges, regardless of whether the corresponding left-vertex is sampled; and
M1(α) represents a matching created from the non-sampled left-vertices.

Lemma 6. For a binary string α of length at most m, let A = {i | αi = 0}
and B = {i | αi = 1}. We have, M0(α) =

⋃

i∈A Cands(i,M0(α)) and E0(α) =
⋃

i∈B Cands(i,M0(α)).

Proof. We prove the claim by induction on the length of α. For α = ǫ, the claim
follows from the definition of M0(ǫ) and E0(ǫ). The inductive claim follows from
Lemma 2 and the recursive definitions of M0(α) and E0(α). ⊓⊔

For a set of edges A, let deg(A, j) denote the degree of the right-vertex j in
A. For a left-vertex i and a right-vertex j, we partition the set of binary strings
to assist in our counting arguments as follows.

α ∈ S0(i, j) if |α| < i,deg(E1(α), j) = 0

α ∈ S1(i, j) if |α| = i,deg(E1(α), j) = 0,M2(α) = {(i, j)}

α ∈ S2(i, j) if deg(E0(α), j) = deg(E1(α), j) = 1, α = βγ, β ∈ S1(i, j)

α ∈ S3(i, j) if deg(E0(α), j) = 1,deg(E1(α), j) > 1, α = βγ, β ∈ S2(i, j)

α ∈ S4(i, j) otherwise.

We give the reader some intuitive interpretation of the above sets. For a
particular pair (i, j): S0(i, j) represents strings where j has never been returned
by Cands and we have not yet reached i; S1(i, j) represents strings where Cands
has never before returned j, we have just now reached i and Cands returns
{(i, j)}; S2(i, j) represents strings where j has been returned exactly once by
Cands, when j was returned by Cands it was along with i and i was non-
sampled; S3(i, j) represents strings where the first time Cands returned j it was
along with i and i was non-sampled, then j was returned again with some other,
sampled vertex i′; Finally, S4(i, j) represents all other strings.

Due to space limitations, the proofs of Lemmas 7 and 11 bellow are omitted
from this extended abstract. The reader is referred to our companion technical
report for the proofs of these lemmas [3].

Lemma 7. For any right-vertex j, left-vertex i and integer k such that i < k ≤
m, we have |S2(i, j) ∩ {0, 1}k| + 2|S3(i, j) ∩ {0, 1}k| = 2k−i−1|S1(i, j)|.

Lemma 8. For any right-vertex j, left-vertex i and integer k such that i < k ≤
m, we have |(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k| ≥ 2k−i−2|S1(i, j)|.

Proof. By Lemma 7, we have that |S2(i, j) ∩ {0, 1}k| + 2|S3(i, j) ∩ {0, 1}k| is
equal to 2k−i−1|S1(i, j)|. We can increase the left-hand side to get 2|S2(i, j) ∩
{0, 1}k| + 2|S3(i, j) ∩ {0, 1}k| ≥ 2k−i−1|S1(i, j)|. Since S2(i, j) and S3(i, j) are
disjoint, we have |(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k| ≥ 2k−i−2|S1(i, j)|. ⊓⊔



Lemma 9. For any right-vertex j and integer k such that k ≤ m, we have
∑

α∈{0,1}k w(M1(α), j) ≥
∑

0≤i<k w(i)2k−i−2|S1(i, j)|, where w(M1(α), j) is de-

notes the weight of the left-vertex matched to j in M1(α) or zero if j is un-
matched.

Proof. By the definitions of M1,S2 and S3, the left-hand side of the claimed
inequality is equal to

∑

0≤i<k w(i)|(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k|, since (i, j) ∈
M1(α) implies α ∈ (S2(i, j) ∪ S3(i, j)). Applying Lemma 8 gives the desired
result. ⊓⊔

Lemma 10. For any integer k such that k ≤ m, we have
∑

α∈{0,1}k w(M1(α)) ≥
∑

0≤i<k

∑

0≤j<n w(i)2k−i−2|S1(i, j)|.

Proof. Follows from summing the result of Lemma 9 over all 0 ≤ j < n. ⊓⊔

Lemma 11. For any right-vertex j and integer k such that k ≤ m, we have
∑

α∈{0,1}k w(M0(α), j) ≤
∑

0≤i<k w(i)2k−i|S1(i, j)|, where w(M0(α), j) is equal

to the weight of the left-vertex matched to j in M0(α) or zero if j is unmatched.

Lemma 12. For any integer k such that k ≤ m, we have
∑

α∈{0,1}k w(M0(α)) ≤
∑

0≤i<k

∑

0≤j<n w(i)2k−i|S1(i, j)|.

Proof. Follows from summing the result of Lemma 11 over all 0 ≤ j < n. ⊓⊔

Lemma 13. For any integer k such that k ≤ m, we have
∑

α∈{0,1}k w(M1(α)) ≥
1
4

∑

α∈{0,1}k w(M0(α)).

Proof. Follows from Lemmas 12 and 10. ⊓⊔

5 Analysis Under a Probability Distribution

In this section we begin working with probability distributions and show that the
expected weight of the sampled candidate edge matching is within a constant
factor of the max-weight matching on the entire graph (Lemma 15). We tie
these results with Section 4, to show that the expected weight of the non-sampled
matching is within a constant the weight of a max-weight matching on the entire
graph (Lemma 17), completing the main technical portion of the argument. The
only result exported from this section is Lemma 17.

Define a function Sample, which takes an m-bit binary string string α such
that Sample(α) = {i | αi = 0}. We introduce a probability distribution P on
strings m-bit binary strings α. In P each αi independently has an equal chance
of αi = 0 and αi = 1.

Lemma 14. Let M∗ be a max-weight matching and Mα denote a max-weight
matching on Sample(α) for a binary string α. Then, Exp[w(Mα)] ≥ 1

2w(M∗).



Proof. We have Exp[w(Mα)] ≥
∑

i∈Left(M∗) Pr[αi = 0]w(i) = 1
2w(M∗), where

the first step follows from the linearity of expectation and observing that the
matching Mα as a weight at least as big as the weight of a matching M ′

α =
{(i, j) ∈ M∗ | αi = 0}. ⊓⊔

Lemma 15. Let M∗ be a max-weight matching. Then, the following inequality
holds Exp[w(AlgA(Sample(α)))] ≥ 1

4w(M∗).

Proof. Let Mα be a max-weight matching on Sample(α), for a string α. Then,
we have Exp[w(AlgA(Sample(α)))] ≥ Exp[12w(Mα)] ≥ 1

4w(M∗), where the first
step follows from Lemma 5 and the second step follows from Lemma 14 and the
linearity of expectation. ⊓⊔

Lemma 16. Let α be any m-bit binary string and A = Sample(α). We have
M0(α) = AlgA(A).

Proof. Follows from the definition of AlgA and M0. ⊓⊔

Lemma 17. Let M∗ be a max-weight matching. We have Exp[w(M1(α))] ≥
1
16w(M∗).

Proof. Follows from Lemmas 13, 15, and 16. ⊓⊔

6 Intermediate Algorithm

In this section we analyze a useful intermediate algorithm between the counting
arguments and the final online algorithm. In specific, in the counting argument,
we process the non-sampled left-vertices in decreasing order of weight. In this
section we use Lemma 6 to argue that we can process the non-sampled left-
vertices in an arbitrary order. This is similar to what happens in the original
sample-and-price algorithm in the secretary problem. In the secretary problem,
we depend on the fraction of time when the second highest bidder is sampled and
the highest bidder is not. When this happens, we can process the non-sampled
bidders in an arbitrary order, since only one of them meets the required price.

We define an algorithm AlgB(α) that receives as input m-bit binary string
α, and returns a matching. The AlgB(α) function is as follows:

M := AlgA(Sample(α))
A := {0, . . . ,m} − Sample(α)
E := ∅
for i in arbitrary order from A:

E := E ∪ Cands(i,M)
return the matching of pairs (i, j) in E where j appears at

most once in E

Lemma 18. For any m-bit binary string α, we have AlgB(α) = M1(α).

Proof. Follows from Lemmas 16 and 6 and the definition of M1(α). ⊓⊔



7 Online Algorithm

In this section, we define and analyze the final online algorithm, which is closely
related to the algorithm in Section 6. The main difference between the two
algorithms is that the online algorithm relies on the random permutation of left-
vertices for sampling whereas our results discuss a sampling method where each
element has an equal chance of being sampled or not. With Lemma 20 we show
that the two sampling methods induce the same distribution. The main theorem
follows.

Define the online algorithm as follows. Initially, we are given the set of right-
vertices, and the total number of left-vertices we will see, m. The algorithm
ONLINE proceeds in two phases.

First phase:
k := Bin(m, 1

2 ), where Bin is the binomial distribution.
Reject the first k vertices, not matching them to anything.
Let B be the set of all the rejected vertices.
M0 := AlgA(B)

Second phase:
We are given M0 from the first phase.
We build a matching M1, initialized to ∅.
On receiving a left-vertex i:

A := Cands(i,M0)
if A 6= ∅ and the right-vertex in A is unmatched in M1

M1 := M1 ∪ A
return M1

Lemma 19. Let α be a m-bit binary string, B = Sample(α) and MB
1 be a

matching returned by ONLINE when B is sampled in the first phase. Then,
w(MB

1 ) ≥ w(AlgB(α)).

Proof. ONLINE and AlgB perform the same operations on the vertices that are
not sampled, with the small optimization that ONLINE matches a right vertex
j to the first left-vertex i such that {(i, j)} = Cands(i,M0), while AlgB does not
match any right-vertex j that is returned twice by Cands. ⊓⊔

Lemma 20. Consider a set A of m elements. Let P be the probability distribu-
tion where each a ∈ A independently has an equal chance of being sampled or
not sampled. Let P ′ be the probability distribution where we first pick a k from
Bin(m, 1

2 ), and then we sample the first k elements from a uniformly random
permutation of A. Then the probability distributions P and P ′ are equal.

Proof. Each subset of A is sampled with the same probability in both cases. ⊓⊔

Theorem 1. Let M∗ be a max-weight matching. Given a uniformly random
permutation of the left-vertices, ONLINE returns a matching whose weight is
least 1

16w(M∗) in expectation.

Proof. Follows from Lemmas 17, 18, 19, and 20. ⊓⊔



8 Concluding Remarks

In this section we make some remarks on the strong connection between transver-
sal matroids and general matroids. The connection comes from the following
characterization of a basis: B is a basis of a matroid M iff B is a minimal
set having non-empty intersection with every co-circuit of M [10]. With this
characterization, one can think of a general matroid as a bipartite graph in the
following way. Let the matroid elements be the left-vertices and co-circuits be
the right-vertices. Let there be an edge between an element and a co-circuit if
the element belongs to the co-circuit. An independent set in the general ma-
troid is then a combinatorial structure which is close to a matching, but not
the same. Consider taking a particular element into an independent set we are
constructing. On taking in the element, we cover all the co-circuits containing
that element because they have non-empty intersection with the constructed
independent set. After that, to increase the independent set, we can only take
elements which cover some uncovered co-circuits. Perhaps it is possible to come
up with a sample-and-price scheme for pricing co-circuits to extend the results
of this paper to general matroids, solving the online matroid problem?

References

1. M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and
online mechanisms. In Proceedings of the 18th Annual ACM-SIAM Symposium on

Discrete algorithms, pages 434–443, January 2007.

2. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge, U.K., 1998.

3. N. B. Dimitrov and C. G. Plaxton. Competitive weighted matching in transversal
matroids. Technical Report TR–08–04, Department of Computer Science, Univer-
sity of Texas at Austin, January 2008.

4. T. Ferguson. Who solved the secretary problem? Statistical Science, 4:282–289,
August 1989.

5. P. R. Freeman. The secretary problem and its extensions: A review. International

Statistical Review, 51:189–206, August 1983.

6. D. Karger. Random sampling and greedy sparsification for matroid optimizaiton
problems. Mathematical Programming, 82:41–81, June 1998.

7. R. Kleinberg. A multiple-choice secretary algorithm with applications to online
auctions. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete

algorithms, pages 630–631, January 2005.

8. E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover Publica-
tions, Mineola, NY, 2001.

9. D. V. Lindley. Dynamic programming and decision theory. Applied Statistics,
10:39–51, March 1961.

10. J. Oxley. What is a matroid? Cubo, 5:179–218, 2003.



A Details from Section 4

Here we complete some of the proofs missing from Section 4. We first prove a
helpful intermediate lemma.

Lemma 21.

α ∈ S1(i, j) ⇒ α0 ∈ S4(i, j), α1 ∈ S2(i, j)

α ∈ S2(i, j),∃i′M2(α) = {(i′, j)} ⇒ α0 ∈ S3(i, j), α1 ∈ S4(i, j)

α ∈ S2(i, j),∀i′M2(α) 6= {(i′, j)} ⇒ α0, α1 ∈ S2(i, j)

α ∈ S3(i, j) ⇒ α0, α1 ∈ S3(i, j)

α ∈ S4(i, j) ⇒ α0, α1 ∈ S4(i, j)

Proof. The statement follows straightforwardly by case analysis from the recur-
sive definitions of M0(α),E0(α),E1(α) and the partition S0(i, j), S1(i, j), S2(i, j),
S3(i, j), S4(i, j). We provide some intuitive discussion.

For the first implication, appending 0 to α places {(i, j)} in M0, which places
α0 in S4. On the other hand, appending 1 to α places {(i, j)} in E0, which places
α1 in S2.

For the second implication, appending 0 to α places {(i′, j)} in M0, which
places α0 in S3. On the other hand, appending appending 1 to α places {(i′, j)}
in E0, which places α1 in S4.

For the third implication, neither appending 0 nor 1 to α increases the degree
of j in E1, so both extensions of α are in S2.

For the fourth implication, since α is in S3, we know that j is in M0. This
means that j can no longer be returned by Cands (Lemma 1). Thus regardless
of the appended character, the extension of α is in S3.

For the fifth implication, since appending a character to α does not decrease
the length of the string or decrease the degree of j in E1, both extensions of α
are in S4.

Proof (Lemma 7). We prove the lemma by induction on k with a base case
k = i + 1.

For the base case, we have |S2(i, j) ∩ {0, 1}i+1| ≥ |S1(i, j)| since for every
α ∈ S1(i, j) we have that |α| = i by the definition of S1(i, j) and by Lemma 21 we
have α1 ∈ S2(i, j). By the definition of S2(i, j), all strings in S2(i, j) have length
at least i+1. Also by the definition of S2(i, j), all strings of length i+1 in S2(i, j)
are equal to α1 for some string in S1(i, j). Thus, we have |S2(i, j)∩ {0, 1}i+1| ≤
|S1(i, j)|. By the definition of S3(i, j), all strings in S3(i, j) have length at least
i + 2. Thus, |S3(i, j) ∩ {0, 1}i+1| = 0, completing the base case.

To show the inductive step, notice that the right-hand side of the claimed
equality exactly doubles as we increase k by one. We must show that the left-hand
side of the equality also exactly doubles. By Lemma 21, for every α ∈ S2(i, j),
either α0 ∈ S3(i, j) or both α0, α1 ∈ S2(i, j). In either case, the count from the



first summand of the left-hand side of the equality doubles. Again, by Lemma 21,
for every α ∈ S3(i, j), we have α0, α1 ∈ S3(i, j). So, the count from the second
summand of the left-hand side of the equality also doubles. So the left-hand side
at least doubles.

By Lemma 21, the only other way for a string extended by one character to
be in S2(i, j) or S3(i, j) is by extending a string in S1(i, j). But, all strings in
S1(i, j) have length i and in the inductive case k > i + 1. Thus, the left-hand
side of the claimed equality exactly doubles.

Proof (Lemma 11). To prove this lemma, we first introduce some helpful claims
and definitions. For any binary string α of length at most k define f(α) as the
set of proper prefixes β of α such that M2(β) = {(|β|, j)}. The following two
claims follow directly from the definitions.

Claim 1: For any binary string α of length at most k, we have deg(E1(α), j) =
|f(α)|.

Claim 2: For any binary string α of length at most k, we have |f(α)| = 0
implies w(M0(α), j) = 0.

Let A denote all α ∈ {0, 1}k such that f(α) 6= ∅. For all α ∈ A let g(α)
denote the shortest string in f(α).

Claim 3: For any α in A, we have f(g(α)) = ∅. Since any proper prefix of
g(α) is also a proper prefix of α.

Claim 4: For any α in A, we have deg(E1(g(α)), j) = 0 and M2(g(α)) =
{(|g(α)|, j)}. Follows from Claims 1 and 3.

Claim 5: For any α in A, we have 0 ≤ |g(α)| < k and g(α) ∈ S1(|g(α)|, j).
Follows from Claim 4, the definition of S1 and since g(α) ∈ f(α).

Claim 6: For any α in A, we have w(M0(α), j) ≤ w(|g(α)|). Since M0(α) is
a matching, deg(M0(α), j) is either zero or one. If it is zero, the claim is trivial.
If it is one, then M0(α) contains a unique (i, j) for some left-vertex i. Thus,
M2(β) = {(i, j)} for some proper prefix β of α of length i. By the definition of
g, |g(α)| ≤ |β| = i. So, the claim follows.

Claim 7: For all 0 ≤ i < k and β in S1(i, j) we have |g−1(β)| ≤ 2k−i. Since
β ∈ S1(i, j) , we have |β| = i. Since g(α) is a prefix of α, |g−1(β)| is at most the
number of k bit extensions of β, which is 2k−i.



We are now ready to prove the lemma

∑

α∈{0,1}k

w(M0(α), j) =
∑

α∈A

w(M0(α), j)

=
∑

0≤i<k

∑

β∈S1(i,j)

∑

α∈g−1(β)

w(M0(α), j)

≤
∑

0≤i<k

∑

β∈S1(i,j)

∑

α∈g−1(β)

w(|g(α)|)

=
∑

0≤i<k

∑

β∈S1(i,j)

∑

α∈g−1(β)

w(i)

≤
∑

0≤i<k

∑

β∈S1(i,j)

w(i)2k−i

=
∑

0≤i<k

w(i)2k−i|S1(i, j)|,

where the first step follows from Claim 2 and the definition of A; the second step
follows from Claim 5; step three follows from Claim 6; step four follows since
α ∈ g−1(β) and β ∈ S1(i, j) implies i = |β| = |g(α)|; step five follows from Claim
7; and step 6 is immediate.

B Details from Section 7

Proof (Lemma 20). We simply prove that each particular sample set B ⊆ A
appears with the same probability in both distributions. The probability of any
particular sample B under P is 1

2m . We must show the same is true under P ′. Let

|B| = k′. The probability of B under P ′ is
[

k′!(m−k′)!
m!

]

·
[

m!
k′!(m−k′)!

1
2m

]

, where

the first term comes from the probability that the elements in B come first in
the random permutation, and the second term comes from the probability that
k′ is chosen as the cutoff for the sampling.


