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Abstract

We specify rules for a dynamic unit-demand auction that supports arbitrary bid revision. Each round
of our dynamic auction is implemented via a single application of a novel sealed-bid unit-demand auction
that takes a tentative allocation and pricing as part of the input, and allows each bidder — including a
tentatively allocated bidder — to submit an arbitrary unit-demand bid. In order to specify the input-
output behavior of our sealed-bid auction, we develop a framework that is based in part on a natural
iterative bargaining process, and that guarantees certain strong properties related to efficiency and privacy
preservation. Within this framework, we succeed in refining the design of our sealed-bid auction to
ensure that it is truthful. We present a fast algorithm for implementing the proposed dynamic auction.
Using this algorithm, the amortized cost of processing each bidding operation is upper bounded by the
complexity of solving a single-source shortest paths problem on a graph with nonnegative edge weights
and a node for each item in the auction.
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1 Introduction

Consider an auction in which many different items are for sale. Assume that a bidding agent assigns a
separate value to each item, and is interested in acquiring at most one item. Such an agent is said to have
unit-demand preferences. In a unit-demand auction, the bid of an agent takes the same form as a unit-demand
preference function: The agent specifies an offer for each item, with the understanding that the bid can win at
most one item. Typical online auction houses do not support such unit-demand bids. Instead, if many items
are to be sold, each is sold in a separate auction. The resulting sequence of single-item auctions forces an
agent with unit-demand preferences to guess whether or not to bid on each successive item, since the agent
does not know the eventual selling prices of the remaining items. This guesswork degrades the efficiency of
the allocation of items to agents, where the efficiency of an allocation is defined as the sum, over all items v,
of the value assigned to v by the agent to which v is allocated. The main reason to contemplate selling many
items within a single unit-demand auction, or indeed within any form of combinatorial auction, is to reduce
the need for such guesswork, thereby enhancing efficiency. By improving efficiency, one has the potential
to improve the quality of the outcome for both buyers and sellers alike.

Unit-demand auctions are well understood in the standard sealed-bid framework alluded to above. In
this context, we can apply the well-known Vickrey-Clarke-Groves (VCG) mechanism to obtain a truthful
auction that produces an efficient allocation and envy-free pricing [17]. In the discussion that follows, we
refer to this standard sealed-bid unit-demand auction as Auction A. The allocation returned by Auction A
corresponds to a maximum-weight matching of a suitable edge-weighted bipartite graph. Such a matching
may be computed efficiently using the Hungarian method [9], or the closely related successive shortest paths
algorithm [1, Chapter 9]. The dual variables maintained by either of these algorithms directly provide the
desired item prices, which are uniquely determined.

We propose a novel set of rules for running a unit-demand auction. Our auction is dynamic, meaning
that it proceeds in rounds. In each round, new bid data (bid revision requests, and new bids) is received, and
an update rule is applied to adjust the tentative solution (allocation and pricing). The tentative solution is
made public at the end of each round. The final solution is given by the allocation and pricing at the end of
the last round. We show that our update rule, which corresponds to the mid-level auction discussed below,
satisfies a number of desirable mathematical properties.

The primary distinguishing feature of our dynamic unit-demand auction is its support for arbitrary bid
revision by tentatively allocated agents. Agent valuations are not necessarily fixed, even in single-item
auctions, but are estimates that evolve over time. An agent may update his preset valuation for an item based
on several factors that include bidding history and research on the item. For instance, Myerson [12] designs
a single-item auction in which agents revise their valuations based on preference and quality uncertainity
factors. Unit-demand bids are more expressive than the single-item bids of traditional auctions, and bid
formulation is correspondingly more complex. Accordingly, there is a significant chance that a tentatively
allocated agent may wish to revise one or more bid components. If a unit-demand auction imposes undue
constraints on bid revision, or if the semantics of bid revision introduce additional strategic considerations,
then agents may be reluctant to submit unit-demand bids. Such an artificial reduction in the number of bids
undercuts the main value proposition of unit-demand auctions, i.e., improved efficiency.

It is worth pointing out that in the absence of bid revision by tentatively allocated agents, we can proceed
by simply applying the same approach as in Auction A to process the set of new bids received in each round.
In the discussion that follows, we refer to this dynamic variant of Auction A as Auction B. We now highlight
several of the key theoretical properties that Auction B inherits from Auction A. Each round of Auction B
is truthful. The allocation computed in each round of Auction B is efficient with respect to the set of bids
thus far submitted. Auction B also preserves the privacy of the bids associated with the tentatively allocated
agents, in the following sense: If agent u is tentatively allocated to item v at price p, then no coalition of
agents and sellers that does not include u can determine the amount by which the offer of agent u for item
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v exceeds p. The latter privacy preservation property is crucial to the integrity of Auction B, because it
means that such a coalition cannot force agent u to pay a higher price without risking forfeiture of sale.
Auction B is also scalable in the sense that it admits a fast implementation. Each new bid can be processed
using a single Hungarian augmentation. The worst-case time complexity of such an augmentation is upper
bounded by the cost of running a single-source shortest paths computation on a graph where the number
of nodes is proportional to the number of items, and where the number of edges is proportional to the total
number of “active” bid components of the tentatively allocated agents. (A component of a unit-demand bid
is considered active if the associated offer is at least the current price of the associated item.) The high-
level objective of the present paper is to support arbitrary bid revision by tentatively allocated agents, while
preservering — to the extent possible — the theoretical properties of Auction B.

Auction B is inherently ascending-price because enlarging the set of unit-demand bids cannot cause any
price to fall. However, we are interested in the setting where tentatively allocated agents are allowed to revise
their bids, and in this setting, we need to decide whether we are willing to allow prices to fall. Allowing
prices to fall is incompatible with achieving privacy preservation in the sense achieved by Auction B. For
this reason, we opt to enforce the ascending-price property. Given the broadly applicable nature of the VCG
paradigm, one might expect that a VCG mechanism can be used in each round to determine the appropriate
price increase for each item. For example, one might consider applying Auction A in each round to the
modified instance obtained by shifting the price of each item to zero, and applying the same shift to all bids
on that item. Unfortunately, the VCG framework is not directly applicable to our problem; the fundamental
reason is that while the bids assign values to all feasible outcomes, they also serve to restrict the set of
feasible outcomes. Accordingly, we proceed to design and analyze our auction from first principles instead
of relying on the VCG framework. At the same time, we use the VCG-based Auction A as a building block
to specify the input-output behavior of our auction, and our analysis exploits known properties of Auction A.

Within the technical body of this paper, we present three unit-demand auctions that we refer to as the
top-level, mid-level, and bottom-level auctions. The top-level auction is our proposed dynamic unit-demand
auction. Each round of the top-level auction corresponds to a single application of the mid-level auction.
Like Auction A, the mid-level auction is a sealed-bid unit-demand auction; however, as discussed in greater
detail below, the input to the mid-level auction specifies a tentative allocation and allows for arbitrary bid
revision, resulting in additional complexity. The mid-level auction consists of two phases. The first phase,
which affects both the tentative allocation and pricing, is defined in terms of the bottom-level auction. The
bottom-level auction is dynamic. We associate with each mid-level agent u a bottom-level proxy agent
u′. Given the sealed unit-demand bid of u, the associated proxy u′ employs a fixed strategy to bid on
behalf of u in each round of the bottom-level auction. The second phase of the mid-level auction affects
only the tentative allocation, and uses a single application of the well-known Top Trading Cycles (TTC)
algorithm [14] to exchange items within a certain subset of the tentatively allocated agents.

The design of the first phase of our mid-level auction constitutes a key technical component of our work.
A formal description of this component may be found in Section 5. Here we briefly mention some of the
high-level ideas underlying the design of the first phase. To ensure that the price of an item v does not
decrease, at the outset of the first phase, we tentatively impose the following obligation on the agent u to
which v is tentatively allocated: Agent u will remain allocated to v at the tentative price of v. The first phase
then proceeds to update the tentative allocation and pricing in an iterative manner. Apart from updating the
allocation and pricing, each iteration either permanently releases an initially tentatively allocated agent from
its obligation, or eliminates an unallocated agent whose unit-demand bid is too low to ever be allocated. The
latter property ensures termination of the first phase. But should we expect such an iterative procedure to
be truthful? By lying, an agent can alter the set of initially tentatively allocated agents that are released
from their obligations, and can thereby alter the set of bids that are taken into account in determining
the final allocation and pricing. Accordingly, one might expect lying to be advantageous in at least some
situations. This intuition was borne out in our initial — and unsuccessful — attempt to design the mid-
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level auction, in which we implemented each iteration of the first phase by solving a suitable instance
of Auction A. Fortunately, and somewhat surprisingly, we are able to obtain a truthful mid-level auction
by carefully restricting the nondeterminacy associated with these instances of Auction A. Specifically, in
scenarios where there are multiple allocations of maximum weight, and Auction A selects an arbitrary such
allocation, we employ a natural tie-breaking convention to restrict the choice of allocation. Under this tie-
breaking convention, the allocation is still not uniquely determined, but the set of allocated agents is uniquely
determined. Moreover, the tie-breaking convention is easy to enforce, allowing for a fast implementation.

In the foregoing discussion, we have placed special emphasis on the truthfulness property of the mid-
level auction. In the technical body of the paper, we establish various relevant properties of the bottom-level,
mid-level, and top-level auctions, related to efficiency, truthfulness, privacy preservation, and scalability.
To give the reader a sense for the strength of our results, recall that our high-level objective is to match
— to the extent possible — the properties achieved by Auction B, while supporting (unlike Auction B) bid
revision. Much of the technical development of the paper is geared towards establishing that, like Auction B,
each round of our top-level auction is truthful (see Lemma 5.22). We also prove (see Lemma 6.5) that
our top-level auction achieves the same strong privacy preservation property as Auction B. With respect
to scalability, our fast implementation of the top-level auction (see Section 6.5) processes each bidding
operation (i.e., new bid or bid revision) using an amortized constant number of augmentations, thereby
matching the asymptotic complexity associated with Auction B, which uses a single augmentation to process
each new bid. With regard to efficieny, recall that Auction B produces an efficient allocation in each round.
In the absence of bid revision by tentatively allocated agents, our top-level auction mimics the behavior
of Auction B, and hence achieves the same efficiency guarantee. When tentatively allocated agents are
allowed to revise their bids in an arbitrary manner, such an efficiency guarantee cannot be achieved without
sacrificing other key properties. Since we do not wish to sacrifice these properties, we instead maintain a
relaxed form of efficiency (see Lemmas 6.1 and 6.2). Informally, our efficiency-related guarantees imply
that while the current allocation need not be efficient with respect to the current revision of each bid, it is
guaranteed to be efficient with respect to a suitable combination of previous and current revisions. Moreover,
we show that the auction can only make progress towards achieving efficiency with respect to the most recent
revision of a given bid. We believe that our efficiency-related guarantees are essentially the strongest that
can be achieved without sacrificing other properties.

Our proposed auction is relatively straightforward to specify. Indeed, the informal description given
earlier in this introduction is not far from complete. However, the analysis of our auction is highly nontrivial.
For example, it is a major challenge to prove that each round of the auction is truthful. A second major
challenge is to justify the correctness of our fast implementation. To overcome these challenges, our formal
development introduces a good deal of technical machinery, resulting in a lengthy presentation. To reduce
the length of this submission, we have chosen to present some basic lemma statements without proofs.
Given the formal framework established, the proofs that have been omitted are straightfoward and are not
too difficult to prove.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3 provides
a foundation for the technical presentation to follow. Sections 4, 5, and 6 present the bottom-level, mid-level,
and top-level auctions, respectively. Section 7 offers some concluding remarks.

2 Related Work

Demange et al. [6] present two dynamic unit-demand auctions: an “exact” auction, which we refer to as
DGS-exact, and an “approximate” auction, which we refer to as DGS-approximate. In each round, the
DGS-exact auction elicits the demand (i.e., set of preferred items at the current prices) of each agent. If
there is an overdemanded set of items, a minimal overdemanded set is found and the prices of all items in
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the set are incremented by one. If no overdemanded set can be found, the DGS-exact auction terminates and
each item is allocated to an agent who demands it. Assuming that each agent behaves in accordance with
a fixed unit-demand bid, the input-output behavior of the DGS-exact auction is exactly the same as that of
Auction A described in Section 1. Observe that the DGS-exact auction implicitly supports a limited form of
bid revision: An agent is free to revise its unit-demand bid as long as the demands specified in all preceding
rounds remain consistent with the revision.

Recognizing the highly restrictive nature of the form of bid revision permitted by the DGS-exact auction,
Demange et al. propose the DGS-approximate auction. Like DGS-exact, DGS-approximate is an ascending-
price auction. (We remark that Mishra and Parkes [11] describe exact and approximate descending price
auctions corresponding to DGS-exact and DGS-approximate.) Agents that are not tentatively allocated are
consulted in round-robin order and given the opportunity to either select an item, or pass. If an unallocated
agent u selects an item v, the tentative price of item v is increased by a parameter δ, and the tentative allo-
cation is updated to reflect that item v is allocated to agent u. The DGS-approximate algorithm terminates
when all of the unallocated agents pass. The DGS-approximate auction has several shortcomings in compar-
ison with our dynamic unit-demand auction: the auctioneer is required to specify a value for the parameter
δ; the outcome is guaranteed to be approximately efficient/truthful, even in the absence of bid revision; there
is a tradeoff between the quality of the approximation and the running time of the algorithm; the bid revision
framework is restrictive, since it does not allow for trading of items between tentatively allocated agents.

Gul and Stacchetti [8] present a dynamic auction that generalizes the DGS-exact auction for the setting in
which agents demand bundles of items. Gul and Stacchetti show that their auction converges to the smallest
Walrasian prices, and that their auction is strategy-proof if the smallest Walrasian prices correspond to the
VCG payments. Gul and Stacchetti’s auction, like the DGS-exact auction, supports a limited form of bid
revision: An agent is free to revise its bid on a bundle as long as the demands on the bundle specified in all
preceding rounds remain consistent with the revision.

General combinatorial auctions support more complex preferences than unit-demand preferences, such
as preferences for bundles of items. Unfortunately, for many combinatorial auctions, the problem of find-
ing an efficient allocation is NP-hard. The computational intractability of general combinatorial auctions
motivates the study of specialized combinatorial auctions. Rothkopf et al. discuss special cases (including
unit-demand) of combinatorial auctions where the problem of finding an efficient allocation can be solved
in polynomial time [13]. Various generalizations of unit-demand have been considered in the literature, in-
cluding recent work on dynamic auctions for homogeneous [2, 4] and heterogeneous [3, 5, 10] commodities.

In the special case where there is only one item in the auction, our top-level auction is effectively a
dynamic Vickrey auction. This kind of auction, referred to as the “California auction” by Steiglitz [15],
closely approximates the auction format of eBay, and hence is of significant practical importance. It is well
known, and straightforward to prove, that the California auction is not truthful. Since our top-level auction
generalizes the California auction, it is also not truthful. Nevertheless, the privacy preservation property
that we establish for the top-level auction, together with the truthfulness of any single round, suggests that
truthful bidding is a reasonable strategy in practice.

3 Preliminaries

As pointed out in the introduction, while the specification of our auction is straightforward, the analysis is
a significant technical challenge. In order to work through this challenge, and to facilitate a rigorous and
formal analysis of our auction, we introduce below a number of basic types and their auxiliary functions.

We refer to the bidders in our auctions as agents. Formally, we treat an agent as a binary string. We
define the maximum over an empty set of agents as the empty agent ε. An item v in our auction is a pair
(id(v),min(v)), where id(v) is a binary string identifier and min(v) is an integer lower bound on the price
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of v. We allow the price of an item in our auction to be negative in order to support procurement-type
auctions. For any set of items V , we define a (unit-demand) bid on V as a function that maps each item in
V to an integer.

3.1 Bid-Graphs

A bid-graph encodes the input to a unit-demand auction and encapsulates a set of items and a set of agents
having unit-demand bids on the items. In general, an agent’s unit-demand bid may not include an offer
for every item in the bid-graph. In the full version of this paper, we represent the absence of an offer by
an offer of −∞. Handling an offer of −∞ requires special treatment in our formalism and lengthens the
presentation. Due to space constraints in this paper, we find it convenient to assume that an agent’s unit-
demand bid includes an integer offer for every item in the big-graph, and we choose to represent the absence
of an offer by a negative integer that is sufficiently large in magnitude.

Formally, a bid-graph is an edge-weighted complete bipartite graph G = (U, V,w), where U is a set
of agents, V is a set of items, w is a function from the set U × V to the set of integers, and the following
conditions are satisfied: (1) the cardinality of U is at least the cardinality of V ; (2) for any agent u in U ,
agent u is nonempty; (3) for any pair of distinct items v and v′ in V , we have id(v) 6= id(v′).

Let G = (U, V,w) be a bid-graph. We introduce the following definitions. We define bids(G) as the
set of all possible bids on the set V of items. For any agent u in U , we define bid(G, u) as the bid β in
bids(G) such that β(v) = w(u, v) for any item v in V . For any nonempty agent u not in U , and any bid
β in bids(G), we define add(G, u, β) as the bid-graph G′ = (U + u, V, w′) where bid(G′, u) = β and
bid(G′, u′) = bid(G, u′) for any agent u′ in U . For any nonempty agent u not in U , any item v in V , and
any integer z, we define add(G, u, v, z) as add(G, u, β), where β is the bid in bids(G) such that β(v) = z
and β(v′) = min(v′) − 1 for any item v′ in V − v. For any any agent u in U , and any integer z, we
define shift(G, u, z) as the bid-graph (U, V,w′) where w′(u, v) = w(u, v) + z for any item v in V , and
w′(u′, v) = w(u′, v) for any agent u′ in U − u and any item v in V . For any any agent u in U , and any
bid β in bids(G), we define subst(G, u, β) as the bid-graph G′ = (U, V,w′) where bid(G′, u) = β and
bid(G′, u′) = bid(G, u′) for any agent u′ in U − u.

3.2 Configurations

The outcome of a unit-demand auction consists of a pricing of the items and an allocation of items to agents
such that every agent is allocated at most one item. A configuration encodes the input to an auction along
with an associated outcome.

Formally, a configuration χ is a triple (G,M,Φ), where G = (U, V,w) is a bid-graph, M is a maximum
cardinality matching (MCM) of G, and Φ is a potential function that maps each item v in V to an integer
Φ(v) such that Φ(v) ≥ min(v). Let χ = (G,M,Φ) be a configuration where bid-graph G = (U, V,w). We
introduce the following definitions. The function agents(χ) is the set U and the function items(χ) is the
set V . We say χ is efficient if M is a maximum weight MCM (MWMCM) of G. We define matched(χ)
as the subset of agents in U that are matched in M , and we define unmatched(χ) as the set of agents in
U \ matched(χ). For any item v in V , we define match(χ, v) as the agent u in U such that the edge
(u, v) belongs to M . For any item v in V , we define amount(χ, v) as w(match(χ, v), v), and we define
amount(χ) as the function that maps each item v in V to amount(χ, v).

For any bid β in bids(G), we define pseudo-utility(χ, β) as the maximum over all items v in V , of
β(v) − Φ(v). We define pseudo-demand(χ, β) as the set of all items v in V such that β(v) − Φ(v) is
equal to pseudo-utility(χ, β). For any agent u in U , we define utility(χ, u) as w(u, v) − Φ(v) if edge
(u, v) belongs to M , and as 0 otherwise. We define positive(χ) as the set of agents u in U such that
utility(χ, u) > 0. We define the set nonpositive(χ) similarly. For any bid β in bids(G), we define
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demand(χ, β) as pseudo-demand(χ, β) if pseudo-utility(χ, β) ≥ 0, and as the empty set ∅ otherwise. For
any item v in V , we define bids(χ, v) as the set of all bids β in bids(G) such that v belongs to demand(χ, β).

For any agent u in U and any bid β in bids(G), we denote the configuration (subst(G, u, β),M,Φ) by
subst(χ, u, β). For any nonempty agent u not in U , and any bid β in bids(G), we define add(χ, u, β) as
the configuration (add(G, u, β),M,Φ). Similarly, for any nonempty agent u not in U , any item v in V ,
and any integer z, we define add(χ, u, v, z) as the configuration (add(G, u, v, z),M,Φ). For any agent u
in U and any nonempty agent u′ not in U , we define subst(χ, u, u′) as the configuration obtained from χ by
replacing all occurrences of agent u with agent u′.

3.3 Agent Colors

Every agent in a configuration is colored white, gray, or black according to certain rules. We classify
configurations based on the colors of their agents.

We define the following for any configuration χ = (G,M,Φ), where G = (U, V,w). We define
digraph(χ) as the directed graph (U ∪ V,A), where A is the set of arcs that includes an arc (v, u) for every
edge (u, v) in M such that v belongs to demand(χ, bid(G, u)), and an arc (u, v) for every edge (u, v) in
G such that v belongs to demand(χ, bid(G, u)) and (u, v) does not belong to M . For any agent u in χ,
we define items(χ, u) as the set of items v in V such that there exists a directed path from agent u to item
v in digraph(χ), and we define agents(χ, u) as the set of agents matched to the items in items(χ, u). For
any item v in V , we define agents(χ, v) as the set of all agents u in unmatched(χ) such that v belongs to
items(χ, u).

The color of any agent u in U is determined as follows, where β denotes bid(G, u). We first consider the
case where agent u belongs to matched(χ). In this case, let v be the item such that match(χ, v) = u. If v
does not belong to pseudo-demand(χ, β), then agent u is black. If v belongs to demand(χ, β), then agent
u is white. Otherwise, agent u is gray. Next, we consider the case where agent u belongs to unmatched(χ).
In this case, if pseudo-utility(χ, β) > 0, then agent u is black. If pseudo-utility(χ, β) = 0, and there
exists some item v in items(χ, u) such that either match(χ, v) is non-white, or match(χ, v) < u and
utility(χ,match(χ, v)) = 0, then agent u is gray. Otherwise, agent u is white.

We define white(χ) as the set of white agents in χ. The sets gray(χ), black(χ), nonblack(χ), and
nonwhite(χ) are defined similarly. We define enabled(χ) as the set of agents u in agents(χ) such that
either (1) u belongs to white(χ), or (2) u belongs to nonwhite(χ) and for all items v in items(χ), we have
β(v) < Φ(v)− 1, where β = bid(G, u).

3.4 Walrasian configurations

A configuration χ = (G,M,Φ) is Walrasian if matched(χ) ⊆ white(χ) and unmatched(χ) ⊆ nonblack(χ).
A bid-graph G is Walrasian if it admits a Walrasian configuration of the form (G,M,Φ). The following

is a list of definitions and lemmas related to Walrasian configurations. The proofs of these lemmas are
straightforward and follow from standard results on Walrasian equilibria [7].

Lemma 3.1 For any bid-graphG′ of the form add(G, u, β), if bid-graphG is Walrasian then the bid-graph
G′ is Walrasian.

Lemma 3.2 If χ = (G,M,Φ) is a Walrasian configuration, then M is an MWMCM of G.

For any Walrasian bid-graph G, we define potentials(G) as the set of all potential functions Φ such that
there exists a Walrasian configuration of the form (G,M,Φ).

Lemma 3.3 For any Walrasian bid-graph G, any MWMCM M of G, and any potential function Φ in
potentials(G), the configuration (G,M,Φ) is Walrasian.
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Lemma 3.4 For any Walrasian bid-graph G, the functions in potentials(G) form a lattice with meet and
join operations given by pointwise minimum and maximum, respectively.

For any Walrasian bid-graph G, we define max -potential(G) and min-potential(G) as the maximum
and minimum functions in potentials(G); the existence of these functions is guaranteed by Lemma 3.4.

Lemma 3.5 For any bid-graph G′ of the form add(G, u, v, z) where bid-graph G is Walrasian, there exists
a unique integer z0 such that the following conditions hold:

• If z > z0 and configuration χ = (G′,M,Φ) is Walrasian, then agent u belongs to matched(χ).

• If z < z0 and configuration χ = (G′,M,Φ) is Walrasian, then agent u belongs to unmatched(χ).

• If z = z0, then there exist Walrasian configurations χ = (G′,M,Φ) and χ′ = (G′,M ′,Φ) such that
agent u belongs to matched(χ) ∩ unmatched(χ′).

For any Walrasian bid-graph G = (U, V,w) and any item v in V , we define threshold(G, v) as the
unique integer z0 of Lemma 3.5, and we define threshold(G) as the function that maps each item v in V to
threshold(G, v).

Lemma 3.6 For any Walrasian bid-graph G, we have threshold(G) = max -potential(G).

For any Walrasian bid-graphG = (U, V,w), we define price(G) as min-potential(G), and for any item
v in V , we define price(G, v) as Φ(v), where Φ is equal to min-potential(G).

Lemma 3.7 For any bid-graph G′ of the form add(G, u, β) where bid-graph G = (U, V,w) is Walrasian,
if β(v) ≤ price(G, v) for every item v in V , then price(G′) = price(G).

Lemma 3.8 For any Walrasian configuration χ = (G,M,Φ), we have price(G) ≤ threshold(G) ≤
amount(χ).

Lemma 3.9 Let G′ be a bid-graph of the form add(G, u, β) where bid-graph G = (U, V,w) is Walrasian.
Let ∆ denote the maximum over all items v in V , of β(v)− threshold(G, v), and let V ′ denote the set of all
items v in V such that β(v)− threshold(G, v) = ∆. Then the following conditions hold:

• If ∆ > 0 and configuration χ = (G′,M,Φ) is Walrasian, then match(χ, v) = u for some item v in
V ′, and price(G′, v) = threshold(G, v) for for every item v in V ′.

• If ∆ < 0 and configuration χ = (G′,M,Φ) is Walrasian, then agent u is unmatched in M .

• If ∆ = 0, then there exist Walrasian configurations χ = (G′,M,Φ) and χ′ = (G′,M ′,Φ) such that
agent u belongs to matched(χ) ∩ unmatched(χ′).

• If ∆ ≤ 0, then threshold(G′) = threshold(G).

3.5 White configurations

A configuration χ is white if agents(χ) = white(χ). The following is a set of definitions and lemmas
related to white configurations. The proofs of these lemmas are similar to those for the corresponding
results established in Section 3.4 for Walrasian configurations.

Lemma 3.10 For any Walrasian bid-graph G, there exists a white configuration of the form (G,M,Φ),
and for any white configuration of the form (G,M,Φ), the bid-graph G is Walrasian.

Lemma 3.11 For any Walrasian bid-graph G and any potential function Φ in potentials(G), there exists
a white configuration of the form (G,M,Φ).
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Lemma 3.12 For any Walrasian bid-graph G and any pair of white configurations χ = (G,M,Φ) and
χ′ = (G,M ′,Φ′), we have matched(χ) = matched(χ′).

By Lemmas 3.10 and 3.12, we can conclude that for any Walrasian bid-graphG, there exists a unique set
of matched agents in any white configuration of the form (G,M,Φ). We denote this unique set of matched
agents by matched(G).

Lemma 3.13 For any white configuration (G,M,Φ), and for any potential function Φ′ in potentials(G),
the configuration (G,M,Φ′) is white.

In what follows, we sometimes compare amount-agent pairs. Such comparisons are resolved lexico-
graphically.

Lemma 3.14 For any bid-graph G′ of the form add(G, u, v, z) where bid-graph G = (U, V,w) is Wal-
rasian, there exists a unique agent u0 in U such that agent u belongs to matched(G′) if and only if
(z, u) > (threshold(G, v), u0).

For any Walrasian bid-graph G = (U, V,w) and any item v in V , we define threshold∗(G, v) as the
unique pair (threshold(G, v), u0) of Lemma 3.14.

Lemma 3.15 For any Walrasian bid-graph G = (U, V,w), any item v in V , and any white configurations
χ = (G,M,Φ) and χ′ = (G,M ′,Φ), we have agents(χ, v) = agents(χ′, v).

For any Walrasian bid-graph G = (U, V,w), any potential function Φ in potentials(G), and any item
v in V , we define agents(G,Φ, v) as the unique set agents(χ, v) of Lemma 3.15, where χ = (G,M,Φ)
is a white configuration whose existence is guaranteed by Lemma 3.11. For any Walrasian bid-graph G =
(U, V,w), and any item v in V , we define agents(G, v) as agents(G, price(G), v).

For any Walrasian bid-graphG = (U, V,w), and any item v in V , we define price∗(G, v) as (price(G), u0),
where u0 is the maximum agent in agents(G, v). Recall that the maximum agent over an empty set is de-
fined as ε. In addition, we define price∗(G) as the function that maps each item v in V to price∗(G, v).

Lemma 3.16 For any bid-graph G′ of the form add(G, u, β) where bid-graph G is Walrasian, if the pair
(β(v), u) < price∗(G, v) for all items v in V , then price∗(G′) = price∗(G).

For any configuration χ = (G,M,Φ) whereG = (U, V,w), and any item v in V , we define amount∗(χ, v)
as the pair (amount(χ, v),match(χ, v)), and we define amount∗(χ) as the function that maps each item v
in V to amount∗(χ, v).

Lemma 3.17 For any white configuration χ = (G,M,Φ), we have price∗(G) ≤ threshold∗(G) ≤
amount∗(χ).

Lemma 3.18 LetG′ be a bid-graph of the form add(G, u, β) where bid-graphG = (U, V,w) is Walrasian.
Let ∆ denote the maximum, over all items v in V , of β(v) − threshold(G, v), and let V ′ denote the set of
all items v in V such that β(v)− threshold(G, v) = ∆. Let u0 denote the minimum, over all items v in V ′,
of the second component of the pair threshold∗(G, v). Then the following conditions hold:

• If the pair (∆, u) > (0, u0) and configuration χ = (G′,M,Φ) is white, then match(χ, v) = u for
some item v in V ′, and price(G′, v) = threshold(G, v) for every item v in V ′.

• If the pair (∆, u) < (0, u0) and configuration χ = (G′,M,Φ) is white, then agent u is unmatched in
M and threshold∗(G′) = threshold∗(G).

3.6 Quiescent configurations

A configuration χ = (G,M,Φ) is quiescent if unmatched(χ) ⊆ white(χ), and for any agent u in black(χ)
where β = bid(G, u), we have β(v) < Φ(v) for all items v in items(χ). For any configuration χ =
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(G,M,Φ) where G = (U, V,w), and any agent u in U , we say χ is u-quiescent if either (1) u belongs
to unmatched(χ) ∩ gray(χ) and (G′,M,Φ) is quiescent, where G′ = (U − u, V, w), or (2) u belongs to
matched(χ) and shift(χ, u, 1) is quiescent.

3.7 ECCs

For any pair of configurations χ = (G,M,Φ) and χ′ = (G,M ′,Φ), we write χ ∼ χ′ if matched(χ) =
matched(χ′), nonwhite(χ) = nonwhite(χ′), and for any item v in items(χ) such that match(χ, v) is non-
white, we have match(χ, v) = match(χ′, v). Observe that ∼ is an equivalence relation and thus partitions
the set of all configurations into equivalence classes. We refer to an equivalence class of configurations as
an ECC , and we use the notation [χ] to refer to the ECC of a given configuration χ. By definition, for any
ECCX , there exists a unique bid-graphG0 and a unique potential function Φ0 such that every configuration
in X is of the form (G0,M,Φ0). We define bid -graph(X) and potential(X) as G0 and Φ0 respectively.
We define potential(X, v) as Φ0(v), for any item v in V , where G0 = (U, V,w). An ECC X is quiescent if
every configuration χ in X is quiescent. We define u-quiescent ECCs similarly.

For any ECC X , we define agents(X) as the unique set of agents whose existence is guaranteed by
Lemma 3.20. We define the following similarly: items(X), matched(X), unmatched(X), gray(X),
white(X), black(X), nonwhite(X), nonblack(X), enabled(X), positive(X), nonpositive(X), utility(X,u),
pseudo-utility(X,u), demand(X,u), pseudo-demand(X,u), bids(X, v), items(X,u), agents(X,u),
and agents(X, v).

For any configurations χ = (bid -graph(X),M, potential(X)) and χ′ = (bid -graph(X),M ′, potential(X))
in X , we say χ is lexicographically smaller than χ′ if S < S′, where S and S′ are the lexicographically
ordered lists of edges in M and M ′ respectively. For any ECC X , any agent u in agents(X), and any
integer z, we define shift(X,u, z) as [shift(χ, z, u)] where χ is the configuration in ECC with the lexico-
graphically smallest matching. For any ECC X and any agent u in agents(X), we define subst(X,u, β) as
the ECC ∪χ∈X [subst(χ, u, β)] given by Lemma 3.22. We define the following similarly: subst(X,u, u′),
add(X,u, β), and add(X,u, v, z).

Lemma 3.19 For any quiescent configuration χ, the ECC [χ] is quiescent.

Lemma 3.20 For any ECC X , and any pair of configurations χ and χ′ in X , we have agents(χ) =
agents(χ′).

Lemma 3.21 For any ECC X , any agent u in agents(X), and any pair of configurations χ and χ′ in X ,
we have items(χ, u) = items(χ′, u).

Lemma 3.22 For any ECC X , any agent u in agents(X), and any bid β in bids(bid -graph(X)), the set
of configurations given by ∪χ∈X [subst(χ, u, β)] is an ECC.

4 Bottom-Level Auction

For the purposes of our analysis, we find it useful to break the presentation of our auction into three layers,
progressively building up to our final top-level auction in Section 6. Each layer describes an auction that
uses the auction of the previous layer as a building block. In this section, we describe the bottom-level
auction which corresponds to the lowest layer of our presentation.

4.1 Description

The bottom-level auction takes a quiescent ECC as input and updates the ECC over a sequence of rounds.
In a general round of the bottom-level auction, a single enabled agent in the ECC invokes the function raise
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defined below. Informally, an invocation of raise by an agent corresponds to the agent incrementing all
components of its bid by one unit. If two or more enabled agents wish to invoke raise in a round, then the
auction chooses from amongst them arbitrarily. The auction terminates when no agent invokes raise in a
round.

We now develop formalism leading to the definition of the function raise. For any ECC X and any
agent u in unmatched(X), we define the predicate P0(X,u) to hold if X is either quiescent or u-quiescent.
We now define victim(X,u, z) for any ECC X , any integer z in {0, 1}, and any agent u in unmatched(X)
such that the predicate P0(X,u) holds. Let set U0 denote white(X) and let set U1 denote agents(X,u) ∪
{u} ∩ nonpositive(X). Note that set U1 is nonempty as it contains agent u. If U1 \ U0 6= ∅, we define
victim(X,u, z) as the minimum agent in U1 \ U0. If U1 \ U0 = ∅, z = 1, and U1 − u 6= ∅, then we define
victim(X,u, z) as the minimum agent in U1 − u. Otherwise, we define victim(X,u, z) as the minimum
agent in U1.

For any ECC X and any agent u in enabled(X), we define the predicate P1(X,u) to hold if either (1)
agent u belongs to matched(X) and X is quiescent, or (2) agent u belongs to unmatched(X) and the
predicate P0(X,u) holds. We now define augment(X,u, z) for any ECC X , any integer z in {0, 1}, and
any agent u in enabled(X) such that the predicate P1(X,u) holds. If agent u belongs to matched(X), then
augment(X,u, z) is the ECC X . Otherwise, augment(X,u, z) is the ECC [χ′], where χ′ is constructed as
follows: Let χ be an arbitrary configuration in X and let P be an arbitrary simple directed path from u to
victim(χ, u, z) in digraph(χ); for every item v′ such that there exists an arc of the form (u′, v′) on path P ,
we set match(χ′, v′) = u′, and for every item v′ that is not on path P , we set match(χ′, v′) = match(χ, v′).
By Lemma 4.1, it follows that augment(X,u, z) iswell defined.

For any ECC X and any agent u in enabled(X) such that either (1) X is quiescent, or (2) X is u-
quiescent and u belongs to matched(X), we define inc(X,u) as the ECC X ′ where bid -graph(X ′) =
shift(bid -graph(X), u, 1), and potential(X ′) is defined as follows: if agent u belongs to matched(X),
then potential(X ′) = potential(X); otherwise potential(X ′, v) = potential(X, v) + 1 for any item v in
items(X,u) and potential(X ′, v) = potential(X, v) for any item v in items(X) \ items(X,u).

For any quiescent ECCX and any agent u in enabled(X), we define raise ′(X,u) as augment(X,u, 1).
For any ECC X and any agent u in enabled(X) such that either X is quiescent, or X is u-quiescent and
u belongs to matched(X), we define raise ′′(X,u) as augment(inc(X,u), u, 0) For any quiescent ECC X
and any agent u in enabled(X), the function raise(X,u) is defined as raise ′′(raise ′(X,u), u).

For any quiescent ECC X and any agent u in unmatched(X), we define victim(X,u) as follows: if
matched(X) ∩ unmatched(raise(X,u)) = {u′}, then victim(X,u) = u′; otherwise, victim(X,u) = ∅.
Recall that by Fact 4.4, matched(X) ∩ unmatched(X) has a cardinality of at most 1.

The facts below follow from the definition of the function raise.

Fact 4.1 For any quiescent ECCX and any agent u in enabled(X)∩matched(X), we have raise(X,u) =
shift(X,u, 1).

Fact 4.2 For any quiescent ECC X and any agent u in enabled(X), we have potential(raise(X,u)) ≥
potential(X).

Fact 4.3 For any quiescent ECC X and any agent u in enabled(X) such that bid(bid -graph(X), u) <
potential(X), we have potential(raise(X,u)) = potential(X).

Fact 4.4 For any ECCX ′ of the form raise(X,u), we have |S| ≤ 1, where S = matched(X)\matched(X ′).

The following lemmas establish that the output of the bottom-level auction is a quiescent ECC.

Lemma 4.1 For any ECCX , any integer z in {0, 1}, and any agent u in enabled(X) such that the predicate
P1(X,u) holds, the ECC augment(X,u, z) is independent of the choice of the configuration χ and the path
P used in the definition of augment(X,u, z).
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Lemma 4.2 Any set of configurations of the form inc(X,u) is an ECC.

Lemma 4.3 For any quiescent ECC X and any agent u in enabled(X), the predicate P1(X,u) holds.

Lemma 4.4 For any ECC X ′ of the form inc(X,u), the predicate P1(X ′, u) holds.

Lemma 4.5 For any quiescent ECC X and any agent u in enabled(X), either raise ′(X,u) is quiescent,
or raise ′(X,u) is u-quiescent and u belongs to matched(raise ′(X,u)).

Lemma 4.6 Any ECC of the form raise(X,u) is quiescent.

4.2 Basic Properties

Below we discuss some basic properties of the bottom-level auction that are useful in both proving lemmas
of Section 4.5 and establishing properties of the mid-level auction of Section 5.

Lemma 4.7 For any ECC X ′ of the form raise(X,u′) and any agent u in nonwhite(X), either (1) u
belongs to unmatched(X ′), or (2) u belongs to nonwhite(X ′), and there exists an item v in items(X)
such that potential(X, v) = potential(X ′, v) and match(χ, v) = u for any configuration χ in X ∪X ′.

Proof. Since u belongs to nonwhite(X), there exists an item v in items(X) such that for any configuration
χ in X , we have match(χ, v) = u. By definiton, u does not belong to digraph(X) and v is a leaf of
digraph(X). Since v is a leaf of digraph(X), by the definition of the function raise ′ either implies that u =
victim(X,u′, 1) or match(χ, v) = u for any configuration χ in X ∪ raise ′(X,u′). If u = victim(X,u′, 1),
then u belongs to unmatched(X ′) and the proof is complete.

We now consider the case where u 6= victim(X,u′, 1); thus v does not belong to items(X,u′). By the
definition of the function raise ′′, potential(X ′, v′) = potential(X, v′) + 1 for any item v′ in items(X,u′)
and potential(X ′, v′) = potential(X, v′) for any item v′ not in items(X,u′); thus potential(X ′, v) =
potential(X, v). Let X ′′ = inc(raise ′(X,u′), u′). It is easy to see that v is a leaf of digraph(X ′′). Thus,
either u = victim(X ′′, u′, 0) or match(χ, v) = u for any configuration χ in X ∪X ′.

Lemma 4.8 For any quiescent ECC X and any agent u in enabled(X), if X ′ = raise(X,u), then

gray(X) ⊆ nonblack(X ′) ∧ white(X) ⊆ white(X ′).

Proof. By the definition of the function raise, if u belongs to gray(X), then u belongs to gray(X ′), and
if u belongs to white(X), then u belongs to white(X ′). Consider any agent u0 in agents(X) − u. By
Lemma 4.6,X ′ is quiescent, and by the definition of a quiescent ECC, unmatched(X ′) ⊆ white(X ′). Thus,
if u0 belongs to unmatched(X ′), then u0 belongs to white(X ′) and hence u0 belongs to enabled(X ′). Now
suppose that u0 belongs to matched(X ′). We consider the following two cases.

First we consider the case where u0 belongs to gray(X)∩matched(X ′). By Fact 4.2, potential(X ′) ≥
potential(X) and by Lemma 4.7, there exists an item v0 in items(X) such that potential(X, v0) =
potential(X ′, v0) and for any configuration χ in X ∪ X ′, we have match(χ, v0) = u0. It follows that
u0 belongs to gray(X ′).

Next we consider the case where u0 belongs to white(X) ∩ matched(X ′). By our assumption, u0

belongs to matched(X). By the definition of raise, it follows that utility(X ′, u0) ≥ 0. Thus, u0 belongs to
white(X ′).

Lemma 4.9 For any quiescent ECC X and any agent u in enabled(X), we have enabled(X) − u ⊆
enabled(raise(X,u)).

Proof. Let X ′ = raise(X,u). By Lemma 4.6, X ′ is quiescent. Consider any agent u0 in enabled(X)− u.
Suppose u0 belongs to white(X); then by Lemma 4.8, u0 belongs to white(X ′), and hence u0 belongs to
enabled(X ′).
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Suppose u0 belongs to nonwhite(X). Since u0 belongs to enabled(X), we have β(v) < potential(X, v)
for evey item v in items(X), where β = bid(X,u0). By Fact 4.2, potential(X ′) ≥ potential(X) and by
Lemma 4.7, either u0 belongs to unmatched(X ′) or there exists an item v0 in items(X) such that for any
configuration χ in X ∪X ′, we have match(χ, v0) = u0. Thus, u0 belongs to enabled(X ′).

Lemma 4.10 For any quiescent ECC X and any agent u in enabled(X), if there exists an item v in
items(X) such that potential(X, v) = potential(raise(X,u), v), then bids(X, v) ⊆ bids(raise(X,u), v).

Proof. Let β be any bid in in bids(X, v). By definition, for any item v′ in items(X) − v, we have
β(v) − potential(X, v) ≥ β(v′) − potential(X, v′). By Lemma 4.2, we have potential(raise(X,u)) ≥
potential(X). Thus, for any item v′ in items(X) − v, we have β(v) − potential(X, v) ≥ β(v′) −
potential(raise(X,u), v′). Thus, β belongs to bids(raise(X,u), v).

Lemma 4.11 For any quiescent ECC X0 and any quiescent ECC X1 of the form subst(X0, u0, u1) where
u0 belongs to unmatched(X0) and u1 < u0, we have utility(raise(X0, u0), u0) = utility(raise(X1, u1), u1) =
0. Furthermore, either (1) raise(X1, u1) = subst(raise(X0, u0), u0, u1), or (2) raise(raise(X1, u1), u1) =
subst(raise(raise(X0, u0), u0), u0, u1).

Proof. Let β = bid(bid -graph(X0), u0). Let X ′0 = raise ′(X0, u0) and let X ′′0 = raise ′′(X ′0, u0). Let
X ′1 = raise ′(X1, u1) and let X ′′1 = raise ′′(X ′1, u1). Note that items(X0, u0) = items(X1, u1). Thus, by
the definition of the function raise ′ it follows that X ′1 = subst(X ′0, u0, u1). If u0 belongs to matched(X ′0),
then it is easy to see that X ′′1 = subst(X ′′0 , u0, u1) and the proof is complete. We now consider the case
where u0 belongs to unmatched(X ′0). Note that items(X ′0, u0) = items(X ′1, u1). Since u1 < u0, it
follows from the definition of the function raise ′′ that if u1 belongs to matched(X ′′1 ), then u0 belongs to
matched(X ′′0 ). Similarly, if u0 belongs to unmatched(X ′′0 ), then u1 belongs to unmatched(X ′′1 ). Thus,
either X ′′1 = subst(X ′′0 , u0, u1), or u0 belongs to matched(X ′′0 ) and u1 belongs to unmatched(X ′′1 ). Thus,
there exists an item v in items(inc(X ′1, u1), u1) such that match(inc(X ′1, u1), v) belongs to zero(inc(X ′1, u1))
and u1 < u′ < u0. It is easy to see from the definition of the function raise ′ that raise ′(X ′′0 , u0) = X ′′0 and
raise ′(X ′′1 , u1) = subst(X ′′0 , u0, u1). Thus, raise(X ′′1 , u0) = subst(raise(X ′′0 , u0), u0, u1).

4.3 Commutativity of raise invocations

A key property of the bottom-level auction is the commutativity of raise invocations. This property is
formalized in Lemma 4.20 and is used extensively in the following sections of the paper.

Lemma 4.12 For any quiescent ECCX , any agents u0 and u1 in unmatched(X) such that agents(X,u0)∩
nonpositive(X) = ∅, and any item v in items(X,u0), we find that v belongs to items(raise(X,u1), u0) if
and only if potential(raise(X,u1), v) = potential(X, v).

Proof. Since agents(X,u0) ∩ nonpositive(X) = ∅, it follows that victim(X,u1, 1) does not belong to
agents(X,u0), thus agents(X,u0) = agents(raise ′(X,u1), u0) and items(X,u0) = items(raise ′(X,u1), u0).
Let χ = (G,M,Φ) be any configuration inX and let χ′ = (G′,M ′,Φ′) be any configuration in raise(X,u1).
By Lemma 3.21, items(χ, u0) = items(X,u0) and items(χ′, u0) = items(raise(X,u1), u0). By defin-
tion, v belongs to items(χ, u0) if and only if there exists a directed path from u0 to v in digraph(χ), where
every edge of the form (u′, v′) in digraph(χ) is such that v′ belongs to demand(χ, bid(bid -graph(X), u′)).

It is easy to see that if potential(raise(X,u1), v) > potential(X, v), then there is no directed path from
u0 to v in digraph(χ). We now consider the case where potential(raise(X,u1), v) = potential(X, v). It
follows from the definition of the raise function that if Φ′(v′) > Φ(v′) for some item v′ on a directed path
from u0 to v, then Φ′(v) > Φ(v), and this would contradict our assumption that potential(raise(X,u1), v) =
potential(X, v). Thus every item v′ on every directed path from u0 to v has Φ′(v′) = Φ(v′); it follows that
all such directed paths are preserved in digraph(χ′), and thus, v belongs to items(raise(X,u1), u0).
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Lemma 4.13 For any quiescent ECC X and any agents u0 in unmatched(X) and u1 in enabled(X),
if agents(X,u0) ∩ nonpositive(X) = ∅, then agents(X1, u0) ⊆ agents(X,u0), and agents(X1, u0) ∩
nonpositive(X1) = ∅, where X1 = raise(X,u1).

Proof. If u1 belongs to matched(X), then by Fact 4.1, we have X1 = shift(X,u1, 1); in this case it is easy
to see that agents(X1, u0) ⊆ agents(X,u0) and agents(X1, u0) ∩ nonpositive(X1) = ∅.

We now consider the case where u1 belongs to unmatched(X). By Lemma 4.12, we have items(X1, u0) ⊆
items(X,u0) and potential(X1, v) = potential(X, v) for any item v in items(X1, u0). Thus, we have
agents(X1, u0) ⊆ agents(X,u0) and agents(X1, u0) ∩ nonpositive(X1) = ∅.

Lemma 4.14 LetX0 andX1 be quiescent ECCs such that bid -graph(X0) = bid -graph(X1), potential(X0) =
potential(X1) and for any agent u in nonwhite(X) ∩ matched(X), there exists an item v such that
match(χ, v) = u for any configuration χ in X0 ∪X1. For any agents u0 and u1 such that matched(X0) \
matched(X1) = {u1} and matched(X1) \ matched(X0) = {u0}, if u1 belongs to agents(X0, u0)
and u0 belongs to agents(X1, u1), either victim(X0, u0, 1) = victim(X1, u1, 1) or victim(X0, u0, 0) =
victim(X1, u1, 0).

Proof. Let U = matched(X0)− u1 = matched(X1)− u0. We have potential(X0) = potential(X1) and
for any agent u in nonwhite(X) ∩matched(X), there exists an item v such that match(χ, v) = u for any
configuration χ in X0 ∪X1; thus we have nonpositive(X0) = nonpositive(X1) and for any agent u in U ,
we have agents(X0, u) = agents(X1, u) and items(X0, u) = items(X1, u). Additionally, since u1 be-
longs to agents(X0, u0) and u0 belongs to agents(X1, u1), we have nonpositive(X0)∩ agents(X0, u0) =
nonpositive(X1) ∩ agents(X1, u1). By the definition of the function victim , it is easy to see that either
victim(X0, u0, 1) = victim(X1, u1, 1) or victim(X0, u0, 0) = victim(X1, u1, 0).

Lemma 4.15 For any quiescent ECC X and any agents u0 and u1 in unmatched(X), if victim(X,u0) =
victim(X,u1, 1), then u0 belongs to agents(raise(X,u0), u1).

Proof. LetX0 = raise(X,u0) and let victim(X,u0) = victim(X,u1, 1) = u. Since u = victim(X,u1, 1),
we have u1 belongs to nonpositive(X) and V ⊆ items(X,u1) where V = demand(X,u).

Suppose V ∩items(X0, u1) = ∅. Then, by Lemma 4.12, we have potential(X0, v) = potential(X, v)+
1 for every item in V and V ⊆ items(X,u0); thus u belongs to agents(X,u0) and by the definition
of the function raise ′, potential(X0) = potential(X), which is a contradiction. Thus, we have V ∩
items(X0, u1) 6= ∅. Additionally, since u = victim(X,u0), we have u0 belongs to agents(X0, u

′) for any
agent u′ having V ∩ items(X0, u

′) = ∅. Thus, u0 belongs to agents(raise(X,u0), u1).

Lemma 4.16 For any quiescent ECC X and any agents u0 and u1 in unmatched(X) such that u1 =
victim(X,u1, 1), if victim(X,u0) = victim(X ′1, u1, 0) where X ′1 = inc(raise ′(X,u1), u1), then agent u0

belongs to agents(X ′01, u1) where X ′01 = inc(raise ′(raise(X,u0), u1), u1).

Proof. Let X0 = raise(X,u0) and let victim(X,u0) = victim(X ′1, u1, 0) = u. Note that the case where
victim(X,u0, 1) = u is symmetric to the case handled by Lemma 4.15; thus the proof of this case follows
from Lemma 4.15.

We now focus on the case where victim(X,u0, 1) = u0. By the definition of the function raise ′′,
we have potential(X0, v) = potential(X, v) + 1 for any item v in items(X,u0) and potential(X, v) =
potential(X, v) for any item v in items(X)\ items(X,u0). Since victim(X,u0) = u, we have u0 belongs
to agents(X0, u

′) for any agent u′ such that demand(X0, u)∩items(X0, u
′) 6= ∅. Since victim(X,u1, 1) =

u1, we have nonpositive(X)∩agents(X,u1) = ∅; thus by Lemmas 4.12 and 4.13, we have potential(X ′01, v) =
potential(X, v) + 1 for any item v in items(X,u0)∪ items(X,u1). Since victim(X ′1, u1, 0) = u, we have
V ∩ items(X ′01, u1) 6= ∅. It follows that u0 belongs to agents(X ′01, u1).
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Lemma 4.17 Let X be a quiescent ECC and let u0 and u1 be agents in unmatched(X). Let X0 =
raise(X,u0) and let X1 = raise(X,u1). If victim(X,u0) 6= victim(X,u1), then victim(X0, u1) =
victim(X,u1) and potential(raise(X0, u1), v) = potential(X1, v) for any item v in items(X) such that
potential(X1, v) = potential(X, v) + 1.

Proof. First we consider the case where victim(X,u1, 1) 6= u1. In this case, we have victim(X,u1) =
victim(X,u1, 1) and potential(X1) = potential(X); thus victim(X,u1) belongs to nonpositive(X). The
statement of the lemma assumes that victim(X,u0) 6= victim(X,u1); thus, by the definition of the function
raise, we find that victim(X,u1) belongs to agents(X0, u1) ∩ nonpositive(X0). If victim(X0, u1) =
victim(X,u1), then the proof is complete. Suppose that victim(X0, u1) 6= victim(X,u1). Then there
is an agent u′ in agents(X,u1) such that u′ = victim(X,u0), and hence u0 belongs to agents(X0, u1).
Since u′ = victim(X0, u0), u′ belongs to agents(X,u1), and u′ 6= victim(X,u1, 1), the definition of the
function victim implies that victim(X0, u1, 1) = victim(X,u1, 1).

Next we consider the case where victim(X,u1, 1) = u1; thus, by the definition of the function raise,
we have nonpositive(X) ∩ agents(X,u1) = ∅ and potential(X1, v) = potential(X, v) + 1 for any item
v in items(X,u1). Thus, victim(X,u1) = victim(X ′1, u1, 0), where X ′1 = inc(raise ′(X,u1), u1). By
Lemma 4.12, we have items(X0, u1) = items(X,u1)\items(X,u0) and potential(X0, v) = potential(X, v)+
1 for any item v in items(X,u0). By Lemmas 4.12 and 4.13, we have nonpositive(X0)∩agents(X0, u1) =
∅; thus, we have potential(raise(X0, u1), v) = potential(X, v) + 1 for any item v in items(X0, u1). Since
items(X0, u1) = items(X,u1)\items(X,u0), we have potential(raise(X1, u1), v) = potential(X, v)+1
for any item v in items(X,u0)∪items(X,u1). LetX ′01 = inc(raise ′(X0, u1), u1). If victim(X ′01, u1, 0) =
victim(X ′1, u1, 0), then the proof is complete. Suppose that victim(X ′01, u1, 0) 6= victim(X ′1, u1, 0);
then there is an agent u′ in agents(X ′1, u1) such that u′ = victim(X,u0), and hence u0 belongs to
agents(X ′01, u1). Since u′ = victim(X0, u0), u′ belongs to agents(X ′1, u1), and u′ 6= victim(X ′1, u1, 0).
The definition of the function victim implies that victim(X ′01, u1, 0) = victim(X ′1, u1, 0).

Thus, victim(X0, u1) = victim(X,u1) and potential(raise(X0, u1), v) = potential(X1, v) for any
item v in items(X) such that potential(X1, v) = potential(X, v) + 1.

Lemma 4.18 For any quiescent ECC X and any agents u0 and u1 in agents(X), if matched(X) ∩
{u0, u1} 6= ∅, then potential(X01) = potential(X10) and matched(X01) = matched(X10), where
X01 = raise(raise(X,u0), u1) and X10 = raise(raise(X,u1), u0).

Proof. Let X0 = raise(X,u0) and let X1 = raise(X,u1).
We first consider the case where |{u0, u1} ∩ matched(X)| = 2; thus, {u0, u1} ⊆ matched(X). By

Fact 4.1, we have X01 = shift(shift(X,u0, 1), u1, 1), and X10 = shift(shift(X,u1, 1), u0, 1); thus, X01 =
X10.

We now focus on the case where |{u0, u1} ∩matched(X)| = 1. Without loss of generality, we assume
that {u0, u1}∩matched(X) = {u1}; thus, u1 belongs to matched(X). Since u1 belongs to enabled(X)∩
matched(X) and X1 = shift(X,u1, 1), either u1 belongs to nonwhite(X)∩ nonwhite(X1) or u1 belongs
to white(X) ∩ white(X1). If u1 belongs to nonwhite(X) ∩ nonwhite(X1), then for every item v in
items(X), we have β(v) < potential(X, v) − 2, where β = bid(bid -graph(X), u1). Thus we have
victim(X,u0) = victim(X1, u0) = u1 and raise(X0, u1) = X0. Using these facts, it is straightforward to
argue that potential(X01) = potential(X10) and matched(X01) = matched(X10). It remains to address
the case where u belongs to white(X) ∩ white(X1). We proceed via the following case analysis.

• Case 1: victim(X,u0) 6= u1.

– Case 1.1: victim(X,u0, 1) 6= u0.
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We have victim(X,u0) = victim(X,u0, 1). In this case, u0 belongs to matched(raise ′(X,u0));
thus, by the definition of the function raise, we have potential(X0) = potential(X) and
matched(X0) = matched(X)+u0−victim(X,u0). By Fact 4.1, we haveX01 = shift(X0, u1, 1);
thus potential(X01) = potential(X) and matched(X01) = matched(X)+u0−victim(X,u0).
Since victim(X,u0) 6= u1, there exists an agent u′ in nonwhite(X) ∩ agents(X,u0) such that
victim(X,u1, 1) = u′. By Fact 4.1, we have X1 = shift(X,u1, 1) and thus, nonwhite(X) ∩
agents(X,u0)−u1 = nonwhite(X1)∩agents(X1, u0)−u1; it follows that victim(X1, u0) =
victim(X,u0). Thus, matched(X10) = matched(X) + u0 − victim(X,u0). Since X1 =
shift(X,u, 1) and u0 belongs to matched(raise ′(X,u0)), we have potential(X10) = potential(X).
Thus, matched(X01) = matched(X10) and potential(X01) = potential(X10).

– Case 1.2: victim(X,u0, 1) = u0.
In this case, victim(X,u0) = victim(X ′0, u0, 0) where X ′0 = inc(raise ′(X,u0), u0). Since
victim(X,u0, 1) = u0, we have nonwhite(X) ∩ agents(X,u0) = ∅; thus, potential(X0, v) =
potential(X, v)+1 for any item v in items(X,u0). By Fact 4.1, we haveX01 = shift(X0, u1, 1);
thus potential(X01) = potential(X0) and matched(X01) = matched(X)+u0−victim(X,u0).
We established above that X1 = shift(X,u1, 1); thus potential(X1) = potential(X) and
matched(X1) = matched(X). Since agents(X,u0)∩nonpositive(X) = ∅ and potential(X1) =
potential(X0), by Lemmas 4.12 and 4.13 can be used to argue that we have items(X1, u0) =
items(X,u0) and agents(X1, u0) ∩ nonpositive(X1) = ∅; thus we have potential(X10, v) =
potential(X, v) + 1 for any item v in items(X,u0). Let X ′1 = inc(raise ′(X1, u0), u0); it is
easy to see that X ′1 = shift(X ′0, u1, 1). Since u1 6= victim(X ′0, u0) and X ′1 = shift(X ′0, u1, 1),
we have u1 6= victim(X ′1, u0); thus, victim(X ′1, u0) = victim(X ′0, u0) = victim(X,u0), and
matched(X10) = matched(X) + u0 − victim(X,u0).
It follows that matched(X01) = matched(X10) and potential(X01) = potential(X10).

• Case 2: victim(X,u0) = u1.

– Case 2.1: victim(X,u0, 1) 6= u0.
In this case, victim(X,u0) = victim(X,u0, 1) = u1; thus, potential(X0) = potential(X)
and matched(X0) = matched(X) + u0 − u1. By the definition of the function raise, we have
utility(X,u1) = 0 and utility(X0, u0) = 1. We consider two subcases.
First we consider the subcase where agents(X0, u1) ∩ nonpositive(X0) 6= ∅. In this case,
we have potential(X01) = potential(X0) and by Lemma 4.13, we have agents(X0, u1) ∩
nonpositive(X0) = nonpositive(X)∩(agents(X,u1)∪agents(X,u0)). Since utility(X,u1) =
0 and X1 = shift(X,u1, 1), we have utility(X1, u1) = 1; by the definition of the func-
tion raise ′, we find that u1 does not belong to nonpositive(X0) and victim(X0, u1) 6= u1.
Thus, potential(X01) = potential(X) and matched(X01) = matched(X) + u0 + u1 −
victim(X0, u1). Since u1 belongs to agents(X1, u0) and X1 = shift(X,u1, 1), we have
potential(X1) = potential(X0) and nonpositive(X1)∩ agents(X1, u0) = nonpositive(X)∩
(agents(X,u0) ∪ agents(X,u1)) − u1; thus victim(X1, u0) = victim(X0, u1). Therefore,
we have potential(X10) = potential(X) and matched(X10) = matched(X) + u0 + u1 −
victim(X0, u1).
Next we consider the subcase where agents(X0, u1) ∩ nonpositive(X0) = ∅, In this case, we
have potential(X01, v) = potential(X, v)+1 for any item v in items(X0, u1) and victim(X0, u1) =
victim(X ′0, u1, 0) where X ′0 = inc(raise ′(X,u1), u1). Since u0 belongs to agents(X0, u1)
and utility(X0, u0) = 1, we have u0 belongs to nonpositive(X ′0) ∩ agents(X ′0, u1); thus
u1 belongs to matched(X01). Thus, we have matched(X01) = matched(X) + u0 + u1 −
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victim(X ′0, u1, 0) and potential(X01, v) = potential(X, v) + 1 for any item in items(X,u1).
Since potential(X0) = potential(X) and victim(X,u0, 1) = u1, and since agents(X0, u1) ∩
nonpositive(X0) = ∅, we have agents(X,u0) ∩ nonpositive(X0) = {u1}. Since X1 =
shift(X,u, 1), we have agents(X1, u0) ∩ nonpositive(X1) = ∅; thus potential(X10, v) =
potential(X, v) + 1 for any item v in items(X1, u0), where items(X1, u0) = items(X0, u1).
Let X ′1 = inc(raise ′(X1, u1), u1); thus we have X ′1 = shift(X ′0, u1, 1), agents(X ′1, u0) ∩
nonpositive(X ′1) = agents(X ′0, u1)∩nonpositive(X ′0)−u1, and we have victim(X ′1, u0, 0) =
victim(X ′0, u1, 0). Therefore, we have potential(X10) = potential(X) and matched(X10) =
matched(X) + u0 + u1 − victim(X ′0, u1, 0).

– Case 2.2: victim(X,u0, 1) = u0.
In this case, victim(X,u0) = victim(X ′0, u0, 0) = u1 where X ′0 = inc(raise ′(X,u0), u0).
Since victim(X,u0, 1) = u0, we have nonwhite(X)∩agents(X,u0) = ∅; thus, potential(X0, v) =
potential(X, v)+1 for any item v in items(X,u0), and by the definition of the function raise ′′,
we have utility(X0, u0) = 0. Since u0 belongs to agents(X0, u1) and utility(X0, u0) = 0,
we have u1 belongs to matched(raise ′(X0, u1)); thus potential(X01) = potential(X0) and
matched(X01) = matched(X) + u0 + u1 − victim(X0, u0, 1).
We established above that X1 = shift(X,u1, 1); thus potential(X1) = potential(X) and
matched(X1) = matched(X). Since agents(X,u0)∩nonpositive(X) = ∅ and potential(X1) =
potential(X). Lemmas 4.12 and 4.13 imply that items(X1, u0) = items(X,u0) and agents(X1, u0)∩
nonpositive(X1) = ∅; thus potential(X ′1, v) = potential(X, v)+1 for any item v in items(X,u0),
whereX ′1 = inc(raise ′(X1, u0), u0). Since utility(X0, u1) = 0, potential(X ′1) = potential(X0)
and X1 = shift(X,u1, 1), we have utility(X ′1, u1) = 1; thus u1 6= victim(X ′1, u0, 0). By
the definition of the function raise, we have X ′1 = shift(X0, u1, 1); thus, victim(X ′1, u0) =
victim(X0, u0, 0). It is now easy to see that matched(X10) = matched(X) + u0 + u1 −
victim(X,u0, 0) and potential(X10) = potential(X0).

Lemma 4.19 For any quiescent ECC X and any agents u0 and u1 in unmatched(X), if victim(X,u0) =
victim(X,u1) = u, then potential(X01) = potential(X10) and matched(X01) = matched(X10) where
X01 = raise(raise(X,u0), u1) and X10 = raise(raise(X,u1), u0).

Proof. Let X0 = raise(X,u0) and let X1 = raise(X,u1). Let X ′0 = inc(raise ′(X,u0), u0) and let
X ′01 = inc(raise ′(X0, u1), u1). Let X ′1 = inc(raise ′(X,u1), u1) and let X ′10 = inc(raise ′(X1, u0), u0).
We consider the following cases.

• Case 1: victim(X,u1, 1) 6= u1

– Case 1.1 victim(X,u0, 1) 6= u0. We begin by establishing the following sequence of claims.

1. potential(X0) = potential(X). Follows from the fact that victim(X,u0, 1) 6= u0 and the
definition of the function raise ′′.

2. u0 belongs to agents(X0, u1). Follows from the fact that victim(X,u0) = victim(X,u1, 1) =
u and Lemma 4.15.

3. potential(X1) = potential(X). Follows from the fact that victim(X,u1, 1) 6= u1 and the
definition of the function raise ′′.

4. u1 belongs to agents(X1, u0). Follows from the fact that victim(X,u1) = victim(X,u0, 1) =
u and Lemma 4.15.
We now consider two subcases.
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(a) Case 1.1.2 victim(X0, u1, 1) 6= u1.
By claims 1 and 2, we have potential(X0) = potential(X1) and by claims 2 and 4,
we have u0 belongs to agents(X0, u1) and u1 belongs to agents(X1, u0); thus we
have victim(X1, u0, 1) 6= u0. Since victim(X,u0) = victim(X,u1) = u, we have
matched(X0)\matched(X1) = {u0} and matched(X1)\matched(X0) = {u1}. Fur-
ther, by the definition of the function raise, we have bid -graph(X0) = bid -graph(X1)
and for any agent u′ in nonwhite(X), there exists an item v′ in items(X) such that
match(χ, v) = u′ for any configuration χ in X0 ∪ X1. Thus, by Lemma 4.14, we
have victim(X0, u1, 1) = victim(X1, u0, 1). Further, by the definition of the func-
tion raise ′′, we have potential(X01) = potential(X10). Since victim(X,u0) =
victim(X,u1) and victim(X0, u1, 1) = victim(X1, u0, 1), we have matched(X01) =
matched(X10).

(b) Case 1.1.2 victim(X0, u1, 1) = u1.
By claims 1 and 2, we have potential(X0) = potential(X1) and by claims 2 and 4,
we have u0 belongs to agents(X0, u1) and u1 belongs to agents(X1, u0); thus we have
agents(X0, u1) = agents(X1, u0) and by the definition of the function raise ′′, we have
potential(X ′01) = potential(X ′10). Since victim(X,u0) = victim(X,u1) = u, we
have matched(X ′01) \matched(X ′10) = {u0} and matched(X ′10) \matched(X ′01) =
{u1}. Further, by the definition of the function raise, we have bid -graph(X ′01) =
bid -graph(X ′10) and for any agent u′ in nonwhite(X), there exists an item v′ in items(X)
such that match(χ, v) = u′ for any configuration χ inX ′01∪X ′10. Thus, by Lemma 4.14,
we have victim(X ′01, u1, 0) = victim(X ′10, u0, 0). By the definition of the func-
tion raise ′′, we have potential(X01) = potential(X10). Since victim(X,u0) =
victim(X,u1) and victim(X ′01, u1, 0) = victim(X10, u0, 0), we have matched(X01) =
matched(X10).

– Case 1.2. victim(X,u0, 1) = u0. We begin by establishing the following sequence of claims.

1. potential(X0, v) = potential(X, v)+1 for any item v in items(X,u0) and potential(X0, v) =
potential(X, v) for any item v in items(X) \ items(X,u0). Follows from the fact that
victim(X,u0, 1) = u0 and the definition of the function raise ′′.

2. utility(X0, u0) = 0. We have victim(X,u0, 1) = u0 and victim(X,u0) = u; thus, u0 is
matched by a raise ′′ invocation and utility(X0, u0) = 0.

3. u0 belongs to agents(X0, u1). Since victim(X,u0) = victim(X,u1, 1), by Lemma 4.15,
we have u0 belongs to agents(X0, u1).

4. potential(X ′01) = potential(X0). By 2 and 3, we have u0 belongs to nonpositive(X0) ∩
agents(X0, u1); thus by the definition of the function raise ′, we have potential(X ′01) =
potential(X0).

5. potential(X1) = potential(X). Follows from the fact that victim(X,u1, 1) = u and the
definition of the function raise ′.

6. potential(X ′10) = potential(X0). Since victim(X,u0, 1) = u, we have nonpositive(X)∩
agents(X,u0) = ∅, thus by 5 and Lemma 4.12, we have items(X1, u0) = items(X,u0),
and by Lemma 4.13, we have nonpositive(X1)∩agents(X1, u0) = ∅; thus by the definition
of the function raise ′′ and 1, we have potential(X ′10) = potential(X0).

7. u1 belongs to agents(X ′10, u0). Since victim(X,u0, 1) = u0, we have victim(X,u0) =
victim(X ′0, u0, 0) = u where X ′0 = inc(raise ′(X,u0), u0). We have victim(X,u1, 1) =
u. Thus, by Lemma 4.16, we have u1 belongs to agents(X ′10, u0).
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8. victim(X ′10, u0, 0) = victim(X0, u1, 1). By claims 4 and 6, we have potential(X ′01) =
potential(X ′10) and by claims 3 and 7 we have u0 belongs to agents(X0, u1) and u1 be-
longs to agents(X10′ , u0). It is easy to see that matched(X0)\matched(X ′10) = {u0} and
matched(X ′10)\matched(X0) = {u1}, and by the definition of the function raise, for any
agent in nonwhite(X ′01), there exists an item in items(X) such that match(χ, v) = u for
any configuration inX0∪X ′10. Thus, it follows from Lemma 4.16 that victim(X ′10, u0, 0) =
victim(X0, u1, 1).

By claims 4 and 6, we have potential(X01) = potential(X10). The statement of the lemma asssumes
that victim(X,u0) = victim(X,u1) and by claim 8, we have victim(X ′10, u0, 0) = victim(X0, u1, 1);
thus matched(X01) = matched(X10).

• Case 2: victim(X,u1, 1) = u1

– Case 2.1: victim(X,u0, 1) 6= u0

This case is symmetric to case 1.2.
– Case 2.1: victim(X,u0, 1) = u0. We begin by establishing the following sequence of claims.

1. potential(X0, v) = potential(X, v)+1 for any item v in items(X,u0) and potential(X0, v) =
potential(X, v) for any item v in items(X) \ items(X,u0). Follows from the fact that
victim(X,u0, 1) = u0 and the definition of the function raise ′′.

2. potential(X ′01, v) = potential(X, v) + 1 for any item v in items(X,u0) ∪ items(X,u1)
and potential(X ′01, v) = potential(X, v) for any item v in items(X) \ items(X,u0) ∪
items(X,u1). Since victim(X,u1, 1) = u1, we have nonpositive(X) ∩ agents(X,u1) =
∅; by 1 and Lemma 4.12, we have items(X0, u1) = items(X,u1) \ items(X,u0), and by
Lemma 4.13, we have nonpositive(X0) ∩ agents(X0, u1) = ∅; thus, claim 2 follows by
the definition of the function raise ′′ and claim 1.

3. u0 belongs to agents(X ′01, u1). By claim 2, we have potential(X ′01) > potential(X0);
thus victim(X0, u1, 1) = u1 and victim(X0, u1) = victim(X ′01, u1, 0); and by Lemma 4.16,
we find that u0 belongs to agents(X ′01, u1).

4. potential(X1, v) = potential(X, v)+1 for any item v in items(X,u1) and potential(X0, v) =
potential(X, v) for any item v in items(X) \ items(X,u1). Follows from the fact that
victim(X,u0, 1) = u0 and the definition of the function raise ′′.

5. potential(X ′10, v) = potential(X, v) + 1 for any item v in items(X,u1) ∪ items(X,u0)
and potential(X ′10, v) = potential(X, v) for any item v in items(X) \ items(X,u1) ∪
items(X,u0). The analysis is similar to claim 2.

6. u1 belongs to agents(X ′10, u0). By claim 5, we have potential(X ′10) > potential(X1);
thus victim(X1, u0, 1) = u0; and victim(X1, u0) = victim(X ′10, u0, 0); and by Lemma 4.16,
we find that u1 belongs to agents(X ′10, u0).

7. victim(X ′10, u0, 0) = victim(X ′01, u1, 0). By claims 4 and 5, we have potential(X ′01) =
potential(X ′10) and by claims 3 and 6 we have u0 belongs to agents(X ′01, u1) and u1 be-
longs to agents(X ′10, u0). Since victim(X,u0) = victim(X,u1), we have matched(X ′01)\
matched(X ′10) = {u1} and matched(X ′10) \matched(X ′10) = {u0}, and by the definition
of the function raise, for any agent in nonwhite(X ′01), there exists an item in items(X)
such that match(χ, v) = u for any configuration inX ′01∪X ′10. It follows from Lemma 4.16
that victim(X ′10, u0, 0) = victim(X ′01, u1, 0).

By claims 2 and 5, we have potential(X01) = potential(X10). The statement of the lemma
assumes that victim(X,u0) = victim(X,u1) and by claim 7, we have victim(X ′10, u0, 0) =
victim(X ′01, u1, 0); thus, matched(X01) = matched(X10).

18



Lemma 4.20 For any quiescent ECC X and any agents u0 and u1 in enabled(X), we have

raise(raise(X,u0), u1) = raise(raise(X,u1), u0).

Proof. Let X01 = raise(raise(X,u0), u1) and let X10 = raise(raise(X,u1), u0).
We first prove the following claim: potential(X01) = potential(X10) and matched(X01) = matched(X10).

By Lemma 4.18, the claim holds when matched(X)∩{u0, u1} 6= ∅. It remains to show that the claim holds
when {u0, u1} ⊆ unmatched(X). By Lemma 4.19, the claim holds when {u0, u1} ⊆ unmatched(X) and
victim(X,u0) = victim(X,u1). By Lemma 4.17, the claim holds when {u0, u1} ⊆ unmatched(X) and
victim(X,u0) 6= victim(X,u1).

It now remains to be shown that if potential(X01) = potential(X10) and matched(X01) = matched(X10),
then X01 = X10. Consider any agent u in nonwhite(X); thus, there exists an item v in items(X) such
that match(χ, v) = u for every configuration χ in X . Note that if u belongs to unmatched(raise(X,u0)),
then by the definition of the function raise, it follows that u belongs to unmatched(X01). Using this
fact and by repeated application of Lemma 4.7, it follows that either u belongs to unmatched(X01) or
match(χ, v) = u for every configuration χ in X ∪ X01. By an identical argument, we find that either u
belongs to unmatched(X10) or match(χ, v) = u for every configuration in X ∪ X10. However, since
we established above that matched(X01) = matched(X10), it follows that match(χ, v) = u for every
configuration χ in X ∪X01 ∪X10, and hence, X01 = X10.

4.4 A restricted class of bidding strategies

We now analyze the bottom-level auction when all agents in the auction bid according to a certain restricted
class of strategies.

We define a target as a function from the set of all agents to the set of nonnegative integers. For any target
α, any agent u, and any integer z such that α(u) + z ≥ 0, we define shift(α, u, z) as the target α′ where
α′(u) = α(u) + z and α′(u′) = α(u′) for any agent u′ different from u. For any bid-graph G = (U, V,w)
and any target α, we define shift(G,α) as the bid-graph (U, V,w′) where w′(u, v) = w(u, v) + α(u)
for any agent u in U and any item v in V . For any ECC X and any target α, we define shift(X,α) as
∪(G,M,Φ)∈X [(shift(G,α),M,Φ)].

We view the bottom-level auction as taking a pair (X,α) as input, where X is a quiescent ECC and α
is a target, and updating this pair over a sequence of rounds. For any agent u in X , the nonnegative integer
α(u) represents the number of additional raise invocations desired by agent u. In a general round of the
auction with input (X0, α0), a single agent u in enabled(X0) having α0(u) > 0 invokes raise, and the
output of the round, denoted by raise(X0, u, α0) is given by (raise(X0, u), shift(α0, u,−1)). The auction
terminates when no enabled agent has pending raise invocations.

We define bottom(X,α) as the output of the bottom-level auction when given the pair (X,α) as input.
By Lemma 4.9 and Lemma 4.20, it follows that bottom(X,α) is uniquely defined. In Section 4.5, we
establish various properties of bottom(X,α). These properties are crucial for describing and analyzing the
mid-level auction of Section 5.

The facts below follow from the definition of the function raise and the commutativity of raise invoca-
tions established in Lemma 4.20.

Fact 4.5 For any quiescent ECC X , any target α, and any agent u in enabled(X), we have

bottom(raise(X,u), α) = bottom(X, shift(α, u, 1)).

Fact 4.6 For any quiescent ECC X0 of the form add(X,u, β) and any target α, we have bottom(X0, α) =
bottom(add(X ′, u, β), α′) where (X ′, α′) = bottom(X,α).
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Fact 4.7 For any quiescent ECCX , any agent u in white(X), and any targetα, if (X0, α0) = bottom(X,α),
then

bottom(X, shift(α, u, 1)) = bottom(X0, shift(α0, u, 1)).

4.5 Truthfulness-related properties

The goal of this section is to establish Lemma 4.30. We use Lemma 4.30 to establish Lemma 5.10 (see
Section 5.3.1) on the truthfulness of the slow implementation of the mid-level auction.

For any quiescent ECCX and any targetα, we define matched(X,α) as the set of agents in matched(X ′),
where (X ′, α′) = bottom(X,α). For any quiescent ECC X , any target α, and any item v in items(X), we
define agents(X,α, v) as agents(X ′, v), where (X ′, α′) = bottom(X,α).

Lemma 4.21 For any quiescent ECCX , any quiescent ECCX ′ of the form subst(X,u, u′), and any target
α such that α(u) = α(u′), if u belongs to matched(X)∩white(X), then utility(X0, u) = utility(X1, u

′),
where (X0, α0) = bottom(X,α) and (X1, α1) = bottom(X ′, α).

Proof. By Lemma 4.20, the raise invocations of the bottom-level auction instances with inputs X and
subst(X,u, u′) can be reordered such that at each round, either the same agent invokes raise in both
executions, or agents u and u′ invoke raise in their corresponding executions. By the definitions of the
functions raise ′ and raise ′′, the executions treat agents u and u′ identically until both agents attain a util-
ity of zero. By Lemma 4.8, we know that u and u′ remain white in every round of their corresponding
executions, and by Fact 4.2, we know that the potentials are nondecreasing over the rounds of both execu-
tions. Thus, agents u and u′ continue to have zero utility for the remainder of the executions, and we have
utility(X0, u) = utility(X1, u

′).

Lemma 4.22 Let X be a quiescent ECC and let X ′ be a quiescent ECC of the form subst(X,u, u′) such
that for any agent u′′ in agents(X), we have u′′ < u if and only if u′′ < u′. Let α and α′ be targets such
that α(u) = α′(u′) and α(u′′) = α′(u′′) for any agent u′′ in agents(X)− u. If (X0, α0) = bottom(X,α)
and (X1, α1) = bottom(X ′, α′), then utility(X0, u) + α0(u) = utility(X1, u

′) + α1(u′).

Proof. By Lemma 4.20, the raise invocations of the bottom-level auction instances with inputs X and
subst(X,u, u′) can be reordered such that at each round, either the same agent invokes raise in both exe-
cutions, or agents u and u′ invoke raise in their corresponding executions. Since agents u and u′ have the
same relative ordering with respect to the agents in agents(X)−u, it is easy to see that ifX0 andX ′0 are the
output ECCs corresponding to the same round in both executions, then we haveX ′0 = subst(X0, u, u

′).

Lemma 4.23 For any quiescent ECCX ′ of the form add(X,u, v, z) and any target α, there exists a unique
integer z∗ and a unique agent u∗ in agents(X) + ε such that u belongs to matched(X ′, α) if and only if
(z + α(u), u) > (z∗, u∗). Moreover, if u belongs to matched(X ′, α), then potential(X ′′, v) = z∗ where
(X ′′, α′′) = bottom(X ′, α).

Proof. Let S be the ordered sequence of all pairs of the form (z′, u′) where z′ is an integer and u′ is an
agent that does not belong to agents(X) ∪ ε. Consider any pair (z0, u0) in S such that z0 + α0(u) <
potential(X0, v), where α0 = subst(α, u0, α(u)) and (X0, α

′
0) = bottom(add(X,u0, v, z0), α0). By

repeated application of Fact 4.2, we know that potential(X0) ≥ potential(X) and by repeated appli-
cation of Lemma 4.8, we have u0 belongs to white(X0). Thus, u0 does not belong to matched(X0).
Further, since u0 belongs to white(X0), it follows that potential(X0, v) ≥ z0. Since prices cannot grow
indefinitely, there must be a first pair (z1, u1) > (z0, u0) in S such that u1 belongs to matched(X1, α1)
where X1 = add(X,u1, v, z1) and α1 = subst(α, u1, α(u)). Consider the pair (z1, u2) where u2 is the
maximum agent such that u2 < u1. By Lemma 4.22, if u2 does not belong to agents(X) ∪ ε, then u2

and u1 have the same relative ordering with respect to the remaining agents in X and thus, u2 belongs
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to matched(subst(X1, u1, u2), subst(α, u2, α(u))). However, we know that (z1, u1) is the first pair in S
such that u1 belongs to matched(X1, α1). Thus, it follows that u2 belongs to agents(X) ∪ ε. Consider
any pair (z3, u3) > (z1, u1) in S; by the definition of the bottom-level auction, we find that u3 belongs to
matched(subst(X1, u1, u3), subst(α, u3, α(u))). Thus u∗ = u2 and z∗ = z1.

We now show that if u belongs to matched(X ′, α), then potential(X ′′, v) = z∗ where (X ′′, α′′) =
bottom(X ′, α). Suppose that potential(X ′′, v) < z∗. Then consider the case where u < u∗ and z +
α(u) = z∗. Since (z + α(u), u) < (z∗, u∗), we have u belongs to unmatched(X ′′) and since z + α(u) >
potential(X ′′, v), we have u belongs to matched(X ′′); a contradiction. Suppose that potential(X ′′, v) >
z∗. Then consider the case where u > u∗ and z+α(u) = z∗. Since (z+α(u)+z, u) > (z∗, u∗), we have u
belongs to matched(X ′′) and since z + α(u) < potential(X ′′, v), we have u belongs to unmatched(X ′′);
a contradiction. It follows that potential(X ′′, v) = z∗.

For any quiescent ECC X , any target α, and any item v in items(X), we define threshold∗(X,α, v)
as the unique pair (z∗, u∗) of Lemma 4.23, and we define threshold∗(X,α) as the function that maps each
item v in items(X) to threshold∗(X,α, v). In addition, we define threshold(X,α, v) as the integer z∗ and
we define threshold(X,α) as the function that maps each item v in items(X) to threshold(X,α, v).

Lemma 4.24 For any quiescent ECC X , any target α, and any agent u in enabled(X), we have

threshold∗(X,α) ≤ threshold∗(raise(X,u), α).

Proof. Assume threshold∗(raise(X,u), α, v0) < threshold∗(X,α, v0) for some item v0 in items(X).
Let X0 be an ECC of the form add(X,u0, v0,min(v0)) and let α0 be a target such that (1) α0(u′) =
α(u′) for any agent u′ in agents(X), and (2) threshold∗(raise(X,u), α, v0) < α0(u0) + min(v0) <
threshold∗(X,α, v0). Note that X0 is quiescent. Further, we have threshold∗(X,α) = threshold∗(X,α0),
and threshold∗(raise(X,u), α) = threshold∗(raise(X,u), α0); thus, threshold∗(raise(X,u), α0, v0) <
α0(u0) + min(v0) < threshold∗(X,α0, v0).

Let (X1, α1) = bottom(X0, α0); since α0(u0)+min(v0) < threshold∗(X,α0, v0), by Lemma 4.23 we
find that u0 belongs to unmatched(X1). Since X0 is quiescent and u belongs to unmatched(X0), we have
u belongs to white(X0), and by repeated application of Lemma 4.8, we find that u0 belongs to white(X1).
We conclude that α1(u0) = 0.

By Fact 4.5, we have bottom(raise(X0, u), α0) = bottom(X0, shift(α0, u, 1)), and by Fact 4.7, we
have bottom(X0, shift(α0, u, 1)) = bottom(X1, shift(α1, u, 1)).

Since threshold∗(raise(X,u), α0, v0) < α0(u0)+min(v0), by Lemma 4.23, we find that u0 belongs to
matched(raise(X0, u), α0), and since we established above that α1(u0) = 0, we have u0 does not belong to
matched(X1, shift(α1, u, 1)). Since bottom(raise(X0, u), α0) = bottom(X1, shift(α1, u, 1)), this yields
a contradiction. Thus, we have threshold∗(X, shift(α, u, 1)) ≤ threshold∗(raise(X,u), α).

Lemma 4.25 For any quiescent ECC X0 of the form add(X,u, β) and any target α, if u does not belong
to matched(X0, α), then threshold∗(X0, α) = threshold∗(X,α).

Proof. Let (X ′, α′) = bottom(X,α) and let (X ′0, α
′
0) = bottom(X0, α). By Fact 4.6, we find that

bottom(X0, α) = bottom(add(X ′, u, β), α′). By repeated application of Lemma 4.24, it follows that
threshold∗(X ′0, α

′
0) ≥ threshold∗(X ′, α′). Suppose threshold∗(X ′, α′, v1) < threshold∗(X ′0, α

′
0, v1) for

some item v1 in items(X). Let X1 = add(X0, u1, v1,min(v1)) for some agent u1, and let α1 be a tar-
get such that (1) threshold∗(X ′, α′, v1) < (α1(u1) + min(v1), u1) < threshold∗(X ′0, α

′
0, v1), and (2)

α1(u′) = α(u′) for any agent u′ in agents(X0). Note that threshold∗(X0, α0) = threshold∗(X0, α1).
Similarly, threshold∗(X1, α0) = threshold∗(X1, α1).

Let X2 = add(X,u1, v1,min(v1)); then X1 = add(X2, u, β). Let (X ′2, α
′
2) = bottom(X2, α1); by

Fact 4.6, we find that bottom(X1, α1) = bottom(add(X ′2, u, β), α′2). By Lemma 4.23, since min(v0) +
α1(u1) > threshold∗(X ′, α′, v1) and threshold∗(X ′0, α

′
0) ≥ threshold∗(X ′, α′), agent u0 belongs to
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matched(X ′2, α
′
2). By Lemma 4.24, we have threshold∗(X ′2, α

′
2) ≥ threshold∗(X,α1), and since u

does not belong to matched(X0, α1), we have u does not belong to matched(X1, α1); thus u1 belongs
to matched(X1, α1).

Since u belongs to enabled(X1), by Fact 4.6, it follows that bottom(add(X ′0, u1, v1,min(v1)), α′1) =
bottom(X1, α1). By Lemma 4.23, since min(v0) + α0(u0) < threshold∗(X ′0, α

′
0, v1), agent u0 does not

belong to matched(X ′0, α
′
1); thus u and u1 do not belong to matched(X1, α1), a contradiction.

For any quiescent ECC X , any target α, and any item v in items(X), we define price(X,α, v) as
potential(X ′, v) where (X ′, α′) = bottom(X,α), and we define price(X,α) as the function that maps
every item v in items(X) to price(X,α, v).

For any quiescent ECC X , any target α, and any item v in items(X), we define price∗(X,α, v) as
(price(X,α, v), u0), where u0 is the maximum agent in agents(X,α, v). In addition, we define price∗(X,α)
as the function that maps each item v in items(X) to price∗(X,α, v).

Lemma 4.26 For any quiescent ECC X and any target α, we have price∗(X,α) ≤ threshold∗(X,α).

Proof. Assume that there exists an item v in items(X) such that price∗(X,α, v) > threshold∗(X,α, v).
Let (X ′, α′) = bottom(X,α). Let X0 = add(X ′, u, v,min(v)) for some agent u, and let α0 be a tar-
get such that (1) threshold∗(X,α, v) < α0(u) + min(v) < price∗(X,α, v), and (2) α0(u′) = α′(u′)
for any agent u′ in agents(X). Note that X0 is quiescent. It is easy to see that threshold∗(X,α) =
threshold∗(X ′, α′) = threshold∗(X ′, α0); thus threshold∗(X ′, α0, v) < α0(u) + min(v). We have
bottom(X0, α0) = bottom(add(X ′, u, v,min(v)), subst(α′, u, α0(u))); thus, by repeated application of
Fact 4.2, we have price∗(X0, α0) ≥ price∗(X ′, α′) ≥ price∗(X,α). Thus, we have threshold∗(X ′, α0, v) <
α0(u) + min(v) < price∗(X0, α0, v).

Let (X ′0, α
′
0) = bottom(X0, α0). By Lemma 4.23, since α0(u) + min(v) > threshold∗(X ′, α0, v)

we find that u belongs to matched(X ′0). Since u belongs to unmatched(X0), we find that u belongs
to white(X0); thus, by repeated application of Lemma 4.8, we have u belongs to white(X ′0). However,
since α0(u) + min(v) < price∗(X,α, v), it follows that u belongs to nonwhite(X ′0), thus yielding a
contradiction. Thus, price∗(X,α) ≤ threshold∗(X,α).

Lemma 4.27 LetX0 be a quiescent ECC and let u0 be an agent in unmatched(X0). LetX1 be a quiescent
ECC of the form subst(X0, u0, u1), where u1 < u0. Then for any target α such that α(u0) = α(u1), we
have utility(X ′0, u0) = utility(X ′1, u1), where (X ′0, α

′
0) = bottom(X0, α) and (X ′1, α

′
1) = bottom(X1, α).

Proof. Let β = bid(bid -graph(X0), u) and let X be the ECC such that X0 = add(X,u, β). Observe
that X and X1 are quiescent. Let (X ′, α′) = bottom(X,α). By Fact 4.6, we have bottom(X0, α) =
bottom(add(X ′, u0, β), α′) and bottom(X1, α) = bottom(subst(X0, u0, u1), α′). We refer to the instance
of the bottom-level auction with inputs X0 and α as execution A and we refer to the instance of the bottom-
level auction with inputs X1 and α as execution B. By Lemma 4.20, raise invocations of executions A
and B can be reordered such that agents u0 and u1 exhaust their raise invocations before any other agent
invokes the function raise. If u0 and u1 are unmatched when they exhaust their raise invocations, then
by the description of the bottom-level auction, agents u0 and u1 have zero utility in executions A and
B respectively, and they continue to have zero utility for the rest of the corresponding executions; thus
utility(X ′0, u0) = utility(X ′1, u1) = 0.

For the remainder of this proof, we may assume that consider the following cases at least one of agents
u0 and u1 is matched by a raise invocation in either execution A or execution B. Let k be the first round
in which either u0 or u1 is matched and let Xk and X ′k be the output ECCs of round k of executions A and
B. By repeated application of Lemma 4.11, we have utility(Xk, u0) = utility(X ′k, u1) = 0, and either
Xk = subst(X ′k, u1, u0), or raise(Xk, u0) = raise(X ′k, u1).
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First we consider the case where Xk = subst(X ′k, u1, u0). In this case, u0 belongs to matched(Xk) ∩
white(Xk) and u1 belongs to matched(X ′k)∩white(X ′k); thus, by Lemma 4.21 we have utility(X ′0, u0) =
utility(X ′1, u1).

Next we consider the case where Xk 6= subst(X ′k, u1, u0). If agents u0 and u1 have exhausted their
raise invocations, then by the description of the bottom-level auction, they continue to have zero utility
for the rest of the auction; if u0 and u1 have one or more pending raise invocations, then by Lemma 4.11,
raise(Xk, u0) = subst(raise(X ′k, u0), u1, u0), and by Lemma 4.21, we have utility(X ′0, u0) = utility(X ′1, u1).

Lemma 4.28 Let X be a quiescent ECC of the form add(X0, u, β) and for each item v in items(X), let
Xv = add(X0, u, v, z) where z = β(v). Then for any target α, agent u belongs to matched(X,α) if and
only if u belongs to matched(Xv, α) for some item v in items(X).

Proof. We refer to the bottom-level auction instance with inputs (X,α) as executionA, and for each item v,
we refer to the bottom-level auction instance with input (Xv, α) as executionAv. We represent the output of
round i of execution A by (Xi, αi), and for any v in V , we represent the output of round i of execution Av
by (Xv,i, αv,i). Note that agent u is unmatched and therefore enabled in all rounds of all executions under
consideration. By Lemma 4.20, we choose to defer the raise invocations of agent u in each execution to a
round j in which u is the only enabled agent. Further, we choose to allow the same agent to invoke raise in
each round of every execution.

We now allow agent u to exhaust its raise invocations in rounds j to k of all executions, where k =
j + α(u). We consider the following two cases.

• Case (1) : (β(v) + α(u), u) < threshold∗(X,α(u), v) for every item v in items(X).

By Lemma 4.23, since (β(v) + α(u), u) < threshold∗(X,α(u), v) for every item v in items(X),
we find that u does not belong to matched(Xv, α) and thus u belongs to unmatched(Xv,k) for every
item v in items(X). Assume that u belongs to matched(X,α); thus, u belongs to matched(Xk).
Let α′ be a target such that α′(u′) = αk(u′) for any u′ in agents(Xk) and for any agent of the
form uv where v is an item in items(X), we have (β(v) + α(u), u) < (α′(uv) + min(v), uv) <
threshold∗(X,α, v). By Lemma 4.24, we have threshold∗(X,α) ≤ threshold∗(Xk, α

′); thus, we
have (β(v)+α(u), u) < (α′(uv)+min(v), uv) < threshold∗(Xk, α

′, v) for any item v in items(X).
Let X ′ be an ECC that is constructed from Xk as follows: initalize X ′ = Xk, and for each item v in
items(X), set X ′ = add(X ′, uv, v,min(v)). Consider the execution A′ of the bottom-level auction
with input (X ′, α′), and for any round i of execution A′, let (X ′i, α

′
i) represent the output of round

i of execution A′. We now use Lemma 4.20, to allow all agents in ∪v∈items(X)uv to exhaust their
raise invocations. If m is the last round of the raise invocations by agents in ∪v∈items(X)uv, then
by Lemmas 4.23, since (α′(uv) + min(v), uv) < threshold∗(Xk, α

′, v) for every item v, we find
that agent uv belongs to unmatched(X ′m) for every v in items(X), and by Lemma 4.25, we have
threshold∗(X ′m, α

′
m) = threshold∗(Xk, αk). Since every agent uv belongs to unmatched(X ′m) and

X ′m is quiescent, we have potential(X ′m, v) ≥ (α′(uv) + min(v), uv) for every item v in items(X);
thus by Fact 4.2, we have price∗(X ′, α′, v) ≥ (α′(uv) +min(v), uv) for every item v. Since (β(v) +
α(u), u) < (α′(uv)+min(v), uv) for every item v, we have price∗(X ′, α′, v) ≥ (β(v)+α(u), u) for
every item v. However, by repeated use of Lemma 4.8, agent u is white at the end of executionA′, and
by our assumption that u belongs to matched(X,α), we have price∗(X ′, α′, v) < (β(v) + α(u), u)
for some item v; this yields a contradiction. Thus, we have u does not belong to matched(X,α).

• Case (2) : (β(v) + α(u), u) > threshold∗(X,α, v) for some item v in items(X).

By Lemma 4.23, since (β(v) + α(u), u) > threshold∗(X,α, v) for some item v in items(X), we
find that u belongs to matched(Xv, α) for some item v in items(X). Assume that u does not be-
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long to matched(X,α). Consider the execution A′ defined as in Case 1 above. By Lemma 4.25,
we have threshold∗(Xk, αk) = threshold∗(X ′m, α

′
m). By Lemma 4.26, we have price∗(X ′m, α

′
m) ≤

threshold∗(Xk, αk). Thus, there exists some item v in items(X) such that u belongs to unmatched(X ′m)
and (β(v) + α(u), u) > price∗(X ′m, α

′
m, v); this violates the quiescent property of X ′m. Thus, u be-

longs to matched(X,α).

We conclude that agent u belongs to matched(X,α) if and only if u belongs to matched(Xv, α) for
some item v in items(X), as required.

Lemma 4.29 Let X be a quiescent ECC of the form add(X0, u, β), let α be a target, and for each item
v in items(X), let Xv = add(X0, u, v, z), where z = β(v). Then, we have utility(X ′, u) + α′(u) =
maxv∈items(X){utility(X ′v, u)+αv′(u)}, where (X ′, α′) = bottom(X,α) and (X ′v, α

′
v) = bottom(Xv, α)

for each item v in items(X).

Proof. By Lemma 4.27, if (X∗, α∗) = bottom(add(X0, u
′, β), α) for any agent u′, then utility(X ′, u) =

utility(X∗, u′). Thus, without loss of generality, we can assume that u > u′ for any agent u′ in agents(X).
By Lemma 4.28, u belongs to matched(X ′) if and only if u belongs to matched(X ′v) for some v in
items(X0). Thus, if u belongs to unmatched(X ′), we have utility(X ′, u) = utility(X ′v, u) = 0 for
all v in items(X).

We now focus on the case where u belongs to matched(X ′). Let z be the largest integer such that
u belongs to matched(shift(X ′, u,−z)). By Fact 4.7, we have (X ′, α′) = (X ′′, shift(α′′, u, z)) where
(X ′′, α′′) = bottom(shift(X,u,−z), α); thus utility(X ′, u) + α′(u) = utility(X ′′, u) + α′′(u) + z. By
Lemma 4.28, it follows that u belongs to matched(X ′′v ) for some item v in items(X), where (X ′′v , α

′′
v) =

bottom(shift(Xv, u,−z), α). By Fact 4.7, we have (X ′v, α
′
v) = bottom(X ′′v , shift(α

′
v, u, z)); thus we have

utility(X ′v, u) + α′v = utility(X ′′v , u) + α′′v(u) + z. Since u belongs to white(X) ∩ white(Xv), we have
α′′(u) = α′′v(u) = 0. To complete the proof, it remains to be shown that utility(X ′′v , u) = utility(X ′′v , u).

We refer to the bottom-level auction instance with inputs (shift(X,u,−z), α) as execution A, and for
each item v, we refer to the bottom-level auction instance with input (shift(Xv, u,−z), α) as execution
Av. We represent the output of round i of execution A by (Xi, αi), and for any v in V , we represent the
output of round i of execution Av by (Xv,i, αv,i). Since u belongs to unmatched(X), it follows that u
belongs to enabled(X) ∩ enabled(Xv). By Lemma 4.20, we choose to allow agent u to first exhaust its
raise invocations in all executions. Since u > u′ for any agent u′ in agents(X), it follows that for each
round j in which u invokes raise, either u belongs to unmatched(Xj) ∩ unmatched(Xv,j) or there exists
a first round j such that u belongs to matched(X ′j) and u belongs to matched(X ′v,j) for some item v in
items(X). Since z was chosen to be the largest integer such that u belongs to matched(shift(X ′, u,−z)),
we have utility(Xj , u) = utility(Xv,j , u) = 0, and thus utility(X ′′, u) = utility(X ′′v , u) = 0.

Lemma 4.30 Let X ′ be a quiescent ECC of the form add(X,u, β) and let (X ′′, α′′) = bottom(X ′, α) for
some targetα. Let ∆ denote the maximum, over all items v in items(X), of β(v)+α(u)−threshold(X,α, v),
and let V denote the set of all items v in items(X) such that β(v)+α(u)− threshold(X,α, v) = ∆. Let u0

denote the minimum, over all items v in V of the second component of the pair given by threshold∗(X,α, v).
Then the following conditions hold:

• If the pair (∆, u) < (0, u0), then agent u belongs to unmatched(X ′′), and threshold∗(X ′, α) =
threshold∗(X,α).

• If the pair (∆, u) > (0, u0), then agent u belongs to matched(X ′′) and, (1) for every configura-
tion χ in X ′′, there exists an item v in V such that match(χ, v) = u, and (2) potential(X ′′, v) =
threshold(X,α, v) for any item v in V .
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Proof. First, we show that u belongs to matched(X ′′) if and only if (∆, u) > (0, u0).
Let v0 be any item in items(X); thus, we find that β(v0)+α(u)−threshold(X,α, v0) = ∆. If (∆, u) <

(0, u0), then by adding threshold(X,α, v0) to the first component of both pairs, we find that (β(v0) +
α(u), u) < (threshold(X,α, v0), u0). Similarly, if (∆, u) > (0, u0), we find that (β(v0) + α(u), u) >
(threshold(X,α, v0), u0). By Lemma 4.23, it follows that agent u belongs to matched(add(X,u, v0, β(v0)), α)
if and only if (β(v0) + α(u), u) > (threshold(X,α, v0), u0), and by Lemma 4.28, we find that agent u be-
longs to matched(X ′′) = matched(X ′, α) if and only if there exists some item v′ in items(X) such that
agent u belongs to matched(add(X,u, v′, β(v′)), α); thus, we find that agent u belongs to matched(X ′′)
if and only if (∆, u) > (0, u0).

Next we show that if u does not belongs to matched(X ′′), then threshold∗(X ′, α) = threshold∗(X,α).
The result follows directly from Lemma 4.25.

Finally, we show that if u belongs to matched(X ′′), then (1) and (2) stated above hold. By Lemma 4.29,
if u belongs to matched(X ′′), then utility(X ′′, u) = max v∈items(X){utility(X ′v, u)}, where X ′v is equal
to bottom(add(X,u, v, β(v)), α), and by Lemma 4.23, we have max v∈items(X){utility(X ′v, u)} = ∆;
thus utility(X ′′, u) = ∆. Let v0 be any item in V . By Lemma 4.26, we have potential(X ′′, v0) ≤
threshold(X,α, v0), and since utility(X ′′, u) = ∆, we have potential(X ′′, v0) ≥ threshold(X,α, v0);
thus potential(X ′′, v0) = threshold(X,α, v0) and condition (1) holds. Now consider any item v not in V .
By definition, we have

β(v) + α(u)− threshold∗(X,α, v) < ∆. (3)

By Lemma 4.26, we have
potential(X ′′, v) ≤ threshold∗(X,α, v). (4)

By subtracting (4) from (3), we have β(v) +α(u)− potential(X ′′, v) < ∆; since u belongs to white(X ′′),
agent u attains its highest utility by being matched to some item in V in every configuration of X ′′ and
condition (2) holds.

5 Mid-Level Auction

In this section, we describe the mid-level auction, a sealed-bid auction that uses the bottom-level auction
of Section 4 as a building block. We show that the mid-level auction satisfies strong properties related to
truthfulness, efficiency, and privacy preservation.

5.1 Description

The mid-level auction proceeds in two phases, where the first phase corresponds to running an instance of
the bottom-level auction and the second phase corresponds to solving an instance of the house allocation
problem [14].

First phase. In this section, we describe the first phase of the mid-level auction. For any ECC X , we
define targets(X) as the set of all targets such that for any target α in targets(X), there exists a quiescent
ECC X0 satisfying the following conditions: (1) shift(X0, α) = X , (2) white(X) ∩ matched(X) =
white(X0) ∩ matched(X0), and (3) for any agent u in unmatched(X) we have items(X0, u) = ∅. For
any ECC X , we define target(X) as the unique pointwise minimum target in targets(X). For any instance
of the mid-level auction with an ECC X as input where X = shift(X0, target(X)), the output of the
first phase of the mid-level auction, denoted by mid ′(X), is given by shift(X0, α0), where (X0, α0) =
bottom(X0, target(X)).

Second phase. For any configuration χ = (G,M,Φ), we define an instance of the house allocation
problem on χ as follows. Each agent in black(χ) represents a house owner and the item matched to u in M
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represents the house owned by u. Each agent u in black(χ) is associated with a preference ordering over the
items as follows, where β = bid(χ, u): for any pair of items v and v′, if β(v)−Φ(v) > β(v′)−Φ(v′), then
agent u prefers item v over item v′; ties, if any, are broken using item identifiers. For any configuration χ, we
define mid ′′(χ) as the configuration obtained by using the TTC algorithm [14] to solve the house allocation
problem defined on χ. For any ECC X , we define mid ′′(X) as the unique ECC [mid ′′(χ)] where χ is
any configuration in X . The uniqueness of mid ′′(χ) is established by Lemma 5.4. For any instance of the
mid-level auction with input X , the second phase of the mid-level auction takes the ECC X ′ = mid ′(X) as
input and produces the ECC mid ′′(X ′) as output. For any ECC X , we define mid(X) as mid ′′(mid ′(X)).

The facts below follow from the description of the mid-level auction.

Fact 5.1 For any ECC X ′ of the form mid ′′(X), there is no nonempty set of agents U0 ⊆ nonwhite(X ′)
that can trade their allocated items amongst themselves in a way such that every agent in U0 experiences an
increases in utility.

Fact 5.2 For any ECCX ′ of the form mid ′′(X), we have potential(X ′) = potential(X), unmatched(X ′) =
unmatched(X), and white(X) ⊆ white(X ′).

Fact 5.3 For any ECC X , we have potential(mid(X)) ≥ potential(X).

5.2 Properties

The following lemmas establish basic properties of the mid-level auction.

Lemma 5.1 For any ECC X and any targets α0 and α1 in targets(X) such that X = shift(X0, α0) =
shift(X1, α1), we have bottom(X0, α0) = bottom(X1, α1).

Proof. Let X = shift(X∗, α∗), where α∗ = target(X). Since α∗ is the pointwise minimum target in
targets(X), we have α0(u) ≥ α∗(u) for any agent u in agents(X). Let S be the set of agents u in
agents(X) such that α0(u) > α∗(u). By the definitions of targets(X) and α∗, for any agent u in S, we
find that u belongs to enabled(X0) and raise(X0, u) = shift(X0, u0, 1); by repeated use of this fact and
Lemma 4.20, agents in S can commute their raise invocations forward until each agent u in S has α∗(u)
pending raise invocations and the resulting ECC is X∗; thus, bottom(X0, α0) = bottom(X∗, α∗). By a
similar argument, we have bottom(X1, α1) = bottom(X∗, α∗). Thus, bottom(X0, α0) = bottom(X1, α1).

Lemma 5.2 LetX be any ECC such thatX = shift(X∗, target(X)) and let (X0, α0) = bottom(X∗, target(X)),
Then, unmatched(mid ′(X)) ⊆ white(mid ′(X)) and nonwhite(mid ′(X)) ⊆ nonwhite(X0).

Proof. Let α∗ = target(X). By definition, we have mid ′(X) = shift(X0, α0). Since X0 is quiescent, we
have unmatched(X0) ⊆ white(X0) and for any agent u in unmatched(X0), we find that agents(X0, u) ∩
nonwhite(X0) = ∅. Moreover, these facts imply that by definition of the bottom-level auction, we have
α0(u) = 0 for any agent u in white(X1); we conclude that u belongs to white(shift(X0, α0)), where
mid ′(X) = shift(X0, α0).

It remains to show that nonwhite(mid ′(X)) ⊆ nonwhite(X0). Consider any agent u in nonwhite(mid ′(X));
since α0(u) ≥ 0, we conclude that u belongs to nonwhite(X0).

Lemma 5.3 For any ECC X and any agent u in nonwhite(mid ′(X)), the following conditions hold:
(1) u belongs to nonwhite(X), (2) there exists an item v in items(X) such that potential(X, v) =
potential(mid ′(X), v), and (3) match(χ, v) = u for any configuration χ in X ∪mid ′(X).

Proof. Let X = shift(X∗, α∗), where α∗ = target(Ecc), and let (X0, α0) = bottom(X∗, α∗). By def-
inition, we have mid ′(X) = shift(X0, α0). By Lemma 5.2, u belongs to nonwhite(X0); since X0 is
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quiescent, we find that u belongs to matched(X0); further, since mid ′(X) = shift(X0, α0), there ex-
ists an item v in items(X) such that potential(mid ′(X), v) = potential(X0, v) and match(χ, v) = u
for any configuration χ in X0 ∪ mid ′(X). By repeated application of Lemma 4.7, we find that u be-
longs to nonwhite(X∗), potential(X∗, v) = potential(X0, v) and match(χ, v) = u for any configuration
χ in X∗ ∪ X0. By the description of the mid-level auction it follows that u belongs to nonwhite(X),
potential(X, v) = potential(X∗, v), and match(χ, v) = u for any configuration χ in X . These facts
imply that u belongs to nonwhite(X) and there exists an item v in items(X) such that potential(X, v) =
potential(mid ′(X), v), and match(χ, v) = u for any configuration χ in X ∪mid ′(X).

Lemma 5.4 For any ECC X and any configurations χ and χ′ in X , we have mid ′′(χ) = mid ′′(χ′).

Proof. Let χ = (G,M,Φ) where G = (U, V,w), and let χ′ = (G,M ′,Φ). By the definition of an ECC,
we have black(χ) = black(χ′), and for any agent u in black(χ), there exists an item v in V such that
match(χ, v) = match(χ′, v) = u. The second phase of the mid-level auction keeps item potentials un-
changed and only updates the matching of black agents based on a preference ordering over the items; since
black agents have the same matched items in χ and χ′, it is easy to see from the description of the second
phase of the bottom-level auction that mid ′′(χ) = mid ′′(χ′).

Lemma 5.5 For any ECCX , we have unmatched(X)∪white(X) ⊆ white(mid(X)) and nonwhite(mid(X)) ⊆
nonwhite(X).

Proof. Let X = shift(X∗, α∗) where α∗ = target(X), and let (X0, α0) = bottom(X∗, α∗). We have
unmatched(X) = unmatched(X∗)∩white(X∗) and white(X)∩matched(X) = white(X∗)∩matched(X∗);
thus unmatched(X)∪white(X) ⊆ white(X∗). By repeated application of Lemma 4.8, we have white(X∗) ⊆
white(X0), and since mid ′(X) = shift(X0, α0), we have white(X∗) ⊆ white(mid ′(X)). Finally, by
Fact 5.2, we have white(mid ′(X)) ⊆ white(mid(X)). Thus, we have unmatched(X) ∪ white(X) ⊆
white(mid(X)). By Fact 5.2, we have white(mid ′(X)) ⊆ white(mid(X)); thus nonwhite(mid(X)) ⊆
nonwhite(mid ′(X)).

Lemma 5.6 Let X0 and X1 be ECCs and let α0 and α1 be targets such that (1) ECCs X0 and X1 are
quiescent, and X = shift(X0, α0) = shift(X1, α1), (2) white(X0) ∩ matched(X0) = white(X1) ∩
matched(X1) = ∅, and (3) for any agent u in unmatched(X), we have items(X0, u) = items(X1, u) = ∅.
Then, we have bottom(X0, α0) = bottom(X1, α1).

Proof. Let α∗ be the target such that for any agent u in agents(X), we have α∗(u) = min(α0(u), α1(u)),
and let X = shift(X∗, α∗); thus α0(u) ≥ α∗(u). Let S be the set of agents u in agents(X) such that
α0(u) > α∗(u). By the definitions of α0 and α∗, for any agent u in S, we find that u belongs to enabled(X0)
and raise(X0, u) = shift(X0, u0, 1); by repeated use of this fact and Lemma 4.20, agents in S can commute
their raise invocations forward until each agent u in S has α∗(u) pending raise invocations and the resulting
ECC is X∗; thus, bottom(X0, α0) = bottom(X∗, α∗). By a similar argument, we have bottom(X1, α1) =
bottom(X∗, α∗). Thus, bottom(X0, α0) = bottom(X1, α1).

Lemma 5.7 The second phase of the mid-level auction is truthful.

Proof. Consider any ECC X ′ of the form mid ′′(X). The second phase of the mid-level auction, which is
implemented using an application of the TTC algorithm, updates only the matching of black agents. By
known results on the truthfulness of the TTC algorithm, the second phase of the mid-level auction is truthful
for agents in black(X). By Fact 5.2, we have potential(mid ′′(X)) = potential(X); thus no agent u in
nonblack(X) can achieve a utility higher than utility(X,u) by submitting a false bid. Thus, the second
phase of the mid-level auction is truthful.
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Lemma 5.8 For any ECC X0 of the form subst(X,u, β), if β 6= bid(bid -graph(X), u), then either
mid ′(X0) = subst(mid ′(X), u, β) or u belongs to white(mid ′(X)) ∩ white(mid ′(X0)).

Proof. Let X = shift(X∗, target(X)) and let X0 = shift(X0
∗, target(X0)). By definition, mid ′(X) =

shift(X ′, α′) where (X ′, α′) = bottom(X∗, target(X)) and mid ′(X0) = shift(X ′0, α
′
0) where (X ′0, α

′
0) =

bottom(X0
∗, target(X0)). We consider the following cases.

First we consider the case where u belongs to white(X∗) ∩ white(X0
∗). By repeated application

of Lemma 4.8, we find that u belongs to white(X ′), and since α′(u) ≥ 0, we find that u belongs to
white(mid ′(X)) ∩ white(mid ′(X0)).

Next we consider the case where u belongs to nonwhite(X∗)∩nonwhite(X0
∗). It follows from the de-

scription of the bottom-level auction, that either u is unmatched in the same round of both bottom-level
auction instances and hence u belongs to white(mid ′(X)) ∩ white(mid ′(X0)), or u remains matched
throughout to the same item in both auction instances and mid ′(X0) = subst(mid ′(X), u, β).

Finally we look at the case where u either belongs to nonwhite(X∗) or belongs to nonwhite(X∗0 ). With-
out loss of generality, assume that u belongs to nonwhite(X∗). It follows from the description of the bottom-
level auction, that either u is unmatched in some round of the auction instance with input (X∗, target(X))
and hence u belongs to white(mid ′(X)) ∩ white(mid ′(X0)), or u remains matched throughout in the auc-
tion instance with input (X∗, target(X)) and hence utility(mid ′(X), u) = utility(X,u). It follows that
mid ′(X0) = subst(mid ′(X), u, β).

Lemma 5.9 For any ECC X0 of the form subst(X,u, β), if β 6= bid(bid -graph(X), u), then either
mid ′0(X0) = subst(mid ′0(X), u, β) or u belongs to white(mid ′0(X)) ∩ white(mid ′0(X0)).

Proof. The proof is identical to the proof of Lemma 5.8 for the case where u belongs to nonwhite(X∗) ∩
nonwhite(X0

∗).

5.3 Truthfulness

A sealed-bid auction is said to be truthful if it is a weakly dominant strategy for every agent in the auction
to bid truthfully. Formally, we say the first phase of the mid-level auction is truthful if it satisfies the fol-
lowing condition: for any ECC X and any agent u in agents(X), if X ′ = subst(X,u, β) for some bid β in
bids(bid -graph(X)), then utility(mid(X), u) ≥ utility(X ′′, u), whereX ′′ = subst(mid(X ′), u, bid(X,u)).

For any ECC X , we define mid ′0(X) as follows. Let X0 be a quiescent ECC and let α0 be a target such
that X = shift(X0, α0), white(X0) ∩matched(X0) = ∅, and for any agent u in unmatched(X), we have
items(X0, u) = ∅. We define mid ′0(X) as the ECC shift(X ′, α′), where (X ′, α′) = bottom(X0, α0). The
uniqueness of mid ′0(X) is established by Lemma 5.6.

The auction that takes an ECC X as input and produces mid ′0(X) as output does not immediately
incorporate bid revision requests of tentatively allocated agents at the beginning of each round, and thus
corresponds to a slow implementation of the first phase of the mid-level auction. As discussed in the intro-
duction, proving truthfulness of the mid-level auction (which constitutes each round of the top-level auction)
is a significant technical challenge. We find it useful to first establish Lemma 5.12 on the truthfulness of the
slow implementation of the mid-level auction (see Section 5.3.1). We then use the claims of Section 5.3.1
to establish Lemma 5.22 below.

5.3.1 Slow implementation

The goal of this section is to establish Lemma 5.12 on the truthfulness of a slow implementation of the mid-
level auction. We establish Lemma 5.10 based on the claim of Lemma 4.30 of Section 4.5. Lemma 5.11
follows from Lemma 5.10. The proof of Lemma 5.12 follows from Lemma 5.11 and known results on the
truthfulness of the TTC algorithm.
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Lemma 5.10 For any ECC X , any agent u in agents(X), and any ECC X ′ of the form subst(X,u, β)
where β is a bid in bids(bid -graph(X)), we have

utility(mid ′0(X), u) ≥ utility(subst(mid ′0(X ′), u, bid(bid -graph(X), u)), u).

Proof. Let X = shift(X0, α0), where X0 is a quiescent ECC and α0 is a target such that white(X0) ∩
matched(X0) = ∅, and for any agent u in unmatched(X), we have items(X0, u) = ∅. By defini-
tion, mid ′0(X) = shift(X ′0, α

′
0), where (X ′0, α

′
0) = bottom(X0, α0). Note that threshold∗(X,α0) =

threshold∗(X,α0). Similarly, let X ′ = shift(X1, α1), where X1 is a quiescent ECC and α1 is a target
such that white(X1) ∩ matched(X1) = ∅, and items(X1, u) = ∅ for any agent u in unmatched(X). By
definition, mid ′0(X ′) = shift(X ′1, α

′
1), where (X ′1, α

′
1) = bottom(X1, α1).

Let βT = bid(bid -graph(X), u) and let X ′′ = subst(X ′1, u, βT ). Assume that utility(mid ′0(X), u) <
utility(subst(mid ′0(X ′), u, βT ), u); thus utility(X ′0, u) + α′0(u) < utility(X ′′, u) + α′1(u).

We first consider the case where u belongs to unmatched(X). By repeated application of Lemma 4.8,
we find that u belongs to white(X ′0) ∩ white(X ′1) and α′0(u) = α′1(u) = 0; thus, by our assumption,
utility(X ′0, u) < utility(X ′′, u). Since utility(X ′0, u) < utility(X ′′, u) and u belongs to white(X ′0),
we have utility(X ′′, u) ≥ 1; thus u belongs to matched(X ′1). By Lemma 4.20, we choose to defer the
raise invocations of u until a round in which u is the only remaining enabled agent with pending raise
invocations. Let (Xa, αa) be the input of the first round in which u invokes the function raise in the bottom-
level auction instance with input (X0, α0), and let X ′a be the ECC such that Xa = add(X ′a, u, βT ). Let
(Xb, αb) be the input of the first round in which u invokes the function raise in the bottom-level auc-
tion instance with input (X1, α1), and let Xb

′ be the ECC such that Xb = add(X ′b, u, β). Let S′ be
the set of items v in items(X) for which β(v) − threshold∗(X ′b, αb, v) is maximized. By Lemma 4.30,
we have potential(X ′1, v) = threshold∗(X ′b, αb, v); thus, utility(X ′1, u) = β(v) − threshold∗(X ′b, αb, v)
and utility(X ′′1 , u) = βT (v) − threshold∗(X ′b, αb, v). By Lemma 4.30, we find that utility(X ′0, u) =
max v∈items(X)(βT (v)−threshold∗(X ′a, αa, v)); since threshold∗(X ′b, αb) = threshold∗(X ′a, αa), we have
utility(X ′0, u) ≥ utility(X ′′, u); a contradiction. Thus, it follows that utility(subst(mid ′0(X ′), u, βT ), u) ≤
utility(mid ′0(X), u).

Next we consider the case where u belongs to matched(X). Since matched(X0) ∩ white(X0) =
matched(X1) ∩ white(X1) = ∅, the definition of the function shift implies that there exists an item
v in items(X) such that match(χ, v) = u for any configuration χ in X0 ∪ X1. Since u belongs to
nonwhite(X0) ∩ nonwhite(X1), by the description of the bottom-level auction, either match(χ, v) = u
for any configuration χ in X ′0 ∪X ′1, or u is unmatched in some round of the bottom-level auction instances
with inputs (X0, α0) and (X1, α1). In the case where match(χ, v) = u for any configutation χ in X ′0 ∪X ′1,
it is not difficult to see that utility(mid ′0(X), u) ≥ utility(subst(mid ′0(X ′), u, βT ), u). In the case where
u is unmatched in some round of the bottom-level auction instances with inputs (X0, α0) and (X1, α1), the
analysis is similar to the previous case in which u belongs to unmatched(X).

Thus, we have utility(mid ′0(X), u) ≥ utility(subst(mid ′0(X ′), u, bid(bid -graph(X), u)), u).

Lemma 5.11 Any auction that takes an ECC X as input and produces the ECC mid ′0(X) as output is
truthful.

Proof. Follows from Lemma 5.10 and the definition of truthfulness.

Lemma 5.12 Any auction that takes an ECC X as input and produces the ECC mid ′′(mid ′0(X)) as output
is truthful.

Proof. For any ECCX0, let f(X0) denote mid ′′(mid ′0(X0)). Consider any instance of the mid-level auction
with ECC X as input and let u be an agent in agents(X). Let β = bid(bid -graph(X), u) and let βT 6= β
be the truthful bid of u. LetXT = subst(X,u, βT ). We wish to show that utility(subst(f(X), u, βT ), u) ≤
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utility(f(XT ), u). By Lemma 5.9, either u belongs to white(mid ′0(X))∩white(mid ′0(XT )) or mid ′0(XT ) =
subst(mid ′0(X), u, βT ).

First, we consider the case where u belongs to white(mid ′0(X)) ∩ white(mid ′0(XT )). By Fact 5.2, we
have potential(f(X)) = potential(mid ′0(X)) and u belongs to white(f(X)); thus we have utility(f(X), u) =
utility(mid ′0(X), u) and utility(f(XT ), u) = utility(mid ′0(XT ), u). It follows from Lemma 5.10 that
utility(subst(mid ′0(X), u, βT ), u) ≤ utility(mid ′0(XT ), u); thus, we have utility(subst(f(X), u, βT ), u) ≤
utility(XT , u).

Next, we consider the case where mid ′0(XT ) = subst(mid ′0(X), u, βT ). By Lemma 5.7, the second
phase of the mid-level auction is truthful; thus, we have utility(subst(f(X), u, βT ), u) ≤ utility(f(XT ), u).
Thus, any auction that takes an ECC X as input and produces the ECC f(X) = mid ′′(mid ′0(X)) as output
is truthful.

5.3.2 Fast implementation

The goal of this section is to establish Lemma 5.22 on the truthfulness of the the mid-level auction. We first
establish that any white, matched agent achieves the same utility in the mid-level auction and it does in the
slow implementation of the mid-level auction (see Lemma 5.19). Lemmas 5.20 and 5.21 follow easily from
Lemma 5.19. We use Lemmas 5.21 and known results on the truthfulness of the TTC algorithm to establish
Lemma 5.22.

Lemma 5.13 For any ECC X ′ of the form subst(X,u, u′), if u is an agent in matched(X) ∩ white(X),
then utility(mid ′(X), u) = utility(mid ′(X ′), u′).

Proof. Let target(X) = α and let target(X ′) = α′. We first show that α = α′. Since u belongs to
matched(X) ∩ white(X), we have α(u) = 0, and since α is the pointwise minimum target in targets(X)
and u′ does not belong to agents(X), we have α(u′) = 0. Similarly, we have α′(u′) = α′(u) = 0.
Since α and α′ are the pointwise minimum targets in targets(X) and targets(X ′) respectively, we have
α(u′′) = α′(u′′) for any agent u′′ in agents(X)− u. It follows that α = α′.

Let mid ′(X) = shift(X ′0, α
′
0) where (X ′0, α

′
0) = bottom(X0, α) and let mid ′(X ′) = shift(X ′1, α

′
1)

where (X ′1, α
′
1) = bottom(X1, α). By Lemma 4.21, we have utility(X0, u) = utility(X1, u

′). Further,
sinceα(u) = α(u′) = 0, we haveα′0(u) = α′1(u′) = 0. Thus, utility(mid ′(X), u) = utility(mid ′(X ′), u′).

Lemma 5.14 LetX be an ECC and letXA be the quiescent ECC such thatX = shift(XA, target(X)). Let
u be an agent in matched(X)∩white(X), and let z be an integer such that u belongs to gray(shift(XA, u,−z)).
If u is the minimum agent in agents(X), then utility(mid ′(X), u) = utility(XB, u) + αB(u), where
(XB, αB) = bottom(shift(X ′A, u,−z), shift(target(X), u, z)).

Proof. Let (X ′B, α
′
B) = bottom(XA, target(X)). We refer to the executions of the bottom-level auc-

tion with inputs (shift(X ′A, u,−z), shift(target(X), u, z)) and (XA, target(X)) as executions R and R′

respectively. Let (Xi, αi) and (X ′i, α
′
i) be the outputs of round i of executions R and R′ respectively.

By Lemma 4.20, the raise invocations of enabled agents commute. Thus, by repeated application of
Lemma 4.20, executions R and R′ can be reordered such that for any round i, if S is a nonempty set of
agents in enabled(Xi) ∩ enabled(X ′i) such that αi(u′) = α′i(u

′) > 0, then some agent u′ in S invokes
raise in round i + 1 of executions R and R′. For any round i, we define the predicate P (i) to hold if
(X ′i, α

′
i) = (shift(Xi, u,−z), shift(αi, u, z)).

First we consider the case where P (i) holds for every round of executionsR andR′. In this case, we have
(X ′B, α

′
B) = (shift(XB, u,−z), shift(αB, u, z)). Thus, we have utility(mid ′(X), u) = utility(X ′B, u) +
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α′B = utility(XB, u) − z + αB(u) + z. Since u belongs to white(mid(X)), we have α′B(u) = 0. Thus,
utility(mid ′(X), u) = utility(X ′B, u) + α′B .

Next we consider the case where there exists a first round k such that P (k) does not hold. In this
case, it is easy to see that either u belongs to unmatched(Xk) or u belongs to unmatched(X ′k); fur-
ther, since u belongs to nonwhite(X ′k), we find that u belongs to unmatched(Xk). Let u′ be the agent
in matched(X ′k−1) ∩ unmatched(X ′k). We now allow u to exhaust all its raise invocations in rounds
(k + 1) · · · (k + z) of execution B; thus, we have αB(u) = 0. Since u belongs to white(mid ′(X)),
we have agents(X ′j , u) 6= ∅ for some round j of execution B where (k + 1) ≤ j ≤ (k + z), and thus,
u′ = victim(X ′j , u). It is straightforward to see that for any round j > k of execution R, we have
Xj = Xj+z; thus, X ′B = XB . Since α(u) = 0, we have α′B(u) = 0, and we established above that
αB(u) = 0. Thus, utility(mid ′(X), u) = utility(XB, u) = utility(XB, u) + αB(u0).

For any ECC X , any agent u in matched(X) ∩ white(X), and any agent u′ such that u < u′ and
there exists no agent u′′ in agents(X) such that u′ < u′′ < u, we define split(X,u, u′) as the ECC
add(shift(X,u,−z), u′, β) where z is the integer such that pseudo-utility(shift(X,u,−z), u) = −1, and
β = bid(bid -graph(X), u).

Lemma 5.15 Let X ′ be an ECC of the form split(X,u, u′) and let X = shift(XA, target(X)). For any
integer z such that u belongs to gray(shift(XA, u,−z)), we have utility(mid ′(X ′), u′) = utility(XB, u)+
αB(u) where (XB, αB) = bottom(shift(XA, u,−z), shift(target(X), u, z)).

Proof. Let X ′′ = shift(XA, u,−z∗), where z∗ is the integer such that pseudo-utility(X ′′, u) = −1. Let
α = target(X). By the definition of the function split , we find that u belongs to matched(X)∩white(X);
thus, α(u) = 0. Note that u belongs to white(shift(X ′′, u, 1)); thus, z∗ ≤ z. By repeated application of
Fact 4.5, it follows that (XB, αB) = bottom(X ′′, shift(target(X), u, z∗)). Let X ′A be the quiescent ECC
such that X ′ = shift(X ′A, target(X

′)) and let (X ′B, α
′
B) = bottom(X ′A, target(X

′)).
We refer to the bottom-level auction instance with inputs (X ′′, shift(target(X), u, z∗)) as execution

A and we refer to the bottom-level auction instance with inputs (X ′A, target(X
′)) as execution B. By

Lemma 4.20, we can assume that the same agent invokes raise in both executions whenever possible. From
the description of the bottom-level auction, we find that either u becomes unmatched in the same round of
both executions, or u remains matched in both executions until u′ is the only remaining enabled agent with
pending raise invocations in execution B.

We first consider the case where u is unmatched in the same round of both executions. In this case,
we immediately process the raise invocations of agent u in execution A and agent u′ in execution B. If
XB and X ′B are the resultant ECCs of executions A and B after agents u and u′ have exhausted their raise
invocations, then by Lemma 4.22, we have utility(X ′B, u

′) + α′B(u′) = utility(XB, u) + αB(u), and the
proof is complete.

Next we consider the case where u remains matched to some item v in both executions, all enabled
agents have exhausted their raise invocations in executionA, and u′ is the only remaining enabled agent with
pending raise invocations in exection B. We now allow agent u′ to exhaust its raise invocations. While u
remains allocated for the rest of executionB, the potential of v remains unchanged; thus u′ attains its highest
utility of utility(XB, u) + αB(u). If u is unmatched by some raise invocation, then the auction terminates
with the potential of item v unchanged, and with u′ attaining its highest utility of utility(XB, u) + αB(u).
Thus, we have utility(mid ′(X ′), u′) = utility(XB, u) + αB(u)

Lemma 5.16 LetX0 be an ECC of the form subst(X,u, u0) where u is an agent in white(X)∩matched(X),
and u0 is an agent such that u0 > u and there exists exactly one agent u′′ in agents(X) such that
u < u′′ < u0. Then utility(mid ′(X ′), u′) = utility(mid ′(X ′0), u′0) where X ′ is any ECC of the form
split(X,u, u′) and X ′0 is any ECC of the form split(X0, u0, u

′
0).
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Proof. Let XA be the quiescent ECC such that X ′ = shift(XA, target(X ′)) and let XB be the quiescent
ECC such that X ′0 = shift(XB, target(X ′0)). We refer to the executions of the bottom-level auctions with
inputs (XA, target(X ′)) and (XB, target(X ′0)) as executions A and B respectively. By Lemma 4.20, the
raise invocations by enabled agents commute. Thus, we choose to defer the raise invocations of agents
in the set S = {u′, u′0, u′′} in executions A and B until S is the only set of enabled agents. Further, we
commute raise invocations in both executions such that whenever possible, the same agent invokes raise in
each round.

For any nonnegative integer i, letXi andX ′i be the output ECCs of round i of executionsA andB respec-
tively. We define the predicate sync(A,B, i) to hold if X ′i = subst(subst(Xi, u, u0), u′, u′0). We define the
predicate coupled(A,B, i) to hold if there exists exactly one maximal set of items Vi in items(X) and agents
ua in matched(Xi)∩unmatched(X ′i) and ub in unmatched(Xi)∩matched(X ′i) such that for any agent uc
in unmatched(Xi) ∩ unmatched(X ′i) such that items(Xi, u

∗) ∩ Vi 6= ∅, we have victim(Xi, uc, 1) = ua
and victim(X ′i, uc, 1) = ub.

Consider the first round j such that coupled(A,B, j) holds; then, by the definition of the bottom-level
auction, it is easy to see that either: (1) execution A evicts u′ in round j and execution B evicts u′′ in round
j, or (2) execution A evicts u in round j and execution B evicts u′′ in round j. In case (1), since u′ is
evicted by execution A in round j, and sync(A,B, j − 1) holds, agents u′ and u′0 have zero utility in round
j, and by the definition of the bottom-level auction, u′ and u′0 continue to have zero utility for the rest of the
auction; this completes the proof for case (1).

We now consider case (2). Consider each round i > j of executions A and B where some agent
u1 in agents(X) − {u′′} invokes the function raise. If items(Xi, u1) ∩ Vi 6= ∅, then it follows that
coupled(A,B, i + 1) holds. Consider the first round k > j in which some agent u1 invokes the function
raise and victim(Xk, u1, 1) = u′′, thus we have victim(X ′k, u1, 1) = u0. and sync(A,B, k + 1) holds;
further, it is easy to see that sync(A,B, i) holds for every round i > k in which some agent in agents(X)\S
invokes the function raise.

We now look at executions A and B in a round k when u′′ is the only enabled agent with pending raise
invocations. We consider two cases. We first consider the case where sync(A,B, k − 1) holds; in this
case, u′′ is the only enabled agent with pending raise invocations in both executions A and B; thus for any
i ≥ k, if coupled(A,B, i) holds, then condition (1) holds where execution A evicts u′ and execution B
evicts u′′ and the proof follows from the analysis of case (1) discussed above. Next, we consider the case
where coupled(A,B, k−1) holds; in this case execution A has terminated, and u′′ is the only enabled agent
with pending raise invocations in execution B, and agents u′′ and u′ are matched in executions A and B
respectively. While u′′ and u′ remains allocated for the rest of executions A and B, the potentials of items
on P remain unchanged; thus u′ and u′0 both attain zero utility. If u′ is unmatched by some raise invocation
of execution B, then execution B terminates and thus, agents u′ and u′0 attain zero utility.

Lemma 5.17 LetX0 be an ECC of the form subst(X,u, u0) where u is an agent in white(X)∩matched(X).
Then utility(mid ′(X ′), u′) = utility(mid ′(X ′0), u′0) where X ′ is any ECC of the form split(X,u, u′) and
X ′0 is any ECC of the form split(X0, u0, u

′
0).

Proof. Without loss of generality, we can assume that u < u0. If there is no agent u1 in agents(X) such
that u < u1 < u0, then the result follows by repeated application of Lemma 4.22. If there is an agent u1 in
agents(X) such that u < u1 < u0, then the result follows by induction using Lemma 5.16.

Lemma 5.18 For any ECC X and any agent u in matched(X) ∩ white(X), if ECC X ′ is of the form
subst(X,u, u′), then utility(mid ′(X), u) = utility(mid ′(X ′), u′).

Proof. Let X0 be an ECC of the form split(X,u, u0) and let X1 be an ECC of the form split(X ′, u′, u1).
By Lemma 5.15, we have utility(mid ′(X), u) = utility(mid ′(X0), u0) and utility(mid ′(X ′), u′) =
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utility(mid ′(X1), u1). Since X ′ = subst(X,u, u′), by Lemma 5.17, we have utility(mid ′(X0), u0) =
utility(mid ′(X1), u1). Thus, we have utility(mid ′(X), u) = utility(mid ′(X ′), u′).

Lemma 5.19 For any ECC X such that X = shift(X0, target(X)), any agent u in matched(X) ∩
white(X), and any integer z such that u belongs to gray(shift(X0, u,−z)), we have utility(mid ′(X), u) =
utility(X1, u) + α1(u) where (X1, α1) = bottom(shift(X0, u,−z), shift(target(X), u, z)).

Proof. Let u′ be any agent such that u′ < u′′ for every agent u′′ in agents(X), and let (X ′1, α
′
1) =

bottom(shift(subst(X0, u, u
′), u′,−z), shift(target(X), u′, z)). By Lemma 5.14, we have utility(X ′1, u

′)+
α′1(u′) = utility(mid ′(subst(X,u, u′)), u′).

By Lemma 5.18, we have utility(X1, u) + α1(u) = utility(X ′1, u
′) + α′1(u′). By Lemma 5.13, we

have utility(mid ′(X), u) = utility(mid ′(subst(X,u, u′)), u′). Thus, we have utility(mid ′(X), u) =
utility(X1, u) + α1(u).

Lemma 5.20 For any ECC X , any agent u in agents(X), and any ECC X ′ of the form subst(X,u, β)
where β is a bid in bids(bid -graph(X)), we have

utility(mid ′(X), u) ≥ utility(subst(mid ′(X ′), u, bid(bid -graph(X), u)), u).

Proof. The analysis for agents in unmatched(X) is identical to the analysis for unmatched agents in the
proof of Lemma 5.10, and the analysis for agents in matched(X)∩nonwhite(X) is identical to the analysis
for matched nonwhite agents in the proof of Lemma 5.10.

We now consider any agent u in matched(X)∩white(X). Let X = shift(X0, target(X)) and let z be
any integer such that u belongs to gray(shift(X0, u,−z)). By Lemma 5.19, we have utility(mid ′(X), u) =
utility(X1, u) + α1(u) where (X1, α1) = bottom(shift(X0, u,−z), shift(target(X), u, z)). Thus, u ob-
tains the same utility as it would have obtained if its bid had been shifted down sufficiently to make u gray;
it follows that we can restrict attention to bottom-level auction instances that have no white matched agents
in their input ECCs. Let X = shift(X1, α1), where X1 is the ECC obtained by shifting down the bid of
every white agent in X0 such that white(X1)∩matched(X1) = ∅. If (X ′1, α

′
1) = bottom(X1, α1), then by

definition, we have mid ′0(X) = shift(X ′1, α
′
1). The proof now follows from Lemma 5.10.

Lemma 5.21 The first phase of the mid-level auction is truthful.

Proof. Follows from Lemma 5.20 and the definition of truthfulness.
We use Lemma 5.21 and known results on the truthfulness of the TTC algorithm to establish Lemma 5.22.

Lemma 5.22 The mid-level auction is truthful.

Proof. By Lemma 5.21 and Lemma 5.7, the first and second phases of the mid-level auction are individually
truthful. We now show that the mid-level auction which combines the two phases is truthful. Consider
any instance of the mid-level auction with ECC X as input and let u be an agent in agents(X). Let
β = bid(bid -graph(X), u) and let βT 6= β be the truthful bid of u. Let XT = subst(X,u, βT ). We wish
to show that utility(subst(mid(X), u, βT ), u) ≤ utility(mid(XT ), u). By Lemma 5.8, either u belongs to
white(mid ′(X)) ∩ white(mid ′(XT )) or mid ′(XT ) = subst(mid ′(X), u, βT ).

First, we consider the case where u belongs to white(mid ′(X)) ∩ white(mid ′(XT )). By Fact 5.2,
potential(mid(X)) = potential(mid ′(X)) and u belongs to white(mid(X)); thus utility(mid(X), u) =
utility(mid ′(X), u) and utility(mid(XT ), u) = utility(mid ′(XT ), u). It follows from Lemma 5.20 that
utility(mid ′(X), u) ≤ utility(subst(mid ′(XT ), u, βT ), u). Thus, we conclude that utility(mid(X), u) ≤
utility(subst(mid(XT ), u, βT ), u).

Next, we consider the case where mid ′(XT ) = subst(mid ′(X), u, βT ). By the truthfulness of the
second phase of the mid-level auction, we have utility(mid(X), u) ≤ utility(subst(mid(XT ), u, βT ), u).
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5.4 Efficiency

We now discuss efficiency-related properties of the mid-level auction. Lemmas 5.26, and 5.27 are the main
technical lemmas related to the efficiency of the mid-level auction. We also show that the mid-level auction
is weakly Pareto-optimal (see Lemma 5.23). These lemmas are used in Section 6 to establish efficiency-
related properties of the top-level auction.

For any ECC X such that unmatched(X) ⊆ white(X) and any agent u in nonwhite(X), we define
admissible(X,u) as the set of all bids β in bids(bid -graph(X)) such that u belongs to white(subst(X,u, β)).
For any configuration χ such that unmatched(χ) ⊆ white(χ), we define admissible(χ) as the set of all pos-
sible configurations that can be obtained from χ by replacing the bid of every agent u in black(χ) by a bid
in admissible([χ], u). For any ECC X such that unmatched(X) ⊆ white(X), we define admissible(X)
as ∪χ∈Xadmissible(χ).

A sealed-bid auction is said to be weakly Pareto-optimal if it produces an output allocation such that no
group of agents can trade their allocated items amongst themselves in such a way that all agents in the group
experience an increase in utility.

Lemma 5.23 The mid-level auction is weakly Pareto-optimal.

Proof. Consider any ECC X and let X ′ = mid(X). Suppose by way of contradiction that there is a
nonempty set of agents U0 ⊆ nonwhite(X ′) who can trade their allocated items amongst themselves such
that every agent in U0 experiences an increase in utility. By definition, for any agent u in white(X ′) and any
item v in items(X), we have utility(X ′, u) ≥ β(v)− potential(X ′, v), where β = bid(bid -graph(X), u).
Thus, white(X ′) ∩ U0 = ∅. It follows that U0 ⊆ nonwhite(X ′); a contradiction. Thus, U0 = ∅ and the
mid-level auction is weakly Pareto-optimal.

Lemma 5.24 For any ECCX and any agent u in matched(mid(X))∩nonwhite(mid(X)), if u belongs to
white(subst(X,u, β)) for some bid β in bids(bid -graph(X)), then u belongs to white(subst(mid(X), u, β)).

Proof. By Lemma 5.3, there exists an item v in items(X) such that potential(mid(X), v) = potential(X, v)
and match(χ, v) = u for any configuration χ in X ∪mid(X). Let β be any bid in admissible(X,u). By
definition, β(v)−potential(X, v) ≥ β(v′)−potential(X, v′) for any item v′ in items(X). By Lemma 5.3,
we have potential(mid(X), v′) ≥ potential(X, v). Thus, we have β(v)−potential(mid(X), v) ≥ β(v′)−
potential(mid(X), v′) for any item v′ in items(X). Thus, β belongs to admissible(mid(X), u).

Lemma 5.25 IfX is an ECC such that unmatched(X) ⊆ white(X), then any configuration in admissible(X)
is white.

Proof. By definition, we have admissible(X) = ∪χ∈Xadmissible(χ). Let χ be any configuration in X
and let χ′ be any configuration in admissible(χ). By the definition of admissible(χ), for every agent u in
nonwhite(χ), we have bid(χ′, u) belongs to admissible(χ, u); thus we have nonwhite(χ) ⊆ white(χ′).
Further, for any agent u in white(χ), we have bid(χ, u) = bid(χ′, u), and thus u belongs to white(χ′).
Thus, configuration χ′ is white.

Lemma 5.26 For any ECC X and any agent u in agents(X), if u belongs to nonwhite(mid(X)), then u
belongs to nonwhite(X) and admissible(X,u) ⊆ admissible(mid(X), u).

Proof. By Lemma 5.2, we have nonwhite(mid(X)) ⊆ nonwhite(X). Thus, u belongs to nonwhite(X).
Let β be any bid in admissible(X,u); then by definition, u belongs to white(subst(X,u, β)). By Lemma 5.24,
u belongs to white(subst(mid(X), u, β)). Thus, β belongs to admissible(mid(X), u).

Lemma 5.27 For any ECCX , we have unmatched(mid(X)) ⊆ white(mid(X)), and every configuration
in admissible(mid(X)) is efficient.
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Proof. By definition, we have mid(X) = mid ′′(mid ′(X)). By Fact 5.2, we have unmatched(mid ′(X)) =
unmatched(mid(X)) and potential(mid(X)) = potential(mid ′(X)); further, by Lemma 5.2, we have
unmatched(mid ′(X)) ⊆ white(mid ′(X)); thus unmatched(mid(X)) ⊆ white(mid(X)).

Let χ′ = (G,M,Φ) be any configuration in admissible(mid(χ)). By Lemma 5.25, χ′ is white, and by
Lemmas 3.10, χ′ is Walrasian; thus, it follows from Lemma 3.2 that M is an MWMCM of G. Thus, χ′ is
efficient.

5.5 Privacy Preservation

The goal of this section is to establish Lemmas 5.28 and 5.29, which we use in Section 6 to establish a
certain privacy preservation property of the top-level auction.

For any quiescent configuration χ and any agent u in enabled(χ), we would like to define raise(χ, u)
as a specific configuration in raise([χ], u) such that for any agent u0 in enabled(χ), if u does not belong
to matched(χ)∩unmatched(raise(χ, u0)), then raise(raise(χ, u0), u) = raise(raise(χ, u), u0). In order
to do so, we determinize the choice of the augmenting path in function augment defined in Section 4.
Specifically, we pick a lexicographically first (with respect to item identifiers) shortest path.

We view the bottom-level auction as taking a pair (χ, α) as input, where χ is a quiescent configuration
and α is a target, and updating this pair over a sequence of rounds. A general round of the auction with
input (χ0, α0) is defined as follows: if enabled(χ0) = ∅, then the auction terminates; if the minimum agent
in matched(χ0) ∩ enabled(χ0) = ε then the minimum agent in enabled(χ0) invokes raise; otherwise, the
minimum agent in matched(χ0)∩ enabled(χ0) invokes raise. We define bottom(χ, α) as the output of the
bottom-level auction when given the pair (χ, α) as input.

We now describe a determinized implementation of the mid-level auction that takes a configuration as
input and produce a configuration as output. The determinized mid-level auction described in this section is
used as a building block for the top-level auction of Section 6.

For any configuration χ = shift(χ0, target([χ])), we define mid ′(χ) as shift(χ′, α′) where (χ′, α′) =
bottom(χ0, target([χ])). For any configuration χ, we define mid(χ) as mid ′′(mid ′(χ)).

Lemma 5.28 For any configuration χ and any agent u in matched(mid(χ)) ∩ white(mid(χ)), we have
mid(shift(χ, u, 1)) = shift(mid(χ), u, 1).

Proof. Let χ′ = shift(χ, u, 1). Let χ = shift(χA, target([χ])) and let χ′ = shift(χ′A, target([χ
′])). We

refer to the execution of the bottom-level auction with inputs χA and target([χ]) as executionR and we refer
to the execution of the bottom-level auction with inputs χ′A and target([χ′]) as execution S. Let (χi, αi)
and (χ′i, α

′
i) be the outputs of round i of executions R and S respectively. Let S be the sequence of agents

where the ith element of sequence S, denoted S(i), is the agent that invoked raise in round i of execution
R. Similarly, we define S′ to be the sequence of agents that invoked raise in execution S. Let j be the round
in which u makes its last raise invocation in execution R.

We first claim that u has the same color in configurations χ and χ′ and that u is not gray in ei-
ther configuration. If u belongs to gray(χ), then by the definition of the mid-level auction, u belongs
to gray(χ0) and α(u) = 0, where α = target([χ]); thus, u either belongs to gray(mid(χ)) or u be-
longs to unmatched(mid(χ)), which is a contradiction. Thus, u does not belong to gray(χ). Since
χ′ = shift(χ, u, 1), we find that u does not belong to gray(χ′); it is thus straightforward to argue that
u has the same color in configurations χ and χ′.

We now show that (1) for all i ≤ j, we have S(i) = S′(i) and χi = χ′i, and (2) S′j+1 = u.
By definition of the mid-level auction, χ′0 = shift(χ0, u, 1). Further, we established above that agent

u is nongray has the same color in configurations χ0 and χ′0. Thus, it follows from the definition of the
determinized bottom-level auction that for all i ≤ j, we have S(i) = S′(i) and χi = χ′i. Since u belongs
to matched(mid(χ)) and u invoked its last raise in round j, we find that u belongs to matched(χj) ∩
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white(χj). Further, since χj = χj′ , we find that u belongs to matched(χ′j)∩white(χ′j) and enabled(χj) =
enabled(χ′j). Since S(j) = u, and by the definition of the function raise, no matched agents were enabled
in round j of both executions, we find that u belongs to enabled(χj+1); it follows from these facts that
S′(j + 1) = u.

Next we show that S(i) = S′(i+1) for any i > j. We established above that u belongs to matched(χ′j)
and that u makes its last raise invocation of execution S in round j + 1; thus α′j+1(u) = 0. By the
definition of the function raise, we have χ′j+1 = shift(χ′j , u, 1) and enabled(χ′j) = enabled(χ′j+1). Since
χj = χ′j , we have χ′j+1 = shift(χj , u, 1) and enabled(χ′j+1) = enabled(χj); further, we established that
α′j+1(u) = 0; thus, S(i) = S′(i+ 1) for i ≥ j.

We now show that if S′(j + 2) = u′, then raise(raise(χ′j , u), u′) = raise(raise(χ′j , u
′), u). From the

preceding claim, we have S(j + 1) = u′. Since u belongs to matched(mid(χ)) ∩ white(mid(χ)) and
u invoked its last raise in round j of execution R, it follows that u 6= victim(χj+1, u

′). Since χ′j+1 =
shift(χj , u, 1) and S′(j + 2) = u′, it follows that u 6= victim(χ′j+1, u

′); thus, by the definition of the
determinized function raise, we have raise(raise(χ′j , u), u′) = raise(raise(χ′j , u

′), u).
By repeated application of the preceding argument, the last raise invocation of u in execution S can be

commuted to the last round k of execution S. Thus, it follows that (χ′k−1, α
′
k−1) = (χB, shift(αB, u, 1)),

where (χB, αB) = bottom(χA, target([χ])).
By the definition of the function raise, we have bottom(χB, target([χ′])) = (shift(χB, u, 1), αB). By

the description of the second phase of the mid-level auction, it follows that mid(χ′) = shift(mid(χ), u, 1).

Lemma 5.29 For any configuration χ and any agent u in agents(χ), if utility(mid(χ), u) > 1, then
utility(mid(χ0), u) ≥ 1, where χ0 = shift(χ, u,−1).

Proof. Let χ = (G,M,Φ). It follows that χ0 = (G0,M,Φ), where G0 = shift(G, u,−1). Let β =
bid(G0, u). Let mid(χ0) = (G0,M

′
0,Φ

′
0) and let mid(χ) = (G,M ′,Φ′). We consider the following cases.

Suppose u belongs to white(mid(χ0))∩matched(mid(χ0)). By Lemma 5.28, it follows that mid(χ) =
shift(mid(χ0), u, 1). Thus, utility(mid(χ0), u) ≥ 1.

Suppose u belongs to white(mid(χ0)) ∩ unmatched(mid(χ0)). It follows that utility(mid(χ0), u) =
0. Thus, β(v) ≤ Φ′0(v) for every item v in items(χ0). However, since utility(mid(χ), u) > 1, there exists
an item v in items(χ0) such that match(mid(χ), v) = u and β(v)−Φ′(v) ≥ 1. Thus, utility(mid(χ0), u) <
utility(χ′′, u), where χ′′ = subst(mid(χ), u, β). This contradicts Lemma 5.20.

Suppose u belongs to nonwhite(mid(χ0)). By Lemma 5.5, u belongs to nonwhite(χ0), and by
Lemma 5.8, we have mid ′(χ0) = subst(mid ′(χ), u, β); thus, it follows from the definition of the sec-
ond phase of the mid-level auction that mid(χ0) = subst(mid(χ), u, β). It is now straightforward to see
that since utility(mid(χ), u) > 1, we have utility(mid(χ0), u) ≥ 1.

6 Top-Level Auction

In this section, we describe our top-level auction, the dynamic unit-demand auction proposed in this paper.
The top-level auction proceeds in rounds. Agents submit bid data at the beginning of each round, where
bid data includes bid revision requests from tentatively allocated agents and bids from unallocated agents.
If a tentatively allocated agent does not submit a bid revision in a round, then the bid of that agent from
the previous round is carried forward to the current round. Each round of the auction is processed by an
invocation of the mid-level auction of Section 5.
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6.1 Description

A general round of the top-level auction takes a configuration χ = (G,M,Φ) as input and produces the
configuration mid(χ) as output. The input to the first round of the auction is a configuration χ that satisfies
the following conditions: (1) for any item v is items(χ), the integer min(v) is equal to the seller-specified
starting price of item v; (2) there exists exactly |items(χ)| agents in agents(χ) that are designated as
“dummy” agents, and for any dummy agent u and any non-dummy agent u′ in agents(χ), we have u < u′;
(3) for any item v in items(χ), there is a dummy agent u in agents(χ) such that w(u, v) is equal to the
seller-specified reserve price of v (which is required to be at least the starting price of v), match(χ, v) = u,
and w(u, v′) = min(v′)− 1 for any item v′ in items(χ)− v.

For any round of the auction that produces a configuration χ = (G,M,Φ) as output, the input configu-
ration of the next round is a configuration of the form χ′ = (G′,M,Φ) where items(χ) = items(χ′).

Below, we discuss some important properties of the top-level auction related to truthfulness, efficiency,
privacy preservation, and scalability.

6.2 Truthfulness

Each round of the top-level auction corresponds to a single instance of the mid-level auction. Thus, it follows
from Lemma 5.22, that each round of the top-level auction is truthful.

6.3 Efficiency

As mentioned in the introduction, our top-level auction achieves a relaxed form of efficiency. Lemmas 6.1
and 6.2 are the key efficiency-related lemmas of the top-level auction. Furthermore, it follows from Lemma 5.23
that every round of the top-level auction is weakly Pareto-optimal.

We now informally motivate the efficiency-related claims of Lemmas 6.1 and 6.2. Consider an agent u
who is tentatively allocated to an item v. Assume that agent u submits a bid revision request in round i of
the auction, thereby expressing a desire to be allocated to some item v′ different from v. After round i, agent
u may be black; informally, this means that the revised bid of u is not fully respected by the auction. By
Lemmas 6.1 and 6.2, we establish that in each round subsequent to round i in which u remains allocated and
does not submit a bid revision request, the top-level auction makes progress towards respecting the revised
bid submitted by u in round i. Lemma 6.1 establishes that in each subsequent round, the top-level auction
continues to respect the last admissible bid submitted by u. Lemma 6.2 establishes that in each subsequent
round, the set of admissible bids of u can only grow. Thus, with each successive round, the revised bid of u
can only find better and better approximations in the growing set of admissible bids.

Lemma 6.1 Let χ and χ′ be the output configurations of successive rounds of the top-level auction where
χ = (G,M,Φ). and let u be an agent in matched(χ). If u belongs to white(χ) ∩ nonwhite(χ′), then
bid(G, u) belongs to admissible(χ′, u).

Proof. Let G = (U, V,w). and let χ0 be the configuration such that χ′ = mid(χ0).
First we claim that bid(G, u) belongs to admissible(χ0, u). By the definition of the top-level auction, χ0

is of the form (G′,M,Φ), where G′ = (U, V,w′). Since χ and χ0 have the same potential functions and the
same matching, and since u belongs to white(χ), it follows that u belongs to white(subst(χ0, u, bid(G, u)))
and thus, bid(G, u) belongs to admissible(χ0, u).

Next we claim that admissible(χ0, u) ⊆ admissible(χ′, u). By Lemma 5.26, since u belongs to
nonwhite(χ′), we find that u belongs to nonwhite(χ0) and admissible(χ0, u) ⊆ admissible(χ′, u).

It follows from the claims established above that bid(G, u) belongs to admissible(χ′, u).
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Lemma 6.2 Let χ and χ′ be the output configurations of successive rounds of the top-level auction. If agent
u belongs to nonwhite(χ) ∩ nonwhite(χ′), then admissible(χ, u) ⊆ admissible(χ′, u).

Proof. Let G = (U, V,w). and let χ0 be the configuration such that χ′ = mid(χ0). Let β be any bid in
admissible(χ, u); thus, u belongs to white(subst(χ, u, β)).

First we claim that β belongs to admissible(χ0, u). By the definition of the top-level auction, χ0 is of
the form (G′,M,Φ), whereG′ = (U, V,w′). Since χ and χ0 have the same potential functions and the same
matching, and since u belongs to white(subst(χ, u, β)), it follows that u belongs to white(subst(χ0, u, β));
thus, bid(G, u) belongs to admissible(χ0, u).

Next we claim that admissible(χ0, u) ⊆ admissible(χ′, u). By Lemma 5.26, since u belongs to
nonwhite(χ′), we find that u belongs to nonwhite(χ0) and admissible(χ0, u) ⊆ admissible(χ′, u).

It follows from the claims established above that admissible(χ, u) ⊆ admissible(χ′, u).

6.4 Privacy Preservation

If the seller of an item in our top-level auction has access to the maximum price that an agent who is
tentatively allocated to the item is willing to pay for the item, then the seller can extract this price by
submitting a “shill” offer just below the agent’s offer. Thus, a goal of our top-level auction is to ensure bid
privacy for tentatively allocated agents. Below we give a formal definition of a privacy preserving property;
one consequence of this property is that no seller can artificially raise the price of an item by more than one
unit without risking forfeiture of sale.

For the rest of this section, we discuss the privacy of an arbitrarily designated agent u∗ in the top-level
auction with respect to an observer of the auction. An observer of the auction is assumed to learn the
following in each round of the auction: (1) the matching and allocation published in the round; (2) the bid
of every agent in the round except the bid of agent u∗; (3) whether agent u∗ submitted a bid in the round.

Assumption (1) is natural since the top-level auction publishes the tentative allocation and pricing in
every round. Assumption (2) ensures that our top-level auction preserves the privacy of agent u∗ even when
all of the other agents conspire against u∗. Assumption (3) ensures that our privacy preservation property
does not merely exploit the fact that agent u∗ is allowed to submit a bid revision in every round.

We denote the configuration at the end of round i of the top-level auction by χi where χi = (Gi,Mi,Φi).
We use Yi to denote the set of configurations that are consistent with the information learned by an observer
up to the end of round i. Note that any pair of configurations in Yi differ only in the bid of agent u∗.
Formally, the top-level auction is said to be privacy preserving if the following holds for any designated
agent u∗: for any round i of the auction such that u∗ belongs to matched(χi), if configuration χ belongs to
Yi, then for any positive integer k, the configuration shift(χ, u∗, k − utility(χ, u∗)) also belongs to Yi.

Lemma 6.3 For any positive integer k and any configuration χ in Yk such that u∗ belongs to matched(χ)∩
white(χ), the configuration shift(χ, u∗, 1) belongs to Yk. Further, if utility(χ, u∗) > 1, then shift(χ, u∗,−1)
belongs to Yk.

Proof. Let χ′ be a configuration such that mid(χ′) = χ. Let t be the smallest integer such that for every
configuration χj where t < j ≤ k we have u∗ belongs to matched(χj) ∩ white(χj) and bid(Gk, u∗) =
bid(Gj , u∗). Thus, it follows that either u∗ belongs to nonwhite(χt−1) or bid(Gt−1, u

∗) 6= bid(Gt, u∗).
The proof proceeds by induction on k.

For the base step, we show that the claim holds for k = t. First, we show that shift(χ, u∗, 1) belongs
to Yt. By Lemma 5.28, since u∗ belongs to matched(χ) ∩ white(χ), we have mid(shift(χ′, u∗, 1)) =
shift(χ, u∗, 1). Further, since u∗ belongs to white(shift(χ, u∗, 1)), and χ and shift(χ, u∗, 1) have the
same matching and potential function, it follows that shift(χ, u∗, 1) belongs to Yt. Next, we show that
if utility(χ, u∗) > 1, then shift(χ, u∗,−1) belongs to Yt. By Lemma 5.29, utility(χ′′, u∗) ≥ 1, where
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χ′′ = mid(shift(χ′, u∗,−1)). Thus, u∗ belongs to matched(χ′′) ∩ white(χ′′), and by Lemma 5.28, we
have χ = shift(χ′′, u∗, 1). It follows that χ′′ = shift(χ, u∗,−1). Further, since u∗ belongs to white(χ′′),
and χ and χ′′ have the same matching and potential function, it follows that χ′′ belongs to Yt.

For the induction step, we assume the claim holds for some round ` where t ≤ ` < k. We now
show that the claim holds when k = ` + 1. By the description of the top-level auction and the fact that
bid(G`, u∗) = bid(G`+1, u

∗), there exists a configuration χ′′ in Yk such that bid(G′, u∗) = bid(G′′, u∗).
By the induction assumption, it follows that shift(χ′′, u∗, 1) and shift(χ′′, u∗,−1) belong to Y`. First,
we show that shift(χ, u∗, 1) belongs to Y`+1. By Lemma 5.28, it follows that mid(shift(χ′, u∗, 1)) =
shift(χ, u∗, 1). Further, since u∗ belongs to white(χ′′), and χ and χ′′ have the same matching and potential
function, it follows that χ′′ belongs to Yl+1. Thus, shift(χ, u∗, 1) belongs to Yl+1. Next, we show that
shift(χ, u∗,−1) belongs to Y`+1. By Lemma 5.29, if utility(χ, u∗) > 1, then utility(χ′′, u∗) ≥ 1, where
χ′′ = mid(shift(χ′, u∗,−1)). Thus, u∗ belongs to matched(χ′′) ∩ white(χ′′), and by Lemma 5.28, we
have χ = shift(χ′′, u∗, 1) and hence χ′′ = shift(χ, u∗,−1). Further, since u∗ belongs to white(χ′′), and χ
and χ′′ have the same matching and potential function, we find that χ′′ belongs to Y`+1.

Lemma 6.4 For any positive integers k and ` and any configuration χ in Yk such that u∗ belongs to
matched(χ), there exists a configuration χ′ in Yk such that utility(χ′, u∗) = l.

Proof. Let χ′ be the configuration such that mid(χ′) = χ. If u∗ belongs to white(χ), then the result follows
by repeated application of Lemma 6.3. If u∗ belongs to nonwhite(χ), then by Lemma 5.3, u∗ belongs to
nonwhite(χ′) ∩matched(χ′). It follows that u∗ submitted a bid in round k and this bid could be arbitrary.
Thus, there exists a configuration χ′′ in Yk of the form subst(χ, u∗, β) in Yk such that utility(χ′′, u∗) =
`.

Lemma 6.5 The top-level auction is privacy preserving.

Proof. Let k be any positive integer and let u∗ be any agent in matched(χk). The result follows from
Lemma 6.4.

6.5 Scalability

In this section we briefly sketch a fast implementation of the top-level auction. In each round of the top-level
auction, new bid data (i.e., bid revision requests from tentatively allocated agents, and bids from unallocated
agents) is received and processed.

We first describe the general state of the auction just before any new bid data is received. In such a
state, we know the current pricing and allocation, and the “target” bid of each agent (i.e., the most recent bid
submitted by the agent). We say that a bid component is “active” if it is at least equal to the price (viewing the
bid components and prices as pairs, as in Section 3.5) of the corresponding item. We only need to maintain
information concerning the active bid components. The agents that are not tentatively allocated do not have
any active bid components, and so we do not need to maintain any information concerning such agents. We
do not maintain an explicit color value (black, gray, or white) for each tentatively allocated agent. Instead,
when we need to determine the color of an agent, we do so by examining its active bid components along
with the current prices of the associated items.

When new bid data is received at the start of a round, we first incorporate all of the bid revision requests
by tentatively allocated agents. This is easy to do since it has no impact on the allocation or pricing; we
simply update the relevant target bids. It remains to process the new bids introduced by unallocated agents.
We process these bids iteratively. At the start of an iteration, our auction state specifies the current pricing
and allocation, the target bid of each tentatively allocated agent, and a set of unallocated agents for which the
associated bids have yet to be processed. We pick an arbitrary unallocated agent u from the latter set, and in
the style of the well-known Hungarian algorithm for weighted bipartite matching [9], or the closely related
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successive shortest paths algorithm [1, Chapter 9], we proceed to update the tentative pricing and allocation
to account for the bid of u. The high-level strategy is to grow a Hungarian tree (which involves increasing
certain prices, while maintaining the allocation) rooted at u until one of the following two conditions occurs:
(1) one or more nonwhite tentatively allocated agents enter the tree; (2) the utility of u or one or more of the
white tentatively allocated agents drops to zero.

If (2) occurs before (1), then we update the allocation via an augmentation that unallocates (and discards)
the minimum zero-utility agent, and allocates u. (If agent u is itself the minimum zero-utility agent, then no
augmentation is performed, and the allocation remains unchanged.) Using a standard primal-dual approach,
it is possible to update the pricing and allocation in time proportional to the time required to solve a single-
source shortest paths (SSSP) problem on the active subgraph of the current bid-graph. For a directed graph
with n vertices and m edges, Thorup presents an O(m+ n log logn) algorithm for the SSSP problem [16].
Thus the time complexity of the update is close to linear in the number of active bid components.

If (1) occurs before (2), then we update the allocation via an augmentation that unallocates the minimum
nonwhite tentatively allocated agent, call it u′, and allocates u. The time complexity for performing this
update is the same as in the case of the preceding paragraph. The difference is that here we cannot necessarily
discard agent u′. In particular, if agent u′ was black before the update, then it may still have one or more
active bid components; if so, we add agent u′ to the set of unallocated agents for which the associated bids
have yet to be processed. While the size of the latter set does not decrease (because we removed u and added
u′), we are able to prove that the number of black tentatively allocated agents has decreased by at least one.
Furthermore, we can show that the only way a tentatively allocated agent can become black is by revising
its bid. Thus, when we later use an SSSP computation to process the bid of the now-unallocated agent u′,
we can charge the cost of this SSSP computation to the most recent bid revision of u′. Consequently, in any
execution of the top-level algorithm, the total number of SSSP computations performed across all rounds is
at most the total number of bidding operations (i.e., bid revisions or new bids) over all rounds.

Recall that each round of our top-level auction consists of two phases. The foregoing discussion has
focused on the implementation and analysis of the first phase. In the second phase, any black tentatively
allocated agents are given the opportunity to exchange items with one another. As discussed in Section 5.1,
the TTC algorithm is used to update the allocation, and the item prices are left unchanged. It is straightfor-
ward to identify all of the black tentatively allocated agents, and set up the input for the TTC algorithm, in
linear time in the number of active bid components. It is easy to implement the TTC algorithm so that it
runs within the same linear time bound.

In our discussion of the first phase above, we have sketched an argument that the amortized cost of each
bidding operation is proportional to the cost of an SSSP computation over the active subgraph of the bid-
graph. (The size of the active sub-graph may vary throughout the execution of the top-level auction, but the
number of nodes is proportional to the number of items, and the number of edges is at most quadratic in the
number of items.) The lone gap in this argument is that it does not address any potential effect of the presence
of the second phase. Fortunately, the second phase can only strengthen the amortization argument. The
reason is that the second phase has no impact on the color of any non-black tentatively allocated agent, and
therefore cannot increase the number of black tentatively allocated agents. (It is possible for the second phase
to decrease the number of black tentatively allocated agents, which only helps the amortization argument.)

In summary, it is possible to implement the top-level auction in such a way that the amortized cost of
each bidding operation is close to linear in the size of the active subgraph of the bid-graph, which is at most
quadratic in the number of items. Moreover, in many practical auction settings, the average number of active
bid components of a tentatively allocated agent is likely to be small, say at most a constant. In such settings,
the number of active bid components is linear in the number of items, and hence the amortized cost of each
bidding operation is close to linear in the number of items.
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7 Concluding Remarks

The single-item auction mechanism employed by eBay is essentially a dynamic second-price auction. We
have shown how to generalize this popular auction format to the unit-demand case, while supporting ar-
bitrary bid revision by tentatively allocated bidders. Our auction maintains strong theoretical properties
related to efficiency, truthfulness, privacy preservation, and scalability. We have implemented our auction
in Java and verified that it is capable of processing large numbers of bidding operations per second. Such
speed is important in practice, since it is desirable for a dynamic auction to compute and publish updates to
the pricing and allocation in real time.

In our current presentation of the auction, we have assumed that the set of items for sale in the auction
is static. It is straightforward to modify the auction to allow new items to be introduced in each round.
Further, we have assumed that all items in the auction have the same expiry time. It is possible to relax this
assumption. For example, we can specify a separate expiration time for each item in the auction, and allow
unit-demand bidding across items that expire within the same interval of time (e.g., the same day).
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