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Abstract

In a buyer-supplier game, a special type of assignment game, a distinguished
player, called the buyer, wishes to purchase some combinatorial structure. A set
of players, called suppliers, offer various components of the structure for sale. Any
combinatorial minimization problem can be transformed into a buyer-supplier game.
While most previous work has been concerned with characterizing the core of buyer-
supplier games, in this paper we study optimization over the set of core vectors. We
give a polynomial time algorithm for optimizing over the core of any buyer-supplier
game for which the underlying minimization problem is solvable in polynomial time.
In addition, we show that it is hard to determine whether a given vector belongs
to the core if the base minimization problem is not solvable in polynomial time.
Finally, we introduce and study the concept of focus point price, which answers the
question: If we are constrained to play in equilibrium, how much can we lose by
playing the wrong equilibrium?
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1 Introduction

In this paperpaper , we study the core of a large set of games, a subset of
assignment games, which we term buyer-supplier games [3,21] [22, Chapter 6].
We are primarily concerned with efficient computations over the set of vectors
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belonging to the core of buyer-supplier games. Before diving into an overview
of buyer-supplier games, we present some connections between our work and
the existing literature.

1.1  Related Work

Though suggested by Edgeworth as early as 1881 [7], the notion of the core
was formalized by Gillies and Shapley [10,20], extending von Neumann and
Morgenstern’s work on coalitional game theory [23]. Recently, Goemans and
Skutella studied the core of a cost sharing facility location game [11]. In their
paper, Goemans and Skutella are primarily interested in using core vectors as
a cost sharing indicator, to decide how much each customer should pay for
opening the facility used by the customer. Goemans and Skutella show that,
in general, the core of the cost sharing facility location game they study is
empty. In contrast, for the buyer-supplier games we study, the core is always
nonempty. Additionally, in our work we do not view vectors in the core as
an indication of cost shares but rather as rational outcomes of negotiation
amongst the players in the buyer-supplier game. Pal and Tardos extend the
work of Goemans and Skutella by developing a mechanism for the cost sharing
facility location game which uses the concept of an approximate core [14].

There has been great interest in comparing the game’s best outcome to the best
equilibrium outcome, where the term best is based on some objective function.
For example, one may wish to compare the outcome maximizing the net utility
for all players in the game against the best possible Nash equilibrium, with
respect to net utility. Papadimitriou termed one such comparative measure as
the price of anarchy [15]. Roughgarden and Tardos have studied the price of
anarchy in the context of routing [17-19].

In this paperpaper , we introduce a quantity with a similar motivation to that
of the price of anarchy. Solution concepts often yield multiple predictions, or
equilibria. In actual game play, however, only one of the equilibria can be
chosen by the game’s players. Experiments show that conditions outside the
game, such as societal pressures or undue attention to a specific player, focus
the players’ attention on the point of a single equilibrium, which then becomes
the outcome of the game. This is a common notion in game theory called the
focus point. A player may receive different payoffs in different equilibria. How
much is the player willing to pay for a good focus point? We define the focus
point price with respect to a given player as the difference between the maxi-
mum and minimum equilibrium payoffs to the player. Stated succinctly, focus
point price answers the question: If we are constrained to play in equilibrium,
how much can we lose by playing the wrong equilibrium?



Recently, Garg et al. studied transferable utility games they call coalitional
games on graphs [9]. Coalitional games on graphs are a proper subset of buyer-
supplier games, which can be derived by setting the buyer’s internal cost,
Bcost, to zero (see Section 1.3 and Lemma 21). For some buyer-supplier games,
for example the buyer-supplier facility location game, it does not appear that
the game can be described with Bcost fixed to zero.

Garg et al. study the concepts of “frugality” and “agents are substitutes.”
They show that suppliers are substitutes if and only if the core of the game
forms a lattice. In buyer-supplier games, suppliers are not always substitutes.
1a-We show, in Lemma 25, wwe-show-that if suppliers are substitutes, we can
optimize over the core by solving a polynomially sized linear program. Garg
et al. and, more recently, Karlin et al. study and characterize the frugality
certain auction mechanisms; the focus point price concept introduced in this
paper-paper is quite different from frugality [12].

A third difference between Garg et al. and this work comes from the fact that,
similarly to the economics literature, Garg et al. are mainly concerned with the
characterization of the core: When does the core form a lattice? How do core
vectors relate to auctions? We, on the other hand, are mainly concerned with
characterizing optimization over the core. Our main results are in the flavor
of Deng and Papadimitriou, in that we are interested with the complexity of
computing using game theoretic characterizations [6].

Faigle and Kern study optimization over the core for submodular cost partition
games [8]. Faigle and Kern exhibit a generic greedy-type algorithm for opti-
mization of any linear function over the core of partition games whose value
function is both submodular and weakly increasing, a property they define.

The greedy framework of Faigle and Kern captures certain buyer-supplier
games, such as the buyer-supplier minimum spanning tree game. However,
even some buyer-supplier games derived from problems that admit greedy
solutions, such as the buyer-supplier shortest path game, are not amenable
to the approach of Faigle and Kern. In this paperpaper , we do not restrict
ourselves to greedy algorithms. By making use of the ellipsoid method, we
are able to give polynomial time algorithms for optimization over the core of
any buyer-supplier game for which the underlying minimization problem is
solvable in polynomial time.

To provide the reader with a simple, concrete example of optimization over
the core of a buyer-supplier game, towards the end of this paperpaper , we
focus our attention on the buyer-supplier minimum spanning tree game. We
give a simple greedy algorithm for this problem, which is a minor extension of
Kruskal’s minimum spanning tree algorithm. A greedy algorithm is provided
by the work of Faigle and Kern, but their exposition involves a good deal of



machinery. Our exposition is completely elementary.

Several methods, apart from buyer-supplier games, are known for transform-
ing a combinatorial optimization problem into a game. The cores of these
transformations have also been extensively studied. For example, Deng et al.
show results on core non-emptyness, distinguishability of core vectors, and
finding core vectors for one such transformation [5]. Caprara et al. continue
the work of Deng et al. by considering a certain optimization over the set of
core vectors for this alternate transformation [4].

1.2 Main Contributions

There has been increased interest from the theoretical computer science com-
munity in game theory. While problem-specific solutions may give us insight,
to leverage the full power of decades of study in both research areas, we must
find generic computational solutions to game theoretic problems. Indeed, oth-
ers have already realized this need [1,16]. In this paperpaper , we continue this
line of work by deriving generic results for computing with core solutions in a
large class of games.

The core of buyer-supplier games in the transferable utility setting is charac-
terized by Shapley and Shubik [21]. As a minor contribution, we extend their
result by showing that the core in the non-transferable utility setting is the
same as the core with transferable utilities. Our primary contributions are as
follows:

(1) While previous work in the economics literature has concentrated on
characterizing the core of buyer-supplier games and relating core vec-
tors to auctions, our main interest is in optimizing over the set of core
vectors [3]. We provide a generally applicable algorithm, based on the
ellipsoid method, for optimizing over the core. If the original minimiza-
tion problem is solvable in polynomial time, we show that it is possible
to optimize linear functions of core vectors in polynomial time.

(2) We fully characterize optimization over the core of buyer-supplier games
by using a polynomial time reduction to show that if the original min-
imization problem is not solvable in polynomial time, it is impossible,
in polynomial time, to test if an arbitrary vector is in the core of the
buyer-supplier game.

(3) We introduce the concept of focus point price. Our positive computa-
tional results give a polynomial time algorithm for computing the buyer’s
focus point price in buyer-supplier games when the underlying minimiza-
tion problem is solvable in polynomial time. When the underlying min-
imization problem is not solvable in polynomial time, we show that it



is impossible to approximate the buyer’s focus point price to within any
multiplicative factor.

1.3 Owverview of Buyer-Supplier Games

The definition of a buyer-supplier game, given in Section 2.1, is self-contained
and does not require an argument. However, it is also possible to transform
a combinatorial minimization problem into a buyer-supplier game. Consider
a combinatorial minimization problem of the following form. We have some
finite set of elements C. We designate some subsets of C as feasible. To capture
feasibility, we use a predicate P : 2¢ — {0, 1}, where the predicate is one on all
feasible subsets of C. With each feasible set A C C, we associate a nonnegative
non-negative cost f(A). The combinatorial minimization problem can then be
captured by the function MinProb : 2¢ — R, defined by

MinProb(B) = min f(A)
ACB
P(A) =1

where R, denotes the nennegativenon-negative real numbers.

To transform the above minimization problem into a buyer-supplier game,
we associate a player with each element of C; we call such players suppliers.
We also add another player whom we call the buyer. In the game, the buyer
wishes to purchase a feasible subset of C. The suppliers, on the other hand,
are offering their membership to the buyer’s set at a price.

To fully specify the game’s model of a realistic interaction, we let M desig-
nate the maximum investment the buyer is willing to spend on a feasible set.
We decompose f such that f(A) = Beost(A) + > ,c47(a), where 7(a) is the
an internal cost for supplier a to be present in the buyer’s set and Bcost(.4)
is the-an internal cost to the buyer for purchasing this specific feasible set.
In general, many such decompositions are possible, and they produce dif-
ferent games. However, when specifically applying the core solution concept,
Lemma 21 shows that all such decompositions are equivalent. Though it is
not necessary, to remove special cases in our statements, it is convenient to

let Beost(,A) = M when A = () or A is not feasible.

Now that we have determined the internal costs for the buyer and the suppliers,
we can specify the game. The buyer-supplier game is specified by the tuple
(C, T, Bcost). The strategy set for the buyer is the power set of C. By playing
A C C, the buyer chooses to purchase the membership of the suppliers in

A. The strategy set for every supplier a € C is the nonnegative non-negative
real numbers, indicating a bid or payment required from the buyer for the



supplier’s membership.

For any supplier a € C, we let 3(a) denote the associated bid. Let A be the set
of suppliers chosen by the buyer. The payoff for the buyer is M — Bcost(A) —
> aca B(a). The payoff for a supplier not in A is 0. The payoft for a supplier a
in Ais B(a) — 7(a).

Since we are applying the solution concept of the core, one may think of
the game play as follows. All the players in the game sit down around a
negotiating table. All the players talk amongst themselves until they reach
an agreement which cannot be unilaterally and selfishly improved upon by
any subset of the players. Once such an agreement is reached, game play is
concluded. Since no subset of the players can unilaterally and selfishly improve
upon the agreement, rationality binds the players to follow the agreement.

The fully formal definition of a buyer-supplier game is given in Section 2.1. The
transformation process described above can be used to create buyer-supplier
games from most combinatorial minimization problems. For example, mini-
mum spanning tree, Steiner tree, shortest path, minimum set cover, minimum
cut, single- and multi-commodity flow can all be used to instantiate a buyer-
supplier game.

As a concrete example and interpretation of a buyer-supplier game, consider
the buyer-supplier minimum spanning tree game. In this game, a company
owns factories on every node of a graph. The company wishes to connect the
factories by purchasing edges in the graph. Each edge is owned by a unique
supplier player. Each supplier has an internal cost associated with the com-
pany’s usage of the edge. The company has a maximum amount of money it is
willing to spend on purchasing edges. Depending on the transportation condi-
tions of a particular edge, the company may have some internal cost associated
with choosing that particular edge. The buyer-supplier game paradigm yields
similarly natural games when applied to other minimization problems.

In this paper-paper we will be concerned with efficient computation over the
set of core vectors. For the rest of the paperpaper , when we say polynomial
time, we mean time polynomial in the size of the parameter C, which is also
polynomial in the number of players of the buyer-supplier game.

1.4 Organization of the PaperPaper

In Section 2 we define buyer-supplier games and the core of a game. In Sec-
tion 3 we characterize the core of buyer-supplier games. In Section 4 we give
positive computational results, namely the generic algorithm for optimizing
over the set of core vectors. In Section 5 we give negative computational results



by showing polynomial time equivalence between several related problems. In
Section 6 we give the problem-specific combinatorial algorithm for the buyer-
supplier game arising from the minimum spanning tree problem.

2 Definitions

In this section, we formally define buyer-supplier games and give the game
theoretic definitions required for our analysis.

2.1 Buyer-Supplier Games

Let C be a finite set and M be a nennegative-non-negative real number.
Let 7 be a function from C to ®,. Let Bcost be a function from 2° to
R, such that Beost()) = M. The simplifying condition that Beost()) =
M is not required. We explain the condition’s purpose later in this sec-
tion. For A C C, let Eval(r,Bcost,.A) denote Bcost(A) + Y ,c47(a). For
A C C, let MinEval(r, Beost, . A) denote mingc 4 Eval(7, Beost, B). We will
omit the parameters 7 and Bcost from the functions Eval(r, Beost,.A4) and
MinEval(r, Beost, A) when the value is clear.

Given a tuple (C, 7, Bcost), we proceed to define a buyer-supplier game. As-
sociate a player with each element of C. Call the players in C suppliers. Let
there also be another player, p, whom we call the buyer. Let P = C U {u} be
the set of players for the buyer-supplier game.

The strategy for supplier a is a tuple (3(a), p,) with 5(a) € R, and p, : P —
R,. The first element, 3(a), represents supplier a’s bid to the buyer, requiring
the buyer to pay ((a) for using the supplier’s services. The second element,
Da, Tepresents the nennegativenon-negative side payments supplier a chooses
to make to the game’s players. By p,(b) we denote the side payment a makes
to player b.

The strategy for the buyer, p, is a tuple (A,p,) where A€2°A4 C C and
pu @ P — 4. The first element, A, represents the suppliers chosen by the
buyer for a purchase. Similarly to a supplier, the second element, p,,, represents
the nennegativenon-negative side payments the buyer chooses to make to the
game’s players.

For each player a € P we denote the player’s strategy set by S,. For a set
of players A C P, we denote the set of strategies ®,c4Sa by Sa. We call
elements of Sy strategy vectors. We index strategy vectors from Sy by the
elements of A.



We now define the utility function for each player. Suppose strategy s € Sp
is played. Specifically, suppose that (A,p,) € S, and (5(a),p,) € S, for each
a € C are played. The utility function for buyer is u,(s) = M — [Bcost(A) +
> aca B(@)] + [Xoer po(pt) — Xpep pu(b)]. The utility for a supplier @ in A is
uq(s) = fla) — 7(a) + [Xpep po(a) — Spep Pa(b)]. The utility for a supplier a
not in A is ua(s) = [Lpep po(a) = Xiep Pa(b)]-

Interpreting, the buyer begins with a total of M utility and chooses to make
a purchase from each supplier in A. The buyer gives (3(a) to each supplier
a € A and loses an extra Beost(.A) from the initial M utility. Each supplier
a in A receives the bid payment from the buyer and loses 7(a) because the
supplier must perform services for the buyer. The distribution of sidepayments
completes the utility functions. The requirement that Beost(()) = M lets the
strategy () stand as a “don’t play” strategy for the buyer. To remove the
requirement, we could introduce a specific “don’t play” strategy to the buyer’s
strategy set, however this creates a special case in most of our proofs.

Let the sidepayment game we have defined be denoted SP. Let NOSP denote
the same game with the additional requirement that all sidepayments be fixed
to zero. In other words, in NOSP we restrict the strategy set for each a € P
so that p, is identically zero.

2.2 Game Theoretic Definitions

All of the definitions in this section closely follow those of Shubik [22, Chapter
6].

We call a vector in R/, indexed by a € P, a payoff vector. We say a payoff
vector 7 is realized by a strategy vector s € Sp if m, = u,(s) for all a € P.

Let m be a payoff vector and s be a strategy vector in Sy for A C P. Let t be
any strategy vector in Sp such that the prejeetion—rtestriction of ¢ ente-to the
coordinates in A is equal to s. If for all ¢ and for all a € A we have 7, < u,(t),
we say that the players in A can guarantee themselves payoffs of at least m by

playing s.

We use Shubik’s alpha theory to define our characteristic sets [22, pp. 134-
136]. Thus for a set of players A C P, we define the characteristic set, V' (A),
to be the set of all payoff vectors m such that there is a strategy vector s € Sy,
possibly dependent on 7, with which the players in A can guarantee themselves
payoffs of at least 7. In the transferable utility setting, SP, the characteristic
sets can be replaced with a characteristic function. Given the definitions of
the utility functions in Section 2.1, the characteristic function V (A) for a set
of players A is equal to M — MinEval(7, Bcost, A — {u}).



We say that a set A C P of players are substitutes if V(P) — f/(P - B) >
> aeB V(P) V(P — {a}) for all B C A.

We say that a payoff vector 7 dominates a payoff vector v through a set A C P
if 7, > v, for all a € A. In other words, 7 dominates v through A when each
player in A does better in 7 than in v.

For a set of players A C P, we define D(A) as the set of all payoff vectors
which are dominated through A by a payoff vector in V'(A). Interpreting, the
players in A would never settle for a payoff vector 7 € D(A) since they can
guarantee themselves higher payoffs than those offered in 7.

The core of a game consists of all 7 € V(P) such that = ¢ D(A) for all A C P.

3 A Characterization of the Core

The eharaeterazation—characterization of the core of buyer-supplier games in
the transferable utility setting was done by Shapley and Shubik [21]. In this
seeitonsection, we show the surprising result that the same characterization
holds in the non-transferable utility setting. In general, it is not the case that
the core of the transferable utility and non-transferable utility versions of a
game are the same. For example, the buyer may be able to use bribes to alter
the bidding strategies of some suppliers, and thus reduce the bids of other
suppliers. The following theerem—condition characterizes the core of buyer-
supplier games.

A payoff vector 7 is in the core of a buyer-supplier game defined by (C, 7, Beost)
if and only if it satisfies

e >0 Va € P,

> 1, < MinEval(r, Beost, C — A) — MinEval(r, Beost,C) VA CC,
acA

= M — MinEval(r, Beost, C) — > m,.

aeC

= We rove the result frorn ﬁrst rinciples. In

Sectlon 3. 1 we give some preliminary lemmas for the games NOSP and SP .
In Section 3.2, we show that the core of SP is the same as the core of NOSP

. In Section 3.3, we give a characterization of the core of NOSP .




3.1 Preliminary Lemmas on the Core of NOSP and SP

This section contains some preliminary lemmas that are useful in characterizin
the core of NOSP and SP .

For some of our proofs it is convenient to think of SP as a two stage distribution
of wealth, where the strategy s € Sp determines the utility transfers. Initiall
the buyer has M utility and all suppliers have zero utility. In the first stage

the buyer gives G(b) to each supplier b € A and loses an extra Beost(A) from
the initial M utility. Also in the first stage, each supplier b € A loses 7(b) of

utility. In the second stage. side payments are distributed.

Lemma 1 Let-A-be-a—set-of suppliers—and- Let s € Say, be such that s, =
(A,pu). If s guarantees the players in AU g payoffs of at least m € RlAUHl

then there is a t € Sau, such that

o t;={A0)-All side payments from players in AU p to players in AU u are
fixed to zero in t

o 1, =(A0)

e t also guarantees payoffs of at least wto—the-players—inA St

PROOF. We show how to sequentially remove the specified side payments
while maintaining the payoff guarantee.

Let a and b be suppliers in A. Let s, = (5(a), p.) and s, = (5(b), ps)-

First, consider a supplier to supplier payment. Suppose that p,(b) = A, that is,
supplier a pays A to supplier b. Because both a and b are in A, we can achieve
the same utility transfer as the side payment by setting the side payment to
zero and changing ((a) to f(a) — A and ﬁ( ) ﬁ(b) + A. Thus, we can zero
out the side payment from a to bwhi : : 3 A : :

Now, consider a supplier to buyer payment. Suppose that p,(x) = A. In other
words supplier a pays A to the buyer. We can achieve the same utility transfer
as the side payment by setting the side payment to zero and changing 3(a) to
Blay+AB(a) —A. Thus, we can zero out the side payment from a to pwhile

i o 1o -

10



A similar change works for a payment from the buyer to a supplier.

Lemma 2 Let strateqy vector s € Sp realize payoff vector w. If s, = (A

and there exists a € C — A such that 7, > 0, then m € D(AU i both SP
and NOSP .

PROOF. Since all side payments are zero in NOSP it is impossible for 7,
to be greater than zero. Thus, the statement is trivial for NOSP .

Consider the two stage distribution of wealth interpretation of SP . Since there
exists a € C = A such that m, >0, in s there is a net flow of side payments
from AU p to C = A in stage two of SP . Instead of following strategy s,
the players in AU p can set to zero all side payments going from AU p to
C — A With this action, at least m, more utility stays in AU p at the end of
stage two. The players in AU p can use side payments amongst themselves
so_that each plaver gets an extra m,/(lA] + 1) utility at the end of stage two
than what the player received from following strategy s. Moreover, since the
players in C — A only have control over the non-negative side payments flowing
from C — A to AU . we have shown that the players in AU p can guarantee
themselves payoffs greater than the payoffs that they received from following

s. Thus, m € D(AU p) in SP .

Lemma 3 [f m satisfys 4 5 Y —— , ,
M%MWWJZSP or NOSP | then 7, > 0 for allaep

PROOF. We prove the statement by contradiction. Suppose that m, < 0 for
some player a._

If a is a supplier, a can guarantee at least 0 utility with strate 7(a).0) € S,.

If a is the buver, a can guarantee 0 utility with strate 0.0). Thus. 7 € D({a
in both SP and NOSP . Thus, 7 is not in the core of either game.
Lemma 4 Let m be a payoff vector, and let s be a strateqy vector in Sp. I

the players in P can quarantee themselves payoffs of at least ™ by playing s
but s does not realize 7, then m is not in the core of either SP or NOSP .

PROOF. Let 5, = (A.p,).

11



We use a proof by contradiction. Assume 7 is in the core of either SP or NOSP.
By Lemma 3, we know that m, > 0 for all ¢ € P. By Lemma 2, we know that

Te=0foralla cC = A

First, we derive a contradiction with the assumption that 7 is in the core of
SP .

Consider the two stage distribution of wealth interpretation of SP . Since
s_guarantees payoffs of at least m but s does not realize m, we know that
To. S Ugfs) for all a € P and there is some a € P such that m, < u.(s). Thus
by following s, the total wealth held by AU u in SP at the end of stage one
is greater than 3 ,cp me. In turn, we have 3 .ep Mo 2 2 acau, Mo et A be the
difference between the total wealth held by AU u at the end of stage one and

Z ac AL Ta.

Instead of following s. the players in AU u can set to zero all side payments
from AU p to C = A The players in AU u can use side payments amongst
themselves so that each plaver gets an extra A/([A|+ 1) utility at the end of
stage two than what the player received in 7. Moreover, since the players in
C.— A only have control over the non-negative side payments flowing from
C— A to AUp, we have shown that the players in AU g can guarantee
themselves payoffs greater than the payoffs that they received in . Thus,
for-a-set-of players-we have constructed a new strategy ¢ € Sa, in SP for the
players in AU p which guarantees payoffs greater than 7 for each player in

AU u. Thus, m € D(AU ) in SP . This contradicts the assumption that 7 is
in the core of SP . Thus, m must be in the core of NOSP.

We now derive a contradiction with the assumption that 7 is in the core of
NOSP. By Lemma 1 and the fact that ¢ guarantees payoffs sreater than 7 for

each player in AU p, we also have m € D(AU p) in NOSP ., This contradicts
the assumption that 7 is in the core of NOSP.

3.2 Core Equivalence between SP and NOSP

In this section, we prove that the core of NOSP is the same as the core of SP

. All the lemmas in this section are used solely to prove the main result of the
section, Theorem 11,

Lemma 5 Let m_be a payoff vector. If m € D(A) in NOSP . then m € D(A)
in SP .

PROOF. The players in A to-be-ableto-improve-uponthe payoifsgivenin
can follow exactly the same strategy in SP as they would in NOSP to guarantee

12



ayofls greater than the pavoffs in 7; they simply fix all their side payments
to zero.

Lemma 6 Let 7w _be a payoff vector. If m € V(P) in SP and w s in the core
of SP , then m € V(P) in NOSP

PROOF. By Lemma 4, the-buyer-must-be-r_is realized by some strategy
vector s € Sp in A-SP -MLQLW

Consider the two stage distribution of wealth interpretation of SP . By Lemma 2,
we have m, = 0 for all a € C — A. Thus, at the end of stage two of SP . there is
no utility in C — A. Thus, the players can achieve the same utility distribution
by setting to zero all side payments except side payments from AU pto AU .
Thus 7 is realized by a strategy vector with all zero side payments except the
side payments from AU p to AU 4.

By Lemma—22-if Lemma 1, there is a strategy vector with all side payments
fixed to zero which guarantees payofls of at least 7 for all the players in P.
Thus m € V(P).

Lemma 7 If payoff vector w is in the core of SP , then w is in the core o
NOSP .

PROOF. The statement follows from Lemma 6 and the contrapositive of
Lemma 5.

Lemma 8 Let 7 _be a payoff vector. If m € V(P) in NOSP , then m € V(P)
in SP .

PROOF. By the definition of V(P), the players in A-ean-guaranteesome

pavolls nder transferable ntilities - thev can ciarantee the same pavolls nnder
non-transferableutilities—P can guarantee themselves payofls of at least m b

laying some strateey s € Sp in NOSP . The players in P can follow exactl
the same strategy in SP to guarantee pavoffs of at least .

. Y Y

Lemma 9 If payoff vector w is in_the core of NOSP . then for all A C P we
have m ¢ D(A) in SP

13



PROOF. We use a proof by contradiction. Suppose that 7 € D(A) in SP for
some A C P. Thus, there is a strategy vector s € S4 in SP which guarantees
each player in A a greater payoff than the payoff given in 7.

Since 7 is in the core of NOSP , by Lemma 3 we know 7, > 0 for all a € A.

We split the proof into two cases. In the first case, suppose that A. Tt is
impossible for s to guarantee a payofl greater than 0 for any player in A since
the buyer can always play (). Thus, we get a contradiction with the assumption

that w € D(A) in SP .

For the second case, suppose 1 € A. Let s, = (B . There can not be some
supplier in B but not in A since that supplier can always play the strate

A, 0) where A > M to give the buyer a negative payoff. Since 7, > 0, the

existence of a supplier in B — A contradicts the assumption that 7 € D(A) in
SP .

Thus, we have B C A — )

If there is some supplier a in .A but not in B, since 7, > 0, we know that s must
uarantee a pavofl greater than 0 for a. Let v be the pavoff vector realized

when the players in A follow s and each of the players in P — A follow the
strategy (0,0). Thus, we have v, > 0 and v, > m, for all b € A. By Lemma 2,

we have v € D(BU u) in SP . Since v € D(BU p) in SP vy > m for all b € A
and BC A — we have 7 € D(BU ) in SP .

Thus, we have s, = (B and m € D(BU p) in SP . By Lemma 1, we also
have 7 € D(B U u) in NOSP , which contradicts the fact that 7 is in the core

of NOSP .

Lemma 10 If payoff vector 7 is in the core of NOSP |, then m is in the core
of SP ..

PROOF. The statement follows from Lemmas 8 and 9.

Theorem 11 The core of NOSP is equal to the core of SP .

PROOF. Follows from Lemmas 7 and 10._

8.8 The Core of NOSP

In this section, we show a characterization of the core of NOSP with The-
orem 20. By Theorem 11. the same characterization is true of the core of
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SP . Throughout the section, we refer to Equations (1), (2), and (3) , whose
definition comes from Theorem 20. The lemmas in this section are solely used
to prove the main result of the section, Theorem 20. At the end of the section,

as a corollary to the theorem, we show Lemma 21, stating that the core does
not change depending on the decomposition chosen in the transformation from

a combinatorial minimization problem to a buyer-supplier game. FThe-proofis
directiv

Lemma 12 If a payoff vector © is realized by some strateqy vector s € S

where s, = (A,0), then 7, = M — Eval(A) — Mg

PROOF. For any a € C let s, = a . Since 7 is realized by s and
all side payments are zero, we have m, = 8(a) — 7(a) for all a € A, We also
have that 7, = M — [Becost(A) + a)]. Substituting for G(a), we have
m, = M — [Beost(A) + T(a) + m,|. By the definition of Eval, we
have 7, = M — Eval(A) — T,

Since all side payments are fixed to zero. we have m, = 0 for all a € C — A.
Thus we can write m,, = M — Eval(A) — T,

Lemma 13 If a payoff vector m is in the core of NOSP |, then 7w, = M — MinEval(C) — T,.

PROOF. Let F C C be such that Eval(F) = MinEval(C). We first show that

any v realized by a strategy vector s with s, = (A, 0) and Eval(.4 Eval(F

Let A = (Eval(A) — Eval(F F|l+1). Since Eval(A Eval(F) and by the
definition of F. we have A\ > 0. Construct a strategy vector t € S where

ty= (.7-" , 0)

ty= y%j—j +)\M2 for all a € F.
Since side payments are fixed to zero, the suppliers in C — F have no strategies
which can affect the pavofls of the players in F U iven that the plavers in

F U u follow t. Let u € Sp be any strategy vector with projection onto F U
equal to .

Straight forward calculations with the game’s utility functions show that
ug(u) — v, = u,(u) —uy,(s) = X\ for each supplier a € F.
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Consider

u,,(w) = v, =uy(u) —u,(s)

=[M=Bcost(F)— > _ (vo+7(a)+N)]

acF
o= [M=Bcost(A)— %(tiﬂ (a))]
=[=Eval(F)— Z(qu;)‘)] —Eval(A ZVQ
__acF __acA

=Eval(A)—=Eval(F)— Y A[> vo — > _val.

__acF acA  aeF

By the utility functions of NOSP and the definition of A and v, we have v, = 0

for all @ € C — A. Thus, the bracketed quantity in the above expression is at
least zero. Thus, we have

u,(u)—v,, >Eval(A)=Eval(F)— > A=\
__aeF

where the equality comes from the definition of \.

Thus, we have v € D(F U u).

We have shown that any vector in the core is realized by a strategy vector
s with s, = (A, 0) where Eval(A) = Eval(F). The lemma statement follows

from Lemma 12 and the definition of .

Lemma 14 If payoff vector m _is in the core of NOSP | then_

> 7 <MinEval(C — A)—MinEval(C)
acA

or all A C C.
PROOF. We use a proof by contradiction. Assume 7 is in the core and

m, > MinEval(C — A) — MinEval(C) for some A C C. We show that m € D(F U
where F C C — A is such that Eval(F) = MinEval(C — A).

Since 7 is in the core. by Lemma 4 it is realized by some strategy vector s € S
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Let A\ = 7, — Eval(F) + MinEval(C F| +1). Since 7, > MinEval(C — A) — MinEva
we have A > 0. Construct a strategy vector t € S where

b= (.7-" , O)

ty= W@T —l—)\wj for all a € F.
Since side payments are fixed to zero, the suppliers in C — F have no strategies
which can affect the payoffs of the players in F U iven that the players in

F U u follow t. Let u € Sp be any strategy vector with projection onto F U
equal to .

Straight forward calculations with the game’s utility functions show that
ug () — 1, = ug,(u) — uy(s) = \ for each supplier a € F.

Let s, = (B,0) and consider

uy, (u) =, =, (u) —u,(s)

=[M=Bcost(F)— > (my37(a)+))]

acF

o[ M=Beost(B)— > _(m+7(a))]

acB
=[=Eval(F)— Z (mo )| =[Eval(B Z?TQ
I 0B

=Eval(B)—Eval(F)— > A [> m — > 4

__aeF aGB L AEF

By the utility functions of NOSP and the definitions of B and m, we have
m, = 0 for all a € C — B. Thus Ty = m,. Thus, we can write

wy(u)—u,(s)=Eval(B) =Eval(F)— > A+[> 7o — > 7]

L_AEF acC  aeF

=Eval(B)—Eval(F)~ S0 Y[ 3 mu— > om,)

__aeF  acA aEC A aeF

Since F C C — A, we know that the bracketed quantity in the above expression
is at least zero. Thus, we have

uzmuu >EvalB —Eval(F +Z7ra Z/\;)\

AEA a8 L

where the equality comes from the definition ef-on \.

Thus, we have 7 € D(F U which contradicts the fact that 7 is in the core
of NOSP .
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Lemma 15 Payoff vectors in_the core of NOSP satisfy Equations (1), (2),
and (3) ._

PROOF. The statement follows from Lemmas 3, 14, and 13.

Lemma 16 If payoff vector w satisfies Equations (1), (2), and (3) then & D(A)
or A C P such that A.

PROOF. We use a proof by contradiction. Suppose 7™ € D(.A). In other
words, the plavers in A can guarantee pavoffs greater than the payoffs given

in . But, we know that 7, > 0 for all a € A and the players in A can onl
uarantee 0 payoffs because the buver can always play (0),0). Thus., we have
a contradiction with m € D(A).

Lemma 17 [f payoff vector 7 satisfies Equations (1), (2), and (3) then & D(A)
or A C P such that u € A.

PROOF. We use a proof by contradiction. Suppose m € D(A) for A C P
such that u € A. Thus, the players in A can follow a strategy s € S, that
uarantees pavofls greater than the payoffs they are given in .

Let t € Sp be any strategy vector with projection onto A equal to s. Let

t, = (B,0). Let the payofl vector realized by ¢ be v.

Since s guarantees payoffs greater than m for the players in A, all extentions
of s to a strategy vector in Sp must realize payoff vectors @’ with m, > 7, > 0
for a € A. The existance of some a € B — A contradicts this statement, since
the supplier a sets their bid arbitrarily high in some extensions of s, resulting

in a negative utility for the buyer. Thus, we have that there is no such a and
BCA.

Since 7 satisfies Equation (3) we have 7, = M — MinEval(C) — Te. B
Lemma 12, we have v, = M — Eval(B) — 7%

Since following s guarantees a payoff greater than the payoff given in 7 for
every player in A, we have 7, < r,. Thus, we have

S
=M —Eval(B)— Y v,—[M—-MinEval(C)— > ‘7]
AEC L AEC
=MinEval(C)=Eval(B)+ Y 7, — > v,
AL agC
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Let F C C be such that Eval(F) = MinEval(C). From Equation (2) with the

singleton sets, we have that 7, = 0 for all a ¢ F. From the definition of v, we
have that v, =0 for all a ¢ B. Let U = A — . Thus, we have

0<MinEval(C)=Eval(B)+ > m, — Y v,

La€F . acB
=MinEval(C)=Eval(B)+ > @+ ( > Ta— Y Va)— D Va
LAETUeSTU | e€T0B | a€BF

By the definition of v and the utility functions in NOSP , we have that v, =0
for all a € C — B. We also have v, > 7, > 0 for all a € B. Thus, we can dro
the last term in the above expression to get

O<MinEval(C)—=Eval(B)+ > m +( > m— > Vq)

ORI S SUAN I VAN

By the definitions of v and U, we also have that v, > 7, for all a € U. Thus
we can drop the parenthesized term in the above expression to get

0<MinEval(C)=Eval(B)+ >  m,
AT U

Eval(B)=MinEval(C)< Y 7,
OEEU

Let K=F —U. Since BC A and BCC, we have B C U. Thus, we have
B C C — K. By the definition of MinEval, we have MinEval(C — ) < Eval(B).

Thus, we have

MinEval(C — K)=MinEval(C)<Eval(B)—MinEval(C)< > m,.

_ack
This statement contradicts the fact that 7 satisfies Equation (2) for K.

Lemma 18 If payoff vector m_satisfies Equations (1), (2), and (3) . then
7.€ V(P) in NOSP . _

PROOF. Let F C C be such that Eval(F) = MinEval(C). Define s € Sp such

that
su= (F,0)
84= (my47(a),0) for all o € F
5,= (0,0 foralla e C = F
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Straight forward calculations with the game’s utility functions show that

ug(s) = m, for each supplier a € F.

Consider

uu(8)= M =[Beost(F)+ Z}T(W@Lf (a))]

= M= [Bval(F)+ > 7]

~OEL

= M-Eval(F)- Y.,

X

Since 7 satisfies Equation (2), we have m, = 0 for all a € C — F. Thus, we have

uu(s)= M=Eval(F)-> =,

2EC

= M—MinEval(C)— ) "7,

2EC

=~

where the second equality comes from the definition of F and the last equalit
comes from the fact that 7 satisfies Equation (3)

~

Finally, we have u,(s) = 7, for each supplier a € C — F, since 7, = 0 for such
a.

A

Thus, s realizes m and ™ € V(P).

Lemma 19 If payoff vector m satisfies Equations (1), (2), and (3) then 7 is
an _the core of NOSP .

PROOF. The statement follows from Lemmas 16, 17, and 18, _

In the following theorem, the parameter 7 is made explicit, though its value
is clear from the definition of the buyer-supplier game, NOSP .

Theorem 20 A_payolf vector m_is in the core of NOSP if and only if it
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satisfies.
2.0 forallac® (1)

> m,<MinEval(r,C — A)—=MinEval(r, C) for all AC C (2)
acA
m,=M—-MinEval(r,C)— > T (3)
agC

PROOF. The statement follows from Lemmas 15 and 19.

Lemma 21 Let Beost™(A) = Y ,ca7(a) + Beost(A). The core of the huyer

supplier—games-buyer-supplier games defined by (C, 7, Beost) and (C,0, Beost™)
15 the same.

PROOF. We have Eval(r,Bcost, B) = Eval(0, Bcost™, B) for all BCC b
the definition of Fval and Bcost™. Thus, we have MinEval(r, Beost,.A)
MinEval(0, Beost™, A) for all A C C. The result follows from Theorem 20._

A~

4 Polynomial Time Optimization Over the Core Vectors

We define the separation problem on a set of linear inequalities A as follows.
Given a vector m, if 7 satisfies all of the inequalities in A, then do nothing;
otherwise, output a violated inequality a € A. It is well known that the sepa-
ration problem is polynomial time equivalent to linear function optimization
over the same set of inequalities [13, p. 161].

Let (C, 7, Bcost) define a buyer-supplier game. In this section, to simplify the
notation, we will omit the parameter Becost from Eval and MinEval since it is
fixed by the buyer-supplier game.

In this section, we will analyze an algorithm to solve the separation problem
for the exponentially sized set of inequalities given in Equations (1), (2), and
(3). We now give the algorithm, which we call the separation algorithm. Given
the payoff vector 7 as input,

1 Tterate over Equations (1) and (3) to check that they hold. If some equa-
tion does not hold, output that equation and halt.

2 Compute F C C such that Eval(r, F) = MinEval(7,C). If there is some
a € C — F with m, > 0, output the inequality from Equation (2) corre-
sponding to {a} and halt.
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3 Define 7(a) = 7(a) + m, for a € C. Now, compute F C C such that
Eval(7, F) = MinEval(7,C). If Eval(7, F) < Eval(7, F), output the in-

equality from Equation (2) corresponding to F — F. Otherwise, halt.

Theorem 22 If given an input 7 : C — R, it is possible to compute both
Eval(7,A), for any A C C, and F C C such that Eval(7, F) = MinEval(7,C)
in polynomial time, then the separation problem for Equations (1), (2), and
(3) is solvable in polynomial time. By the equivalence of separation and opti-
mization, optimizing any linear function of ™ over Equations (1), (2), and (3)
15 also possible in polynomial time.

PROQOF. It is clear that given the theorem’s assumptions, the separation

algorithm runs in polynomial time. The statement follows from Lemmas 23
and 24.

Lemma 23 If the separation algorithm returns an inequality on input w, then
m violates the returned inequality.

PROOF. If the algorithm returns an inequality in step 1, then the inequality
is violated since the algorithm performed a direct check.

If the algorithm returns an inequality in step 2, then the inequality is violated

since 7, > 0, but Mi MinEval(7,C — {a}) = MinEval(7

Suppose the algorithm returns an inequality in step 3. Thus, Eval(f',f ) <
Eval(7, F). By—applyine—Applying the definitions of Eval and 7, we have

Y s Ta + Eval(r, F) < Yuer Ta + Eval(r, F).

Since the algorithm reaches step 3, we know that 7, = 0 for all a € Cc—F.
Thus, we have 3 77 7o + Eval(7, F) < X ,c 7 T, + Eval(7, F), which in turn
gives Eval(r, F) — Eval(r, F) < > wcr—7 Ta-

Let A = F — F. From the algorithm, we know that the set F satisfies
Eval(r, F) = MinEval(t, C). Since F C C— A, the definition of MinEval implies
that MinEval(r,C — A) < Eval(r, F). Thus, we have MinEval(r,C — A) —
MinEval(r,C) < Eval(r, ) — Eval(r, F) < Y ,c1 e, which shows that the
inequality output by the algorithm is violated.

Lemma 24 If 7 violates some inequality in Equations (1), (2), and (3), then
the separation algorithm run on input ™ returns an inequality.

PROOF. If the violation is in Equations (1) or (3), the violated inequality
will be output by the direct check in step 1. If some inequality is output by
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step 2, we are done. Otherwise, since steps 1 and 2 output no inequality, we
know that m, = 0 for all « € C — F, where F is as computed in the algorithm.

Now, suppose the inequality from Equation (2) for set A C C is violated. In
other words, we have, Y ,c 47, > MinEval(7r,C — A) — MinEval(7,C). Let B
be such that Eval(r, B) = MinEval(r,C — A).

Thus, we have Y ,c 4 7, > MinEval(r,C — A) — MinEval(7,C) = Eval(r, B) —
Eval(r, F).

Since 7, = 0 for all a € C — F, we have Eval(7, F) + > crna Ta > Eval(r, B).

Adding > ,c7_4 7, to both sides of the above inequality and substituting the
definition of Eval, we have Bcost(F) + Y ,er7(a) + X ocr ma > Beost(B) +
YaeB T(a) + Xaer—aTa-

Since m, = 0 for all a € C — F and B C C — A, we can alter the right
hand side of the above inequality to get Beost(F) + Y ,cr 7(a) + Y ocr Ta >

BCOSt(B) + ZaEB T(CL) + ZaeB o + Zaef—A—B Tq-

By applying the definition of 7 and Eval, we have Eval(7, F) > Eval(7, B) +
> aer—a—B Ta- We know that m, > 0 for all a € P since the algorithm does not
output anything in step 1. Thus, Eval(7, F) > Eval(7, B) > MinEval(7,C) =
Eval(f',]:" ), where Fis as computed in the algorithm. So, step 3 outputs an
inequality.

The following lemma illustrates a key difference between Garg et al. and this
work.

Lemma 25 If suppliers are substitutes, then all but the |C| singleton equa-
tions of Equation (2) are not constraining. Thus, if suppliers are substitutes,
optimization over the core of the buyer-supplier game is reduced to solving a
polynomially sized linear program.

PROOF. Suppose that the suppliers are substitutes. By the definition of
suppliers are substitutes, we have that V(P) — V(P —A) > X,c[V(P) —
V(P —{a})] for all A C C. By the definition of V', we have

MinEval(r, Beost,C — A) — MinEval(r, Beost, C)

> Y [MinEval(r, Beost, C — {a}) — MinEval(t, Beost, C)]
acA

for all A C C. This implies that if the singleton equations in Equation (2)
are satisfied, then so are all equations in Equation (2). Thus, if suppliers are
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substitutes, we may drop all non-singleton equations from Equation (2) and
reduce the number of inequalities to a polynomial in the number of players.

5 Inapproximability of Optimization Over Core Solutions

Consider a buyer-supplier game defined by (C, 7, Bcost). We introduced the
concept of the focus point price in the introduction. The concept leads us to
ask the natural question: What is the difference between the best and worst
core outcome for the buyer? In other words, the value of interest is the solution
to the linear program: maximize Y ¢ 7, subject to Equations (1), (2), and (3).
This natural question leads us to define the focus point price (FFP) problem as
follows: on input (C, 7, Beost), output the optimal value of the afore mentioned
linear program.

Define the Necessary Element (NEL) problem as follows. Given parameters
(C, 7,Bcost) return TRUE if there exist an element a € C such that for all
F C C satisfying Eval(r, Beost, F) = MinEval(7, Beost,C) we have a € F.
Otherwise, return FALSE.

Define the OPT-SET problem as follows. Given parameters (C, 7, Bcost), re-
turn F such that Eval(r, Beost, ) = MinEval(7, Beost, C).

In this section, we will show that the FPP problem, the OPT-SET problem

and the NEL problem are polynomlal time equlvalent Aoninfor readability

5 : > ~the-In Section 5.1,
%MAWWM
problem is solvable in polynomial time. In Section 5.2, we show the polynomial

time equivalence of NEL, OPT-SET, and separation over Equations (1), (2),
and (3) .

5.1 Polynomial Time Reduction from OPT-SET to NEL

In this section, we show that given a polynomial time algorithm to solve the
NEL problem, we can solve the OPT-SET roblem in polynomial time. AH of

the lemmas in this section -

techniealreport-are used solely to prove the Sectlon S main result Lemma 30.

For a fixed tuple (C, 7, Bcost) we say we extend the tuple to contain a shadow
element for an element a C C by creating the extended tuple (é, 7, Beost™),
where ¢ = C U b with b ¢ C; 7 is the same as 7 with the addition that
#(b) = 7(a); and for A C C, if b ¢ A, then Beost*(A) = Beost(A), oth-
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erwise Bceost*(AA) = Beost((A — {b}) U{a}). We call b the shadow element
corresponding to a.

The full shadow extension of (C,T,Bcost) is the tuple (é, 7, Bcost™) resulting
from extending (C, 7, Bcost) to contain a shadow element for each element in

C.

First, we reduce OPT-SET to NEL. To show the result, we analyze the fol-
lowing algorithm, which we call the shadow algorithm.

On input (C, 7, Bcost),

1 Let {C.# Beost™)(C*. 7, Beost™) be the full shadow extension of (C, 7, Bcost).

Let the program variable C equal C*,.

2 For each a € C
e Remove a’s corresponding shadow element from C.
e Run NEL on (C, 7, Beost*).
e [f the return value is TRUE, then add the shadow element back to C.
e If the return value is FALSE, then remove a from C.

3 Return C NC. In other words, we return all elements from C remaining in
¢ , disregarding any shadow elements.

Lemma 26 Let (C,7,Bcost) be the input to the shadow algorithm. Also—let
{57 Beost™)—Let the triple (C*,7.Bcost”) be the full shadow extension of

(C, T, Bcost). If for all #@&A C C* the NEL problem on mput (A, 7, Bcost™)
15 solvable in polynomial time, then the 4 e -

ws5-setvable-shadow algorithm runs in polynomial time.

PROOF. Creating C* takes polynomial time since there are O(|C|) elements.

Defining 7 takes polynomial time since there are O(|C|) inputs. Queries to

Bceost® can be implemented with polynomial overhead on top of queries to
Bcost. Thus, the initialization step of the algorithm takes polynomial time.

Consider a single loop iteration. The first, third and forth lines of the loo
cach take O(|C]) time. The second step takes polynomial time by the lemma
assumption. Thus. a single loop iteration takes polynomial time.

There are |C| loop iterations and computing the intersection in the algorithm’s
final step takes O(|C|) time. Thus the algorithm runs in polynomial time. Fhe

the-

Lemma 27 The shadow algorithm maintains the invariant Mi
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MinEval(r, Beost, C)=MinEval(7, Beost*, C).

PROOF. Initially, MinEval(7. Beost.C) = MinEval(7. Beost*. C) by the definitions

of C, 7, and Bcost®.

Consider the loop iteration for a € C. Let the corresponding shadow element be
b. When we remove or add b to C. we have MinEval(7, Beost. C) = MinEval(7. Beost*, C

by the definitions of 7. and Bcost* and the fact that a is still in C.

We only remove both a remainsin-and b if NEL returned FALSE before the
removal of ¢ Let C, and C,, be the value of the variable C before and after the

removal of a, respectively. Since NEL returned FALSE on (C,,. 7. Bcost®). there
exists some F C C, such that a & F and Eval(7, Bcost®, F) = MinEval(7, Bcost*, C,).
Thus, F C C’ and MinEval(7, Becost®,C,) = MinEval(7, Bcost*,C’).

Thus, throughout the algorithm the value of MinEval(7, Beost*. C) does not
change. which concludes the proof.

Lemma 28 Let C, be the value of the variable C at the end of the—iteration
ctssociaded il e o b cape e show thal MMM

MM@ 15 %%a%ed%&%&%&%@f&ﬁ%#%%@#ﬂe%@%@
in_all OPT-SET solutions on_input (A, 7, Beost*) where A= C, NC.

PROOF. Let the arcuments of the NEL problem which is solved during the
iteration corresponding to a be (B, 7. Bcost").

Since a € C,. NEL returns TRUE during the iteration corresponding to a.

Suppose there is a solution F C C to OPT-SET on input (A, 7, Bcost™) which
does not contain a. Consider F and F where F_ contains all the shadow

elements of the elements of F. The sets F and F are disjoint and both subsets

of B. Also, by the definition of F, 7 and Beost*, Eval(7, Beost*, F) = Eval(7, Beost*. F) = MinEval(7

Thus, the NEL problem run during the iteration corresponding to a should
return FALSE. which is a contradiction.

Lemma 29 Let C, be the value of the variable C at the end of iteration
corresponding to a € C. We have MinEval(t, Beost, C) = MinEval(r, Beost.C, N C).
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PROOF. Let F be such that Eval(7, Bcost*, F) = MinEval(7, Beost*, C,,). If
we have Eval(7, Beost”*, F) = M, then let F = (: otherwise, let F be F with
cach shadow element replaced by the corresponding element in C. By the

definitions of 7 and Bcost*. we have Eval(7. Bcost*. F) = Eval(7. Bcost*. F).
But. by the construction of F. we have F C C, NC.

Thus,

MinEval(7, Beost*, C,)=Eval (7, Beost*, F)
—Eval(7, Beost*, F)  >MinEval(7, Beost*,C, N C).

Also. by the definition of MinEval. we have that MinEval(#. Bcost*,C,) is at
most MinEval(7. Beost*.C, N C). So. we have

MinEval(7, Beost*, C, ) =MinEval(7, Beost*, C, N C).

Combining Lemma 27 with the result from the last paragraph, we have

MinEval(r, Beost, C)=MinEval(7, Beost*, C,)=MinEval(, Bcost*, C, N C).

And, by the definition of # and Bcost*. we have MinEval(#. Beost*. C, N C
equals MinEval(7, Becost C,NC).

Lemma 30 Let (C.7,Bcost) be the input to the shadow algorithm. Let the
triple (C*. 7. Bcost®) be the full shadow extension of (C.t.Bcost). If for all

A C C* the NEL problem on input (A, 7,Bcost”) is solvable in polynomial
time, then the OPT-SET problem on input (C, T, Bcost) —is solvable in polynomial

time.

PROOF. By Lemma 26, the shadow algorithm runs in polynomial time.

C'NC. is a superset of a solution to the OPT-SET problem. By Lemma 28,
C'NCis a subset of a solution to the OPT-SET problem. Thus, value returned

5.2  Polynomial Time Equivalence of NEL, OPT-SET, and Separation
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In this section we show a polynomial time equivalence between the NEL prob-
lem, the OPT-SET problem and the separation problem over Equations (1),
(2), and (3) . The lemmas in this section are used to show the section’s main
result, Theorem 33, As a byproduct of the proofs. we also show an hardness
of approximation result for the FPP problem with Lemma 34

Lemma 31 The solution to the FPP problem on input (C,T,Bcost) is 0 if
and only if the solution to the NEL problem on input (C,T,Bcost) is FALSE.

PROOF. First, we prove that if the solution to the NEL problem is FALSE,
then the N problem ondnpue 10 7 Beost b b= sobvable b polvnomial time.
solution to the FPP problem is zero. Consider all of the inequality pairs
7o, < MinEval(7, Beost,C — {a}) — MinEval(r, Beost,C) and 7, > 0. Since the
solution to_the NEL problem is FALSE, for each a € C there is a F, € C
such that Eval(F,, Beost,C) = MinEval(r. Beost,C) and a & F,. Thus the first
inequality in the pair reduces to m, <0, and the pair of inequalities imply
T =0. This is_true for all a € C. Thus, optimal value of the FPP linear
program is zero.

The-intuition—behind-thislemma—is-Second, we prove that if the solution to

NELE-the NEL problem is TRUE, then the solution to the FPP problem is
reater than zero. If the solution to NEL is TRUE, then there is some element

athat-a € C such that if Eval(7, Beost, F) = MinEval(7, Bcost.C) then a € F.
In other words, a is in all OPF-SET—selutiens—solutions to the OPT-SET

problem on input (C, 7, Beost). Tn-this-easethe-

Thus, for all A C C with a € A, we have

MinEval(r, Beost,C — A)—=MinEval(7, Beost, C)>_0.

Let A = minacc/MinEval(7, Beost,C — A) — MinEval(7, Beost, C)]. Consider the

acA
vector m with m, = Oforallb € C — {al and 7, = Aand 7, = M — MinEval(7, Bcost

Since A < M — MinEval(7, Beost, C), this vector is feasible in the focus point
rice linear program and achieves a objective function value greater than zero.

Lemma 32 ] 2t 15 _possible to approximate the solution to the FPP pmblem




ss5-also—=zero—within any multiplicative factor, then the NEL problem on input
C.T1,Bcost) is solvable in polynomzial time.

PROOF. Follows from Lemma 31._

A set of (C, 7, Bcost) instances is proper if the following conditions hold:

e Given that (C, 7, Bcost) is in the set, then so is (C, 7, Bcost), where 7(a) =
7(a) + 7, for a vector m € %E'.

e Given that (C, 7, Bcost) is in the set, then so is (A, 7, Bcost®), where A-is
a—subset—of-C—and-the triple (C,7,Bcost™) is the full shadow extension of
(C, 7, Beost) and A is a subset of C.

The definition of proper instanees-has a natural interpretation when applied to
the transformations of combinatorial minimization problems to buyer-supplier
games. For example, for the shortest path problem, the first condition implies
that the set of instances is closed with respect to lengthening the edges of
the graph. On the other hand, the second condition implies that the set of
instances is closed with respect to adding parallel edges or removing a subset
of the edges.

.
following theorem.

Theorem 33 On a proper set of instances, the separation problem over Equa-
tions (1), (2), and (3), the NEL problem and the OPT-SET problem are poly-
nomial time equivalent.

PROOF. If we can solve the NEL problem on a proper set of instances in
polynomial time, then, by Lemma 30, we can solve the OPT-SET problem in
polynomial time.

If we can solve the OPT-SET problem on a proper set of instances in poly-
nomial time, then, by Theorem 22, we can solve the separation problem over
Equations (1), (2), and (3) in polynomial time.

If we can solve the separation problem over Equations (1), (2), and (3) on
a proper set of instances in polynomial time, then, by the polynomial time
equivalence of separation and optimization, we can optimize linear objective
functions over Equations (1), (2), and (3) in polynomial time. If we can opti-
mize linear objective functions in polynomial time, by Lemma 32 we can solve
the NEL problem in polynomial time.
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Lemma 34 On a proper set of instances, if it is not possible to solve the
OPT-SET problem in polynomial time, it is not possible to approximate the
solution to the FPP problem to within any multiplicative factor in polynomial
time.

PROOF. Follows from Theorem 33 and Lemma 32.

6 A Complementary Combinatorial Algorithm

In this section, we present an efficient combinatorial algorithm for solving the
FPP problem for the buyer-supplier minimum spanning tree (MST) game.

Before we go on to give the algorithm in Section 6.2, we present a useful
simplification of the linear program representing the FPP problem for general
buver-supplier games that may be of independent interest.

6.1 A Simplification of the FPP Problem

In this section, we give a simplified linear program that may be used to solve
the FPP problem.

For this section, fix a buyer-supplier game defined by (C, 1, Bcost). Let the

buyer-supplier game be derived from the combinatorial minimization problem
MinProb as described in Section 1. We omit the parameters 7 and Bcost from

MinEval since they are fixed by the game.

Lemma 35 For all A C C, we have MinEval(A) = min(M, MinProb(.A

PROOF. By the definition of MinEval and Eval, we have
MinEval(A)= glgl&l[Ev&l(B)]

= B t
Igllﬁ COS +Z7’

_acB

We explicitly instantiate the case when B = (). Since Bcost(()) = M. we have

MinEval(A)= min(M, min [Beost(B)+ > 7(a)
BCA _acB
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Since P(B) = 0 implies Beost(B) = M and since 7(a) > 0 for all a € C, we

have_

MinEval(A)= min(M, min [Beost(B)+ > 7(a)])
BcA aeB
P(B) =1

= min(M,MinProb(A))

Consider the linear program from the FPP problem for the given game. In
particular, consider the variable 7,. The variable can be viewed as a slack
variable for the constraint arising from Equation (3). In specific. we can write
0 <m,=M — MinEval(C) — m,, where the inequality comes from the
constraint m, > 0 and the equality comes from the constraint arising from
Equation (3). Thus, the following linear program is equivalent to the linear
program from the FPP problem

max Zwb

e DEC
s.t. Y mp<MinEval(C — A)—MinEval(C) forall ACC
o obeA

> m<M—MinEval(C)

beC

> 0 for all b e C.

Which, in turn, by Lemma 35 is equivalent to

max Zﬂ'b

I

s.t. > m,< min(M MinProb(C — A)) — min(M MinProb(C)) YACC

A
> m,<M— min(M MinProb(C))
= ST
> 0 Vb e C.

Call the above linear program LP1 and let its optimal value be O;.
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Consider the following linear program

max Zwb

o BEC
s.t. Y _m,<MinProb(C — A)—=MinProb(C) forall ACC
o DEA

mp> 0 for all b € C.

Call the above linear program LP2 and let its optimal value be O,.

Lemma 36 [f MinProb(C) > M, then O; = 0.

PROOF. Consider the inequality that must be satisfied by all vectors feasible
in LP1 mp, < min(M, MinProb(C — C)) — min(M, MinProb(C)). The right

hand side of this inequality is equal to 0, since M < MinProb(C) and MinProb()) = oo.

Thus, we know that O; < 0. We also have O; > 0 since the all zero vector is
feasible for LP1 .

Lemma 37 If MinProb(C) < M and O, < M — MinProb(C), then O; = O,.

PROOF. Since MinProb(C) < M, for any A C C we have.
min (M ,MinProb(C — A)) — min(M ,MinProb(C))
= min(M ,MinProb(C — A))—MinProb(C)
<MinProb(C — A)—-MinProb(C)

Thus, if a vector 7 is feasible in LP1, then 7 is also feasible in LP2. Thus, we

have Oy < Os..

Let a—* be an optimal vector for LP2. Let A be anv subset of C. Since 7* is
feasible in LP2. we have

> 7, <MinProb(C — A)~MinProb(C).

beA

Since Oy < M — MinProb(C) we also have

oty <> ", =0, <M —MinProb(C).
beA  bEC
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Thus, we have

> %< min(M ,MinProb(C — A))—MinProb(C)
beA

= min(M ,MinProb(C — A)) — min(M ,MinProb(C))

Thus, 7* is feasible in LP1. Thus, we have O; > Os.

Thus, Oy = Oa..

Lemma 38 IfMinProb(C) < M and O, > M — MinProb(C), then O; = M — MinProb(C).

PROOF. Let 7* be an optimal vector for LP2. Thus, we have

> 1" =05>M —MinProb(C)

acc

Let v* € Rl be any vector such that

0 <v*,<m*, for all a € C
> v*,=M—MinProb(C)
aeC

We know that such a v” exists since we can decrease each of the coordinates of

7 in turn, not decreasing any coordinate past zero. until we have v* = M — MinProb(C).

Thus, v* is feasible in the constraint v* < M — min(M,. MinProb(C)) of
LP1.

Let A be any subset of C. We have

> v, <Y vy =M —MinProb(C).

agd  __agC
Since 77 is feasible in LP2, we also have

> v <) 7 <MinProb(C — A)—~MinProb(C).

agA aEA
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Thus

> v o< min(M ,MinProb(C — A))—MinProb(C)

agA

= min(M ,MinProb(C — A)) — min(M ,MinProb(C))

and 17 is feasible in LP1.

The value of LP1 for vector v* is M — MinProb(C). But, the constraint v < M — min(M. MinP;

of LP1, which must be satisfied by all feasible vectors v, tells us that the value
of LP1 can be at most M — MinProb(C). Thus, we have Q1 = M — MinProb(C).

Bv Lemmas 36, 37, and 38, finding the value of MinProb(C) and the solution
to LP2 is sufficient to solve the FPP problem for given buyer-supplier game.

6.2 The Combinatorial Algorithm

Let a graph G = (V, £) and edge weights w : £ — R be given. Let MSTVal :
2¢ — R, be a function that takes as input a set of the edges A C £ and
returns the weight of the minimum spanning tree of the graph induced by the
edges of A. If no spanning tree exists, MSTVal returns oo.

By the transformation in Section 1 and Lemma 21 in the buyer-supplier min-
imum spanning tree game, we have C = &, 7(a) = w(a), and Beost(A) = M
if A does not connect all nodes in V, or 0 otherwise. We omit the parameters
7 and Bceost from MinEval, since they are fixed by the game.

bec Call theli ‘ ‘ | o P2, | lot it
i —We begin with some basics on MSTs.

Lemma 39 Let H = (V1. &) be any graph. Let T = (V1. E!) be a minimum
spanning tree of the graph H. For e € £ let the cut created in T by the
removal of e be (Ae, Be) for some A. C Vy and EP2f MinProb{€y > M —then




for LP2B, C V.
o The edge e is a minimum weight edge spanning the cut (A.. B.).

o The tree T restricted to vertices in A. is a minimum spanning tree of the
raph induced by the vertices A.. A symmetric statement is true for BB

o Let U be the set of edges spanning the cut and let a = arqg min,.,, . w(b).

We have w(a) — w(e) = MSTVal(E; — {e}) — MSTVal(&;).

PROOF. We use a proof by contradiction. Suppose there is some other edge
¢/ which spans the cut such that w(e’) < w(e). Then, we could get a new
spanning tree 1" of the graph H by replacing the edge e in £ with the edge
¢’ . The tree T” has a strictly smaller weight than the tree T’ be-anMst-of
&—Suppese-edges-er-and-e;-are-edgesin-since w(e') < w(e), contradicting the
fact that T - Suppose the removab of the dndividual edge o oo pinereases the
MST cost Dy Ay { Ao} Then. the removal of hoth edges increases the MST

buyer-supphier-MST-gameis a minimum spanning tree of H.

Similarly, if 7" restricted to the vertices in A is not a minimum spanning tree
of the graph induced by the vertices in A,, we can construct a spanning tree
of H with weight strictly smaller than 7" by connecting e, the tree 7" restricted
to B, the minimum spanning tree induced by the vertices in A.

By first_second result of this lemma, a minimum spanning tree of the graph
induced by &1 — {e} can be obtained by keeping the portions of 7" which lie
wholly in exactly one of A, or B. and attaching the smallest weight edge which
spans the cut, Thus, we get w(a) — w(e) = MSTVal(&, — {e}) = MSTVal(&)).

The following lemma is due to Bikhchandani et al., who show that in the MST
buyer-supplier game, the suppliers are substitutes [2]. Theirresult-alongwith
shows that the sineleton inequalities of

Lemma 40 Suppose the graph G is connected and thus MSTVal(E) is finite.
For any set A C £, we have MSTVal(€ — A) — MSTVal(€&) > MSTVal(€ — {e}) — MSTVal(&

Let LP2 are-be as in Section 6.1 with MinProb equal to MSTVal.
Lemma 41 The inequalities corresponding to singleton sets {e} for e € £
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form _an optimal basis for LP2. In particular, setting m, = MSTVal(€ — {e}) — MSTVal(E

or all e € £ gives an optimal vector for LP2.

PROOF. For A C £, by Lemma 40, we have

> me= Y [MSTVal(€ — {e}) — MSTVal(&)]
CEA L EEA

<MSTVal(§ — A)—MSTVal(€).

Thus. ] . . . e o .
MST-eest-associatedwith-the remeval-ofeach-edgein4—7 is feasible in LP2.
Each inequality of type 7. < MSTVal(€ — {e}) — MSTVal(£) is tight, thus it
is not_possible to_increase any coordinate of . Thus 7 is an optimal vector
and the singleton inequalities form an optimal basis.

We give a modified Kruskal Algorithm which can be used to compute the
optimal value of LP2. The-medifieationsare-asfoHows—

Run Kruskal Algorithm with the following modifications.

e Throughout the algorithm’s execution we will keep an auxiliary set of edges,
A, which is initially empty.

e When edge e is added to the minimum spanning forest, also add e to the
set A.

e Suppose edge e is rejected from addition to the minimum spanning ferest
Forest because it creates a cycle. Let the cycle created be H = (V',£’). For
each edge a € & — {e}, if a € A, label a with w(e) — w(a) and remove a
from A. Thelabels-

Lemma 42 Let G be connected and T = V 5 be the MANIMUM SPANNIN
tree computed by the / stmodified

Kruskal Algorithm when zt 8 Tun on G = V 5 [ e € 5 has been labeled, the
label is equal to MSTVal(E€ — {e}) — MSTVal(&). Otherwise, MSTVal(€ — {e}) — MSTVal(€) = oo.

PROOF. Let U be the set of edges spanning the cut created in 1" by the
removal of e. Also, let @’ be any arg min, ., . w(b). By Lemma 39 we have

w(ad) —w(e) = MSTVal(€ — {el) — MSTVal(€).

Let e be labeled by the modified Kruskal Alegorithm when the edge a creates
a cvcle. For the first part of the lemma, all we must show is a = a'.
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Let K be the set of edges which create a cycle involving e during the algorithm.
If be £ —U, then b does not span the cut created in 7" by the removal of e.
Thus, both vertices of b lie on the same side of the cut. Thus, b cannot create

a cycle involving e, since all edges in the cycle except b must be in the tree T'.

Also, the edge e cannot form a cycle with itself. Thus, we have X C U — {el.

Consider any b € U — {e}. The edge b must be rejected by the modified Kruskal

algorithm, otherwise the edge would be in 7" and wouldn’t span the cut created
in T’ by the removal of e. Thus, b must create a cycle during the algorithm.
Since all edges except b which make up the cycle must be in 7" and b spans the
cuf created by e, the cycle created by b includes e. Thus, we have U — {e} C K,
and U —fe} =K.

Since the modified Kruskal Algorithm process edges of G in ascending order
of weight and e is labeled by the element from K which is processed first,
we know a = arg min, cw(b). Since K = U, we also have a = a’ and we have
shown the first part of the lemma,

If e is not labeled, then I must be empty. Since C = U, the set U must also
be empty. And thus, the removal of e must disconnect the graph . Thus we

have, MSTVal(E€ — {e}) — MSTVal(&€) = .

By Lemmas 41 and 42, we can find the optimal value to LP2 using the modified
Kruskal algorithm, By Lemmas 36, 37, and 38, the minimum spanning tree
weight of G and the optimal value of LP2 give us the optimal value of LP1
which is the focus point price of the buyer-supplier minimum spanning tree
game on graph G.
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