
Buyer-Supplier Games:

Optimization Over the Core

Nedialko B. Dimitrov ∗, C. Greg Plaxton 1

University of Texas at Austin
1 University Station C0500
Austin, Texas 78712–0233

Abstract

In a buyer-supplier game, a special type of assignment game, a distinguished
player, called the buyer, wishes to purchase some combinatorial structure. A set
of players, called suppliers, offer various components of the structure for sale. Any
combinatorial minimization problem can be transformed into a buyer-supplier game.
While most previous work has been concerned with characterizing the core of buyer-
supplier games, in this paper we study optimization over the set of core vectors. We
give a polynomial time algorithm for optimizing over the core of any buyer-supplier
game for which the underlying minimization problem is solvable in polynomial time.
In addition, we show that it is hard to determine whether a given vector belongs
to the core if the base minimization problem is not solvable in polynomial time.
Finally, we introduce and study the concept of focus point price, which answers the
question: If we are constrained to play in equilibrium, how much can we lose by
playing the wrong equilibrium?

Key words: Assignment Game, Core, Focus Point Price, Separation Oracle

1 Introduction

In this paperpaper , we study the core of a large set of games, a subset of
assignment games, which we term buyer-supplier games [3,21] [22, Chapter 6].
We are primarily concerned with efficient computations over the set of vectors

∗ Corresponding author.
Email addresses: ned@cs.utexas.edu (Nedialko B. Dimitrov),

plaxton@cs.utexas.edu (C. Greg Plaxton).
1 Supported by NSF Grants CCF–0635203 and ANI–0326001.

Preprint submitted to Theoretical Computer Science 12 May 2008

belonging to the core of buyer-supplier games. Before diving into an overview
of buyer-supplier games, we present some connections between our work and
the existing literature.

1.1 Related Work

Though suggested by Edgeworth as early as 1881 [7], the notion of the core
was formalized by Gillies and Shapley [10,20], extending von Neumann and
Morgenstern’s work on coalitional game theory [23]. Recently, Goemans and
Skutella studied the core of a cost sharing facility location game [11]. In their
paper, Goemans and Skutella are primarily interested in using core vectors as
a cost sharing indicator, to decide how much each customer should pay for
opening the facility used by the customer. Goemans and Skutella show that,
in general, the core of the cost sharing facility location game they study is
empty. In contrast, for the buyer-supplier games we study, the core is always
nonempty. Additionally, in our work we do not view vectors in the core as
an indication of cost shares but rather as rational outcomes of negotiation
amongst the players in the buyer-supplier game. Pál and Tardos extend the
work of Goemans and Skutella by developing a mechanism for the cost sharing
facility location game which uses the concept of an approximate core [14].

There has been great interest in comparing the game’s best outcome to the best
equilibrium outcome, where the term best is based on some objective function.
For example, one may wish to compare the outcome maximizing the net utility
for all players in the game against the best possible Nash equilibrium, with
respect to net utility. Papadimitriou termed one such comparative measure as
the price of anarchy [15]. Roughgarden and Tardos have studied the price of
anarchy in the context of routing [17–19].

In this paperpaper , we introduce a quantity with a similar motivation to that
of the price of anarchy. Solution concepts often yield multiple predictions, or
equilibria. In actual game play, however, only one of the equilibria can be
chosen by the game’s players. Experiments show that conditions outside the
game, such as societal pressures or undue attention to a specific player, focus
the players’ attention on the point of a single equilibrium, which then becomes
the outcome of the game. This is a common notion in game theory called the
focus point. A player may receive different payoffs in different equilibria. How
much is the player willing to pay for a good focus point? We define the focus
point price with respect to a given player as the difference between the maxi-
mum and minimum equilibrium payoffs to the player. Stated succinctly, focus
point price answers the question: If we are constrained to play in equilibrium,
how much can we lose by playing the wrong equilibrium?

2

Recently, Garg et al. studied transferable utility games they call coalitional
games on graphs [9]. Coalitional games on graphs are a proper subset of buyer-
supplier games, which can be derived by setting the buyer’s internal cost,
Bcost, to zero (see Section 1.3 and Lemma 21). For some buyer-supplier games,
for example the buyer-supplier facility location game, it does not appear that
the game can be described with Bcost fixed to zero.

Garg et al. study the concepts of “frugality” and “agents are substitutes.”
They show that suppliers are substitutes if and only if the core of the game
forms a lattice. In buyer-supplier games, suppliers are not always substitutes.
In

::::
We

:::::::
show,

:::
in

:
Lemma 25, we show that if suppliers are substitutes, we can

optimize over the core by solving a polynomially sized linear program. Garg
et al. and, more recently, Karlin et al. study and characterize the frugality
certain auction mechanisms; the focus point price concept introduced in this
paper paper is quite different from frugality [12].

A third difference between Garg et al. and this work comes from the fact that,
similarly to the economics literature, Garg et al. are mainly concerned with the
characterization of the core: When does the core form a lattice? How do core
vectors relate to auctions? We, on the other hand, are mainly concerned with
characterizing optimization over the core. Our main results are in the flavor
of Deng and Papadimitriou, in that we are interested with the complexity of
computing using game theoretic characterizations [6].

Faigle and Kern study optimization over the core for submodular cost partition
games [8]. Faigle and Kern exhibit a generic greedy-type algorithm for opti-
mization of any linear function over the core of partition games whose value
function is both submodular and weakly increasing, a property they define.

The greedy framework of Faigle and Kern captures certain buyer-supplier
games, such as the buyer-supplier minimum spanning tree game. However,
even some buyer-supplier games derived from problems that admit greedy
solutions, such as the buyer-supplier shortest path game, are not amenable
to the approach of Faigle and Kern. In this paperpaper , we do not restrict
ourselves to greedy algorithms. By making use of the ellipsoid method, we
are able to give polynomial time algorithms for optimization over the core of
any buyer-supplier game for which the underlying minimization problem is
solvable in polynomial time.

To provide the reader with a simple, concrete example of optimization over
the core of a buyer-supplier game, towards the end of this paperpaper , we
focus our attention on the buyer-supplier minimum spanning tree game. We
give a simple greedy algorithm for this problem, which is a minor extension of
Kruskal’s minimum spanning tree algorithm. A greedy algorithm is provided
by the work of Faigle and Kern, but their exposition involves a good deal of

3

machinery. Our exposition is completely elementary.

Several methods, apart from buyer-supplier games, are known for transform-
ing a combinatorial optimization problem into a game. The cores of these
transformations have also been extensively studied. For example, Deng et al.
show results on core non-emptyness, distinguishability of core vectors, and
finding core vectors for one such transformation [5]. Caprara et al. continue
the work of Deng et al. by considering a certain optimization over the set of
core vectors for this alternate transformation [4].

1.2 Main Contributions

There has been increased interest from the theoretical computer science com-
munity in game theory. While problem-specific solutions may give us insight,
to leverage the full power of decades of study in both research areas, we must
find generic computational solutions to game theoretic problems. Indeed, oth-
ers have already realized this need [1,16]. In this paperpaper , we continue this
line of work by deriving generic results for computing with core solutions in a
large class of games.

The core of buyer-supplier games in the transferable utility setting is charac-
terized by Shapley and Shubik [21]. As a minor contribution, we extend their
result by showing that the core in the non-transferable utility setting is the
same as the core with transferable utilities. Our primary contributions are as
follows:

(1) While previous work in the economics literature has concentrated on
characterizing the core of buyer-supplier games and relating core vec-
tors to auctions, our main interest is in optimizing over the set of core
vectors [3]. We provide a generally applicable algorithm, based on the
ellipsoid method, for optimizing over the core. If the original minimiza-
tion problem is solvable in polynomial time, we show that it is possible
to optimize linear functions of core vectors in polynomial time.

(2) We fully characterize optimization over the core of buyer-supplier games
by using a polynomial time reduction to show that if the original min-
imization problem is not solvable in polynomial time, it is impossible,
in polynomial time, to test if an arbitrary vector is in the core of the
buyer-supplier game.

(3) We introduce the concept of focus point price. Our positive computa-
tional results give a polynomial time algorithm for computing the buyer’s
focus point price in buyer-supplier games when the underlying minimiza-
tion problem is solvable in polynomial time. When the underlying min-
imization problem is not solvable in polynomial time, we show that it

4

is impossible to approximate the buyer’s focus point price to within any
multiplicative factor.

1.3 Overview of Buyer-Supplier Games

The definition of a buyer-supplier game, given in Section 2.1, is self-contained
and does not require an argument. However, it is also possible to transform
a combinatorial minimization problem into a buyer-supplier game. Consider
a combinatorial minimization problem of the following form. We have some
finite set of elements C. We designate some subsets of C as feasible. To capture
feasibility, we use a predicate P : 2C → {0, 1}, where the predicate is one on all
feasible subsets of C. With each feasible set A ⊆ C, we associate a nonnegative

::::::::::::::
non-negative

:
cost f(A). The combinatorial minimization problem can then be

captured by the function MinProb : 2C → <+ defined by

MinProb(B) = min
A ⊆ B

P (A) = 1

f(A)

where <+ denotes the nonnegative
::::::::::::::
non-negative

:
real numbers.

To transform the above minimization problem into a buyer-supplier game,
we associate a player with each element of C; we call such players suppliers.
We also add another player whom we call the buyer. In the game, the buyer
wishes to purchase a feasible subset of C. The suppliers, on the other hand,
are offering their membership to the buyer’s set at a price.

To fully specify the game’s model of a realistic interaction, we let M desig-
nate the maximum investment the buyer is willing to spend on a feasible set.
We decompose f such that f(A) = Bcost(A) +

∑
a∈A τ(a), where τ(a) is the

:::
an

:
internal cost for supplier a to be present in the buyer’s set and Bcost(A)

is the
:::
an

:
internal cost to the buyer for purchasing this specific feasible set.

In general, many such decompositions are possible, and they produce dif-
ferent games. However, when specifically applying the core solution concept,
Lemma 21 shows that all such decompositions are equivalent. Though it is
not necessary, to remove special cases in our statements, it is convenient to
let Bcost(A) = M when A = ∅ or A is not feasible.

Now that we have determined the internal costs for the buyer and the suppliers,
we can specify the game. The buyer-supplier game is specified by the tuple
(C, τ, Bcost). The strategy set for the buyer is the power set of C. By playing
A ⊆ C, the buyer chooses to purchase the membership of the suppliers in
A. The strategy set for every supplier a ∈ C is the nonnegative

::::::::::::::
non-negative

real numbers, indicating a bid or payment required from the buyer for the

5

supplier’s membership.

For any supplier a ∈ C, we let β(a) denote the associated bid. Let A be the set
of suppliers chosen by the buyer. The payoff for the buyer is M −Bcost(A)−∑

a∈A β(a). The payoff for a supplier not in A is 0. The payoff for a supplier a
in A is β(a)− τ(a).

Since we are applying the solution concept of the core, one may think of
the game play as follows. All the players in the game sit down around a
negotiating table. All the players talk amongst themselves until they reach
an agreement which cannot be unilaterally and selfishly improved upon by
any subset of the players. Once such an agreement is reached, game play is
concluded. Since no subset of the players can unilaterally and selfishly improve
upon the agreement, rationality binds the players to follow the agreement.

The fully formal definition of a buyer-supplier game is given in Section 2.1. The
transformation process described above can be used to create buyer-supplier
games from most combinatorial minimization problems. For example, mini-
mum spanning tree, Steiner tree, shortest path, minimum set cover, minimum
cut, single- and multi-commodity flow can all be used to instantiate a buyer-
supplier game.

As a concrete example and interpretation of a buyer-supplier game, consider
the buyer-supplier minimum spanning tree game. In this game, a company
owns factories on every node of a graph. The company wishes to connect the
factories by purchasing edges in the graph. Each edge is owned by a unique
supplier player. Each supplier has an internal cost associated with the com-
pany’s usage of the edge. The company has a maximum amount of money it is
willing to spend on purchasing edges. Depending on the transportation condi-
tions of a particular edge, the company may have some internal cost associated
with choosing that particular edge. The buyer-supplier game paradigm yields
similarly natural games when applied to other minimization problems.

In this paper paper we will be concerned with efficient computation over the
set of core vectors. For the rest of the paperpaper , when we say polynomial
time, we mean time polynomial in the size of the parameter C, which is also
polynomial in the number of players of the buyer-supplier game.

1.4 Organization of the PaperPaper

In Section 2 we define buyer-supplier games and the core of a game. In Sec-
tion 3 we characterize the core of buyer-supplier games. In Section 4 we give
positive computational results, namely the generic algorithm for optimizing
over the set of core vectors. In Section 5 we give negative computational results

6

by showing polynomial time equivalence between several related problems. In
Section 6 we give the problem-specific combinatorial algorithm for the buyer-
supplier game arising from the minimum spanning tree problem.

2 Definitions

::
In

::::::
this

:::::::::
section,

::::
we

::::::::::
formally

::::::::
define

:::::::::::::::::
buyer-supplier

::::::::
games

:::::
and

::::::
give

:::::
the

::::::
game

::::::::::
theoretic

::::::::::::
definitions

::::::::::
required

::::
for

:::::
our

::::::::::
analysis.

:

2.1 Buyer-Supplier Games

Let C be a finite set and M be a nonnegative
:::::::::::::::
non-negative

:
real number.

Let τ be a function from C to <+. Let Bcost be a function from 2C to
<+ such that Bcost(∅) = M . The simplifying condition that Bcost(∅) =
M is not required. We explain the condition’s purpose later in this sec-
tion. For A ⊆ C, let Eval(τ, Bcost,A) denote Bcost(A) +

∑
a∈A τ(a). For

A ⊆ C, let MinEval(τ, Bcost,A) denote minB⊆A Eval(τ, Bcost,B). We will
omit the parameters τ and Bcost from the functions Eval(τ, Bcost,A) and
MinEval(τ, Bcost,A) when the value is clear.

Given a tuple (C, τ, Bcost), we proceed to define a buyer-supplier game. As-
sociate a player with each element of C. Call the players in C suppliers. Let
there also be another player, µ, whom we call the buyer. Let P = C ∪ {µ} be
the set of players for the buyer-supplier game.

The strategy for supplier a is a tuple (β(a), pa) with β(a) ∈ <+ and pa : P →
<+. The first element, β(a), represents supplier a’s bid to the buyer, requiring
the buyer to pay β(a) for using the supplier’s services. The second element,
pa, represents the nonnegative

::::::::::::::
non-negative

:
side payments supplier a chooses

to make to the game’s players. By pa(b) we denote the side payment a makes
to player b.

The strategy for the buyer, µ, is a tuple (A, pµ) where A ∈ 2C
:::::::
A ⊆ C

:
and

pµ : P → <+. The first element, A, represents the suppliers chosen by the
buyer for a purchase. Similarly to a supplier, the second element, pµ, represents
the nonnegative

:::::::::::::::
non-negative side payments the buyer chooses to make to the

game’s players.

For each player a ∈ P we denote the player’s strategy set by Sa. For a set
of players A ⊆ P, we denote the set of strategies

⊗
a∈A Sa by SA. We call

elements of SA strategy vectors. We index strategy vectors from SA by the
elements of A.

7

We now define the utility function for each player. Suppose strategy s ∈ SP
is played. Specifically, suppose that (A, pµ) ∈ Sµ and (β(a), pa) ∈ Sa for each
a ∈ C are played. The utility function for buyer is uµ(s) = M − [Bcost(A) +∑

a∈A β(a)] + [
∑

b∈P pb(µ) − ∑
b∈P pµ(b)]. The utility for a supplier a in A is

ua(s) = β(a) − τ(a) + [
∑

b∈P pb(a) − ∑
b∈P pa(b)]. The utility for a supplier a

not in A is ua(s) = [
∑

b∈P pb(a)−∑
b∈P pa(b)].

Interpreting, the buyer begins with a total of M utility and chooses to make
a purchase from each supplier in A. The buyer gives β(a) to each supplier
a ∈ A and loses an extra Bcost(A) from the initial M utility. Each supplier
a in A receives the bid payment from the buyer and loses τ(a) because the
supplier must perform services for the buyer. The distribution of sidepayments
completes the utility functions. The requirement that Bcost(∅) = M lets the
strategy ∅ stand as a “don’t play” strategy for the buyer. To remove the
requirement, we could introduce a specific “don’t play” strategy to the buyer’s
strategy set, however this creates a special case in most of our proofs.

Let the sidepayment game we have defined be denoted SP. Let NOSP denote
the same game with the additional requirement that all sidepayments be fixed
to zero. In other words, in NOSP we restrict the strategy set for each a ∈ P
so that pa is identically zero.

2.2 Game Theoretic Definitions

All of the definitions in this section closely follow those of Shubik [22, Chapter
6].

We call a vector in <|P|, indexed by a ∈ P, a payoff vector.
::::
We

:::::
say

::
a

:::::::
payoff

:::::::
vector

::
π

:::
is

:::::::::
realized

::
by

:::
a

:::::::::
strategy

::::::::
vector

:::::::::
s ∈ SP ::

if
:::::::::::::
πa = ua(s) :::

for
::::
all

::::::::
a ∈ P .

:

Let π be a payoff vector and s be a strategy vector in SA for A ⊆ P. Let t be
any strategy vector in SP such that the projection

::::::::::::
restriction of t onto

::
to

:
the

coordinates in A is equal to s. If for all t and for all a ∈ A we have πa ≤ ua(t),
we say that the players in A can guarantee themselves payoffs of at least π by
playing s.

We use Shubik’s alpha theory to define our characteristic sets [22, pp. 134-
136]. Thus for a set of players A ⊆ P , we define the characteristic set, V (A),
to be the set of all payoff vectors π such that there is a strategy vector s ∈ SA,
possibly dependent on π, with which the players inA can guarantee themselves
payoffs of at least π. In the transferable utility setting, SP, the characteristic
sets can be replaced with a characteristic function. Given the definitions of
the utility functions in Section 2.1, the characteristic function Ṽ (A) for a set
of players A is equal to M −MinEval(τ, Bcost,A− {µ}).

8

We say that a set A ⊆ P of players are substitutes if Ṽ (P) − Ṽ (P − B) ≥∑
a∈B Ṽ (P)− Ṽ (P − {a}) for all B ⊆ A.

We say that a payoff vector π dominates a payoff vector ν through a set A ⊆ P
if πa > νa for all a ∈ A. In other words, π dominates ν through A when each
player in A does better in π than in ν.

For a set of players A ⊆ P , we define D(A) as the set of all payoff vectors
which are dominated through A by a payoff vector in V (A). Interpreting, the
players in A would never settle for a payoff vector π ∈ D(A) since they can
guarantee themselves higher payoffs than those offered in π.

The core of a game consists of all π ∈ V (P) such that π /∈ D(A) for all A ⊆ P.

3 A Characterization of the Core

The characterazation
::::::::::::::::::
characterization

:
of the core of buyer-supplier games in

the transferable utility setting was done by Shapley and Shubik [21]. In this
seciton

:::::::
section, we show the surprising result that the same characterization

holds in the non-transferable utility setting. In general, it is not the case that
the core of the transferable utility and non-transferable utility versions of a
game are the same. For example, the buyer may be able to use bribes to alter
the bidding strategies of some suppliers, and thus reduce the bids of other
suppliers. The following theorem

::::::::::
condition

:
characterizes the core of buyer-

supplier games.

A payoff vector π is in the core of a buyer-supplier game defined by (C, τ, Bcost)
if and only if it satisfies

πa ≥ 0 ∀a ∈ P ,∑
a∈A

πa ≤ MinEval(τ, Bcost, C − A)−MinEval(τ, Bcost, C) ∀A ⊆ C,

πµ = M −MinEval(τ, Bcost, C)−
∑
a∈C

πa.

Throughout this paper, for the sake of readability, we choose to present proofs
of the key lemmas only. Fully detailed proofs of all results are presented in
the companion technical report

:::
We

:::::::
prove

:::::
the

:::::::
result

::::::
from

::::::
first

::::::::::::
principles.

:::
In

Section 3.1
:
,
::::
we

:::::
give

:::::::
some

:::::::::::::
preliminary

::::::::::
lemmas

::::
for

::::
the

::::::::
games

:
NOSP

::::
and

:
SP .

::
In

:
Section 3.2,

::::
we

::::::
show

::::::
that

::::
the

::::::
core

:::
of

:
SP

::
is

::::
the

::::::
same

::::
as

::::
the

::::::
core

::
of

:
NOSP

:
.

:::
In

:
Section 3.3

:
,

::::
we

:::::
give

::
a

:::::::::::::::::::
characterization

:::
of

::::
the

:::::
core

:::
of

:
NOSP .

9

We take as a given the result by Shapley and Shubik, which shows that under
transferable utilities, the core is characterized by . The following key lemma
is used to show that under non-transferable utilities, the core has the same
characterization.

3.1
:::::::::::::
Preliminary

::::::::::
Lemmas

::::
on

::::
the

:::::::
Core

:::
of NOSP

:::::
and SP

:::::
This

::::::::
section

::::::::::
contains

::::::
some

::::::::::::::
preliminary

:::::::::
lemmas

:::::
that

::::
are

:::::::
useful

:::
in

::::::::::::::::
characterizing

::::
the

:::::
core

:::
of

:
NOSP

::::
and

:
SP .

:

::::
For

::::::
some

:::
of

::::
our

:::::::
proofs

:::
it

::
is

::::::::::::
convenient

:::
to

:::::::
think

::
of

:
SP

::
as

::
a

::::
two

:::::::
stage

:::::::::::::
distribution

::
of

:::::::::
wealth,

:::::::
where

::::
the

::::::::::
strategy

:::::::::
s ∈ SP ::::::::::::

determines
:::::
the

:::::::
utility

:::::::::::
transfers.

::::::::::
Initially,

::::
the

:::::::
buyer

::::
has

::::
M

::::::::
utility

:::::
and

::::
all

::::::::::
suppliers

::::::
have

::::::
zero

::::::::
utility.

:::
In

:::::
the

:::::
first

:::::::
stage,

::::
the

:::::::
buyer

::::::
gives

:::::
β(b)

::::
to

:::::
each

::::::::::
supplier

:::::::
b ∈ A

:::::
and

::::::
loses

::::
an

::::::
extra

:::::::::::
Bcost(A)

::::::
from

::::
the

:::::::
initial

::::
M

::::::::
utility.

::::::
Also

:::
in

::::
the

::::::
first

:::::::
stage,

::::::
each

::::::::::
supplier

:::::::
b ∈ A

::::::
loses

:::::
τ(b)

:::
of

:::::::
utility.

::::
In

::::
the

::::::::
second

::::::::
stage,

:::::
side

:::::::::::
payments

::::
are

::::::::::::::
distributed.

:

Lemma 1 Let A be a set of suppliers and
:::
Let

:
s ∈ SA∪µ be such that sµ =

(A, pµ). If s guarantees the players in A ∪ µ payoffs of at least π ∈ <|A∪µ|,
then there is a t ∈ SA∪µ such that

• tµ = (A, 0) All side payments from players in A∪µ to players in A∪µ
::::
are

fixed to zero
:::
in

:
t
:

•
::::::::::::
tµ = (A, 0)

:

• t also guarantees payoffs of at least πto the players in A ∪ µ.

PROOF. We show how to sequentially remove the
::::::::::
specified

:
side payments

while maintaining the payoff guarantee.

Let a and b be suppliers in A. Let sa = (β(a), pa) and sb = (β(b), pb).

First, consider a supplier to supplier payment. Suppose that pa(b) = λ, that is,
supplier a pays λ to supplier b. Because both a and b are in A, we can achieve
the same utility transfer as the side payment by setting the side payment to
zero and changing β(a) to β(a) − λ and β(b) to β(b) + λ. Thus, we can zero
out the side payment from a to bwhile maintaining the same player payoffs.

Now, consider a supplier to buyer payment. Suppose that pa(µ) = λ. In other
words supplier a pays λ to the buyer. We can achieve the same utility transfer
as the side payment by setting the side payment to zero and changing β(a) to
β(a) + λ

:::::::::
β(a)− λ. Thus, we can zero out the side payment from a to µwhile

maintaining the same player payoffs.

10

A similar change works for a payment from the buyer to a supplier.

Lemma 2
::::
Let

:::::::::
strategy

::::::::
vector

::::::::
s ∈ SP::::::::

realize
::::::::
payoff

::::::::
vector

:::
π.

:::
If

::::::::::::::
sµ = (A, pµ)

::::
and

:::::::
there

:::::::
exists

::::::::::::
a ∈ C −A

::::::
such

::::::
that

:::::::::
πa > 0,

::::::
then

::::::::::::::::
π ∈ D(A ∪ µ)

::::
in

:::::
both

:
SP

::::
and

:
NOSP

:
.

:

PROOF.
:::::
Since

::::
all

:::::
side

::::::::::::
payments

::::
are

::::::
zero

:::
in NOSP

:
,
:::
it

::
is

:::::::::::::
impossible

::::
for

:::
πa

::
to

::::
be

::::::::
greater

::::::
than

:::::::
zero.

:::::::
Thus,

::::
the

::::::::::::
statement

:::
is

:::::::
trivial

::::
for

:
NOSP

:
.

:

::::::::::
Consider

::::
the

:::::
two

::::::
stage

::::::::::::::
distribution

:::
of

::::::::
wealth

::::::::::::::::
interpretation

::
of

:
SP

:
.

::::::
Since

::::::
there

::::::
exists

:::::::::::::
a ∈ C −A

::::::
such

:::::
that

:::::::::
πa > 0,

:::
in

:::
s

::::::
there

:::
is

::
a
:::::
net

:::::
flow

::::
of

:::::
side

:::::::::::
payments

:::::
from

::::::::
A ∪ µ

:::
to

::::::::
C − A

::::
in

:::::::
stage

:::::
two

:::
of

:
SP .

::::::::::
Instead

:::
of

:::::::::::
following

::::::::::
strategy

:::
s,

::::
the

::::::::
players

::::
in

:::::::
A ∪ µ

:::::
can

::::
set

::::
to

:::::
zero

::::
all

:::::
side

::::::::::::
payments

:::::::
going

:::::::
from

:::::::
A ∪ µ

:::
to

::::::::
C − A.

::::::
With

:::::
this

:::::::::
action,

:::
at

::::::
least

:::
πa:::::::

more
:::::::
utility

:::::::
stays

:::
in

:::::::
A ∪ µ

:::
at

:::::
the

:::::
end

::
of

::::::
stage

:::::
two.

::::::
The

:::::::::
players

:::
in

:::::::
A ∪ µ

:::::
can

:::::
use

:::::
side

::::::::::::
payments

::::::::::
amongst

:::::::::::::
themselves

::
so

::::::
that

::::::
each

:::::::
player

::::::
gets

:::
an

:::::::
extra

:::::::::::::::
πa/(|A|+ 1)

:::::::
utility

::::
at

::::
the

:::::
end

:::
of

:::::::
stage

::::
two

:::::
than

:::::::
what

::::
the

::::::::
player

::::::::::
received

::::::
from

:::::::::::
following

::::::::::
strategy

:::
s.

::::::::::::
Moreover,

::::::
since

::::
the

::::::::
players

:::
in

:::::::
C − A

:::::
only

::::::
have

::::::::
control

::::::
over

::::
the

:::::::::::::::
non-negative

:::::
side

:::::::::::
payments

::::::::
flowing

:::::
from

::::::::
C − A

:::
to

::::::::
A ∪ µ,

::::
we

::::::
have

:::::::
shown

::::::
that

::::
the

:::::::::
players

:::
in

:::::::
A ∪ µ

:::::
can

:::::::::::
guarantee

::::::::::::
themselves

:::::::::
payoffs

::::::::
greater

::::::
than

:::::
the

::::::::
payoffs

::::::
that

::::::
they

::::::::::
received

::::::
from

::::::::::
following

::
s.

:::::::
Thus,

::::::::::::::::
π ∈ D(A ∪ µ)

:::
in

:
SP

:
.
:

Though technical, the equivalence of the transferable utility core and the
non-transferable utility core is not difficult to show using Lemma ??. As a
proof sketch, consider a payoff vector

Lemma 3
::
If

:
π satisfying . A set of suppliers can only guarantee zero payoffs

for themselves
::
is

:::
in

::::
the

:::::
core

:::
of

:
SP

:::
or

:
NOSP ,

::::::
then

::::::::
πa ≥ 0

:::::
for

:::
all

::::::::
a ∈ P.

PROOF.
:::
We

:::::::
prove

::::
the

::::::::::::
statement

::::
by

::::::::::::::::
contradiction.

::::::::::
Suppose

:::::
that

:::::::::
πa < 0

:::
for

::::::
some

:::::::
player

:::
a.

:

::
If

::
a

::
is

::
a

::::::::::
supplier,

::
a

:::::
can

:::::::::::
guarantee

:::
at

::::::
least

::
0

::::::::
utility

:::::
with

::::::::::
strategy

::::::::::::::::
(τ(a), 0) ∈ Sa.

::
If

::
a

::
is

::::
the

::::::::
buyer,

::
a

::::
can

:::::::::::
guarantee

::
0

::::::::
utility

:::::
with

::::::::::
strategy

:::::::
(∅, 0).

:::::::
Thus,

:::::::::::::
π ∈ D({a})

::
in

::::::
both

:
SP

::::
and

:
NOSP

:
.

:::::::
Thus,

::
π

:::
is

::::
not

:::
in

:::::
the

:::::
core

:::
of

:::::::
either

::::::::
game.

:

Lemma 4
::::
Let

::
π

::::
be

::
a

::::::::
payoff

::::::::
vector,

:::::
and

::::
let

::
s
::::
be

::
a

::::::::::
strategy

:::::::
vector

::::
in

:::::
SP .

::
If

:::
the

:::::::::
players

:::
in

:::
P

:::::
can

::::::::::::
guarantee

:::::::::::::
themselves

::::::::
payoffs

:::
of

::::
at

::::::
least

::
π

::::
by

::::::::
playing

:::
s,

:::
but

:::
s

:::::
does

:::::
not

::::::::
realize

:::
π,

::::::
then

::
π

:::
is

::::
not

:::
in

:::::
the

:::::
core

:::
of

:::::::
either

:
SP

:::
or

:
NOSP .

:

PROOF.
:::
Let

:::::::::::::::
sµ = (A, pµ).

:

11

::::
We

::::
use

::
a

::::::
proof

::::
by

::::::::::::::::
contradiction.

:::::::::
Assume

::
π

::
is

:::
in

::::
the

::::::
core

::
of

:::::::
either

::::
SP

:::
or

::::::::
NOSP.

:::
By

:
Lemma 3

:
,
::::
we

::::::
know

::::::
that

::::::::
πa ≥ 0

::::
for

::::
all

::::::::
a ∈ P .

::::
By Lemma 2

:
,

:::
we

:::::::
know

:::::
that

:::::::
πa = 0

::::
for

::::
all

:::::::::::::
a ∈ C −A.

:

::::::
First,

::::
we

::::::::
derive

::
a

::::::::::::::::
contradiction

:::::
with

:::::
the

::::::::::::::
assumption

:::::
that

:::
π

::
is

:::
in

:::::
the

:::::
core

:::
of

SP
:
.

:

::::::::::
Consider

:::::
the

:::::
two

:::::::
stage

::::::::::::::
distribution

:::
of

:::::::::
wealth

:::::::::::::::::
interpretation

:::
of

:
SP .

:::::::
Since

:
s

:::::::::::::
guarantees

:::::::::
payoffs

::::
of

:::
at

::::::
least

:::
π

:::::
but

:::
s

::::::
does

:::::
not

::::::::
realize

:::
π,

:::::
we

:::::::
know

:::::
that

::::::::::::
πa ≤ ua(s)::::

for
:::
all

::::::::
a ∈ P

:::::
and

:::::::
there

::
is

:::::::
some

:::::::
a ∈ P

::::::
such

::::::
that

:::::::::::::
πa < ua(s).::::::

Thus

:::
by

:::::::::::
following

::
s,

:::::
the

::::::
total

::::::::
wealth

::::::
held

::::
by

:::::::
A ∪ µ

:::
in

:
SP

:::
at

::::
the

:::::
end

:::
of

:::::::
stage

::::
one

::
is

::::::::
greater

::::::
than

:::::::::::

∑
a∈P πa.:::

In
:::::::
turn,

:::
we

::::::
have

::::::::::::::::::::::::::

∑
a∈P πa ≥

∑
a∈A∪µ πa.::::

Let
:::
λ

:::
be

::::
the

:::::::::::
difference

:::::::::
between

:::::
the

::::::
total

::::::::
wealth

:::::
held

::::
by

:::::::
A ∪ µ

:::
at

:::::
the

:::::
end

::
of

:::::::
stage

:::::
one

::::
and

::::::::::::

∑
a∈A∪µ πa.:

::::::::
Instead

:::
of

:::::::::::
following

:::
s,

::::
the

:::::::::
players

:::
in

::::::::
A ∪ µ

::::
can

::::
set

::::
to

:::::
zero

::::
all

:::::
side

:::::::::::
payments

:::::
from

::::::::
A ∪ µ

:::
to

:::::::::
C − A.

:::::
The

:::::::::
players

:::
in

::::::::
A ∪ µ

::::
can

:::::
use

:::::
side

::::::::::::
payments

::::::::::
amongst

::::::::::::
themselves

:::
so

::::::
that

::::::
each

:::::::
player

:::::
gets

::::
an

:::::::
extra

:::::::::::::
λ/(|A|+ 1)

::::::::
utility

:::
at

:::::
the

:::::
end

::
of

::::::
stage

:::::
two

::::::
than

::::::
what

:::::
the

:::::::
player

::::::::::
received

:::
in

::::
π.

::::::::::::
Moreover,

::::::
since

:::::
the

::::::::
players

:::
in

:::::::
C − A

::::::
only

::::::
have

:::::::::
control

::::::
over

::::
the

::::::::::::::::
non-negative

:::::
side

::::::::::::
payments

:::::::::
flowing

::::::
from

:::::::
C − A

:::
to

:::::::::
A ∪ µ,

::::
we

:::::::
have

::::::::
shown

::::::
that

:::::
the

:::::::::
players

:::
in

::::::::
A ∪ µ

:::::
can

::::::::::::
guarantee

::::::::::::
themselves

:::::::::
payoffs

:::::::::
greater

::::::
than

:::::
the

:::::::::
payoffs

::::::
that

::::::
they

::::::::::
received

:::
in

::::
π.

:
Thus,

for a set of players
:::
we

::::::
have

::::::::::::::
constructed

::
a

:::::
new

::::::::::
strategy

::::::::::
t ∈ SA∪µ:::

in
:
SP

:::
for

::::
the

::::::::
players

:::
in

::::::::
A ∪ µ

:::::::
which

:::::::::::::
guarantees

:::::::::
payoffs

:::::::::
greater

::::::
than

::
π

:::::
for

:::::
each

::::::::
player

:::
in

:::::::
A ∪ µ.

:::::::
Thus,

:::::::::::::::::
π ∈ D(A ∪ µ)

:::
in SP

:
.
::::::
This

:::::::::::::
contradicts

:::::
the

:::::::::::::
assumption

::::::
that

::
π

::
is

::
in

:::::
the

:::::
core

:::
of

:
SP .

::::::::
Thus,

::
π

::::::
must

::::
be

:::
in

::::
the

::::::
core

:::
of

::::::::
NOSP.

:

::::
We

:::::
now

::::::::
derive

::
a

::::::::::::::::
contradiction

::::::
with

::::
the

::::::::::::::
assumption

::::::
that

::
π

:::
is

:::
in

:::::
the

:::::
core

:::
of

::::::::
NOSP.

::::
By

:
Lemma 1

::::
and

::::
the

:::::
fact

::::::
that

:
t
:::::::::::::
guarantees

:::::::::
payoffs

::::::::
greater

::::::
than

:::
π

:::
for

:::::
each

::::::::
player

:::
in

::::::::
A ∪ µ,

:::
we

::::::
also

::::::
have

::::::::::::::::
π ∈ D(A ∪ µ)

:::
in

:
NOSP .

::::::
This

:::::::::::::
contradicts

::::
the

:::::::::::::
assumption

::::::
that

::
π

:::
is

:::
in

::::
the

::::::
core

::
of

:::::::::
NOSP.

:

3.2
:::::
Core

::::::::::::::
Equivalence

::::::::::
between

:
SP

::::
and

:
NOSP

::
In

:::::
this

::::::::::
section,

:::
we

:::::::
prove

::::::
that

::::
the

::::::
core

::
of

:
NOSP

::
is

::::
the

:::::::
same

:::
as

::::
the

::::::
core

::
of

:
SP

:
.

::::
All

::::
the

:::::::::
lemmas

:::
in

:::::
this

:::::::::
section

::::
are

::::::
used

:::::::
solely

:::
to

:::::::
prove

::::
the

::::::
main

:::::::
result

:::
of

::::
the

::::::::
section,

:
Theorem 11.

:

Lemma 5
::::
Let

::
π

:::
be

:::
a

:::::::
payoff

:::::::::
vector.

:::
If

::::::::::::
π ∈ D(A)

:::
in

:
NOSP

:
,

:::::
then

::::::::::::
π ∈ D(A)

::
in

:
SP

:
.
:

PROOF.
::::
The

:::::::::
players

:::
in

:
A to be able to improve upon the payoffs given in

::::
can

:::::::
follow

:::::::::
exactly

::::
the

::::::
same

::::::::::
strategy

::
in

::::
SP

:::
as

:::::
they

::::::::
would

::
in

::::::::
NOSP

:::
to

:::::::::::
guarantee

12

::::::::
payoffs

::::::::
greater

:::::::
than

::::
the

:::::::::
payoffs

:::
in

:
π

:
;
::::::
they

::::::::
simply

::::
fix

:::
all

:::::::
their

:::::
side

:::::::::::
payments

::
to

::::::
zero.

:

Lemma 6
::::
Let

::
π

:::
be

:::
a

:::::::
payoff

:::::::::
vector.

:::
If

::::::::::::
π ∈ V (P)

:::
in

:
SP

::::
and

:::
π

::
is

::::
in

::::
the

:::::
core

::
of

:
SP

:
,
::::::
then

:::::::::::
π ∈ V (P)

:::
in

:
NOSP

:
.
:

PROOF.
:::
By

:
Lemma 4, the buyer must be

:
π

:::
is

::::::::::
realized

::::
by

::::::
some

::::::::::
strategy

:::::::
vector

::::::::
s ∈ SP:

in A. SP .
:::::
Let

:::::::::::::::
sµ = (A, pµ).

:

::::::::::
Consider

::::
the

:::::
two

::::::
stage

::::::::::::::
distribution

::
of

::::::::
wealth

::::::::::::::::
interpretation

:::
of SP

:
.

::::
By Lemma 2

:
,

:::
we

::::::
have

::::::::
πa = 0

:::
for

::::
all

:::::::::::::
a ∈ C −A.

:::::::
Thus,

:::
at

::::
the

:::::
end

::
of

:::::::
stage

:::::
two

::
of

:
SP

:
,

::::::
there

::
is

:::
no

:::::::
utility

:::
in

::::::::
C − A.

:::::::
Thus,

:::::
the

::::::::
players

:::::
can

:::::::::
achieve

::::
the

::::::
same

::::::::
utility

:::::::::::::
distribution

:::
by

::::::::
setting

:::
to

:::::
zero

:::
all

:::::
side

::::::::::::
payments

:::::::
except

:::::
side

::::::::::::
payments

:::::
from

::::::::
A ∪ µ

:::
to

:::::::
A ∪ µ.

::::::
Thus

::
π

:::
is

:::::::::
realized

:::
by

::
a
::::::::::
strategy

::::::::
vector

::::::
with

:::
all

::::::
zero

:::::
side

:::::::::::
payments

::::::::
except

::::
the

::::
side

::::::::::::
payments

::::::
from

:::::::
A ∪ µ

:::
to

::::::::
A ∪ µ.

:

By Lemma ??, if Lemma 1,
:::::::
there

::
is

:::
a

::::::::::
strategy

:::::::
vector

::::::
with

::::
all

:::::
side

:::::::::::
payments

:::::
fixed

::::
to

:::::
zero

::::::::
which

:::::::::::::
guarantees

::::::::
payoffs

:::
of

::::
at

::::::
least

::
π

::::
for

::::
all

:::::
the

:::::::::
players

:::
in

:::
P .

::::::
Thus

::::::::::::
π ∈ V (P).

:

Lemma 7
::
If

::::::::
payoff

:::::::
vector

:::
π

:::
is

:::
in

:::::
the

:::::
core

:::
of

::
SP

:
,

:::::
then

:::
π

:::
is

:::
in

:::::
the

:::::
core

:::
of

NOSP
:
.

:

PROOF.
::::
The

::::::::::::
statement

:::::::::
follows

::::::
from

::::::::::
Lemma

::
6

::::::
and

::::
the

:::::::::::::::::
contrapositive

:::
of

::::::::
Lemma

:::
5.

:

Lemma 8
::::
Let

::
π

::::
be

::
a

:::::::
payoff

:::::::::
vector.

:::
If

::::::::::::
π ∈ V (P)

:::
in

:
NOSP

:
,

::::::
then

:::::::::::
π ∈ V (P)

::
in

:
SP

:
.
:

PROOF.
:::
By

::::
the

::::::::::::
definition

:::
of

::::::::
V (P),

:
the players in A can guarantee some

payoffs under transferable utilities, they can guarantee the same payoffs under
non-transferable utilities.

::
P

:::::
can

:::::::::::
guarantee

:::::::::::::
themselves

:::::::::
payoffs

:::
of

:::
at

::::::
least

::
π

:::
by

::::::::
playing

:::::::
some

::::::::::
strategy

::::::::
s ∈ SP:::

in
:
NOSP

:
.

:::::
The

::::::::
players

::::
in

::
P

:::::
can

::::::::
follow

::::::::
exactly

::::
the

::::::
same

::::::::::
strategy

:::
in

:
SP

::
to

::::::::::::
guarantee

::::::::
payoffs

:::
of

:::
at

::::::
least

::::
π.

As a corollary to , we have the following lemma, which shows that the core

Lemma 9
::
If

:::::::
payoff

::::::::
vector

:::
π

::
is

:::
in

:::::
the

:::::
core

:::
of

:
NOSP

:
,

:::::
then

::::
for

::::
all

:::::::::
A ⊆ P

:::
we

:::::
have

::::::::::::
π /∈ D(A)

:::
in

:
SP

:
.
:

13

PROOF.
:::
We

::::
use

::
a
:::::::
proof

:::
by

:::::::::::::::::
contradiction.

::::::::::
Suppose

:::::
that

::::::::::::
π ∈ D(A)

:::
in SP

:::
for

::::::
some

:::::::::
A ⊆ P.

:::::::
Thus,

:::::::
there

::
is

::
a

::::::::::
strategy

::::::::
vector

::::::::
s ∈ SA:::

in
::::
SP

::::::::
which

::::::::::::
guarantees

:::::
each

::::::::
player

:::
in

::
A

:::
a

::::::::
greater

::::::::
payoff

::::::
than

::::
the

::::::::
payoff

:::::::
given

:::
in

:::
π.

::::::
Since

::
π

:::
is

:::
in

::::
the

::::::
core

:::
of NOSP

:
,
::::
by

:
Lemma 3

:::
we

::::::
know

:::::::::
πa ≥ 0

::::
for

:::
all

::::::::
a ∈ A.

:

::::
We

:::::
split

:::::
the

:::::::
proof

:::::
into

:::::
two

:::::::
cases.

:::
In

:::::
the

:::::
first

::::::
case,

::::::::::
suppose

::::::
that

::::::::
µ /∈ A.

:::
It

::
is

::::::::::::
impossible

:::
for

::
s
::::
to

:::::::::::
guarantee

::
a

::::::::
payoff

::::::::
greater

::::::
than

::
0

::::
for

:::::
any

:::::::
player

:::
in

:::
A

::::::
since

::::
the

:::::::
buyer

::::
can

::::::::
always

:::::
play

:::
∅.

:::::::
Thus,

::::
we

::::
get

::
a

:::::::::::::::
contradiction

::::::
with

::::
the

:::::::::::::
assumption

:::::
that

::::::::::::
π ∈ D(A)

:::
in SP

:
.
:

::::
For

::::
the

::::::::
second

:::::::
case,

:::::::::
suppose

:::::::::
µ ∈ A.

::::
Let

:::::::::::::::
sµ = (B, pµ).

:::::::
There

:::::
can

:::::
not

:::
be

::::::
some

:::::::::
supplier

:::
in

:::
B

:::::
but

::::
not

::::
in

:::
A

::::::
since

::::::
that

::::::::::
supplier

:::::
can

::::::::
always

::::::
play

::::
the

::::::::::
strategy

::::::
(λ, 0)

::::::::
where

:::::::::
λ > M

:::
to

::::::
give

::::
the

::::::::
buyer

::
a

:::::::::::
negative

::::::::
payoff.

:::::::
Since

::::::::::
πµ ≥ 0,

::::
the

::::::::::
existence

:::
of

::
a

::::::::::
supplier

::
in

::::::::
B −A

:::::::::::::
contradicts

:::::
the

:::::::::::::
assumption

::::::
that

::::::::::::
π ∈ D(A)

::
in

SP
:
.

:

::::::
Thus,

::::
we

::::::
have

::::::::::::::::
B ⊆ A− {µ}.

:

::
If

::::::
there

::
is

:::::::
some

:::::::::
supplier

::
a

:::
in

:::
A

::::
but

::::
not

:::
in

:::
B,

::::::
since

:::::::::
πa ≥ 0,

::::
we

::::::
know

:::::
that

::
s
::::::
must

:::::::::::
guarantee

::
a

::::::::
payoff

:::::::::
greater

::::::
than

::
0
:::::
for

:::
a.

::::
Let

:::
ν

::::
be

::::
the

::::::::
payoff

::::::::
vector

:::::::::
realized

::::::
when

::::
the

:::::::::
players

:::
in

:::
A

::::::::
follow

::
s

:::::
and

::::::
each

:::
of

:::::
the

:::::::::
players

:::
in

::::::::
P −A

::::::::
follow

::::
the

:::::::::
strategy

:::::::
(0, 0).

::::::::
Thus,

:::
we

::::::
have

::::::::
νa > 0

:::::
and

:::::::::
νb > πb::::

for
:::
all

::::::::
b ∈ A.

::::
By

:
Lemma 2,

:::
we

::::::
have

:::::::::::::::
ν ∈ D(B ∪ µ)

:::
in

:
SP

:
.

::::::
Since

::::::::::::::::
ν ∈ D(B ∪ µ)

:::
in SP

:
,
:::::::::
νb > πb :::

for
::::
all

:::::::
b ∈ A,

::::
and

::::::::::::::::
B ⊆ A− {µ},

::::
we

::::::
have

::::::::::::::::
π ∈ D(B ∪ µ)

:::
in

:
SP

:
.

:

::::::
Thus,

::::
we

::::::
have

:::::::::::::::
sµ = (B, pµ)

:::::
and

::::::::::::::::
π ∈ D(B ∪ µ)

:::
in

:
SP

:
.
::::
By

:
Lemma 1,

::::
we

:::::
also

:::::
have

::::::::::::::::
π ∈ D(B ∪ µ)

:::
in

:
NOSP ,

::::::::
which

:::::::::::::
contradicts

::::
the

:::::
fact

::::::
that

::
π

:::
is

:::
in

::::
the

:::::
core

::
of

:
NOSP

:
.

Lemma 10
:
If

::::::::
payoff

::::::::
vector

::
π

:::
is

:::
in

::::
the

::::::
core

:::
of

:
NOSP

:
,

:::::
then

:::
π

:::
is

:::
in

::::
the

:::::
core

::
of

:
SP

:
.
:

PROOF.
::::
The

::::::::::::
statement

::::::::
follows

::::::
from

:
Lemmas 8 and 9.

:

Theorem 11
::::
The

:::::
core

:::
of

:
NOSP

::
is

:::::::
equal

:::
to

::::
the

:::::
core

:::
of

:
SP

:
.
:

PROOF.
::::::::
Follows

::::::
from

:
Lemmas 7 and 10.

:

3.3
::::
The

:::::::
Core

:::
of NOSP

::
In

::::::
this

:::::::::
section,

::::
we

:::::::
show

::
a

:::::::::::::::::::
characterization

:::
of

:::::
the

::::::
core

:::
of

:
NOSP

:::::
with

:
The-

orem 20
:
.
::::
By

::::::::::::
Theorem

::::
11,

:::::
the

:::::::
same

:::::::::::::::::::
characterization

:::
is

:::::
true

::::
of

::::
the

::::::
core

:::
of

14

SP
:
.
::::::::::::::
Throughout

:::::
the

:::::::::
section,

::::
we

::::::
refer

:::
to

:
Equations (1), (2), and (3)

:
,
:::::::
whose

:::::::::::
definition

:::::::
comes

::::::
from

:
Theorem 20

:
.
:::::
The

:::::::::
lemmas

:::
in

:::::
this

:::::::::
section

::::
are

:::::::
solely

:::::
used

::
to

:::::::
prove

::::
the

:::::::
main

:::::::
result

::
of

:::::
the

:::::::::
section,

:
Theorem 20

:
.

:::
At

::::
the

:::::
end

:::
of

::::
the

:::::::::
section,

::
as

::
a
:::::::::::
corollary

:::
to

:::::
the

::::::::::
theorem,

::::
we

::::::
show

:
Lemma 21

:
,

::::::::
stating

::::::
that

::::
the

::::::
core

:
does

not change depending on the decomposition chosen in the transformation from
a combinatorial minimization problem to a buyer-supplier game. The proof is
directly

Lemma 12
:
If

:::
a

::::::::
payoff

::::::::
vector

::
π

:::
is

::::::::::
realized

:::
by

:::::::
some

::::::::::
strategy

::::::::
vector

::::::::
s ∈ SP

::::::
where

::::::::::::::
sµ = (A, 0),

::::::
then

:::::::::::::::::::::::::::::::::::
πµ = M − Eval(A)−∑

a∈C πa.:

PROOF.
:::
For

::::::
any

:::::::
a ∈ C

::::
let

::::::::::::::::::
sa = (β(a), pa).::::::::

Since
::
π

::::
is

:::::::::
realized

::::
by

:::
s

:::::
and

:::
all

:::::
side

::::::::::::
payments

::::
are

::::::
zero,

::::
we

::::::
have

::::::::::::::::::::
πa = β(a)− τ(a)

::::
for

::::
all

:::::::::
a ∈ A.

::::
We

:::::
also

:::::
have

::::::
that

::
πµ = M − [Bcost(A) +

∑
a∈A β(a)].

:::::::::::::::
Substituting

::::
for

::::::
β(a),

::::
we

::::::
have

:::
πµ = M − [Bcost(A) +

∑
a∈A τ(a) +

∑
a∈A πa].:::::

By
::::
the

::::::::::::
definition

:::
of

:::::::
Eval,

::::
we

:::::
have

:::::::::::::::::::::::::::::::::::
πµ = M − Eval(A)−∑

a∈A πa.:

::::::
Since

::::
all

:::::
side

::::::::::::
payments

::::
are

::::::
fixed

::::
to

::::::
zero,

::::
we

::::::
have

::::::::
πa = 0

:::::
for

:::
all

:::::::::::::
a ∈ C −A.

::::::
Thus

:::
we

:::::
can

:::::::
write

::::::::::::::::::::::::::::::::::
πµ = M − Eval(A)−∑

a∈C πa.:

Lemma 13
:
If

::
a
::::::::
payoff

:::::::
vector

::
π

:::
is

:::
in

::::
the

:::::
core

::
of

:
NOSP

:
,

:::::
then

::::::::::::::::::::::::::::::::::::::
πµ = M −MinEval(C)−∑

a∈C πa.

PROOF.
:::
Let

::::::::
F ⊆ C

:::
be

::::::
such

::::::
that

::::::::::::::::::::::::::
Eval(F) = MinEval(C).

:::::
We

:::::
first

::::::
show

:::::
that

::::
any

::
ν

:::::::::
realized

::::
by

::
a

::::::::::
strategy

:::::::
vector

::
s
::::::
with

:::::::::::::
sµ = (A, 0)

:::::
and

::::::::::::::::::::::
Eval(A) 6= Eval(F)

::
is

::::
not

:::
in

:::::
the

::::::
core.

:

::::
Let

:::
λ = (Eval(A)− Eval(F))/(|F|+ 1).

::::::
Since

:::::::::::::::::::::::
Eval(A) 6= Eval(F)

:::::
and

:::
by

::::
the

:::::::::::
definition

::
of

::::
F ,

::::
we

::::::
have

::::::::
λ > 0.

::::::::::::
Construct

::
a

::::::::::
strategy

:::::::
vector

:::::::::::
t ∈ SF∪µ:::::::

where
:

tµ
:
= (
:::
F , 0)

:::

ta:= (
:::

νa+:::
τ(a)+

:
λ, 0)

:::
for all a ∈ F .::::::::::::::

::::::
Since

:::::
side

:::::::::::
payments

::::
are

::::::
fixed

:::
to

::::::
zero,

::::
the

:::::::::::
suppliers

:::
in

:::::::
C − F

::::::
have

:::
no

:::::::::::
strategies

::::::
which

:::::
can

:::::::
affect

:::::
the

::::::::
payoffs

:::
of

:::::
the

::::::::
players

:::
in

::::::::
F ∪ µ

:::::::
given

:::::
that

:::::
the

::::::::
players

:::
in

:::::::
F ∪ µ

:::::::
follow

::
t.

:::::
Let

:::::::::
u ∈ SP :::

be
:::::
any

::::::::::
strategy

:::::::
vector

::::::
with

::::::::::::
projection

::::::
onto

:::::::
F ∪ µ

::::::
equal

:::
to

:::
t.

:::::::::
Straight

::::::::::
forward

::::::::::::::
calculations

:::::::
with

:::::
the

:::::::::
game’s

::::::::
utility

::::::::::::
functions

::::::
show

::::::
that

:::::::::::::::::::::::::::::::::::
ua(u)− νa = ua(u)− ua(s) = λ

::::
for

::::::
each

:::::::::
supplier

:::::::::
a ∈ F .

15

::::::::::
Consider

:

uµ(u)−
:::

νµ
:
=: uµ(u)−

:::
uµ(s)

=: [M−
::

Bcost(F)−
∑
a∈F

(

:::::::

νa+:::
τ(a)+

:
λ)]

−
:::::::

[M−
::

Bcost(A)−
∑
a∈A

(

:::::::

νa+:::
τ(a))]

=: [−
::

Eval(F)−
∑
a∈F

(

:::::::

νa+:::
λ)]−

::
[−
::

Eval(A)−
∑
a∈A

::::::

νa:
]

=: Eval(A)−
::

Eval(F)−
∑
a∈F

::::::

λ+
:
[
∑
a∈A
:::

νa −
∑
a∈F

::::::::

νa:
].

:::
By

::::
the

::::::::
utility

:::::::::::
functions

::
of

:
NOSP

::::
and

::::
the

:::::::::::
definition

:::
of

:::
A

:::::
and

::
ν,

::::
we

::::::
have

:::::::
νa = 0

:::
for

::::
all

:::::::::::::
a ∈ C −A.

:::::::
Thus,

::::
the

::::::::::::
bracketed

::::::::::
quantity

:::
in

:::::
the

:::::::
above

:::::::::::::
expression

::
is

:::
at

:::::
least

::::::
zero.

:::::::
Thus,

::::
we

::::::
have

:

uµ(u)−
:::

νµ ≥
:::

Eval(A)−
::

Eval(F)−
∑
a∈F

::::::

λ=: λ

:::::::
where

::::
the

::::::::::
equality

:::::::
comes

::::::
from

:::::
the

:::::::::::
definition

:::
of

:::
λ.

:

::::::
Thus,

::::
we

::::::
have

:::::::::::::::::
ν ∈ D(F ∪ µ).

:

::::
We

::::::
have

::::::::
shown

:::::
that

::::::
any

:::::::
vector

::::
in

::::
the

::::::
core

:::
is

:::::::::
realized

::::
by

::
a
:::::::::::
strategy

:::::::
vector

:
s

::::::
with

::::::::::::::
sµ = (A, 0)

:::::::
where

::::::::::::::::::::::::
Eval(A) = Eval(F).

:::::
The

:::::::::
lemma

::::::::::::
statement

::::::::
follows

:::::
from

:
Lemma 12

::::
and

::::
the

::::::::::::
definition

:::
of

:::
F .

:

Lemma 14
:
If

::::::::
payoff

::::::::
vector

::
π

:::
is

:::
in

::::
the

::::::
core

:::
of

:
NOSP ,

::::::
then

:∑
a∈A
:::

πa ≤:::
MinEval(C − A)−

::
MinEval(C)

:::
for

::::
all

:::::::::
A ⊆ C.

:

PROOF.
:::
We

:::::
use

::
a
::::::::

proof
::::
by

::::::::::::::::
contradiction.

::::::::::
Assume

:::
π

:::
is

:::
in

:::::
the

::::::
core

:::::
and

:::

∑
a∈A πa > MinEval(C − A)−MinEval(C)

::::
for

::::::
some

::::::::
A ⊆ C.

::::
We

::::::
show

::::::
that

::::::::::::::::
π ∈ D(F ∪ µ)

:::::::
where

:::::::::::::
F ⊆ C −A

::
is

::::::
such

::::::
that

::::::::::::::::::::::::::::::::
Eval(F) = MinEval(C − A).

:

::::::
Since

::
π

::
is

:::
in

::::
the

::::::
core,

::::
by Lemma 4

::
it

::
is

:::::::::
realized

::::
by

::::::
some

::::::::::
strategy

:::::::
vector

::::::::
s ∈ SP

16

::::
Let

:::
λ = (

∑
a∈A πa − Eval(F) + MinEval(C))/(|F|+ 1).

::::::
Since

:::

∑
a∈A πa > MinEval(C − A)−MinEval(C),

:::
we

::::::
have

::::::::
λ > 0.

::::::::::::
Construct

::
a

::::::::::
strategy

:::::::
vector

:::::::::::
t ∈ SF∪µ:::::::

where
:

tµ
:
= (
:::
F , 0)

:::

ta:= (
:::

πa+:::
τ(a)+

:
λ, 0)

:::
for all a ∈ F .::::::::::::::

::::::
Since

:::::
side

:::::::::::
payments

::::
are

::::::
fixed

:::
to

::::::
zero,

::::
the

:::::::::::
suppliers

:::
in

:::::::
C − F

::::::
have

:::
no

:::::::::::
strategies

::::::
which

:::::
can

:::::::
affect

:::::
the

::::::::
payoffs

:::
of

:::::
the

::::::::
players

:::
in

::::::::
F ∪ µ

:::::::
given

:::::
that

:::::
the

::::::::
players

:::
in

:::::::
F ∪ µ

:::::::
follow

::
t.

:::::
Let

:::::::::
u ∈ SP :::

be
:::::
any

::::::::::
strategy

:::::::
vector

::::::
with

::::::::::::
projection

::::::
onto

:::::::
F ∪ µ

::::::
equal

:::
to

:::
t.

:::::::::
Straight

::::::::::
forward

::::::::::::::
calculations

:::::::
with

:::::
the

:::::::::
game’s

::::::::
utility

::::::::::::
functions

::::::
show

::::::
that

:::::::::::::::::::::::::::::::::::
ua(u)− πa = ua(u)− ua(s) = λ

::::
for

::::::
each

::::::::::
supplier

::::::::
a ∈ F .

:

::::
Let

:::::::::::::
sµ = (B, 0)

:::::
and

::::::::::
consider

:

uµ(u)−
:::

πµ
:
=: uµ(u)−

:::
uµ(s)

=: [M−
::

Bcost(F)−
∑
a∈F

(

:::::::

πa+:::
τ(a)+

:
λ)]

−
:::::::

[M−
::

Bcost(B)−
∑
a∈B

(

::::::

πa+:::
τ(a))]

=: [−
::

Eval(F)−
∑
a∈F

(

:::::::

πa+:::
λ)]−

::
[Eval(B)−

∑
a∈B

:::::

πa:
]

=: Eval(B)−
::

Eval(F)−
∑
a∈F

::::::

λ+
:
[
∑
a∈B
:::

πa −
∑
a∈F

::::::::

πa:
]

:::
By

:::::
the

::::::::
utility

:::::::::::
functions

:::
of

::
NOSP

::::
and

:::::
the

::::::::::::
definitions

::::
of

:::
B

:::::
and

:::
π,

::::
we

::::::
have

:::::::
πa = 0

::::
for

::::
all

::::::::::::
a ∈ C − B.

::::::::
Thus,

::::::::::::::::::::::

∑
a∈B πa =

∑
a∈C πa.:::::::

Thus,
::::
we

:::::
can

::::::
write

:

uµ(u)−
:::

uµ(s)=: Eval(B)−
::

Eval(F)−
∑
a∈F

::::::

λ+
:
[
∑
a∈C
:::

πa −
∑
a∈F

::::::::

πa:
]

=: Eval(B)−
::

Eval(F)−
∑
a∈F

::::::

λ+
∑
a∈A

::::::

πa+:::
[

∑
a∈C−A
::::::

πa −
∑
a∈F

::::::::

πa:
]

::::::
Since

::::::::::::::
F ⊆ C −A,

:::
we

:::::::
know

:::::
that

::::
the

:::::::::::
bracketed

::::::::::
quantity

:::
in

::::
the

:::::::
above

::::::::::::
expression

::
is

:::
at

::::::
least

::::::
zero.

:::::::
Thus,

::::
we

::::::
have

:

uµ(u)−
:::

uµ(s) ≥
:::

Eval(B)−
::

Eval(F)+
∑
a∈A

::::::

πa −
∑
a∈F

::::::::

λ=: λ

:::::::
where

::::
the

::::::::::
equality

:::::::
comes

:
from the definition of

:::
on

:::
λ.

:

::::::
Thus,

::::
we

::::::
have

:::::::::::::::::
π ∈ D(F ∪ µ),

:::::::
which

::::::::::::::
contradicts

::::
the

:::::
fact

::::::
that

::
π

:::
is

:::
in

::::
the

:::::
core

::
of

:
NOSP

:
.

17

Lemma 15
:::::::
Payoff

:::::::::
vectors

:::
in

::::
the

::::::
core

:::
of

:
NOSP

:::::::
satisfy

:
Equations (1), (2),

and (3)
:
.
:

PROOF.
::::
The

::::::::::::
statement

::::::::
follows

::::::
from

::::::::::
Lemmas

:::
3,

::::
14,

:::::
and

:::::
13.

Lemma 16
:
If

::::::::
payoff

:::::::
vector

::
π

::::::::::
satisfies Equations (1), (2), and (3)

:::::
then

::::::::::::
π /∈ D(A)

:::
for

:::::::::
A ⊆ P

::::::
such

:::::
that

::::::::
µ /∈ A.

:

PROOF.
:::
We

:::::
use

:::
a

:::::::
proof

::::
by

:::::::::::::::::
contradiction.

::::::::::
Suppose

::::::::::::::
π ∈ D(A).

:::
In

:::::::
other

:::::::
words,

:::::
the

::::::::
players

:::
in

:::
A

:::::
can

::::::::::::
guarantee

:::::::::
payoffs

:::::::::
greater

::::::
than

::::
the

:::::::::
payoffs

::::::
given

::
in

:::
π.

::::::
But,

::::
we

:::::::
know

::::::
that

::::::::
πa ≥ 0

::::
for

::::
all

:::::::
a ∈ A

:::::
and

:::::
the

:::::::::
players

:::
in

:::
A

:::::
can

:::::
only

:::::::::::
guarantee

::
0

:::::::::
payoffs

:::::::::
because

:::::
the

:::::::
buyer

:::::
can

::::::::
always

::::::
play

:::::::
(∅, 0).

::::::::
Thus,

:::
we

::::::
have

:
a

::::::::::::::::
contradiction

::::::
with

::::::::::::
π ∈ D(A).

:

Lemma 17
:
If

::::::::
payoff

:::::::
vector

::
π

::::::::::
satisfies Equations (1), (2), and (3)

:::::
then

::::::::::::
π /∈ D(A)

:::
for

:::::::::
A ⊆ P

::::::
such

:::::
that

::::::::
µ ∈ A.

:

PROOF.
:::
We

:::::
use

::
a

:::::::
proof

::::
by

:::::::::::::::::
contradiction.

::::::::::
Suppose

::::::::::::
π ∈ D(A)

:::::
for

::::::::
A ⊆ P

:::::
such

::::::
that

::::::::
µ ∈ A.

::::::::
Thus,

:::::
the

::::::::
players

::::
in

:::
A

:::::
can

:::::::
follow

:::
a

::::::::::
strategy

:::::::::
s ∈ SA :::::

that

::::::::::::
guarantees

::::::::
payoffs

:::::::::
greater

::::::
than

:::::
the

::::::::
payoffs

::::::
they

::::
are

:::::::
given

:::
in

:::
π.

:

::::
Let

::::::::
t ∈ SP::::

be
:::::
any

:::::::::::
strategy

::::::::
vector

::::::
with

::::::::::::
projection

::::::
onto

::::
A

:::::::
equal

:::
to

::::
s.

::::
Let

:::::::::::::
tµ = (B, 0).

::::
Let

:::::
the

:::::::
payoff

::::::::
vector

:::::::::
realized

::::
by

::
t

:::
be

:::
ν.

:

::::::
Since

::
s

:::::::::::::
guarantees

::::::::
payoffs

:::::::::
greater

::::::
than

:::
π

::::
for

::::
the

:::::::::
players

:::
in

::::
A,

:::
all

::::::::::::
extentions

::
of

::
s

:::
to

::
a

::::::::::
strategy

::::::::
vector

:::
in

:::
SP:::::::

must
::::::::
realize

:::::::
payoff

:::::::::
vectors

:::
π′

:::::
with

::::::::::::::
π′a > πa ≥ 0

:::
for

::::::::
a ∈ A.

::::::
The

:::::::::::
existance

::
of

:::::::
some

::::::::::::
a ∈ B −A

::::::::::::::
contradicts

:::::
this

::::::::::::
statement,

::::::
since

::::
the

:::::::::
supplier

::
a

:::::
sets

::::::
their

:::::
bid

::::::::::::
arbitrarily

::::::
high

:::
in

::::::
some

::::::::::::
extensions

:::
of

:::
s,

::::::::::
resulting

::
in

::
a

::::::::::
negative

::::::::
utility

::::
for

::::
the

::::::::
buyer.

::::::::
Thus,

:::
we

::::::
have

::::::
that

::::::
there

:::
is

:::
no

::::::
such

::
a
:::::
and

::::::::
B ⊆ A.

:

::::::
Since

::
π

::::::::::
satisfies

:
Equation (3)

:::
we

::::::
have

::::::::::::::::::::::::::::::::::::::
πµ = M −MinEval(C)−∑

a∈C πa.::::
By

Lemma 12,
::::
we

::::::
have

::::::::::::::::::::::::::::::::::
νµ = M − Eval(B)−∑

a∈C νa.:

::::::
Since

:::::::::::
following

::
s

:::::::::::::
guarantees

::
a
::::::::
payoff

:::::::::
greater

::::::
than

:::::
the

::::::::
payoff

:::::::
given

:::
in

::
π

::::
for

::::::
every

::::::::
player

:::
in

:::
A,

::::
we

::::::
have

::::::::::
πµ < νµ.

:::::::
Thus,

::::
we

::::::
have

:

0:<: νµ−
:::

πµ
:

=: M−
::

Eval(B)−
∑
a∈C

:::::

νa−:::
[M−

::
MinEval(C)−

∑
a∈C

:::::

πa:
]

=: MinEval(C)−
::

Eval(B)+
∑
a∈C

:::::

πa −
∑
a∈C

:::::::

νa:

18

::::
Let

::::::::
F ⊆ C

:::
be

::::::
such

::::::
that

:::::::::::::::::::::::::::
Eval(F) = MinEval(C).

:::::::
From

:
Equation (2)

:::::
with

::::
the

::::::::::
singleton

::::::
sets,

:::
we

::::::
have

::::::
that

::::::::
πa = 0

::::
for

:::
all

::::::::
a /∈ F .

:::::::
From

:::::
the

:::::::::::
definition

:::
of

:::
ν,

:::
we

:::::
have

::::::
that

::::::::
νa = 0

:::
for

::::
all

::::::::
a /∈ B.

:::::
Let

::::::::::::::::
U = A− {µ}.

:::::::
Thus,

::::
we

::::::
have

:

0:<: MinEval(C)−
::

Eval(B)+
∑
a∈F

::::::

πa −
∑
a∈B

:::::::

νa:

=: MinEval(C)−
::

Eval(B)+
∑

a∈F−U
::::::::

πa + (
∑

a∈F∩U
:::::::::::

πa −
∑

a∈F∩B
::::::::::

νa)−
∑

a∈B−F
:::::::::::

νa:

:::
By

::::
the

::::::::::::
definition

:::
of

::
ν

:::::
and

::::
the

::::::::
utility

:::::::::::
functions

::
in

:
NOSP

:
,

:::
we

::::::
have

::::::
that

:::::::
νa = 0

:::
for

::::
all

::::::::::::
a ∈ C − B.

:::::
We

:::::
also

::::::
have

::::::::::::::
νa > πa ≥ 0

::::
for

::::
all

::::::::
a ∈ B.

:::::::
Thus,

::::
we

::::
can

::::::
drop

::::
the

::::
last

:::::::
term

:::
in

::::
the

:::::::
above

:::::::::::::
expression

:::
to

::::
get

:

0:<: MinEval(C)−
::

Eval(B)+
∑

a∈F−U
::::::::

πa + (
∑

a∈F∩U
:::::::::::

πa −
∑

a∈F∩U
::::::::::

νa)
::

:::
By

:::::
the

::::::::::::
definitions

:::
of

::
ν

:::::
and

::::
U ,

::::
we

:::::
also

::::::
have

:::::
that

::::::::::
νa > πa ::::

for
:::
all

::::::::
a ∈ U .

:::::::
Thus,

:::
we

:::::
can

::::::
drop

::::
the

::::::::::::::::
parenthesized

::::::
term

:::
in

:::::
the

:::::::
above

::::::::::::
expression

:::
to

:::::
get

:

0:<: MinEval(C)−
::

Eval(B)+
∑

a∈F−U
::::::::

πa:

Eval(B)−
::

MinEval(C)<
∑

a∈F−U
:::::::::

πa:

::::
Let

::::::::::::::
K = F − U .

::::::::
Since

::::::::
B ⊆ A

::::::
and

:::::::::
B ⊆ C,

::::
we

::::::
have

:::::::::
B ⊆ U .

::::::::
Thus,

::::
we

::::::
have

:::::::::::::
B ⊆ C − K.

::::
By

::::
the

:::::::::::
definition

:::
of MinEval,

::::
we

::::::
have

:::::::::::::::::::::::::::::::
MinEval(C − K) ≤ Eval(B).

::::::
Thus,

::::
we

::::::
have

:

MinEval(C − K)−
::

MinEval(C)≤
::

Eval(B)−
::

MinEval(C)<
∑
a∈K

::::::

πa.:

:::::
This

::::::::::::
statement

:::::::::::::
contradicts

:::::
the

:::::
fact

:::::
that

:::
π

:::::::::
satisfies

:
Equation (2)

:::
for

:::
K.

Lemma 18
:
If

::::::::
payoff

::::::::
vector

:::
π

::::::::::
satisfies

:
Equations (1), (2), and (3) ,

::::::
then

:::::::::::
π ∈ V (P)

:::
in

:
NOSP

:
.

:

PROOF.
:::
Let

::::::::
F ⊆ C

:::
be

::::::
such

:::::
that

:::::::::::::::::::::::::::
Eval(F) = MinEval(C).

::::::::
Define

::::::::
s ∈ SP:::::

such

:::::
that

:

sµ
:
= (
:::
F , 0)

:::

sa:
= (
:::

πa+:::
τ(a), 0)

:::
for all a ∈ F::::::::::::::

sa:
= (0, 0)
::::::::

for all a ∈ C − F
::::::::::::::::::

19

:::::::::
Straight

::::::::::
forward

::::::::::::::
calculations

:::::::
with

:::::
the

:::::::::
game’s

::::::::
utility

::::::::::::
functions

::::::
show

::::::
that

::::::::::::
ua(s) = πa ::::

for
:::::
each

::::::::::
supplier

::::::::
a ∈ F .

:

::::::::::
Consider

:

uµ(s)= M−
:::::::

[Bcost(F)+
∑
a∈F

(

:::::::

πa+:::
τ(a))]

= M−
:::::::

[Eval(F)+
∑
a∈F

::::::

πa:
]

= M−
:::::::

Eval(F)−
∑
a∈F

::::::

πa:

::::::
Since

::
π

:::::::::
satisfies

:
Equation (2)

:
,
:::
we

::::::
have

::::::::
πa = 0

::::
for

:::
all

:::::::::::::
a ∈ C − F .

:::::::
Thus,

::::
we

:::::
have

uµ(s)= M−
:::::::

Eval(F)−
∑
a∈C

:::::

πa:

= M−
:::::::

MinEval(C)−
∑
a∈C

:::::

πa:

=: πµ
:

:::::::
where

::::
the

::::::::
second

::::::::::
equality

:::::::
comes

::::::
from

::::
the

:::::::::::
definition

:::
of

:::
F

:::::
and

::::
the

:::::
last

:::::::::
equality

:::::::
comes

::::::
from

::::
the

:::::
fact

::::::
that

::
π

::::::::::
satisfies

:
Equation (3)

:
.

::::::::
Finally,

::::
we

::::::
have

::::::::::::
ua(s) = πa::::

for
::::::
each

::::::::::
supplier

:::::::::::::
a ∈ C − F ,

::::::
since

::::::::
πa = 0

::::
for

:::::
such

::
a.

:

::::::
Thus,

::
s
:::::::::
realizes

:::
π

:::::
and

::::::::::::
π ∈ V (P).

:

Lemma 19
:
If

::::::::
payoff

::::::::
vector

::
π

::::::::::
satisfies

:
Equations (1), (2), and (3)

:::::
then

:::
π

::
is

::
in

::::
the

::::::
core

:::
of

:
NOSP

:
.

:

PROOF.
::::
The

::::::::::::
statement

::::::::
follows

::::::
from

:
Lemmas 16, 17, and 18

:
.
:

::
In

:::::
the

:::::::::::
following

:::::::::::
theorem,

::::
the

::::::::::::
parameter

:::
τ

::
is

:::::::
made

::::::::::
explicit,

:::::::::
though

::::
its

::::::
value

::
is

::::::
clear

::::::
from

::::
the

::::::::::::
definition

:::
of

::::
the

:::::::::::::::::
buyer-supplier

:::::::
game,

:
NOSP

:
.
:

Theorem 20
::
A

::::::::
payoff

::::::::
vector

::
π

::::
is

:::
in

:::::
the

::::::
core

:::
of

:
NOSP

:
if

::::::
and

::::::
only

:::
if

::
it

20

:::::::::
satisfies

:

πa:
≥ 0
::::

for all a ∈ P
::::::::::::::

(1)∑
a∈A
:::

πa:
≤
::

MinEval(τ, C − A)−
::

MinEval(τ, C) for all A ⊆ C
::::::::::::::

(2)

πµ
:
=: M−

::
MinEval(τ, C)−

∑
a∈C

:::::

πa:
(3)

PROOF.
::::
The

::::::::::::
statement

::::::::
follows

::::::
from

:
Lemmas 15 and 19

:
.
:

Lemma 21 Let Bcost∗(A) =
∑

a∈A τ(a) + Bcost(A). The core of the buyer
supplier-games

::::::::::::::::
buyer-supplier

::::::::
games defined by (C, τ, Bcost) and (C, 0, Bcost∗)

is the same.

PROOF.
:::
We

::::::
have

::
Eval(τ, Bcost,B)

::
=

::
Eval(0, Bcost∗,B)

::::
for

:::
all

:::::::::
B ⊆ C

:::
by

::::
the

:::::::::::
definition

::::
of

::::::
Eval

::::::
and

:::::::::
Bcost∗.

::::::::
Thus,

::::
we

::::::
have

::
MinEval(τ, Bcost,A)

::
=

MinEval(0, Bcost∗,A)
:::
for

::::
all

:::::::::
A ⊆ C.

:::::
The

:::::::
result

::::::::
follows

::::::
from

:
Theorem 20.

:

4 Polynomial Time Optimization Over the Core Vectors

We define the separation problem on a set of linear inequalities A as follows.
Given a vector π, if π satisfies all of the inequalities in A, then do nothing;
otherwise, output a violated inequality a ∈ A. It is well known that the sepa-
ration problem is polynomial time equivalent to linear function optimization
over the same set of inequalities [13, p. 161].

Let (C, τ, Bcost) define a buyer-supplier game. In this section, to simplify the
notation, we will omit the parameter Bcost from Eval and MinEval since it is
fixed by the buyer-supplier game.

In this section, we will analyze an algorithm to solve the separation problem
for the exponentially sized set of inequalities given in Equations (1), (2), and
(3). We now give the algorithm, which we call the separation algorithm. Given
the payoff vector π as input,

1 Iterate over Equations (1) and (3) to check that they hold. If some equa-
tion does not hold, output that equation and halt.

2 Compute F ⊆ C such that Eval(τ,F) = MinEval(τ, C). If there is some
a ∈ C − F with πa > 0, output the inequality from Equation (2) corre-
sponding to {a} and halt.

21

3 Define τ̂(a) = τ(a) + πa for a ∈ C. Now, compute F̂ ⊆ C such that
Eval(τ̂ , F̂) = MinEval(τ̂ , C). If Eval(τ̂ , F̂) < Eval(τ̂ ,F), output the in-
equality from Equation (2) corresponding to F − F̂ . Otherwise, halt.

Theorem 22 If given an input τ̂ : C → <+ it is possible to compute both
Eval(τ̂ ,A),

:
for any A ⊆ C,

:
and F ⊆ C such that Eval(τ̂ ,F) = MinEval(τ̂ , C)

in polynomial time, then the separation problem for Equations (1), (2), and
(3) is solvable in polynomial time. By the equivalence of separation and opti-
mization, optimizing any linear function of π over Equations (1), (2), and (3)
is also possible in polynomial time.

PROOF. It is clear that given the theorem’s assumptions, the separation
algorithm runs in polynomial time. The statement follows from Lemmas 23
and 24.

Lemma 23 If the separation algorithm returns an inequality on input π, then
π violates the returned inequality.

PROOF. If the algorithm returns an inequality in step 1, then the inequality
is violated since the algorithm performed a direct check.

If the algorithm returns an inequality in step 2, then the inequality is violated
since πa > 0, but MinEval(τ, C − a) = MinEval(τ, C) = Eval(τ,F)

::
MinEval(τ, C − {a}) = MinEval(τ, C) = Eval(τ,F).

Suppose the algorithm returns an inequality in step 3. Thus, Eval(τ̂ , F̂) <
Eval(τ̂ ,F). By applying

::::::::::
Applying

::
the definitions of Eval and τ̂ , we have∑

a∈F̂ πa + Eval(τ, F̂) <
∑

a∈F πa + Eval(τ,F).

Since the algorithm reaches step 3, we know that πa = 0 for all a ∈ C − F .
Thus, we have

∑
a∈F̂∩F πa + Eval(τ, F̂) <

∑
a∈F πa + Eval(τ,F), which in turn

gives Eval(τ, F̂)− Eval(τ,F) <
∑

a∈F−F̂ πa.

Let A = F − F̂ . From the algorithm, we know that the set F satisfies
Eval(τ,F) = MinEval(τ, C). Since F̂ ⊆ C−A, the definition of MinEval implies
that MinEval(τ, C − A) ≤ Eval(τ, F̂). Thus, we have MinEval(τ, C − A) −
MinEval(τ, C) ≤ Eval(τ, F̂) − Eval(τ,F) <

∑
a∈A πa, which shows that the

inequality output by the algorithm is violated.

Lemma 24 If π violates some inequality in Equations (1), (2), and (3), then
the separation algorithm run on input π returns an inequality.

PROOF. If the violation is in Equations (1) or (3), the violated inequality
will be output by the direct check in step 1. If some inequality is output by

22

step 2, we are done. Otherwise, since steps 1 and 2 output no inequality, we
know that πa = 0 for all a ∈ C −F , where F is as computed in the algorithm.

Now, suppose the inequality from Equation (2) for set A ⊆ C is violated. In
other words, we have,

∑
a∈A πa > MinEval(τ, C − A) − MinEval(τ, C). Let B

be such that Eval(τ,B) = MinEval(τ, C − A).

Thus, we have
∑

a∈A πa > MinEval(τ, C − A)−MinEval(τ, C) = Eval(τ,B)−
Eval(τ,F).

Since πa = 0 for all a ∈ C −F , we have Eval(τ,F) +
∑

a∈F∩A πa > Eval(τ,B).

Adding
∑

a∈F−A πa to both sides of the above inequality and substituting the
definition of Eval, we have Bcost(F) +

∑
a∈F τ(a) +

∑
a∈F πa > Bcost(B) +∑

a∈B τ(a) +
∑

a∈F−A πa.

Since πa = 0 for all a ∈ C − F and B ⊆ C − A, we can alter the right
hand side of the above inequality to get Bcost(F) +

∑
a∈F τ(a) +

∑
a∈F πa >

Bcost(B) +
∑

a∈B τ(a) +
∑

a∈B πa +
∑

a∈F−A−B πa.

By applying the definition of τ̂ and Eval, we have Eval(τ̂ ,F) > Eval(τ̂ ,B) +∑
a∈F−A−B πa. We know that πa ≥ 0 for all a ∈ P since the algorithm does not

output anything in step 1. Thus, Eval(τ̂ ,F) > Eval(τ̂ ,B) ≥ MinEval(τ̂ , C) =
Eval(τ̂ , F̂), where F̂ is as computed in the algorithm. So, step 3 outputs an
inequality.

The following lemma illustrates a key difference between Garg et al. and this
work.

Lemma 25 If suppliers are substitutes, then all but the |C| singleton equa-
tions of Equation (2) are not constraining. Thus, if suppliers are substitutes,
optimization over the core of the buyer-supplier game is reduced to solving a
polynomially sized linear program.

PROOF. Suppose that the suppliers are substitutes. By the definition of
suppliers are substitutes, we have that Ṽ (P) − Ṽ (P −A) ≥ ∑

a∈A[Ṽ (P) −
Ṽ (P − {a})] for all A ⊆ C. By the definition of Ṽ , we have

MinEval(τ, Bcost, C − A)−MinEval(τ, Bcost, C)

≥
∑
a∈A

[MinEval(τ, Bcost, C − {a})−MinEval(τ, Bcost, C)]

for all A ⊆ C. This implies that if the singleton equations in Equation (2)
are satisfied, then so are all equations in Equation (2). Thus, if suppliers are

23

substitutes, we may drop all non-singleton equations from Equation (2) and
reduce the number of inequalities to a polynomial in the number of players.

5 Inapproximability of Optimization Over Core Solutions

Consider a buyer-supplier game defined by (C, τ, Bcost). We introduced the
concept of the focus point price in the introduction. The concept leads us to
ask the natural question: What is the difference between the best and worst
core outcome for the buyer? In other words, the value of interest is the solution
to the linear program: maximize

∑
a∈C πa subject to Equations (1), (2), and (3).

This natural question leads us to define the focus point price (FFP) problem as
follows: on input (C, τ, Bcost), output the optimal value of the afore mentioned
linear program.

Define the Necessary Element (NEL) problem as follows. Given parameters
(C, τ, Bcost) return TRUE if there exist an element a ∈ C such that for all
F ⊆ C satisfying Eval(τ, Bcost,F) = MinEval(τ, Bcost, C) we have a ∈ F .
Otherwise, return FALSE.

Define the OPT-SET problem as follows. Given parameters (C, τ, Bcost), re-
turn F such that Eval(τ, Bcost,F) = MinEval(τ, Bcost, C).

In this section, we will show that the FPP problem, the OPT-SET problem
and the NEL problem are polynomial time equivalent. Again, for readability
we choose to present the key intuition and proof sketches for the

::
In

:
Section 5.1,

:::
we

::::::
show

::::::
how

:::
to

::::::
solve

:::::
the

::::::::::::
OPT-SET

::::::::::
problem

:::
in

::::::::::::::
polynomial

:::::
time

:::
if

::::
the

::::::
NEL

:::::::::
problem

::
is

::::::::::
solvable

:::
in

:::::::::::::
polynomial

::::::
time.

:::
In

:
Section 5.2,

::::
we

::::::
show

::::
the

:::::::::::::
polynomial

:::::
time

::::::::::::::
equivalence

:::
of

::::::
NEL,

::::::::::::::
OPT-SET,

:::::
and

::::::::::::
separation

::::::
over Equations (1), (2),

and (3)
:
.
:

5.1
:::::::::::::
Polynomial

::::::
Time

::::::::::::
Reduction

::::::
from

:::::::::::::
OPT-SET

:::
to

::::::
NEL

::
In

:::::
this

::::::::::
section,

::::
we

::::::
show

::::::
that

::::::
given

:::
a

:::::::::::::
polynomial

::::::
time

:::::::::::
algorithm

::::
to

::::::
solve

::::
the

:::::
NEL

:::::::::::
problem,

::::
we

::::
can

::::::
solve

:::::
the

::::::::::::
OPT-SET

::::::::::
problem

:::
in

:::::::::::::
polynomial

::::::
time.

:::::
All

::
of

::::
the lemmas in this section . For the fully detailed proofs, see the companion
technical report

::::
are

::::::
used

:::::::
solely

:::
to

:::::::
prove

::::
the

::::::::::
section’s

:::::::
main

:::::::
result,

:
Lemma 30.

For a fixed tuple (C, τ, Bcost) we say we extend the tuple to contain a shadow
element for an element a ⊆ C by creating the extended tuple (Ĉ, τ̂ , Bcost∗),
where Ĉ = C ∪ b with b /∈ C; τ̂ is the same as τ with the addition that
τ̂(b) = τ(a); and for A ⊆ Ĉ, if b /∈ A, then Bcost∗(A) = Bcost(A), oth-

24

erwise Bcost∗(A) = Bcost((A− {b}) ∪ {a}). We call b the shadow element
corresponding to a.

The full shadow extension of (C, τ, Bcost) is the tuple (Ĉ, τ̂ , Bcost∗) resulting
from extending (C, τ, Bcost) to contain a shadow element for each element in
C.

First, we reduce OPT-SET to NEL. To show the result, we analyze the fol-
lowing algorithm, which we call the shadow algorithm.

On input (C, τ, Bcost),

1 Let (Ĉ, τ̂ , Bcost∗)
::::::::::::::::
(Ĉ∗, τ̂ , Bcost∗)

:
be the full shadow extension of (C, τ, Bcost).

::::
Let

::::
the

::::::::::
program

::::::::::
variable

::
Ĉ

:::::::
equal

::::
Ĉ∗.

:

2 For each a ∈ C
• Remove a’s corresponding shadow element from Ĉ.
• Run NEL on (Ĉ, τ̂ , Bcost∗).
• If the return value is TRUE, then add the shadow element back to Ĉ.
• If the return value is FALSE, then remove a from Ĉ.

3 Return Ĉ ∩ C. In other words, we return all elements from C remaining in
Ĉ, disregarding any shadow elements.

Lemma 26 Let (C, τ, Bcost) be the input to the shadow algorithm. Also, let
(Ĉ, τ̂ , Bcost∗)

:::
Let

:::::
the

:::::::
triple

:::::::::::::::::
(Ĉ∗, τ̂ , Bcost∗)

::
be the full shadow extension of

(C, τ, Bcost). If for all A ⊆ Ĉ
::::::::
A ⊆ Ĉ∗

:
the NEL problem on input (A, τ̂ , Bcost∗)

is solvable in polynomial time, then the OPT-SET problem on input (C, τ, Bcost)
is solvable

::::::::
shadow

::::::::::::
algorithm

::::::
runs in polynomial time.

Given the lemma assumptions, a simple analysis shows that the shadow algorithm

PROOF.
:::::::::
Creating

::::
Ĉ∗

::::::
takes

:::::::::::::
polynomial

::::::
time

::::::
since

::::::
there

:::::
are

:::::::
O(|C|)

:::::::::::
elements.

:::::::::
Defining

:::̂
τ

:::::::
takes

:::::::::::::
polynomial

::::::
time

:::::::
since

:::::::
there

::::
are

:::::::::
O(|C|)

::::::::
inputs.

::::::::::
Queries

:::
to

:::::::
Bcost∗

:::::
can

::::
be

::::::::::::::::
implemented

::::::
with

:::::::::::::
polynomial

:::::::::::
overhead

::::
on

:::::
top

:::
of

:::::::::
queries

:::
to

:::::::
Bcost.

:::::::
Thus,

:::::
the

:::::::::::::::
initialization

:::::
step

:::
of

::::
the

::::::::::::
algorithm

:::::::
takes

:::::::::::::
polynomial

::::::
time.

:

::::::::::
Consider

::
a

::::::::
single

:::::
loop

::::::::::::
iteration.

:::::
The

::::::
first,

:::::::
third

:::::
and

:::::::
forth

::::::
lines

:::
of

:::::
the

:::::
loop

:::::
each

::::::
take

:::::::
O(|C|)

:::::::
time.

:::::
The

:::::::::
second

:::::
step

:::::::
takes

:::::::::::::
polynomial

::::::
time

::::
by

::::
the

::::::::
lemma

:::::::::::::
assumption.

::::::::
Thus,

::
a

:::::::
single

::::::
loop

::::::::::
iteration

:::::::
takes

:::::::::::::
polynomial

::::::
time.

:

:::::::
There

::::
are

:::
|C|

::::::
loop

:::::::::::
iterations

:::::
and

::::::::::::
computing

:::::
the

:::::::::::::
intersection

:::
in

::::
the

:::::::::::::
algorithm’s

:::::
final

:::::
step

:::::::
takes

:::::::
O(|C|)

:::::::
time.

::::::
Thus

:::::
the

:::::::::::
algorithm

:
runs in polynomial time. The

rest of the proof comes in two steps. First, the shadow algorithm maintains
the

Lemma 27
::::
The

:::::::::
shadow

:::::::::::
algorithm

::::::::::::
maintains

::::
the invariant MinEval(τ, Bcost, C) = MinEval(τ̂ , Bcost∗, Ĉ).

25

This is true because we only remove an element from Ĉ if there is an optimal
set that does not contain the element. Second, if

MinEval(τ, Bcost, C)=: MinEval(τ̂ , Bcost∗, Ĉ).

PROOF.
:::::::::
Initially,

:::
MinEval(τ, Bcost, C) = MinEval(τ̂ , Bcost∗, Ĉ)

:::
by

::::
the

::::::::::::
definitions

::
of

:::
Ĉ,

:::̂
τ ,

:::::
and

:::::::::
Bcost∗.

:

::::::::::
Consider

::::
the

:::::
loop

:::::::::::
iteration

:::
for

::::::::
a ∈ C.

::::
Let

::::
the

::::::::::::::::
corresponding

:::::::::
shadow

:::::::::
element

:::
be

::
b.

:::::::
When

:::
we

:::::::::
remove

:::
or

:::::
add

:
b
:::
to

:::
Ĉ,

:::
we

::::::
have

:::
MinEval(τ, Bcost, C) = MinEval(τ̂ , Bcost∗, Ĉ)

:::
by

::::
the

:::::::::::::
definitions

::
of

:::̂
τ ,

:::::
and

:::::::::
Bcost∗

:::::
and

::::
the

:::::
fact

::::::
that

::
a

::
is

:::::
still

:::
in

:::
Ĉ.

:

::::
We

:::::
only

:::::::::
remove

::::::
both

:
a remains in

::::
and

::
b
:::
if

::::::
NEL

::::::::::
returned

:::::::::
FALSE

::::::::
before

::::
the

:::::::::
removal

:::
of

::
a.

:::::
Let

:::
Ĉa:::::

and
:::
Ĉ ′a::::

be
::::
the

:::::::
value

::
of

:::::
the

:::::::::
variable

:
Ĉ

:::::::
before

:::::
and

::::::
after

::::
the

:::::::::
removal

::
of

:::
a,

::::::::::::::
respectively.

:::::::
Since

::::::
NEL

::::::::::
returned

:::::::::
FALSE

:::
on

:::::::::::::::::
(Ĉa, τ̂ , Bcost∗),

::::::
there

::::::
exists

::::::
some

:::::::::
F ⊆ Ĉa::::::

such
:::::
that

:::::::
a /∈ F

:::::
and

::
Eval(τ̂ , Bcost∗,F) = MinEval(τ̂ , Bcost∗, Ĉa).

::::::
Thus,

:::::::::
F ⊆ Ĉ ′a:::::

and
:::
MinEval(τ̂ , Bcost∗, Ĉa) = MinEval(τ̂ , Bcost∗, Ĉ ′a).:

::::::
Thus,

::::::::::::::
throughout

::::
the

::::::::::::
algorithm

:::::
the

:::::::
value

:::
of

:::::::::::::::::::::::::
MinEval(τ̂ , Bcost∗, Ĉ)

::::::
does

::::
not

::::::::
change,

::::::::
which

:::::::::::
concludes

:::::
the

:::::::
proof.

:

Lemma 28
:::
Let

::::
Ĉa :::

be
::::
the

:::::::
value

:::
of

:::::
the

:::::::::
variable

:::
Ĉ

:
at the end of the iteration

associated with a, then it can be shown that
:::::::::
iteration

:::::::::::::::::
corresponding

:::
to

:::::::
a ∈ C.

::
If

:::::::::
a ∈ Ĉa, :::::

then
:
a is contained in all subsets of Ĉ ∩ C that are solutions to the

::
in

::::
all

:
OPT-SET

::::::::::
solutions

::::
on

::::::
input

::::::::::::::::
(A, τ̂ , Bcost∗)

::::::::
where

::::::::::::::
A = Ĉa ∩ C.:

PROOF.
:::
Let

:::::
the

::::::::::::
arguments

:::
of

::::
the

::::::
NEL

::::::::::
problem

::::::::
which

::
is

::::::::
solved

::::::::
during

::::
the

::::::::::
iteration

::::::::::::::::
corresponding

:::
to

::
a

::::
be

::::::::::::::::
(B, τ̂ , Bcost∗).

:

::::::
Since

::::::::
a ∈ Ĉa,:::::::

NEL
::::::::
returns

:::::::::
TRUE

::::::::
during

::::
the

:::::::::::
iteration

::::::::::::::::
corresponding

:::
to

:::
a.

:

:::::::::
Suppose

:::::::
there

::
is

::
a

::::::::::
solution

::::::::
F ⊆ C

:::
to

::::::::::::
OPT-SET

::::
on

::::::
input

::::::::::::::::
(A, τ̂ , Bcost∗)

:::::::
which

:::::
does

:::::
not

:::::::::
contain

::::
a.

:::::::::::
Consider

:::
F

::::::
and

:::
F̂

::::::::
where

::::
F̂

::::::::::
contains

::::
all

:::::
the

:::::::::
shadow

::::::::::
elements

::
of

:::::
the

::::::::::
elements

:::
of

:::
F .

:::::
The

:::::
sets

:::
F

:::::
and

:::
F̂

::::
are

:::::::::
disjoint

:::::
and

::::::
both

::::::::
subsets

::
of

:::
B.

::::::
Also,

::::
by

::::
the

:::::::::::
definition

:::
of

:::
F ,

::̂
τ

:::::
and

::::::::
Bcost∗,

:::
Eval(τ̂ , Bcost∗,F) = Eval(τ̂ , Bcost∗, F̂) = MinEval(τ̂ , Bcost∗,B).

::::::
Thus,

:::::
the

::::::
NEL

::::::::::
problem

:::::
run

:::::::::
during

::::
the

:::::::::::
iteration

::::::::::::::::
corresponding

::::
to

::
a

::::::::
should

:::::::
return

::::::::::
FALSE,

:::::::
which

:::
is

::
a

::::::::::::::::
contradiction.

:

Lemma 29
:::
Let

::::
Ĉa::::

be
::::
the

:::::::
value

::::
of

:::::
the

::::::::::
variable

:::
Ĉ

:::
at

:::::
the

:::::
end

::::
of

::::::::::
iteration

:::::::::::::::
corresponding

:::
to

::::::::
a ∈ C.

::::
We

::::::
have

:::
MinEval(τ, Bcost, C) = MinEval(τ, Bcost, Ĉa ∩ C).

26

PROOF.
:::
Let

:::
F

::::
be

:::::
such

::::::
that

::
Eval(τ̂ , Bcost∗,F) = MinEval(τ̂ , Bcost∗, Ĉa).::

If

:::
we

::::::
have

::::::::::::::::::::::::::::
Eval(τ̂ , Bcost∗,F) = M ,

::::::
then

:::
let

:::::::::
F̂ = ∅;

::::::::::::
otherwise,

::::
let

:::
F̂

::::
be

:::
F

:::::
with

:::::
each

:::::::::
shadow

::::::::::
element

:::::::::::
replaced

::::
by

:::::
the

::::::::::::::::
corresponding

::::::::::
element

::::
in

:::
C.

:::::
By

::::
the

::::::::::::
definitions

:::
of

::̂
τ

:::::
and

:::::::::
Bcost∗,

::::
we

::::::
have

:::
Eval(τ̂ , Bcost∗,F) = Eval(τ̂ , Bcost∗, F̂).

:::::
But,

::::
by

::::
the

:::::::::::::::
construction

:::
of

:::
F̂ ,

::::
we

::::::
have

::::::::::::::
F̂ ⊆ Ĉa ∩ C.

:

::::::
Thus,

:

MinEval(τ̂ , Bcost∗, Ĉa)=: Eval(τ̂ , Bcost∗,F)

=: Eval(τ̂ , Bcost∗, F̂) ≥
::

MinEval(τ̂ , Bcost∗, Ĉa ∩ C).

::::::
Also,

:::
by

:::::
the

:::::::::::
definition

:::
of

:::::::::::
MinEval,

::::
we

::::::
have

::::::
that

::::::::::::::::::::::::::
MinEval(τ̂ , Bcost∗, Ĉa) ::

is
:::
at

:::::
most

:::::::::::::::::::::::::::::::
MinEval(τ̂ , Bcost∗, Ĉa ∩ C).

:::::
So,

:::
we

::::::
have

:

MinEval(τ̂ , Bcost∗, Ĉa)=: MinEval(τ̂ , Bcost∗, Ĉa ∩ C).

::::::::::::
Combining

:
Lemma 27

:::::
with

::::
the

:::::::
result

::::::
from

:::::
the

:::::
last

::::::::::::
paragraph,

::::
we

::::::
have

:

MinEval(τ, Bcost, C)=: MinEval(τ̂ , Bcost∗, Ĉa)=: MinEval(τ̂ , Bcost∗, Ĉa ∩ C).

:::::
And,

::::
by

:::::
the

::::::::::::
definition

:::
of

::̂
τ

::::::
and

:::::::::
Bcost∗,

::::
we

::::::
have

::::::::::::::::::::::::::::::
MinEval(τ̂ , Bcost∗, Ĉa ∩ C)

:::::::
equals

::::::::::::::::::::::::::::::
MinEval(τ, Bcost, Ĉa ∩ C).

:

Lemma 30
:::
Let

:::::::::::::::
(C, τ, Bcost)

:::
be

:::::
the

:::::::
input

:::
to

::::
the

::::::::::
shadow

::::::::::::
algorithm.

:::::
Let

::::
the

::::::
triple

:::::::::::::::::
(Ĉ∗, τ̂ , Bcost∗)

:::
be

:::::
the

:::::
full

:::::::::
shadow

:::::::::::
extension

::::
of

:::::::::::::::
(C, τ, Bcost).

:::
If

::::
for

::::
all

::::::::
A ⊆ Ĉ∗

:::::
the

::::::
NEL

::::::::::
problem

::::
on

:::::::
input

:::::::::::::::::
(A, τ̂ , Bcost∗)

:::
is

::::::::::
solvable

:::
in

:::::::::::::
polynomial

::::::
time,

:::::
then

::::
the

::::::::::::
OPT-SET

:
problem on input (C, τ, Bcost) .

:
is

::::::::::
solvable

::
in

:::::::::::::
polynomial

::::::
time.

:

The following lemma captures the relationship between the FPP problemand
the

PROOF.
:::
By

:
Lemma 26

:
,
::::
the

:::::::::
shadow

::::::::::::
algorithm

::::::
runs

:::
in

:::::::::::::
polynomial

:::::::
time.

:

::::
Let

:::
Ĉ ′

:::
be

::::
the

::::::
value

:::
of

::::
the

::::::::::
variable

::
Ĉ

:::
at

::::
the

:::::
end

::
of

:::::
the

::::::::::::
algorithm.

::::
By Lemma 29,

:::::::
Ĉ ′ ∩ C

::
is

:::
a

::::::::::
superset

:::
of

::
a
::::::::::
solution

::::
to

::::
the

:::::::::::::
OPT-SET

:::::::::::
problem.

::::
By

:
Lemma 28,

:::::::
Ĉ ′ ∩ C

::
is

::
a

::::::::
subset

::
of

::
a

::::::::::
solution

:::
to

::::
the

::::::::::::
OPT-SET

:::::::::::
problem.

:::::::
Thus,

::::::
value

::::::::::
returned

:::
by

::::
the

:::::::::
shadow

:::::::::::::
algorithm,

::::::::
Ĉ ′ ∩ C,

::
is

::
a
::::::::::
solution

:::
to

:::::
the

::::::::::::
OPT-SET

:::::::::::
problem.

:

5.2
:::::::::::::
Polynomial

::::::
Time

::::::::::::::
Equivalence

:::
of

:::::::
NEL,

::::::::::::::
OPT-SET,

::::
and

:::::::::::::
Separation

27

::
In

:::::
this

:::::::::
section

:::
we

:::::::
show

::
a

:::::::::::::
polynomial

:::::
time

::::::::::::::
equivalence

:::::::::
between

:::::
the NEL prob-

lem
:
,

::::
the

:::::::::::::
OPT-SET

::::::::::
problem

:::::
and

::::
the

:::::::::::::
separation

::::::::::
problem

:::::
over

:
Equations (1),

(2), and (3)
:
.

:::::
The

:::::::::
lemmas

:::
in

:::::
this

:::::::::
section

::::
are

::::::
used

:::
to

::::::
show

:::::
the

::::::::::
section’s

::::::
main

:::::::
result,

:
Theorem 33

:
.
::::
As

::
a

:::::::::::::
byproduct

:::
of

::::
the

:::::::::
proofs,

:::
we

::::::
also

::::::
show

::::
an

::::::::::
hardness

::
of

:::::::::::::::::
approximation

:::::::
result

::::
for

:::::
the

::::::
FPP

::::::::::
problem

:::::
with

:
Lemma 34.

Lemma 31 The solution to the FPP problem on input (C, τ, Bcost) is 0 if
and only if the solution to the NEL problem on input (C, τ, Bcost) is FALSE.
Thus, if it is possible to approximate the the FPP problem on input (C, τ, Bcost)
within any multiplicative factor in polynomial time

PROOF.
::::::
First,

:::
we

:::::::
prove

::::::
that

::
if

::::
the

::::::::::
solution

:::
to

::::
the

::::::
NEL

::::::::::
problem

:::
is

:::::::::
FALSE,

then the NEL problem on input (C, τ, Bcost) is solvable in polynomial time.

:::::::::
solution

:::
to

:::::
the

:::::::
FPP

::::::::::
problem

:::
is

:::::::
zero.

:::::::::::
Consider

::::
all

:::
of

:::::
the

:::::::::::::
inequality

::::::
pairs

::
πa ≤ MinEval(τ, Bcost, C − {a})−MinEval(τ, Bcost, C)

:::::
and

:::::::::
πa ≥ 0.

::::::
Since

::::
the

:::::::::
solution

:::
to

:::::
the

:::::::
NEL

::::::::::
problem

:::
is

::::::::::
FALSE,

::::
for

::::::
each

::::::::
a ∈ C

:::::::
there

:::
is

::
a

:::::::::
Fa ⊆ C

:::::
such

:::::
that

:::
Eval(Fa, Bcost, C) = MinEval(τ, Bcost, C)

:::::
and

:::::::::
a /∈ Fa.::::::

Thus
::::
the

:::::
first

:::::::::::
inequality

:::
in

:::::
the

::::::
pair

:::::::::
reduces

:::
to

::::::::::
πa ≤ 0,

:::::
and

::::
the

::::::
pair

:::
of

::::::::::::::
inequalities

:::::::
imply

::::::::
πa = 0.

::::::
This

:::
is

::::::
true

:::::
for

::::
all

::::::::
a ∈ C.

:::::::
Thus,

::::::::::
optimal

:::::::
value

::::
of

::::
the

:::::::
FPP

:::::::
linear

:::::::::
program

:::
is

::::::
zero.

:

The intuition behind this lemma is
:::::::::
Second,

:::
we

::::::::
prove

:
that if the solution to

NEL
::::
the

::::::
NEL

:::::::::::
problem

:
is TRUE, then

:::
the

::::::::::
solution

::::
to

::::
the

::::::
FPP

:::::::::::
problem

::
is

::::::::
greater

::::::
than

::::::
zero.

::
If

::::
the

::::::::::
solution

:::
to

::::::
NEL

::
is

:::::::::
TRUE,

::::::
then

:
there is some element

a that
:::::::
a ∈ C

:::::
such

::::::
that

::
if

::
Eval(τ, Bcost,F) = MinEval(τ, Bcost, C)

:::::
then

::::::::
a ∈ F .

::
In

:::::::
other

:::::::::
words,

::
a

::
is in all OPT-SET solutions

:::::::::
solutions

::::
to

:::::
the

::::::::::::
OPT-SET

:::::::::
problem

:
on input (C, τ, Bcost). In this case, the

::::::
Thus,

::::
for

::::
all

::::::::
A ⊆ C

::::::
with

::::::::
a ∈ A,

::::
we

::::::
have

MinEval(τ, Bcost, C − A)−
::

MinEval(τ, Bcost, C)> 0.::::

::::
Let

::
λ = minA⊆C

a∈A
[MinEval(τ, Bcost, C − A)−MinEval(τ, Bcost, C)].

::::::::::
Consider

::::
the

:::::::
vector

::
π

::::::
with

:::::::
πb = 0

::::
for

:::
all

::::::::::::::
b ∈ C − {a}

::::
and

::::::::
πa = λ

:::::
and

:::
πµ = M −MinEval(τ, Bcost, C)− λ.

::::::
Since

:::::::::::::::::::::::::::::::::::
λ ≤ M −MinEval(τ, Bcost, C),

:::::
this

::::::::
vector

:::
is

:::::::::
feasible

:::
in

::::
the

:::::::
focus

::::::
point

:::::
price

:::::::
linear

::::::::::
program

:::::
and

::::::::::
achieves

::
a

:::::::::::
objective

::::::::::
function

::::::
value

:::::::::
greater

:::::
than

::::::
zero.

Lemma 32
:
If

:::
it

:::
is

:::::::::
possible

:::
to

:::::::::::::::
approximate

::::
the

:
solution to the FPP problem

is at least the difference between the value of an OPT-SET solution on input
(C, τ, Bcost) and the value of an OPT-SET solution on input (C − {a}, τ, Bcost).
On the other hand, if the solution to NEL is FALSE, then the right hand sides
of all singleton equations from are zero, and thus the FPP problem solution

28

is also zero.
:::::::
within

:::::
any

::::::::::::::::
multiplicative

::::::::
factor,

::::::
then

::::
the

::::::
NEL

::::::::::
problem

::::
on

::::::
input

:::::::::::::
(C, τ, Bcost)

:::
is

::::::::::
solvable

:::
in

:::::::::::::
polynomial

::::::
time.

:

PROOF.
::::::::
Follows

::::::
from

:
Lemma 31

:
.
:

A set of (C, τ, Bcost) instances is proper if the following conditions hold:

• Given that (C, τ, Bcost) is in the set, then so is (C, τ̂ , Bcost), where τ̂(a) =

τ(a) + πa for a vector π ∈ <|C|
+ .

• Given that (C, τ, Bcost) is in the set, then so is (A, τ̂ , Bcost∗), where A is
a subset of Ĉ and

::::
the

:::::::
triple

:
(Ĉ, τ̂ , Bcost∗) is the full shadow extension of

(C, τ, Bcost)
::::
and

:::
A

:::
is

::
a

::::::::
subset

:::
of

::
Ĉ.

The definition of proper instances has a natural interpretation when applied to
the transformations of combinatorial minimization problems to buyer-supplier
games. For example, for the shortest path problem, the first condition implies
that the set of instances is closed with respect to lengthening the edges of
the graph. On the other hand, the second condition implies that the set of
instances is closed with respect to adding parallel edges or removing a subset
of the edges.

The results of and the lemmas we have given in this section lead us to the
following theorem.

Theorem 33 On a proper set of instances, the separation problem over Equa-
tions (1), (2), and (3), the NEL problem and the OPT-SET problem are poly-
nomial time equivalent.

PROOF. If we can solve the NEL problem on a proper set of instances in
polynomial time, then, by Lemma 30, we can solve the OPT-SET problem in
polynomial time.

If we can solve the OPT-SET problem on a proper set of instances in poly-
nomial time, then, by Theorem 22, we can solve the separation problem over
Equations (1), (2), and (3) in polynomial time.

If we can solve the separation problem over Equations (1), (2), and (3) on
a proper set of instances in polynomial time, then, by the polynomial time
equivalence of separation and optimization, we can optimize linear objective
functions over Equations (1), (2), and (3) in polynomial time. If we can opti-
mize linear objective functions in polynomial time, by Lemma 32 we can solve
the NEL problem in polynomial time.

29

in combination with gives us the following inapproximability result.

Lemma 34 On a proper set of instances, if it is not possible to solve the
OPT-SET problem in polynomial time, it is not possible to approximate the
solution to the FPP problem to within any multiplicative factor in polynomial
time.

PROOF.
::::::::
Follows

::::::
from

:
Theorem 33

::::
and

:
Lemma 32.

:

6 A Complementary Combinatorial Algorithm

In this section, we present an efficient combinatorial algorithm for solving the
FPP problem for the buyer-supplier minimum spanning tree (MST) game.

:::::::
Before

::::
we

::::
go

::::
on

:::
to

::::::
give

:::::
the

::::::::::::
algorithm

:::
in

::
Section 6.2

:
,
::::
we

:::::::::
present

:::
a

:::::::
useful

:::::::::::::::
simplification

:::
of

::::
the

:::::::
linear

::::::::::
program

:::::::::::::::
representing

::::
the

::::::
FPP

::::::::::
problem

::::
for

::::::::
general

::::::::::::::::
buyer-supplier

::::::::
games

:::::
that

::::::
may

:::
be

:::
of

:::::::::::::::
independent

::::::::::
interest.

:

6.1
::
A

::::::::::::::::
Simplification

:::
of

::::
the

::::::
FPP

::::::::::
Problem

::
In

:::::
this

::::::::::
section,

:::
we

::::::
give

::
a

:::::::::::
simplified

:::::::
linear

:::::::::::
program

:::::
that

::::::
may

:::
be

::::::
used

:::
to

::::::
solve

::::
the

::::::
FPP

::::::::::
problem.

:

::::
For

:::::
this

::::::::::
section,

:::
fix

:::
a

:::::::::::::::::
buyer-supplier

:::::::
game

:::::::::
defined

::::
by

:::::::::::::::
(C, τ, Bcost).

:::::
Let

::::
the

::::::::::::::::
buyer-supplier

:::::::
game

:::
be

:::::::::
derived

::::::
from

::::
the

::::::::::::::::
combinatorial

::::::::::::::::
minimization

:::::::::
problem

::::::::::
MinProb

:::
as

:::::::::::
described

:::
in

:
Section 1

:
.

::::
We

::::::
omit

::::
the

:::::::::::::
parameters

:::
τ

:::::
and

:::::::
Bcost

:::::
from

:::::::::
MinEval

:::::::
since

:::::
they

:::::
are

::::::
fixed

::::
by

::::
the

:::::::
game.

:

Lemma 35
::::
For

:::
all

:::::::::
A ⊆ C,

::::
we

::::::
have

::
MinEval(A) = min(M, MinProb(A)).

:

PROOF.
:::
By

::::
the

::::::::::::
definition

::
of

:::::::::::
MinEval

:::::
and

::::::
Eval,

::::
we

::::::
have

:

MinEval(A)= min
B⊆A

::::::

[Eval(B)]

= min
B⊆A

::::::

[Bcost(B)+
∑
a∈B

:::::

τ(a)]

::::
We

:::::::::::
explicitly

::::::::::::
instantiate

:::::
the

:::::
case

:::::::
when

::::::::
B = ∅.

:::::::
Since

:::::::::::::::::
Bcost(∅) = M ,

::::
we

::::::
have

MinEval(A)= min(
:::::::

M, min
B ⊆ A

:::::::

[Bcost(B)+
∑
a∈B

:::::

τ(a)])

30

::::::
Since

::::::::::::
P (B) = 0

:::::::::
implies

:::::::::::::::::
Bcost(B) = M

:::::
and

:::::::
since

::::::::::
τ(a) ≥ 0

:::::
for

:::
all

::::::::
a ∈ C,

::::
we

:::::
have

:

MinEval(A)= min(
:::::::

M, min
B ⊆ A

P (B) = 1
::::::::::

[Bcost(B)+
∑
a∈B

:::::

τ(a)])

= min(
:::::::

M,MinProb(A))

::::::::::
Consider

::::
the

::::::::
linear

::::::::::
program

:::::::
from

::::
the

::::::
FPP

:::::::::::
problem

::::
for

::::
the

:::::::
given

::::::::
game.

:::
In

::::::::::::
particular,

::::::::::
consider

:::::
the

::::::::::
variable

::::
πµ.

::::::
The

::::::::::
variable

:::::
can

:::
be

:::::::::
viewed

:::
as

:::
a

::::::
slack

:::::::::
variable

::::
for

::::
the

::::::::::::
constraint

::::::::
arising

::::::
from

:
Equation (3)

:
.
:::
In

::::::::::
specific,

:::
we

:::::
can

::::::
write

::
0 ≤ πµ = M −MinEval(C)−∑

b∈C πb,::::::::
where

:::::
the

::::::::::::
inequality

::::::::
comes

:::::::
from

::::
the

:::::::::::
constraint

:::::::::
πµ ≥ 0

:::::
and

:::::
the

::::::::::
equality

::::::::
comes

::::::
from

:::::
the

::::::::::::
constraint

:::::::::
arising

::::::
from

Equation (3).
::::::::
Thus,

::::
the

:::::::::::
following

::::::::
linear

::::::::::
program

:::
is

::::::::::::
equivalent

::::
to

::::
the

:::::::
linear

:::::::::
program

::::::
from

:::::
the

::::::
FPP

::::::::::
problem

:

max
∑
b∈C

::::::::

πb

s.t.
∑
b∈A

:::::::

πb≤::
MinEval(C − A)−

::
MinEval(C) for all A ⊆ C

::::::::::::::

∑
b∈C
:::

πb≤::
M−

::
MinEval(C)

πb≥ 0
::::

for all b ∈ C.::::::::::::::

::::::::
Which,

:::
in

::::::
turn,

::::
by

:
Lemma 35

::
is

::::::::::::
equivalent

:::
to

:

max
∑
b∈C

::::::::

πb

s.t.
∑
b∈A

:::::::

πb≤ min(
::::::::

M,MinProb(C − A))−min(
:::::::::

M,MinProb(C)) ∀A ⊆ C
::::::::

∑
b∈C
:::

πb≤::
M−min(

:::::::
M,MinProb(C))

πb≥ 0
::::

∀b ∈ C.:::::::

:::::
Call

::::
the

:::::::
above

:::::::
linear

:::::::::::
program

:::::
LP1

:::::
and

::::
let

:::
its

::::::::::
optimal

::::::
value

::::
be

::::
O1.:

31

::::::::::
Consider

::::
the

:::::::::::
following

:::::::
linear

::::::::::
program

:

max
∑
b∈C

::::::::

πb

s.t.
∑
b∈A

:::::::

πb≤::
MinProb(C − A)−

::
MinProb(C) for all A ⊆ C

::::::::::::::

πb≥ 0
::::

for all b ∈ C.::::::::::::::

:::::
Call

::::
the

:::::::
above

:::::::
linear

:::::::::::
program

:::::
LP2

:::::
and

::::
let

:::
its

::::::::::
optimal

::::::
value

::::
be

::::
O2.:

Lemma 36
:
If

::::::::::::::::::::::
MinProb(C) ≥ M ,

::::::
then

:::::::::
O1 = 0.

:

PROOF.
:::::::::
Consider

:::::
the

:::::::::::
inequality

::::::
that

::::::
must

:::
be

::::::::::
satisfied

:::
by

:::
all

:::::::::
vectors

::::::::
feasible

::
in

::::::
LP1,

::

∑
b∈C πb ≤ min(M, MinProb(C − C))−min(M, MinProb(C)).

:::::
The

::::::
right

::::::
hand

::::
side

:::
of

:::::
this

:::::::::::
inequality

:::
is

::::::
equal

:::
to

:::
0,

::::::
since

::::::::::::::::::::
M ≤ MinProb(C)

:::::
and

::::::::::::::::::::
MinProb(∅) = ∞.

::::::
Thus,

::::
we

:::::::
know

::::::
that

:::::::::
O1 ≤ 0.

::::
We

::::::
also

::::::
have

::::::::
O1 ≥ 0

:::::::
since

::::
the

::::
all

:::::
zero

::::::::
vector

::
is

::::::::
feasible

::::
for

:
LP1

:
.
:

Lemma 37
:
If

:::::::::::::::::::::
MinProb(C) < M

:::::
and

::::::::::::::::::::::::::::
O2 ≤ M −MinProb(C),

:::::
then

:::::::::::
O1 = O2.

PROOF.
:::::
Since

::::::::::::::::::::::
MinProb(C) < M ,

::::
for

::::
any

::::::::
A ⊆ C

::::
we

::::::
have

:

min(
:::::

M,MinProb(C − A))−min(
:::::::::

M,MinProb(C))

= min(
:::::::

M,MinProb(C − A))−
:::

MinProb(C)

≤
::

MinProb(C − A)−
::

MinProb(C)

::::::
Thus,

:::
if

::
a

:::::::
vector

:::
π

::
is

:::::::::
feasible

:::
in

:::::::
LP1,

:::::
then

:::
π

::
is

:::::
also

:::::::::
feasible

:::
in

:::::::
LP2.

:::::::
Thus,

:::
we

:::::
have

:::::::::::
O1 ≤ O2.:

Let a
::
π∗

::::
be

:::
an

::::::::::
optimal

::::::::
vector

::::
for

::::::
LP2.

::::
Let

:::
A

::::
be

:::::
any

::::::::
subset

:::
of

:::
C.

::::::
Since

::::
π∗

::
is

::::::::
feasible

:::
in

::::::
LP2,

::::
we

::::::
have

:∑
b∈A
:::

π∗b≤::
MinProb(C − A)−

::
MinProb(C).

::::::
Since

:::::::::::::::::::::::::::
O2 ≤ M −MinProb(C)

:::
we

::::::
also

:::::
have

:∑
b∈A
:::

π∗b ≤
∑
b∈C

:::::::

π∗b =
:::

O2≤::
M−

::
MinProb(C).

32

::::::
Thus,

::::
we

::::::
have

:∑
b∈A
:::

π∗b≤ min(
::::::::

M,MinProb(C − A))−
:::

MinProb(C)

= min(
:::::::

M,MinProb(C − A))−min(
:::::::::

M,MinProb(C))

::::::
Thus,

::::
π∗

::
is

:::::::::
feasible

:::
in

:::::::
LP1.

:::::::
Thus,

::::
we

::::::
have

:::::::::::
O1 ≥ O2.

::::::
Thus,

:::::::::::
O1 = O2.:

Lemma 38
:
If

:::::::::::::::::::::
MinProb(C) < M

::::
and

::::::::::::::::::::::::::::
O2 > M −MinProb(C),

:::::
then

::::::::::::::::::::::::::::
O1 = M −MinProb(C).

PROOF.
:::
Let

::::
π∗

:::
be

::::
an

:::::::::
optimal

::::::::
vector

::::
for

::::::
LP2.

:::::::
Thus,

::::
we

::::::
have

:∑
a∈C
:::

π∗a =
:::

O2>: M−
::

MinProb(C)

::::
Let

::::::::::
ν∗ ∈ <|C|

::::
be

:::::
any

:::::::
vector

::::::
such

::::::
that

:

0 ≤
::::

ν∗a:
≤
::

π∗a:
for all a ∈ C:::::::::::::∑

a∈C
:::

ν∗a:
=: M−

::
MinProb(C)

::::
We

::::::
know

::::::
that

:::::
such

::
a

:::
ν∗

:::::::
exists

::::::
since

::::
we

:::::
can

::::::::::
decrease

:::::
each

:::
of

::::
the

::::::::::::::
coordinates

::
of

:::
π∗

::
in

::::::
turn,

:::::
not

::::::::::::
decreasing

::::
any

:::::::::::::
coordinate

:::::
past

::::::
zero,

::::::
until

:::
we

::::::
have

:::::::::::::::::::::::::::::::::

∑
a∈C ν∗a = M −MinProb(C).

::::::
Thus,

::::
ν∗

::
is

:::::::::
feasible

:::
in

:::::
the

::::::::::::
constraint

:::

∑
a∈C ν∗ ≤ M −min(M, MinProb(C))

::
of

:::::
LP1.

:

::::
Let

:::
A

:::
be

:::::
any

::::::::
subset

:::
of

:::
C.

::::
We

::::::
have

:∑
a∈A
:::

ν∗a ≤
∑
a∈C

:::::::

ν∗a =
:::

M−
::

MinProb(C).

::::::
Since

:::
π∗

:::
is

:::::::::
feasible

:::
in

::::::
LP2,

::::
we

:::::
also

::::::
have

:∑
a∈A
:::

ν∗a ≤
∑
a∈A

::::::::

π∗a ≤:::
MinProb(C − A)−

::
MinProb(C).

33

::::::
Thus,

: ∑
a∈A
:::

ν∗a:
≤ min(
::::::::

M,MinProb(C − A))−
:::

MinProb(C)

= min(
:::::::

M,MinProb(C − A))−min(
:::::::::

M,MinProb(C))

::::
and

:::
ν∗

:::
is

:::::::::
feasible

:::
in

::::::
LP1.

:

::::
The

:::::::
value

::
of

::::::
LP1

:::
for

::::::::
vector

:::
ν∗

::
is

:::::::::::::::::::::
M −MinProb(C).

:::::
But,

::::
the

::::::::::::
constraint

:::

∑
a∈C ν ≤ M −min(M, MinProb(C))

::
of

::::::
LP1,

:::::::
which

:::::::
must

:::
be

::::::::::
satisfied

:::
by

:::
all

:::::::::
feasible

:::::::::
vectors

:::
ν,

:::::
tells

:::
us

::::::
that

::::
the

::::::
value

::
of

:::::
LP1

:::::
can

:::
be

:::
at

::::::
most

::::::::::::::::::::
M −MinProb(C).

:::::::
Thus,

::::
we

::::::
have

:::::::::::::::::::::::::::
O1 = M −MinProb(C).

:::
By

::::::::::
Lemmas

::::
36,

:::::
37,

:::::
and

::::
38,

::::::::
finding

:::::
the

::::::
value

:::
of

::::::::::::::
MinProb(C)

:::::
and

:::::
the

:::::::::
solution

::
to

:
LP2

:
is

:::::::::::
sufficient

:::
to

::::::
solve

:::::
the

::::::
FPP

::::::::::
problem

::::
for

::::::
given

:::::::::::::::::
buyer-supplier

::::::::
game.

6.2
::::
The

:::::::::::::::::
Combinatorial

::::::::::::
Algorithm

::::
Let

::
a

:
graph G = (V , E) and edge weights w : E → <+ be given. Let MSTVal :

2E → <+ be a function that takes as input a set of the edges A ⊆ E and
returns the weight of the minimum spanning tree of the graph induced by the
edges of A. If no spanning tree exists, MSTVal returns ∞.

By the transformation in Section 1 and Lemma 21 in the buyer-supplier min-
imum spanning tree game, we have C = E , τ(a) = w(a), and Bcost(A) = M
if A does not connect all nodes in V , or 0 otherwise. We omit the parameters
τ and Bcost from MinEval, since they are fixed by the game.

Call the linear program from the FPP problem for the given game LP1, and let
its optimal value be O1. Consider the linear program: maximize

∑
b∈C πb subject

to
∑

b∈A πb ≤ MinProb(C − A)−MinProb(C) for all A ⊆ C and πb ≥ 0 for all
b ∈ C. Call the linear program from the previous sentence LP2, and let its
optimal value be O2. ::::

We
:::::::
begin

:::::
with

:::::::
some

:::::::
basics

::::
on

::::::::
MSTs.

:

We are able to prove the following relationship between LP1

Lemma 39
:::
Let

:::::::::::::::
H = (V1, E1)::::

be
:::::
any

::::::::
graph.

::::
Let

:::::::::::::::
T = (V1, E ′1):::

be
:::
a

:::::::::::
minimum

::::::::::
spanning

:::::
tree

::::
of

::::
the

::::::::
graph

::::
H.

:::::
For

:::::::::
e ∈ E ′1 ::::

let
::::
the

:::::
cut

:::::::::
created

::::
in

:::
T

::::
by

::::
the

:::::::::
removal

:::
of

:
e
:::
be

::::::::::
(Ae,Be)::::

for
::::::
some

::::::::::
Ae ⊆ V1:

and LP2. If MinProb(C) ≥ M , then
O1 = 0. If MinProb(C) < M and O2 ≤ M −MinProb(C), then O1 = O2. If
MinProb(C) < M and O2 > M −MinProb(C), then O1 = M −MinProb(C).
When considering the FPP problem arising from the buyer-supplier game for
a specific minimization problem, it may often be helpful to consider LP2 instead

34

of LP1. In fact, the combinatorial algorithm we present finds the optimal value
for LP2

:::::::::
Be ⊆ V1.:

•
::::
The

::::::
edge

::
e

:::
is

::
a

::::::::::::
minimum

::::::::
weight

:::::
edge

:::::::::::
spanning

::::
the

:::::
cut

:::::::::
(Ae,Be).

•
::::
The

:::::
tree

:::
T

::::::::::::
restricted

:::
to

:::::::::
vertices

:::
in

:::::
Ae ::

is
:::
a

:::::::::::
minimum

:::::::::::
spanning

:::::
tree

:::
of

:::::
the

::::::
graph

:::::::::
induced

::::
by

::::
the

:::::::::
vertices

:::::
Ae.:::

A
::::::::::::
symmetric

::::::::::::
statement

:::
is

:::::
true

::::
for

::::
Be:

•
::::
Let

::
U

::::
be

::::
the

::::
set

:::
of

:::::::
edges

:::::::::::
spanning

::::
the

::::
cut

:::::
and

::::
let

::::::::::::::::::::::::::::
a = arg minb∈U−{e}w(b).

::::
We

::::::
have

::
w(a)− w(e) = MSTVal(E1 − {e})−MSTVal(E1).:

The key insight behind the combinatorial algorithm for the FPP problem for
the buyer-supplier MST game is the following. Let

PROOF.
:::
We

::::
use

::
a
:::::::
proof

::::
by

::::::::::::::::
contradiction.

::::::::::
Suppose

::::::
there

:::
is

::::::
some

:::::::
other

:::::
edge

::
e′

:::::::
which

::::::::
spans

:::::
the

::::
cut

:::::::
such

:::::
that

:::::::::::::::::
w(e′) < w(e).

:::::::
Then,

:::::
we

:::::::
could

::::
get

:::
a

:::::
new

::::::::::
spanning

:::::
tree

::::
T ′

:::
of

::::
the

:::::::
graph

::::
H

:::
by

:::::::::::
replacing

:::::
the

::::::
edge

::
e

:::
in

:::
E ′1::::::

with
:::::
the

:::::
edge

:::
e′.

:::::
The

:::::
tree

::::
T ′

:::::
has

::
a

:::::::::
strictly

:::::::::
smaller

::::::::
weight

::::::
than

:::::
the

:::::
tree

:
T be an MST of

G. Suppose edges e1 and e2 are edges in
::::::
since

::::::::::::::::
w(e′) < w(e),

:::::::::::::::
contradicting

::::
the

::::
fact

::::::
that

:
T . Suppose the removal of the individual edge e1 (e2) increases the

MST cost by λ1 (λ2). Then, the removal of both edges increases the MST
cost by at least λ1 + λ2. This insight leads Bikhchandani to show that for the
buyer-supplier MST game,

:
is

:::
a

:::::::::::
minimum

:::::::::::
spanning

:::::
tree

:::
of

::::
H.

:

:::::::::::
Similarly,

::
if

::
T

::::::::::::
restricted

:::
to

::::
the

:::::::::
vertices

:::
in

::::
Ae:::

is
::::
not

::
a

::::::::::::
minimum

::::::::::
spanning

:::::
tree

::
of

:::::
the

:::::::
graph

:::::::::
induced

::::
by

::::
the

::::::::::
vertices

:::
in

::::
Ae,::::

we
:::::
can

:::::::::::
construct

::
a
:::::::::::
spanning

:::::
tree

::
of

:::
H

::::::
with

::::::::
weight

::::::::
strictly

:::::::::
smaller

::::::
than

:::
T

:::
by

:::::::::::::
connecting

::
e,

:::::
the

:::::
tree

::
T

:::::::::::
restricted

::
to

:::::
Be, ::::

the
:::::::::::
minimum

:::::::::::
spanning

:::::
tree

::::::::::
induced

::::
by

::::
the

:::::::::
vertices

:::
in

::::
A.

:

:::
By

::::::
first

::::::::
second

:::::::
result

:::
of

:::::
this

:::::::::
lemma,

:::
a

:::::::::::
minimum

:::::::::::
spanning

::::::
tree

:::
of

::::
the

:::::::
graph

:::::::::
induced

:::
by

:::::::::::
E1 − {e}

:::::
can

:::
be

:::::::::::
obtained

::::
by

:::::::::
keeping

::::
the

:::::::::::
portions

:::
of

::
T

::::::::
which

:::
lie

:::::::
wholly

:::
in

:::::::::
exactly

::::
one

:::
of

::::
Ae :::

or
:::
Be:::::

and
:::::::::::
attaching

::::
the

::::::::::
smallest

::::::::
weight

:::::
edge

:::::::
which

::::::
spans

::::
the

:::::
cut.

::::::::
Thus,

:::
we

::::
get

::
w(a)− w(e) = MSTVal(E1 − {e})−MSTVal(E1).

::::
The

:::::::::::
following

::::::::
lemma

:::
is

::::
due

:::
to

::::::::::::::::
Bikhchandani

:::
et

::::
al.,

:::::
who

:::::::
show

:::::
that

:::
in

::::
the

::::::
MST

::::::::::::::::
buyer-supplier

:::::::
game,

:::::
the

:
suppliers are substitutes [2]. Their result along with

shows that the singleton inequalities of

Lemma 40
:::::::::
Suppose

::::
the

:::::::
graph

:::
G

::
is

::::::::::::
connected

:::::
and

:::::
thus

::::::::::::::
MSTVal(E)

:::
is

:::::::
finite.

::::
For

:::::
any

:::
set

:::::::::
A ⊆ E,

:::
we

::::::
have

::
MSTVal(E − A)−MSTVal(E) ≥ ∑

e∈A[MSTVal(E − {e})−MSTVal(E)]

::::
Let

:
LP2 are

:::
be

:::
as

:::
in

:
Section 6.1

:::::
with

:::::::::::
MinProb

:::::::
equal

:::
to

:::::::::::
MSTVal.

:

Lemma 41
::::
The

::::::::::::::
inequalities

::::::::::::::::
corresponding

::::
to

:::::::::::
singleton

::::::
sets

:::::
{e}

::::
for

:::::::
e ∈ E

35

:::::
form

:
an optimal basis

:::
for

::::::
LP2.

::::
In

::::::::::::
particular,

::::::::
setting

::
πe = MSTVal(E − {e})−MSTVal(E)

:::
for

::::
all

:::::::
e ∈ E

::::::
gives

::::
an

:::::::::
optimal

::::::::
vector

::::
for

:::::
LP2.

PROOF.
:::
For

:::::::::
A ⊆ E ,

::::
by Lemma 40

:
,
::::
we

::::::
have

∑
e∈A
:::

πe=
∑
e∈A

[MSTVal(E − {e})−MSTVal(E)]

:::

≤
::

MSTVal(E − A)−
::

MSTVal(E).

Thus, all our combinatorial algorithm must calculate is the increase in the
MST cost associated with the removal of each edge in T .

::
π

::
is

:::::::::
feasible

:::
in

::::::
LP2.

::::::
Each

:::::::::::
inequality

:::
of

::::::
type

:::
πe ≤ MSTVal(E − {e})−MSTVal(E)

::
is

:::::::
tight,

::::::
thus

::
it

::
is

::::
not

::::::::::
possible

::::
to

:::::::::
increase

:::::
any

:::::::::::::
coordinate

:::
of

:::
π.

:::::::
Thus

:::
π

::
is

::::
an

::::::::::
optimal

:::::::
vector

::::
and

:::::
the

::::::::::
singleton

::::::::::::::
inequalities

::::::
form

::::
an

:::::::::
optimal

:::::::
basis.

:

We give a modified Kruskal Algorithm which can be used to compute the
optimal value of LP2. The modificationsare as follows.

:::::
Run

:::::::::
Kruskal

:::::::::::::
Algorithm

:::::
with

:::::
the

:::::::::::
following

::::::::::::::::
modifications.

:

• Throughout the algorithm’s execution we will keep an auxiliary set of edges,
A, which is initially empty.

• When edge e is added to the minimum spanning forest, also add e to the
set A.

• Suppose edge e is rejected from addition to the minimum spanning forest

:::::::
Forest

:
because it creates a cycle. Let the cycle created be H = (V ′, E ′). For

each edge a ∈ E ′ − {e}, if a ∈ A, label a with w(e) − w(a) and remove a
from A. The labels

Lemma 42
:::
Let

:::
G

::::
be

:::::::::::
connected

:::::
and

:::::::::::::::
T = (V1, E1):::

be
:::::
the

::::::::::::
minimum

::::::::::
spanning

::::
tree

:
computed by the algorithm are the required increases in the MST cost

::::::::::
modified

:::::::::
Kruskal

:::::::::::
Algorithm

:::::::
when

::
it

:::
is

:::::
run

:::
on

::::::::::::::
G = (V , E).

::
If

::::::::
e ∈ E1 ::::

has
::::::
been

::::::::
labeled,

::::
the

:::::
label

::
is

:::::::
equal

::
to

::::::::::::::::::::::::::::::::::::::
MSTVal(E − {e})−MSTVal(E).

::::::::::::
Otherwise,

::
MSTVal(E − {e})−MSTVal(E) = ∞.

PROOF.
:::
Let

:::
U

::::
be

:::::
the

::::
set

:::
of

:::::::
edges

:::::::::::
spanning

:::::
the

:::::
cut

:::::::::
created

:::
in

:::
T

::::
by

::::
the

:::::::::
removal

:::
of

:::
e.

::::::
Also,

::::
let

:::
a′

::::
be

:::::
any

:::::::::::::::::::::::
arg minb∈U−{e}w(b).

::::
By

:
Lemma 39

::
we

::::::
have

::
w(a′)− w(e) = MSTVal(E − {e})−MSTVal(E).

:

::::
Let

::
e

:::
be

:::::::::
labeled

::::
by

::::
the

:::::::::::
modified

:::::::::
Kruskal

:::::::::::::
Algorithm

::::::
when

:::::
the

::::::
edge

::
a

::::::::
creates

:
a

:::::::
cycle.

:::::
For

::::
the

::::::
first

:::::
part

:::
of

:::::
the

:::::::::
lemma,

:::
all

::::
we

::::::
must

:::::::
show

::
is

::::::::
a = a′.

:

36

::::
Let

::
K

::::
be

::::
the

::::
set

::
of

:::::::
edges

:::::::
which

::::::::
create

:
a
:::::::
cycle

::::::::::
involving

::
e

::::::::
during

::::
the

::::::::::::
algorithm.

::
If

::::::::::::
b ∈ E − U ,

::::::
then

::
b
::::::
does

:::::
not

::::::
span

::::
the

:::::
cut

:::::::::
created

:::
in

:::
T

:::
by

:::::
the

::::::::::
removal

:::
of

::
e.

::::::
Thus,

::::::
both

::::::::::
vertices

::
of

::
b
::::
lie

:::
on

:::::
the

::::::
same

:::::
side

:::
of

::::
the

::::::
cut.

:::::::
Thus,

::
b

::::::::
cannot

:::::::
create

:
a

:::::::
cycle

::::::::::
involving

:::
e,

::::::
since

::::
all

:::::::
edges

:::
in

::::
the

::::::
cycle

::::::::
except

::
b

::::::
must

::::
be

:::
in

::::
the

:::::
tree

:::
T .

::::::
Also,

::::
the

::::::
edge

::
e

::::::::
cannot

::::::
form

::
a

::::::
cycle

::::::
with

:::::::
itself.

:::::::
Thus,

::::
we

::::::
have

::::::::::::::::
K ⊆ U − {e}.

::::::::::
Consider

::::
any

:::::::::::::::
b ∈ U − {e}.

:::::
The

:::::
edge

::
b

::::::
must

:::
be

::::::::::
rejected

:::
by

::::
the

::::::::::
modified

::::::::::
Kruskal

::::::::::::
algorithm,

:::::::::::
otherwise

::::
the

::::::
edge

:::::::
would

:::
be

:::
in

::
T

:::::
and

:::::::::::
wouldn’t

:::::
span

:::::
the

::::
cut

::::::::
created

::
in

:::
T

::::
by

::::
the

::::::::::
removal

:::
of

:::
e.

:::::::
Thus,

::
b
:::::::
must

:::::::
create

:::
a

::::::
cycle

::::::::
during

:::::
the

::::::::::::
algorithm.

::::::
Since

:::
all

:::::::
edges

::::::::
except

::
b

:::::::
which

:::::::
make

:::
up

::::
the

:::::::
cycle

::::::
must

:::
be

:::
in

:::
T

::::
and

::
b
:::::::
spans

::::
the

::::
cut

::::::::
created

::::
by

::
e,

::::
the

::::::
cycle

:::::::::
created

::::
by

:
b
::::::::::
includes

::
e.

:::::::
Thus,

::::
we

::::::
have

:::::::::::::::
U − {e} ⊆ K,

::::
and

::::::::::::::::
U − {e} = K.

:

::::::
Since

::::
the

:::::::::::
modified

:::::::::
Kruskal

:::::::::::::
Algorithm

:::::::::
process

:::::::
edges

:::
of

:::
G

:::
in

::::::::::::
ascending

::::::
order

::
of

::::::::
weight

::::::
and

::
e

:::
is

:::::::::
labeled

::::
by

:::::
the

:::::::::
element

:::::::
from

:::
K

::::::::
which

::
is

::::::::::::
processed

::::::
first,

:::
we

:::::::
know

:::::::::::::::::::::::
a = arg minb∈Kw(b).

:::::::
Since

:::::::::
K = U ,

::::
we

:::::
also

::::::
have

::::::::
a = a′

:::::
and

::::
we

:::::
have

:::::::
shown

::::
the

::::::
first

:::::
part

:::
of

:::::
the

:::::::::
lemma.

::
If

::
e

::
is

:::::
not

::::::::::
labeled,

:::::
then

:::
K

:::::::
must

:::
be

:::::::::
empty.

:::::::
Since

:::::::::
K = U ,

::::
the

::::
set

:::
U

::::::
must

:::::
also

:::
be

::::::::
empty.

::::::
And

::::::
thus,

::::
the

::::::::::
removal

:::
of

::
e

::::::
must

:::::::::::::
disconnect

::::
the

::::::::
graph

:::
G.

:::::::
Thus

:::
we

::::::
have,

::
MSTVal(E − {e})−MSTVal(E) = ∞.

:::
By

:
Lemmas 41 and 42

:
,
:::
we

:::::
can

:::::
find

::::
the

:::::::::
optimal

::::::
value

:::
to

::::::
LP2

::::::
using

::::
the

::::::::::
modified

:::::::::
Kruskal

::::::::::::
algorithm.

::::
By

:::::::::::
Lemmas

::::
36,

::::
37,

::::::
and

::::
38,

::::
the

::::::::::::
minimum

:::::::::::
spanning

:::::
tree

:::::::
weight

:::
of

:::
G

:::::
and

:::::
the

::::::::::
optimal

::::::
value

:::
of

::::::
LP2

:::::
give

::::
us

::::
the

::::::::::
optimal

:::::::
value

:::
of

:::::
LP1

::::::
which

:::
is

:::::
the

:::::::
focus

::::::
point

:::::::
price

:::
of

:::::
the

:::::::::::::::::
buyer-supplier

:::::::::::
minimum

:::::::::::
spanning

:::::
tree

::::::
game

:::
on

::::::::
graph

:::
G.

References

[1] A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science, pages 482–491, Oct. 2001.

[2] S. Bikhchandani, S. de Vries, J. Schummer, and R. Vohra. Linear programming
and vickrey auctions. In Mathematics of the Internet: E-Auction and Markets,
pages 75–115. Springer-Verlag, New York, NY, 2002.

[3] S. Bikhchandani and J. Ostroy. The package assignment model. Journal of
Economic Theory, 107:377–406, 2002.

[4] A. Caprara and A. N.
Letchford. Computing good allocations for combinatorial optimization games.
Available from http://www.lancs.ac.uk/staff/letchfoa/pubs.htm, 2006.

37

[5] X. Deng, T. Ibaraki, and H. Nagamochi. Algorithmic aspects of the core
of combinatorial optimization games. Mathematics of Operations Research,
24:751–766, 1999.

[6] X. Deng, C. Papadimitriou, and Safra S. On the complexity of equilibria. In
Proceedings of the 34th annual ACM symposium on Theory of Computing, pages
67–71, Montreal, Quebec, 2002.

[7] F. Y. Edgeworth. Mathematical psychics, an essay on the application of
mathematics to the moral sciences. A. M. Kelley, New York, NY, 1961.

[8] U. Faigle and W. Kern. On the core of ordered submodular cost games.
Mathematical Programming, 87:483–499, 2000.

[9] R. Garg, V. Kumar, A. Rudra, and A. Verma. Coalitional games on graphs: core
structure, substitutes and frugality. In Proceedings of the 4th ACM conference
on Electronic Commerce, pages 248–249, San Diego, CA, 2003.

[10] D. B. Gillies. Some Theorems on n-Person Games. PhD thesis, Princeton
University, 1953.

[11] M. X. Goemans and M. Skutella. Cooperative facility location games. Journal
of Algorithms, 50:194–214, 2004.

[12] A. R. Karlin, D. Kempe, and T. Tamir. Beyond VCG: frugality of truthful
mechanisms. In Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, pages 615–624, Oct. 2005.

[13] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
John Wiley and Sons, New York, NY, 1988.

[14] M. Pál and E. Tardos. Group strategy proof mechanisms via primal-dual
algorithms. In Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, pages 584–593, Oct. 2003.

[15] C. H. Papadimitriou. Algorithms, games, and the internet. In Proceedings of
the 33rd Annual ACM Symposium on Theory of Computing, pages 749–753,
July 2001.

[16] C. H. Papadimitriou and T. Roughgarden. Computing equilibria in multi-player
games. In Proceedings of the 16th Annual ACM-SIAM symposium on Discrete
algorithms, pages 82–91, January 2005.

[17] T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press,
Cambridge, MA, 2005.

[18] T. Roughgarden and E. Tardos. How bad is selfish routing? J. ACM, 49:236–
259, 2002.

[19] T. Roughgarden and E. Tardos. Bounding the inefficiency of equilibria in
nonatomic congestion games. Games and Economic Behaviour, 47:389–403,
2004.

38

[20] L. S. Shapley. Notes on the n-person game III: Some variants of the von
Neumann-Morgenstern definition of solution. Research memorandum, RAND
Corporation, Santa Monica, CA, 1952.

[21] L. S. Shapley and M. Shubik. The assignment game i: The core. International
Journal of Game Theory, 1:111–130, 1972.

[22] M. Shubik. Game Theory In The Social Sciences. MIT Press, Cambridge,
Massachussetts, 1984.

[23] J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, Princeton, NJ, 1953.

39

