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Abstract

Recently, important new families of mechanisms have been presented for housing markets
with indifferences. These mechanisms are individually rational, strictly Pareto-efficient, strat-
egyproof, and produce an outcome in the strict core when the strict core is nonempty. We
propose a novel family of mechanisms and prove that this family achieves the same combina-
tion of properties. Our family of mechanisms is based on a generalization of the top trading
cycles algorithm. We establish a confluence property of our algorithm, and use this property to
give a short proof that the associated mechanisms are strategyproof. We also provide a simple
O(n3)-time deterministic implementation of our family of mechanisms, where n denotes the
number of agents.
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1 Introduction
In a seminal paper, Shapley and Scarf [11] study a simple housing market involving n agents.
Each agent owns a house, and has a preference order over the n houses. The goal is to determine
a suitable allocation of houses to agents, with the understanding that no monetary transfers are
allowed. For this setting, Shapley and Scarf [11] present the top trading cycles (TTC) algorithm,
which they attribute to David Gale. Under weak preferences (i.e., the natural setting in which
indifferences are allowed), the TTC algorithm can produce different allocations. Shapley and
Scarf show that the set of TTC allocations coincides with the set of competitive allocations, that
the set of competitive allocation is contained in the weak core, that the latter containment can be
proper (even when preferences are strict), and that the strict core can be empty.

When preferences are strict, the housing market problem is well understood. Roth and Postle-
waite [10] show that the strict core corresponds to the unique competitive allocation. Roth [9]
shows that the mechanism defined by the TTC algorithm is strategyproof. Bird [4] shows that
the TTC mechanism is group strategyproof. Ma [7] shows that the TTC mechanism is the only
individually rational, Pareto-efficient, and strategyproof mechanism.

For weak preferences, the housing market prolem is substantially more challenging. Wako [12]
shows that the strict core is contained in the set of competitive allocations, and that this containment
can be proper. Quint and Wako [8] characterize the class of instances for which the strict core is
nonempty, and provide an O(n3)-time algorithm to obtain a strict core allocation on such instances.
Recent independent work of Alcalde-Unzu and Molis [2], and of Jaramillo and Manjunath [6],
provides new mechanisms for housing markets with weak preferences. These results are highly
relevant to the present paper, and are discussed in greater detail below.

Alcalde-Unzu and Molis [2] present an algorithm called Top Trading Absorbing Sets (TTAS).
This algorithm yields a family of mechanisms called the TTAS mechanisms. The mechanisms in
this family are individually rational, strictly Pareto-efficient, and strategyproof. Furthermore, these
mechanisms produce a strict core allocation when the strict core is nonempty. The main shortcom-
ing of the TTAS algorithm is its high time complexity, which arises because TTAS can trade along
many “bad” cycles, i.e., cycles where each of the associated agents is already tentatively assigned
to a house in its preferred set (amongst the remaining houses). Alcalde-Unzu and Molis leave open
the question of whether the TTAS algorithm runs in polynomial time. Aziz and de Keijzer [3] an-
swer this question in the negative by exhibiting a family of instances on which the TTAS algorithm
runs in exponential time.

Jaramillo and Manjunath [6] present an algorithm called Top Cycles Rules (TCR). This al-
gorithm yields a family of TCR mechanisms. The mechanisms in this family are individually
rational, strictly Pareto-efficient, and strategyproof. Aziz and de Keijzer [3] prove that, like the
TTAS family, each mechanism in the TCR family produces an outcome in the strict core when the
strict core is nonempty. Thus the TCR mechanisms match the properties mentioned above for the
TTAS mechanisms. Furthermore, the TCR algorithm runs in polynomial time. (More specifically,
Jaramillo and Manjunath establish an O(n6) bound on the time complexity of the TCR algorithm.)
Like the TTAS algorithm, TCR proceeds iteratively. In each iteration, each remaining agent has
a preferred set of houses amongst the remaining houses. Each agent selects a specific house from
its preferred set. The cycle trading phase of an iteration then updates the tentative allocation in the
usual TTC style, treating the selected houses as the unique top choices. Within this framework, the
central question is how an agent should select a specific house from its preferred set.
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In the TTAS algorithm, each agent uses a local rule to select a specific house in each itera-
tion. Due to the lack of global coordination, many bad cycles may occur. The TCR algorithm
uses an entirely different method to perform the selection. The TCR method (see the description
of the “pointing phase” in [6]) is somewhat involved; here we mention only two aspects of this
method: (1) in order to achieve a certain “persistence” property, the TCR method takes into ac-
count the selections made in the previous iteration (i.e., it is not memoryless); (2) the TCR method
involves multiple levels of tie-breakers. These aspects of the TCR method complicate the task of
establishing strategyproofness.

We introduce and analyze a new, simpler method for an agent to select a specific house from
its preferred set. In each iteration, we compute the shortest path distance of each house to an
“unsatisfied” agent, i.e., an agent who is not tentatively assigned to house in its preferred set (see
the definition of distance(G, v) in Section 2.1). Each agent selects the house in its preferred set
with the smallest distance value, with ties broken according to a fixed total order over the set
of houses (see the definition of next(G, u) in Section 2.1). In contrast with the TCR method,
our method is memoryless, and uses a single-level tie-breaking scheme. Our analogue of the
persistence property of Jaramillo and Manjunath [6] is established as a consequence of the selection
method (see Lemmas 3.4, 3.9, and 4.1), and not by complicating the selection method.

In Section 2 we define a nondeterministic algorithm, Algorithm 1. We prove that Algorithm 1
is confluent (see Lemma 4.5), implying that the output does not depend on the nondeterministic
choices made during execution (see Theorem 1). In Section 3, we establish properties of the spe-
cial class of bipartite digraphs that arise in modeling housing markets with indifferences; we use
the term “configuration” (formally defined in Section 2.1) to refer to such a structure. In Section 4,
we establish properties of the agent preferences, independent of the initial endowments; we use
the term “wpp” (formally defined in Section 2.2) to refer to the preferences-related component of
a problem instance. In Section 5 we exploit confluence to give a short proof that the family of
mechanisms associated with Algorithm 1 is strategyproof (see Lemma 5.1 and Theorem 2). In Ap-
pendix E, we again exploit confluence, this time to obtain an O(n3)-time deterministic algorithm,
Algorithm 2, with the same input-output behavior as Algorithm 1.

Aziz and de Keijzer [3] introduce a class of mechanisms called Generalized Absorbing Top
Trading Cycle (GATTC), which is designed for housing markets with indifferences, and which
includes TTC, TTAS, and TCR. The GATTC family is quite broad, and includes mechanisms
that are not strategyproof [3]. Aziz and de Keijzer [3] prove that every mechanism in this family is
individually rational, strictly Pareto-efficient, and produces an outcome in the strict core if the strict
core is nonempty. Since the mechanisms associated with Algorithm 1 are easily seen to belong to
the GATTC family, we can focus on establishing strategyproofness. (Remark: Our results do not
strongly depend upon the work of Aziz and de Keijzer in the sense that it is straightforward to
establish from first principles that our family of mechanisms satisfies individual rationality and
strict Pareto-efficiency, and it is also straightforward to use the aforementioned work of Quint and
Wako [8] to establish that our family of mechanisms produces an outcome in the strict core if the
strict core is nonempty.)
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2 A Family of Mechanisms
In Section 1 we have provided an informal description of the family of mechanisms to be analyzed
in the present paper. In this section, we provide a formal description. Recall that the main technical
challenge of the paper is to establish the strategyproof property of our family of mechanisms.
Accordingly, the style of our description is chosen to facilitate formal reasoning.

2.1 Configurations
A configuration is a bipartite digraph (U, V,E) where U is a set of agents, V is a totally ordered
set of houses, and the following conditions hold: each agent u in U has indegree 1; each house v
in V has outdegree 1. (Thus |U | = |V |.)

For any configuration G = (U, V,E) and any house v in V , we define agent(G, v) as the
unique agent u such that edge (v, u) belongs to E. For any configuration G = (U, V,E) and any
agent u in U , we define house(G, u) as the unique house v such that agent(G, v) = u.

For any configuration G = (U, V,E), we define allocation(G) as the allocation that assigns
each house v in V to agent(G, v).

For any configuration G = (U, V,E), and any agent u in U , we define Γ(G, u) as {v | (u, v) ∈
E}. A configuration G = (U, V,E) is initial if Γ(G, u) is empty for all agents u in U .

For any configuration G = (U, V,E), we define satisfied(G) as the set of all agents u in U
such that house(G, u) belongs to Γ(G, u), and we define unsatisfied(G) as U \ satisfied(G). A
configuration G is final if unsatisfied(G) is empty.

For any configuration G = (U, V,E) and any house v in V , we define distance(G, v) as the
length of a shortest path from v to an agent in unsatisfied(G). If there is no such path, we define
distance(G, v) as∞.

For any configuration G = (U, V,E) and any agent u in U , we define next(G, u) as follows: if
distance(G, v) = ∞ for all v in Γ(G, u), then next(G, u) = nil ; otherwise, letting V ′ denote the
set of all v in Γ(G, u) minimizing distance(G, v), we define next(G, u) as the minimum element
of V ′.

For any configuration G = (U, V,E), we define pruned(G) as the configuration G′ = (U, V,E\
E ′) where E ′ denotes

{(u, v) ∈ E | u ∈ U ∧ v 6= next(G, u)},

and we define cycles(G) as the set of all directed cycles in pruned(G).
For any configuration G = (U, V,E) and any cycle C in cycles(G), we define trade(G, C) as

the configuration (U, V, (E \ E ′) ∪ E ′′) where E ′ denotes

{(v, u) ∈ V × U | v ∈ C ∧ agent(G, v) = u}

and E ′′ denotes
{(v, u) ∈ V × U | u ∈ C ∧ next(G, u) = v}.

For any configuration G, we define exhausted(G) as the set of all agents u in unsatisfied(G)
such that next(G, u) = nil .
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2.2 Preferences
A weak preference relation is a total preorder (also known as a weak order). We define a weak
preference profile (wpp) as a triple (U, V,%) where U is a set of agents, V is a totally ordered set
of houses such that |U | = |V |, and % is a function from U to the set of weak preference relations
over V . Notation: Given a wpp (U, V,%), and an agent u in U , we write %u to refer to the weak
preference relation to which u is mapped by %; we use the symbol ∼ to denote indifference and
the symbol � to denote strict preference.

For any wpp W = (U, V,%), we define configs(W ) as the set of all configurations G =
(U, V,E) such that for any agent u in U , any house v in Γ(G, u), and any house v′ in V \ Γ(G, u),
we have v �u v′.

Lemma 2.1. For any wpp W = (U, V,%), any configuration G = (U, V,E) in configs(W ), and
any cycle C in cycles(G), the configuration trade(G, C) belongs to configs(W ).

Proof. Straightforward.

For any wpp W = (U, V,%), any agent u in U , and any subset V ′ of V , we define top(W,u, V ′)
as the set of houses v in V ′ such that v %u v′ holds for all v′ in V ′.

For any wpp W = (U, V,%), any configuration G = (U, V,E) in configs(W ), and any agent u
in exhausted(G), we define reveal(W,G, u) as the configuration (U, V,E ∪ E ′) where

E ′ = {(u, v) | v ∈ top(W,u, V \ Γ(G, u))}.

Lemma 2.2. For any wpp W = (U, V,%), any configuration G = (U, V,E) in configs(W ), and
any agent u in exhausted(G), the configuration reveal(W,G, u) belongs to configs(W ).

Proof. Straightforward.

For any wpp W = (U, V,%), let moves(W ) denote the edge-labeled digraph with vertex set
configs(W ) and edge set determined as follows. First, for any G in configs(W ) and any C in
cycles(G), there is an edge (G, G′) with label C, where G′ = trade(G, C) belongs to configs(W )
by Lemma 2.1. Second, for any G in configs(W ) and any agent u in exhausted(G), there is an
edge (G, G′) with label u, where G′ = reveal(W,G, u) belongs to configs(W ) by Lemma 2.2.

For any wpp W and any G in configs(W ), we define Γ(W,G) as the set of all configurations
G′ such that edge (G, G′) belongs to moves(W ).

2.3 A Nondeterministic Algorithm
A housing market instance is a pair (W,G) where W is a wpp and G is an initial configuration in
configs(W ).

We will first study the simple nondeterministic algorithm of Figure 1, which we refer to as Al-
gorithm 1. We show that Algorithm 1 terminates with a configuration G that is final (Lemma 4.3).
We also show that the output allocation is uniquely determined (Theorem 1). In Appendix E, we
present a simple deterministic algorithm for computing the output allocation in O(n3) time.

Since Algorithm 1 assumes a total ordering over the set of houses (see the tie-breaker in the
definition of next(G, u) in Section 2.1), it defines a family of house allocation mechanisms, as
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while Γ(W,G) 6= ∅
G := a nondeterministically chosen element of Γ(W,G)

return allocation(G)

Figure 1: We refer to the above nondeterministic algorithm as Algorithm 1. Initially, (W,G) is a
housing market instance.

opposed to a single mechanism. The related works [2, 3, 6] discussed in Section 1 share the same
characteristic.

Remark: In this paper we assume that we are given a total ordering over the set of houses. If
instead we are given a total ordering over the set of agents, then we can use this ordering, together
with the initial allocation, to induce a total ordering over the set of houses.

3 Properties of Configurations
Lemma 3.1. Let G = (U, V,E) be a configuration and let G′ = pruned(G). Then distance(G′, v) =
distance(G, v) for all houses v in V , and next(G′, u) = next(G, u) for all agents u in U .

Proof. Let P (i) denote the predicate “for any house v in V such that distance(G, v) = 2i + 1,
we have distance(G′, v) ≤ 2i + 1”. We use induction to prove that P (i) holds for all nonnegative
integers i.

Base case: i = 0. Let v be a house such that distance(G, v) = 1. Let u denote agent(G, v).
Thus u belongs to unsatisfied(G), and hence also belongs to unsatisfied(G′). Since G′ includes
the edge (v, u), we conclude that distance(G′, v) = 1. Hence P (0) holds.

Induction step. Let i be a nonnegative integer, and assume that P (i) holds. Let v be a house
such that distance(G, v) = 2i + 3. Let u denote agent(G, v). Let v′ denote next(G, u). Thus
distance(G, v′) = 2i + 1, and the induction hypothesis implies that distance(G′, v′) ≤ 2i + 1.
Since the edges (v, u) and (u, v′) belong to pruned(G′), we conclude that distance(G′, v) ≤ 2i+3,
as required. Hence P (i + 1) holds, completing our proof by induction.

Since P (i) holds for all nonnegative integers i, and since distance(G, v) =∞ implies distance(G′, v) ≤
distance(G, v), we conclude that distance(G′, v) ≤ distance(G, v) for all houses v in V . On the
other hand, since G′ is a subgraph of G, distance(G′, v) ≥ distance(G, v) for all houses v in V .
Thus distance(G′, v) = distance(G, v) for all houses v in V .

Let u be an agent in U . We prove that next(G′, u) = next(G, u) by considering two cases.
Case 1: next(G, u) = nil . Thus Γ(G′, u) is empty, and hence next(G′, u) = nil .
Case 2: next(G, u) 6= nil . Let v denote next(G, u). Thus distance(G, v) is finite. Since

distance(G′, v) = distance(G, v), we conclude that distance(G′, v) is finite. Since Γ(G′, u) =
{v} and distance(G′, v) is finite, we have next(G′, u) = v, as required.

Lemma 3.2. Let G be a configuration, and let C belong to cycles(G). Then at least one agent in
unsatisfied(G) is on C.

Proof. Immediate from Lemma 3.1.
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Lemma 3.3. Let G be a configuration, let C belong to cycles(G), and let u be an agent on C.
Then u belongs to satisfied(trade(G, C)).

Proof. Immediate from the definition of trade(G, C).

Lemma 3.4. Let G = (U, V,E) be a configuration, let C belong to cycles(G), let G′ denote
trade(G, C), and let v belong to V . Then distance(G′, v) ≥ distance(G, v).

Proof. Immediate from Lemma A.1, which is proven in Appendix A.

For any configuration G, we define frozen(G) as the set of all agents u in satisfied(G) such
that next(G, u) = nil .

Lemma 3.5. Let G = (U, V,E) be a configuration, let u belong to U , and let v denote house(G, u).
Then distance(G, v) =∞ if and only if u belongs to frozen(G).

Proof. If u belongs to frozen(G), then distance(G, v) = ∞. Assume that distance(G, v) = ∞.
We consider two cases.

Case 1: u belongs to satisfied(G). Since distance(G, v) = ∞, we deduce that next(G, u) =
nil . Hence u belongs to frozen(G), as required.

Case 2: u belongs to unsatisfied(G). Then distance(G, v) = 1, a contradiction.

Lemma 3.6. Let G be a configuration. Then G is final if and only if cycles(G) and exhausted(G)
are empty.

Proof. For the “only if” direction, assume that G is final. Hence unsatisfied(G) is empty. Thus
Lemma 3.2 implies that cycles(G) is empty, and the definition of exhausted(G) implies that
exhausted(G) is empty.

For the “if” direction, assume that cycles(G) and exhausted(G) are empty. Let G be of
the form (U, V,E) and let U ′ denote U \ frozen(G). Since U ′ is disjoint from exhausted(G) ∪
frozen(G), we deduce that next(G, u) 6= nil for all agents u in U ′. Thus there is a cycle in
pruned(G) unless U ′ is empty. Since cycles(G) is empty, we conclude that U ′ is empty, and hence
frozen(G) = U . Thus unsatisfied(G) is empty, and G is final.

For any configurations G = (U, V,E) and G′ = (U ′, V ′, E ′), we write G . G′ to mean that
the following conditions are satisfied: U = U ′; V = V ′; for all agents u in U , Γ(G′, u) contains
Γ(G, u); for all agents u in satisfied(G), Γ(G′, u) = Γ(G, u); satisfied(G′) contains satisfied(G);
for all houses v in V , distance(G′, v) ≥ distance(G, v); for all agents u in frozen(G)∪unsatisfied(G′),
house(G′, u) = house(G, u). Thus for any configuration G, we have G . G. Lemma 3.8 below
establishes that the relation . defines a preorder over the set of all configurations.

Lemma 3.7. Let G and G′ be configurations such that G . G′. Then frozen(G′) contains
frozen(G).

Proof. Let u be an agent in frozen(G) and let v denote house(G, u). Since G . G′, we have
distance(G′, v) ≥ distance(G, v). Since Lemma 3.5 implies that distance(G, v) =∞, we deduce
that distance(G′, v) =∞. Hence Lemma 3.5 implies that u belongs to frozen(G′).

Lemma 3.8. Let G, G′, and G′′ be configurations such that G . G′ and G′ . G′′. Then G . G′′.
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Proof. Immediate from the definition of . and Lemma 3.7.

Lemma 3.9. Let G = (U, V,E) be a configuration, let u be an agent such that next(G, u) 6= nil ,
let v denote next(G, u), and let G′ be a configuration such that G . G′, distance(G′, v) =
distance(G, v), and Γ(G′, u) = Γ(G, u). Then next(G′, u) = next(G, u).

Proof. Since G . G′, we have distance(G′, v′) ≥ distance(G, v′) for all v′ in V . Since Γ(G′, u) =
Γ(G, u) and distance(G′, v) = distance(G, v), we conclude that next(G′, u) = next(G, u), as
required.

Lemma 3.10. Let G = (U, V,E) be a configuration, let C belong to cycles(G), and let G′ denote
trade(G, C). Then G . G′ holds.

Proof. The configuration G′ is of the form (U, V,E ′), and for all agents u in U , we have Γ(G′, u) =
Γ(G, u). Lemmas 3.2 and 3.3 imply that satisfied(G′) properly contains satisfied(G). Lemma 3.4
implies that distance(G′, v) ≥ distance(G, v) for all v in V . Since next(G, u) = nil for any
agent u in frozen(G), no agent on C belongs to frozen(G). Hence for all agents u in frozen(G),
house(G′, u) = house(G, u). Lemma 3.3 implies that all agents u on C belong to satisfied(G′).
Thus for all agents u in unsatisfied(G′), we have house(G′, u) = house(G, u). The claim of the
lemma follows.

4 Properties of Wpps
Lemma 4.1. Let W = (U, V,%) be a wpp, let G belong to configs(W ), let u belong to exhausted(G),
let G′ denote reveal(W,G, u), and let u′ belong to U−u. Then G . G′. Furthermore, if u belongs
to unsatisfied(G′) or u′ belongs to a cycle in cycles(G), then next(G′, u′) = next(G, u′).

Proof. The claim that G . G′ holds is immediate from Lemma B.2, which is proven in Ap-
pendix B.

Assume that u belongs to unsatisfied(G′). Hence Lemma B.2 implies that distance(G′, v) =
distance(G, v) for all houses v in V . Since Γ(G′, u′) is equal to Γ(G, u′), we deduce that next(G′, u′)
is equal to next(G, u′), as required.

Assume that u′ belongs to a cycle C in cycles(G). Thus next(G, u′) is a house on C; let
v denote next(G, u′). Lemma 3.2 implies that attractor(G, v) (see Appendix B for the defini-
tion of attractor(G, v)) is an agent on C, and hence is not equal to u. Thus Lemma B.2 im-
plies distance(G′, v) = distance(G, v). Since G . G′, distance(G′, v) = distance(G, v), and
Γ(G′, u′) = Γ(G, u′), Lemma 3.9 implies that next(G′, u′) = next(G, u′), as required.

For any wpp W = (U, V,%), any subset U ′ of U , and any G in configs(W ), we define
Γ(W, G, U ′) as the set of all configurations G′ such that (G, G′) is an edge in moves(W ) and
the label of edge (G, G′) is neither an agent in U ′ nor a cycle that includes an agent in U ′, and
we define Γ∗(W,G, U ′) as the set of all configurations G′ in configs(W ) for which there exists a
nonnegative integer k and a sequence of configurations Gi, 0 ≤ i ≤ k, such that the following
conditions hold: G0 = G; Gk = G′; Gi+1 belongs to Γ(W,Gi, U

′) for 0 ≤ i < k.
For any wpp W , and any configuration G in configs(W ), we define Γ∗(W,G) as Γ∗(W,G, ∅).
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Lemma 4.2. Let W be a wpp, let G belong to configs(W ), and let G′ belong to Γ∗(W,G). Then
G . G′.

Proof. Immediate from Lemmas 3.8, 3.10, and 4.1.

The next lemma shows that the nondeterministic algorithm of Figure 1 terminates within a
polynomial number of iterations. We present a faster implementation in Appendix E.

Lemma 4.3. Consider an execution of the while loop of Algorithm 1 on a wpp W = (U, V,%) and
an initial configuration G in configs(W ). Then the while loop terminates with a final configuration
within at most |V |2 + |V | iterations.

Proof. For any configuration G′ = (U, V,E), let f(G′) denote |satisfied(G′)|, and let g(G′) denote
|E| − |V |. Thus 0 ≤ f(G′) ≤ |V | and 0 ≤ g(G′) ≤ |V |2. Let Gi denote the configuration
associated with the variable G after i iterations of the while loop have been completed. Thus
f(G0) = g(G0) = 0. Lemma 4.2 implies that f(Gi+1) ≥ f(Gi) and g(Gi+1) ≥ g(Gi) for all
i ≥ 0. Lemmas 3.2, 3.3, and 4.2 together imply that if Gi+1 = trade(Gi, C) for some C in
cycles(Gi), then f(Gi+1) ≥ f(Gi) + 1; thus we can have at most |V | iterations in this category.
If Gi+1 = reveal(W,Gi, u) for some u in exhausted(Gi), then g(Gi+1) ≥ g(Gi) + 1; thus we can
have at most |V |2 iterations in this category.

Lemma 3.6 implies that the configuration corresponding to program variable G is final when
the while loop of Algorithm 1 terminates.

Lemma 4.4. Let W = (U, V,%) be a wpp, let G be a configuration in configs(W ), let G′ belong
to Γ(W,G), let ` be the label of edge (G, G′) in moves(W ), and let G′′ be a configuration in
Γ∗(W,G) such that there is no label-` edge outgoing from G′′. Then G′′ belongs to Γ∗(W,G′).

Proof. Immediate from Lemmas C.1, C.2, C.3, C.4, C.5, and C.6, which are proven in Appendix C.

For any wpp W = (U, V,%), any subset U ′ of U , and any configuration G in configs(W ), we
define sinks(W,G, U ′) as the set of all configurations G′ in Γ∗(W,G, U ′) such that Γ(W,G′, U ′) is
empty.

Lemma 4.5. Let W = (U, V,%) be a wpp, let U ′ be a subset of U , and let G belong to configs(W ).
Then |sinks(W,G, U ′)| = 1.

Proof. Lemma 4.3 implies that sinks(W,G, U ′) is nonempty. Let G∗ belong to sinks(W,G, U ′).
Thus G∗ is contained in Γ∗(W,G, U ′) and sinks(W,G∗, U ′) = {G∗}.

Lemma 4.4 implies that sinks(W,G, U ′) = sinks(W,G′, U ′) for all G′ in Γ(W,G, U ′). Thus,
by repeated application of Lemma 4.4, we deduce that sinks(W,G, U ′) = sinks(W,G′, U ′) for
all G′ in Γ∗(W,G, U ′). Since G∗ is contained in Γ∗(W,G, U ′), we find that sinks(W, G, U ′) =
sinks(W,G∗, U ′) = {G∗}. The claim of the lemma follows.

For any wpp W = (U, V,%), any configuration G in configs(W ), any agent u in U , and any
house v in V , we define the predicate bottom(W,G, u, v) to mean that v belongs to Γ(G, u) and
v′ %u v holds for all houses v′ in Γ(G, u).

For any wpp W = (U, V,%), we define admissible(W ) as the set of all configurations G
in configs(W ) such that the following conditions hold: for any agent u in frozen(G), we have
bottom(W,G, u, house(G, u)); for any agent u in U \ frozen(G) and any house v in Γ(G, u) such
that agent(G, v) does not belong to frozen(G), we have bottom(W,G, u, v).
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Lemma 4.6. Let W = (U, V,%) be a wpp, let G belong to admissible(W ), let G′ belong to
Γ∗(W,G), let u belong to U , let v denote house(G, u), and let v′ denote house(G′, u). Then G′

belongs to admissible(W ) and v′ %u v. Furthermore, if u belongs to satisfied(G) then v′ ∼u v.

Proof. By induction using Lemmas D.1 and D.2, which are proven in Appendix D.

Lemma 4.7. Let W be a wpp and let G be an initial configuration in configs(W ). Then G belongs
to admissible(W ).

Proof. Straightforward.

For any wpp W = (U, V,%), any G in configs(W ), and any subset U ′ of U , we define
sink(W,G, U ′) as the unique (by Lemma 4.5) element of sinks(W,G, U ′).

For any wpp W and any G in configs(W ), we define sink(W,G) as sink(W,G, ∅).
For any wpp W = (U, V,%) and any agent u in U , we define sinks(W,u) as the set of all con-

figurations G in admissible(W ) such that Γ(W,G, {u}) is empty and u belongs to unsatisfied(G).
For any configuration G and any agent u in unsatisfied(G), we define reach(G, u) as the set

of all houses v such that there is a path from v to u in pruned(G).

Lemma 4.8. Let W = (U, V,%) be a wpp, let u belong to U , let G be a configuration in
sinks(W,u), and let v belong to V . Then exactly one of the following two conditions is satis-
fied: agent(G, v) belongs to frozen(G); v belongs to reach(G, u).

Proof. Let u∗ denote agent(G, v). We consider two cases.
Case 1: u∗ belongs to frozen(G). Thus u∗ belongs to satisfied(G) and next(G, u∗) = nil .

Since u∗ belongs to satisfied(G) and G belongs to sinks(W,u), we deduce that u∗ 6= u. Since
next(G, u∗) = nil , agent u∗ is the only agent reachable via a path from v in pruned(G). Since
u 6= u∗, we conclude that v does not belong to reach(G, u).

Case 2: u∗ does not belong to frozen(G). Consider the path P in pruned(G) obtained by
starting at v and repeatedly following the outgoing edge of the current vertex until (1) a cycle C
is formed or (2) an agent u′ is reached such that next(G, u′) = nil . If (1) occurs, then since G
belongs to sinks(W,u), we deduce that u belongs to C and hence that v belongs to reach(G, u).

Now assume that (2) occurs, and let v′ denote house(G, u′). We claim that distance(G, v′) is
finite. If v = v′, the claim follows from Lemma 3.5 and the Case 2 condition. Assume v 6= v′ and
let u′′ denote the agent preceding v′ on P . Then v′ = next(G, u′′) and hence distance(G, v′) is
finite, completing the proof of the claim. The claim, together with Lemma 3.5, implies that u′ does
not belong to frozen(G). Since next(G, u′) = nil and u′ does not belong to frozen(G), we deduce
that u′ belongs to unsatisfied(G) and hence that u′ belongs to exhausted(G). Since G belongs to
sinks(W,u) and u′ belongs to exhausted(G), we deduce that u′ = u and hence that v belongs to
reach(G, u).

Lemma 4.9. Let W = (U, V,%) be a wpp, let u belong to U , and let G be a configuration in
sinks(W,u). Then |Γ(W,G)| = 1 and the following claims hold, where G′ denotes the unique
configuration in Γ(W,G).

1. If u belongs to unsatisfied(G′), then reach(G′, u) = reach(G, u) and G′ belongs to sinks(W,u).

2. If u belongs to satisfied(G′), then house(G′, u) belongs to top(W,u, reach(G, u)).
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Proof. We first argue that |Γ(W,G)| = 1. Since G belongs to sinks(W,u), we find that Γ(W,G, {u})
is empty. Hence u appears on any cycle C in cycles(G). Since the cycles in cycles(G) are disjoint,
we have |cycles(G)| ≤ 1. We consider two cases.

Case 1: next(G, u) = nil . Since u belongs to unsatisfied(G), we deduce that u belongs to
exhausted(G) and that cycles(G) is empty. It follows that Γ(W,G) = {reveal(W,G, u)}. Hence
|Γ(W,G)| = 1.

Case 2: next(G, u) 6= nil . Thus u does not belong to exhausted(G), and hence exhausted(G)
is empty. Since u belongs to unsatisfied(G), Lemma 3.6 implies that cycles(G) is nonempty.
Since |cycles(G)| ≤ 1, we deduce that |cycles(G)| = 1 and hence |Γ(W,G)| = 1.

We now address Claim 1. Assume that u belongs to unsatisfied(G′). Thus G′ = reveal(W,G, u)
and u belongs to exhausted(G). Hence Lemma 4.1 implies that G . G′ and next(G′, u′) is equal
to next(G, u′) for all agents u′ in U − u. It follows that reach(G′, u) is equal to reach(G, u) and
exhausted(G′) ∩ (U − u) is equal to exhausted(G) ∩ (U − u). Since G belongs to sinks(W,u),
we find that exhausted(G) ∩ (U − u) is empty. Thus exhausted(G′) ∩ (U − u) is empty. Further-
more, if C belong to cycles(G′) and u is not on C, then C belongs to cycles(G); since G belongs to
sinks(W,u), we deduce that u belongs to every cycle in cycles(G′). Since exhausted(G′)∩(U−u)
is empty, we conclude that Γ(W,G′, {u}) is empty.

Since G belongs to sinks(W,u), we know that G belongs to admissible(W ). Hence Lemma 4.6
(or simply Lemma D.1) implies that G′ belongs to admissible(W ).

Since G′ is a configuration in admissible(W ) such that Γ(W,G′, {u}) is empty and u belongs
to unsatisfied(G′), we conclude that G′ belongs to sinks(W,u).

It remains to address Claim 2. Assume that u belongs to satisfied(G′). Let v denote house(G, u),
let v′ denote house(G′, u), and let u′ denote agent(G, v′). Let V0 denote the set of all houses v0

such that agent(G, v0) belongs to frozen(G). Lemma 4.2 implies G . G′, and hence that v′ does
not belong to V0. By Lemma 4.8, V0 = V \ reach(G, u). Thus v′ belongs to reach(G, u). We
consider two cases.

Case 1: u does not belong to exhausted(G). Thus G′ = trade(G, C) for some C in cycles(G)
such that u is on C, Γ(G, u) = Γ(G′, u), and v′ belongs to Γ(G, u). Let V1 denote reach(G, u) ∩
Γ(G, u), and let V2 denote reach(G, u)\V1. Thus v′ belongs to V1. Since G belongs to admissible(W ),
we have v′ ∼u v′′ for all houses v′′ in V1. Since G belongs to configs(W ), we have v′ �u v′′ for all
houses v′′ in V2. We conclude that v′ belongs to top(W,u, V1 ∪ V2) = top(W,u, reach(G, u)), as
required.

Case 2: u belongs to exhausted(G). Thus G′ = reveal(W,G, u), v′ = v, and it follows that
v′ %u v′′ holds for all houses v′′ in V \V0 = reach(G, u). Thus v′ belongs to top(W,u, reach(G, u)),
as required.

Lemma 4.10. Let W = (U, V,%) be a wpp, let u belong to U , and let G belong to sinks(W,u).
Then house(sink(W,G), u) belongs to top(W,u, reach(G, u)).

Proof. By repeated application of Lemma 4.9.

5 Main Results
For any housing market instance I = (W,G), we define sink(I) as sink(W,G). Theorem 1 below
establishes that Algorithm 1 defines a deterministic mechanism.
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Theorem 1. Let I be a housing market instance. Then any execution of Algorithm 1 on instance I
produces the same allocation.

Proof. Any execution of Algorithm 1 on instance I returns allocation(sink(I)).

For any housing market instance I = (W,G) where W = (U, V,%) and any agent u in U ,
we define sink(I, u) as sink(W,G, {u}), we define houses(I, u) as reach(sink(I, u), u), and we
define house(I, u) as house(sink(I), u).

Lemma 5.1. Let I = (W,G) be a housing market instance with W = (U, V,%), and let u belong
to U . Then house(I, u) belongs to top(W,u, houses(I, u)).

Proof. Let G′ denote sink(I, u). Thus G′ belongs to Γ∗(W,G, {u}) and Γ(W,G′, {u}) is empty.
Since Lemma 4.7 implies that G belongs to admissible(W ), Lemma 4.6 implies that G′ belongs
to admissible(W ). Since I is a housing market instance, the configuration G is initial, and hence
Γ(G, u) is empty. Since Γ(G, u) is empty and G′ belongs to Γ∗(W,G, {u}), we find that Γ(G′, u) is
empty and hence u belongs to unsatisfied(G′). Since G′ belongs to admissible(W ), Γ(W,G′, {u})
is empty, and u belongs to unsatisfied(G′), we conclude that G′ belongs to sinks(W,u). Thus
Lemma 4.10 implies that house(sink(W,G′), u) belongs to top(W,u, reach(G′, u)). Theorem 1
implies that sink(I) = sink(W,G′). Hence house(I, u) belongs to top(W,u, reach(G′, u)). By
definition, houses(I, u) is equal to reach(G′, u), and the claim of the lemma follows.

For any wpps W = (U, V,%) and W ′ = (U, V,%′), and any u in U , we define the predicate
equiv(W,W ′, u) to hold if v %u′ v′ is logically equivalent to v %′u′ v′ for all agents u′ in U − u
and all houses v and v′ in V .

Lemma 5.2. Let G = (U, V,E) be an initial configuration, let u belong to U , and let I = (W,G)
and I ′ = (W ′, G) be housing market instances such that equiv(W,W ′, u) holds. Then sink(I, u) =
sink(I ′, u) and houses(I, u) = houses(I ′, u).

Proof. The first equation holds because sink(I, u) and sink(I ′, u) are each independent of the
preferences of u. The second equation follows since houses(I, u) = reach(sink(I, u), u) =
reach(sink(I ′, u), u) = houses(I ′, u).

Theorem 2. Each mechanism in the family associated with Algorithm 1 is individually rational,
strictly Pareto-efficient, strategyproof, and produces an outcome in the strict core whenever the
strict core is nonempty.

Proof. As discussed at the end of Section 1, the family of mechanisms associated with Algorithm 1
lies within the broad class of GATTC mechanisms introduced by Aziz and de Keijzer [3]. Every
mechanism in the GATTC family is individually rational, strictly Pareto-efficient, and produces
and outcome in the strict core whenever the strict core is nonempty [3]. It remains only to establish
strategyproofness.

Let I = (W,G) be a housing market instance with W = (U, V,%), and let u be an agent in
U such that % reflects u’s true preferences over the houses in V . Let I ′ = (W ′, G) be a housing
market instance such that equiv(W,W ′, u) holds. Let V ′ denote houses(I, u), which is equal to
houses(I ′, u) by Lemma 5.2. Lemma 5.1 implies that house(I, u) belongs to top(W,u, V ′) and
that house(I ′, u) belongs to V ′. Hence house(I, u) %u house(I ′, u).
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6 Concluding Remarks
Abraham et al. [1] show how to generalize the O(n2.5)-time Hopcroft-Karp algorithm [5] for com-
puting a maximum cardinality matching in a bipartite graph to obtain the same asymptotic time
bound for computing maximum cardinality Pareto-optimal matchings for house allocation prob-
lems. For the setting with indifferences considered in the present paper, it is straightforward to
argue (by considering instances in which each agent has at most two tiers of preference, where
the first tier represents edges, and the second tier represents non-edges) that if a strictly Pareto-
efficient mechanism admits an O(f(n))-time implementation, then the complexity of computing
a maximum cardinality matching in a bipartite graph is O(f(n)). Given the foregoing remarks,
it is natural to investigate whether the Hopcroft-Karp algorithm can be adapted to our setting to
improve the O(n3) time bound established in Appendix E to O(n2.5).
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A Trading and Distance
The purpose of this section is to establish Lemma A.1, which immediately implies Lemma 3.4.

Lemma A.1. Let G = (U, V,E) be a configuration, let C belong to cycles(G), and let G′ denote
trade(G, C). For any nonnegative integer k, let P (k) denote the predicate “for any house v in V
such that distance(G′, v) = 2k + 1, the following two conditions hold: (1) if v does not belong to
C then distance(G, v) ≤ 2k + 1; (2) if v belongs to C then distance(G, v) ≤ 2k − 1.”

Proof. We use induction to prove that P (k) holds for all nonnegative integers k.
Base case (k = 0). Let v be a house in V such that distance(G′, v) = 1. Lemma 3.3 implies

that v does not belong to C. Let u denote agent(G′, v). Since distance(G′, v) = 1, we know that
u belongs to unsatisfied(G′). Since v does not belong to C, we have agent(G, v) = u. Since u
belongs to unsatisfied(G′), Γ(G′, u) = Γ(G, u), and house(G′, u) = house(G, u), we deduce that
u belongs to unsatisfied(G). Hence distance(G, v) = 1, as required.

Induction step. Let k be a nonnegative integer, and assume that P (k) holds. We need to prove
that P (k + 1) holds. Let v be a house in V such that distance(G′, v) = 2(k + 1) + 1 = 2k + 3.
Let u denote agent(G′, v). Since distance(G′, v) = 2k + 3 and agent(G′, v) = u, there is a
house v′ in Γ(G′, u) such that distance(G′, v′) = 2k + 1. The induction hypothesis implies that
distance(G, v′) ≤ 2k + 1. We now consider two cases.

Case 1: v does not belong to C. Thus agent(G, v) = agent(G′, v) = u. Since Γ(G′, u) =
Γ(G, u), there is a path of length two from v to v′ in G, and hence distance(G, v) ≤ 2k + 3, as
required.

Case 2: v belongs to C. Thus next(G, u) = v. Since Γ(G′, u) = Γ(G, u), we know
that v′ belongs to Γ(G, u). Since next(G, u) = v and v′ belongs to Γ(G, u), we deduce that
distance(G, v) ≤ distance(G, v′). Since distance(G, v′) ≤ 2k + 1, we have distance(G, v) ≤
2k + 1, as required.

B Edge Revelation
The purpose of this section is to establish Lemma B.2, which we use to prove Lemma 4.1.

Based on Lemma 3.1, we know that if distance(G, v) is finite, then the unique outgoing path
of length distance(G, v) starting at v in pruned(G) is a shortest path in G from v to an agent in
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unsatisfied(G). We define this agent as attractor(G, v). If distance(G, v) = ∞ then we define
attractor(G, v) as nil .

Lemma B.1. Let G = (U, V,E) be a configuration, let u belong to unsatisfied(G), let v belong to
V , and let G′ denote (U, V,E + (u, v)). Then G . G′ and the following claims hold.

1. If u belongs to unsatisfied(G′), then for any house v′ in V , we have attractor(G′, v′) =
attractor(G, v′) and distance(G′, v′) = distance(G, v′).

2. If u belongs to satisfied(G′), then for any house v′ in V such that attractor(G, v′) 6= u, we
have distance(G′, v′) = distance(G, v′).

Proof. In order to establish that G . G′ holds, the only nontrivial conjunct to be shown is that
distance(G′, v′) ≥ distance(G, v′) for all houses v′ in V .

Case 1: u belongs to unsatisfied(G′). Hence u 6= agent(G, v) and the edge (u, v) does not
belong to a shortest path in G′ from any house v′ to an agent in unsatisfied(G′). It follows
that for any house v′ in V , we have distance(G′, v′) = distance(G, v′). Hence G . G′ holds.
For any agent u′ in U − u, we have next(G′, u′) = next(G, u′) since Γ(G′, u′) = Γ(G, u′) and
distance(G′, v′) = distance(G, v′) for all v′ in V . Hence pruned(G′) is the same as pruned(G)
except that next(G′, u) may differ from next(G, u). Since u belongs to unsatisfied(G′), we deduce
that attractor(G′, v′) = attractor(G, v′) for all houses v′ in V .

Case 2: u belongs to satisfied(G′). Hence u = agent(G, v). Let v′ be an arbitrary house in
V . We need to prove that distance(G′, v′) ≥ distance(G, v′) and that this inequality is tight if
attractor(G, v′) 6= u.

Case 2.1: distance(G′, v′) =∞. Thus distance(G′, v′) ≥ distance(G, v′). It remains to prove
that if attractor(G, v′) 6= u, then distance(G, v′) =∞.

Case 2.1.1: attractor(G, v′) = nil . Thus distance(G, v′) =∞, as required.
Case 2.1.2: attractor(G, v′) = u′ for some agent u′ in U − u. Then there is a path P in G

from v′ to u′ such that u does not appear on P . It follows that path P also exists in G′. Since u′

belongs to the set unsatisfied(G′), which is contained in the set unsatisfied(G), we conclude that
distance(G′, v′) is finite, contradicting the Case 2.1 assumption.

Case 2.2: distance(G′, v′) is finite. Let P be a shortest path in G′ from v′ to an agent in
unsatisfied(G′); thus P is of length distance(G′, v′). We need to argue that distance(G, v′) is at
most the length of P . If u does not belong to path P , then P is a path in G from v′ to an agent in
unsatisfied(G), and so distance(G, v′) is at most the length of P . If u belongs to path P , then let
P ′ denote the prefix of P terminating at u, and observe that P ′ is a path in G from v′ to an agent
in unsatisfied(G); hence distance(G, v′) is at most the length of P ′, which is at most the length of
P . Hence G . G′ holds.

It remains to argue that if attractor(G, v′) 6= u, then distance(G′, v′) = distance(G, v′).
We have already established that distance(G, v′) is finite; hence attractor(G, v′) 6= nil . Let
u∗ denote attractor(G, v′), and assume that u∗ 6= u. Let P denote the unique path of length
distance(G, v′) in pruned(G) from v′ to u∗. Since u∗ belongs to unsatisfied(G) and u∗ 6= u, we
conclude that u∗ belongs to unsatisfied(G′). Since P is a path in pruned(G), which is a subgraph
of G′, we conclude that P exists in G′. Since P exists in G′, we deduce that distance(G′, v′) ≤
distance(G, v′). Since we have already established that distance(G′, v′) ≥ distance(G, v′), we
conclude that distance(G′, v′) = distance(G, v′), as required.
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Lemma B.2. Let G = (U, V,E) be configuration, let u be an agent in unsatisfied(G), let E ′ be a
set of edges in {u} × V , and let G′ denote the configuration (U, V,E ∪E ′). Then G . G′ and the
following claims hold.

1. If u belongs to unsatisfied(G′), then for any house v in V , we have distance(G′, v) =
distance(G, v).

2. If u belongs to satisfied(G′), then for any house v in V such that attractor(G, v) 6= u, we
have distance(G′, v) = distance(G, v).

Proof. Let E ′′ denote E ′ − (u, house(G, u)), and let G′′ denote the configuration (U, V,E ∪ E ′′).
Then G . G′′ holds by repeated application of Lemmas B.1 and 3.8. Furthermore, u belongs
to unsatisfied(G′′), and by repeated application of Lemma B.1, we have attractor(G′′, v) =
attractor(G, v) and distance(G′′, v) = distance(G, v) for all houses v in V . If E ′′ = E ′, this
completes the proof.

It remains to consider the case where E ′′ 6= E ′. In this case, u belongs to satisfied(G′), and
by an additional application of Lemma B.1, we find that G′′ . G′ holds and distance(G′, v) =
distance(G′′, v) for all houses v in V such that attractor(G′′, v) 6= u. Since we have estab-
lished above that attractor(G′′, v) = attractor(G, v) for all houses v in V , we conclude that
distance(G′, v) = distance(G′′, v) for all houses v in V such that attractor(G, v) 6= u.

Since G . G′′ and G′′ . G′, Lemma 3.8 implies G . G′, as required. Let v be a house in
V such that attractor(G, v) 6= u. In the foregoing we have established that distance(G′′, v) =
distance(G, v) and distance(G′, v) = distance(G′′, v). Thus distance(G′, v) = distance(G, v),
as required.

C Confluence
The six lemmas below are used to prove Lemma 4.4.

Lemma C.1. Let G = (U, V,E) be a configuration, let C and C ′ be distinct cycles in cycles(G),
and let G′ denote trade(G, C). Then C ′ belongs to cycles(G′).

Proof. Since each house v in V has outdegree one in pruned(G), the cycles C and C ′ are disjoint.
Let u be an arbitrary agent on C ′. Thus next(G, u) 6= nil . Let v denote the house next(G, u),
which is on C ′. Lemma 3.2 implies that there is at least one agent in unsatisfied(G) on C ′, and
hence that distance(G, v) is finite. Grow a path P in C ′ by starting at v and following edges of C ′

until an agent in unsatisfied(G) is reached. Lemma 3.1 implies that P is of length distance(G, v).
Since P is a portion of the cycle C ′, we deduce that P is disjoint from C, and hence that P exists
in G′. It follows that distance(G′, v) ≤ distance(G, v). On the other hand, Lemma 3.4 implies
that distance(G′, v) ≥ distance(G, v). We conclude that distance(G′, v) = distance(G, v). By
Lemma 3.10, we have G . G′. Since G . G′, distance(G′, v) = distance(G, v), and Γ(G′, u) =
Γ(G, u), Lemma 3.9 implies that next(G′, u) = next(G, u).

Since next(G′, u) = next(G, u) for all agents u on C ′, and agent(G′, v) = agent(G, v) for all
houses v on C ′, the claim of the lemma follows.

Lemma C.2. Let W be a wpp, let G belong to configs(W ), let C belong to cycles(G), and let G′

belong to Γ(W,G)− trade(G, C). Then C belongs to cycles(G′).
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Proof. There are two cases to consider.
Case 1: The configuration G′ is of the form trade(G, C ′) for some C ′ in cycles(G) − C. In

this case, the claim of the lemma follows from Lemma C.1.
Case 2: The configuration G′ is of the form reveal(W,G, u0) for some agent u0 in U . Thus u0

belongs to exhausted(G), and hence u0 is not on C. Thus Lemma 4.1 implies that next(G′, u) =
next(G, u) holds for all agents u on C. Furthermore, agent(G′, v) = agent(G, v) for all houses v
in V . The claim of the lemma follows.

Lemma C.3. Let W be a wpp, let G belong to configs(W ), let u belong to exhausted(G), and let
G′ belong to Γ(W,G)− reveal(W,G, u). Then u belongs to exhausted(G′).

Proof. We claim that Γ(G′, u) = Γ(G, u). If the configuration G′ is of the form trade(G, C)
for some C in cycles(G), then Γ(G′, u′) = Γ(G, u′) for all agents u′ in U , and the claim holds.
Otherwise, the configuration G′ is of the form reveal(W,G, u0) for some agent u0 in U − u, and
since u 6= u0, the claim holds.

Since u belongs to exhausted(G), we have distance(G, v) = ∞ for all houses v in Γ(G, u).
Lemma 4.2 implies G . G′, and hence that distance(G′, v) ≥ distance(G, v) for all houses v in
V . Since Γ(G′, u) = Γ(G, u), we conclude that distance(G′, v) =∞ for all houses v in Γ(G′, u),
and hence that next(G′, u) = nil .

We claim that house(G′, u) = house(G, u). If the configuration G′ is of the form trade(G, C)
for some C in cycles(G), then u is not on C since next(G, u) = nil ; hence the claim holds.
Otherwise, the configuration G′ is of the form reveal(W,G, u0) for some agent u0 in U − u; hence
allocation(G′) = allocation(G) and the claim holds.

Since house(G′, u) = house(G, u), Γ(G′, u) = Γ(G, u), and u belongs to unsatisfied(G), we
conclude that u belongs to unsatisfied(G′). Since u belongs to unsatisfied(G′) and next(G′, u) =
nil , we conclude that u belongs to exhausted(G′), as required.

Lemmas C.1, C.2 and C.3 ensure that all of the expressions appearing in the next three lemma
statements are well-defined.

Lemma C.4. Let G = (U, V,E) be a configuration, and let C and C ′ be distinct cycles in
cycles(G). Then trade(trade(G, C), C ′) = trade(trade(G, C ′), C).

Proof. Since each agent or house in pruned(G) has outdegree 1, the cycles C and C ′ are disjoint.
The claim of the lemma follows easily.

Lemma C.5. Let W be a wpp, let G belong to configs(W ), let u belong to exhausted(G), and let
C belong to cycles(G). Then trade(reveal(W,G, u), C) = reveal(W, trade(G, C), u).

Proof. Straightforward.

Lemma C.6. Let W be a wpp, let G belong to configs(W ), and let u and u′ be distinct agents in
exhausted(G). Then reveal(W, reveal(W,G, u), u′) = reveal(W, reveal(W,G, u′), u).

Proof. Straightforward.
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D Admissibility
The two lemmas below are used to prove Lemma 4.6.

Lemma D.1. Let W = (U, V,%) be a wpp, let G belong to admissible(W ), and let G′ belong to
Γ(W, G). Then G′ belongs to admissible(W ).

Proof. Let u belong to U , let v denote house(G, u), and let v′ denote house(G′, u). Lemma 4.2
implies G . G′.

Case 1: u belongs to frozen(G). Since G belongs to admissible(W ), we find that bottom(W,G′, u, v)
holds. Since G . G′, we find that u belongs to frozen(G′), Γ(G′, u) = Γ(G, u), and v′ = v. Hence
bottom(W,G′, u, v′) holds.

Case 2: u does not belong to frozen(G). Let V0 denote the set of all houses v0 in Γ(G, u)
such that agent(G, v0) does not belong to frozen(G). Since G belongs to admissible(W ), we have
bottom(W,G, u, v0) for all houses v0 in V0. We consider two subcases.

Case 2.1: u does not belong to frozen(G′). We need to prove that for any house v in Γ(G′, u)
such that agent(G′, v) does not belong to frozen(G′), we have bottom(W,G′, u, v). Since G . G′,
we find that Γ(G′, u) contains Γ(G, u) and frozen(G′) contains frozen(G). If Γ(G′, u) = Γ(G, u),
the desired claim follows immediately. Otherwise, G′ = reveal(W,G, u) and hence u belongs to
exhausted(G). Thus agent(G, v1) belongs to frozen(G) (and hence also frozen(G′)) for all houses
v1 in Γ(G, u), and the desired claim follows easily from the definition of reveal(W,G, u).

Case 2.2: u belongs to frozen(G′). Thus u belongs to satisfied(G′). We need to establish
bottom(W, G′, u, v′). We consider two subcases.

Case 2.2.1: V0 is nonempty. Thus Γ(G′, u) = Γ(G, u). Since u belongs to satisfied(G′) and
G . G′, we deduce that v′ belongs to V0. Since v′ belongs to V0, we have bottom(W,G, u, v′). We
conclude that bottom(W,G′, u, v′) holds, as required.

Case 2.2.2: V0 is empty. Thus u belongs to exhausted(G). Since u belongs to satisfied(G′),
we conclude that G′ = reveal(W,G, u) and v′ = v. The desired claim follows easily from the
definition of reveal(W,G, u).

Lemma D.2. Let W = (U, V,%) be a wpp, let G belong to admissible(W ), let G′ belong to
Γ(W,G), let u belong to U , let v denote house(G, u), and let v′ denote house(G′, u). Then v′ %u v.
Furthermore, if u belongs to satisfied(G) then v′ ∼u v.

Proof. If v = v′ then the claim of the lemma is trivial. For the remainder of the proof, assume
that v 6= v′. Thus G′ = trade(G, C) for some C in cycles(G) such that agent u is on C. Let
u′ denote agent(G, v′). Since no agents in frozen(G) appear on C, neither u nor u′ belongs
to frozen(G). Since v′ is equal to next(G, u), we conclude that v′ belongs to Γ(G, u). Since
v′ belongs to Γ(G, u), u′ does not belong to frozen(G), and G belongs to admissible(W ), we
conclude that bottom(W,G, u, v′) holds. If u belongs to unsatisfied(G), then since G belongs to
configs(W ) and bottom(W,G, u, v′) holds, we have v′ �u v. If u belongs to satisfied(G), then v
belongs to Γ(G, u). Since v belongs to Γ(G, u), u does not belong to frozen(G), and G belongs to
admissible(W ), we conclude that bottom(W,G, u, v) holds, and hence that v ∼u v′.
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E A Fast Implementation
In this section we describe an O(n3)-time deterministic algorithm, Algorithm 2. It will be evident
that any execution of Algorithm 2 corresponds to a possible execution of Algorithm 1. Thus
Theorem 1 implies that Algorithm 2 has the same input-output behavior as Algorithm 1.

Let W = (U, V,%) be a wpp and let G be a non-final configuration in admissible(W ). Below
we describe an O(|V |2) time subroutine to compute a configuration G′ in Γ∗(W,G) such that
|unsatisfied(G′)| < |unsatisfied(G)|. By Lemma 4.6, we find that G′ belongs to admissible(W ).
Thus we can iteratively apply this subroutine at most |V | times, yielding an overall time bound of
O(|V |3).

The O(|V |2)-time subroutine works in three phases, as follows. In the first phase, we use a
breadth-first traversal in the reversal of G (i.e., the graph obtained by reversing the direction of
the edges in G), starting from the set of agents in unsatisfied(G) (which are easy to identify),
to compute distance(G, v) for all houses v in V , and next(G, u) for all agents u in U . Then
we identify the set of agents in exhausted(G), call it U ′, and the set of all houses v such that
distance(G, v) is finite, call it V ′. The time complexity of the first phase is easily seen to be
O(|V |2).

In the second phase, we process the agents in U ′ in arbitrary order. To process such an agent
u, we repeatedly update G to reveal(W,G, u) until Γ(G, u) ∩ V ′ is nonempty. Each such update
merely involves adding some new outgoing edges to agent u. The total number of new edges
added to u is at most |V |, and the time complexity of processing u is O(|V |). Once u has been
processed, we check whether u now belongs to satisfied(G). If so, we can terminate the subroutine
and take the desired configuration G′ to be the current configuration G. (As an optimization, we
can go ahead and process any remaining agents in U ′ before terminating the subroutine.) If we
process all of the agents in U ′ without arriving at a configuration G′ such that |unsatisfied(G′)| <
|unsatisfied(G)|, then we proceed to the third phase. Since at most |V | agents are processed in the
second phase, the time complexity of the second phase is O(|V |2).

In the third phase, since exhausted(G) is empty and G is not final (since all of the agents in
U ′ continue to belong to unsatisfied(G)), Lemma 3.6 implies that cycles(G) is nonempty. As
in a standard TTC algorithm for the simple case of strict preferences, we can easily identify all
of the cycles in cycles(G) in O(|V |) time. We can then update G to trade(G, C) for some C in
cycles(G). As argued in the proof of Lemma 4.3, such an update yields a configuration G′ such
that |unsatisfied(G′)| < |unsatisfied(G)|. The time complexity of the third phase is O(|V |). (As
an optimization, we can process all of the cycles in cycles(G); the time complexity of the third
phase remains O(|V |).)
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