
Scheduling Unit Jobs with a Common Deadline
to Minimize the Sum of Weighted Completion

Times and Rejection Penalties ?

Nevzat Onur Domaniç and C. Gregory Plaxton

Department of Computer Science
University of Texas at Austin

{onur,plaxton}@cs.utexas.edu

Abstract. We study the problem of scheduling unit jobs on a single ma-
chine with a common deadline where some jobs may be rejected. Each
job has a weight and a profit and the objective is to minimize the sum
of the weighted completion times of the scheduled jobs plus the sum of
the profits of the rejected jobs. Our main result is an O(n logn)-time
algorithm for this problem. In addition, we show how to incorporate
weighted tardiness penalties with respect to a common due date into the
objective while preserving the O(n logn) time bound. We also discuss
connections to a special class of unit-demand auctions. Finally, we es-
tablish that certain natural variations of the scheduling problems that
we study are NP-hard.

1 Introduction

In many scheduling problems, we are given a set of jobs, and our goal is to
design a schedule for executing the entire set of jobs that optimizes a particular
scheduling criterion. Scheduling with rejection, however, allows some jobs to
be rejected, either to meet deadlines or to optimize the scheduling criterion,
while possibly incurring penalties for rejected jobs. In this paper we study the
problem of scheduling unit jobs (i.e., jobs with an execution requirement of one
time unit) with individual weights (wi) and profits (ei) on a single machine with
a common deadline (d) where some jobs may be rejected. If a job is scheduled by
the deadline then its completion time is denoted by Ci; otherwise it is considered
rejected. Let S denote the set of scheduled jobs and S denote the set of rejected
jobs. The goal is to minimize the sum of the weighted completion times of the
scheduled jobs plus the total profits of the rejected jobs. Hence job profits can be
equivalently interpreted as rejection penalties. We represent the problem using
the scheduling notation introduced by Graham et al. [10] as:

1 | pi = 1, di = d |
∑
S

wiCi +
∑
S

ei . (1)

? This research was supported by NSF Grant CCF–1217980.

We assume that the number of jobs is at least d. If not, letting U+ (resp., U−)
denoting the set of the jobs with nonnegative (resp., negative) weights, it is easy
to observe that there exists a solution in which each job in U+ (resp., U−) that
is not rejected is scheduled in one of the first |U+| (resp., last |U−|) slots. Using
this observation, we can solve the given instance by solving two smaller instances
for which our assumption is satisfied.

Like many other scheduling problems involving unit jobs, Problem 1 can
be solved in polynomial time by a reduction to the maximum weight matching
problem in bipartite graphs. Our contribution is an O(n log n)-time algorithm
for Problem 1 where n denotes the number of jobs. Engels et al. [6] give a pseudo-
polynomial-time dynamic programming algorithm for the same objective except
that variable processing times are allowed and no deadline restriction is imposed.
Engels et al. first show that the decision version of the problem is NP-complete
and then give an FPTAS. They also remark that a running time of O(n2) can
be achieved for the special case of unit processing times; our work improves this
bound to O(n log n).

More general cases of Problem 1, almost all dealing with variable processing
times, have been studied extensively. One of the earliest works that considers
job specific profits and lateness penalties [20] reduces to our problem in the
special case of setting all processing times to 1 and all due dates to 0. Two recent
surveys review the research on various scheduling problems in which it is typically
necessary to reject some of the jobs in order to achieve optimality [16, 19].
Epstein et al. [7] focus on unit jobs but consider only the online version of the
problem. Shabtay et al. [17] split the scheduling objective into two criteria: the
scheduling cost, which depends on the completion times of the jobs, and the
rejection cost, which is the sum of the penalties paid for the rejected jobs. In
addition to optimizing the sum of these two criteria, the authors study other
variations of the problem such as optimizing one criterion while constraining
the other, or identifying all Pareto-optimal solutions for the two criteria. The
scheduling cost in that work is not exactly the weighted sum of the completion
times; however, several other similar objectives are considered. We show that
our problem becomes NP-hard if we split our criteria in the same manner and
aim for optimizing one while bounding the other.

Given the improvement in running time that we achieve for Problem 1, it is
natural to ask whether our approach can be adapted to obtain fast algorithms
for interesting variants of Problem 1. We show the following generalization of
Problem 1 can also be solved in O(n log n) time:

1 | pi = 1, di = d, di = d |
∑
S

wiCi + c
∑
S

wiTi +
∑
S

ei . (2)

In Problem 2, every job also has a common due date d, and completing a job after
the due date incurs an additional tardiness penalty that depends on its weight
and a positive constant c. The tardiness of a job is defined as Ti = max{0, Ci−d}.
Similar to Problem 1, we assume that the number of jobs is at least d.

We solve Problems 1 and 2 by finding a maximum weight matching (MWM)
in a complete bipartite graph that represents the scheduling instance. Due to the

special structure of the edge weights, the space required to represent this graph
is linear in the number of vertices. Thus, aside from the scheduling applications,
this work contributes to the research aimed at developing quasilinear algorithms
for matching problems in compactly representable bipartite graphs. Both un-
weighted and vertex-weighted matching problems in convex bipartite graphs, the
graphs in which the right vertices can be enumerated such that the neighbors of
each left vertex are consecutive, have been studied extensively [8, 9, 12, 14, 21].
Plaxton [15] studies vertex-weighted matchings in two-directional orthogonal ray
graphs, which generalize convex bipartite graphs. In contrast, the current paper
focuses on a class of compactly representable bipartite graphs that is simpler in
terms of the underlying graph structure (all edges are present), but allows for
more complex edge weights.

The cost (distance) matrix of the complete bipartite graph that we construct
for solving Problems 1 and 2 is a Monge matrix. An n×m matrix C = (cij) is
called a Monge matrix if cij + crs ≤ cis + crj for 1 ≤ i < r ≤ n, 1 ≤ j < s ≤ m.
Burkard [2] provides a survey of the rich literature on applications of Monge
structures in combinatorial optimization problems. When the cost matrix of a
bipartite graph is a Monge matrix, an optimal maximum cardinality matching
can be found in O(nm) time where n is the number of rows and m is the number
of columns. If n = m then the diagonal of the cost matrix is a trivial solution.
Aggarwal et al. [1] study several weighted bipartite matching problems where,
aside being a Monge matrix, additional structural properties are assumed for
the cost matrix. The authors present an O(n logm)-time divide and conquer
algorithm for the case where the number of rows n is at most the number of
columns m and each row is bitonic, i.e., each row is a non-increasing sequence
followed by a non-decreasing sequence. If we represent the edge weights of the
bipartite graph that we construct for solving our problems in a matrix so that
the rows correspond to the jobs and the columns correspond to the time slots,
then both the Monge property and the bitonicity property are satisfied; in fact
each row is monotonic. However, we end up having more rows than columns,
which renders the algorithm of [1] inapplicable for our problems. If we had more
columns than rows, as assumed in [1], then we would have a trivial solution
which could be constructed by sorting the jobs with respect to their weights. In
summary, similar to [1], our algorithm efficiently solves the weighted bipartite
matching problem for Monge matrices having an additional structure on the
rows. In contrast, the structural assumption we place on the rows is stronger
than that of [1], and we require more rows than columns, whereas [1] requires
the opposite.

Another application of bipartite graphs is in the context of unit-demand
auctions. In a unit-demand auction, a collection of items is to be distributed
among several bidders and each bidder is to receive at most one item [4, 13, 18].
Each bidder has a private value for each item, and submits to the auction a unit-
demand bid that specifies a separate offer for each item. The VCG mechanism
can be used to determine the outcome of a unit-demand auction, i.e., allocation
and pricing of the items. The VCG allocation corresponds to an (arbitrary)

MWM of the bipartite graph in which each left vertex represents a bid, each
right vertex represents an item, and the weight of the edge from a bid u to an
item v represents the offer of the bid u for item v. The VCG mechanism is known
to enjoy a number of desirable properties including efficiency, envy-freedom,
and strategyproofness. Another contribution of this paper is an O(n log n)-time
algorithm for computing the VCG prices, given a VCG allocation of an auction
instance that can be represented by a more general class of the complete bipartite
graphs than the ones that we construct to solve Problems 1 and 2.

Organization. Section 2 describes the fast O(n log n)-time algorithm for
Problem 1. Section 3 describes how to extend the algorithm to solve Problem 2
within the same time bound. Section 4 views the problem from a unit-demand
auction perspective and briefly presents the approach we take in the O(n log n)-
time algorithm for computing the VCG prices. Due to space limitations, some
details are omitted from this conference version. The companion technical re-
port [5] includes all of the material in the present version plus five appendices.
Some of the proofs related to the algorithm for Problem 1 and a brief imple-
mentation are deferred to App. A [5]. The details of the extension for Problem 2
are explained in App. B [5]. Appendix C [5] presents the algorithm for comput-
ing the VCG prices in detail. Finally, App. E [5] proves the NP-hardness of the
bicriteria variations of Problem 1 via reductions from the partition problem.

2 A Fast Algorithm for Problem 1

We encode an instance of Problem 1 as a weighted matching problem on a graph
drawn from a certain family. Below we define this family, which we call G, and
we discuss how to express an instance of Problem 1 in terms of a graph in G.

We define G as the family of all complete edge-weighted bipartite graphs
G = (U, V,w) such that the following conditions hold: |U | ≥ |V |; each left vertex
u in U has two associated integers u.profit and u.priority ; the left vertices are
indexed from 1 in non-decreasing order of priorities, breaking ties arbitrarily;
right vertices are indexed from 1; the weight w(u, v) of the edge between a left
vertex u and a right vertex v is equal to u.profit + u.priority · j where j denotes
the index of v. Note that a graph G = (U, V,w) in G admits an O(|U |)-space
representation.

Let I be an instance of Problem 1. The instance I consists of a set of n jobs
to schedule, each with a profit and a weight, and a common deadline d where we
assume that n ≥ d as discussed in Sect. 1. We encode the instance I as a graph
G = (U, V,w) in G such that the following conditions hold: |U | = n; |V | = d;
each left vertex represents a distinct job in I; each right vertex represents a time
slot in which a job in I can be scheduled; for each job in I and the vertex u that
represents that job, u.profit is equal to the profit of the job and u.priority is equal
to the negated weight of the job. It is easy to see by inspecting the objective of
Problem 1 that minimizing the weighted sum of completion times is equivalent
to maximizing the same expression with negated weights, and minimizing the
sum of the profits of the rejected jobs is equivalent to maximizing the sum of

the profits of the scheduled jobs. Hence, instance I of Problem 1 is equivalent
to the problem of finding a maximum weight matching (MWM) of a graph
G = (U, V,w) in G that encodes I. Given this correspondence between the two
problems, we refer to the left vertices (resp., right vertices) of a graph in G as
jobs (resp., slots). The problem of computing an MWM of a graph G = (U, V,w)
in G can be reduced to the maximum weight maximum cardinality matching
(MWMCM) problem by adding |V | dummy jobs, each with profit and priority
zero, to obtain a graph that also belongs to G.

As a result of the equivalence of the two problems mentioned above and
the reduction from the MWM to the MWMCM problem, we can obtain an
O(n log n)-time algorithm for Problem 1 by providing an O(|U | log |U |)-time al-
gorithm to compute an MWMCM of a graph G = (U, V,w) in G. Before dis-
cussing this algorithm further, we introduce some useful definitions.

Let G = (U, V,w) be a graph in G. We say that a subset U ′ of U is optimal for
G if there exists an MWMCM M of G such that the set of jobs that are matched
in M is equal to U ′. Lemma 1 below shows that it is straightforward to efficiently
construct an MWMCM of G given an optimal set of jobs for G. Let U ′ be a subset
of U with size |V | and let i1 < · · · < i|V | denote the indices of the jobs in U ′. Then
we define matching(U ′) as the set of |V | job-slot pairs obtained by pairing the
job with index ik to the slot with index k for 1 ≤ k ≤ |V |. The following lemma is
a straightforward application of the rearrangement inequality [11, Section 10.2,
Theorem 368] to our setting.

Lemma 1. Let G = (U, V,w) be a graph in G. Let U ′ be a subset of U with
size |V |. Let W denote the maximum weight of any MCM of G that matches U ′.
Then matching(U ′) is of weight W .

Having established Lemma 1, it remains to show how to efficiently identify
an optimal set of jobs for a given graph G = (U, V,w) in G. The main technical
result of this section is an O(|U | log |U |)-time dynamic programming algorithm
for accomplishing this task. The following definitions are useful for describing
our dynamic programming framework.

Let G = (U, V,w) be a graph in G. For any integer i such that 0 ≤ i ≤ |U |,
we define Ui as the set of jobs with indices 1 through i. Similarly, for any integer
j such that 0 ≤ j ≤ |V |, we define Vj as the set of slots with indices 1 through j.
For any integers i and j such that 0 ≤ j ≤ i ≤ |U | and j ≤ |V |, we define Gi,j as
the subgraph of G induced by the vertices Ui ∪ Vj , and we define W (i, j) as the
weight of an MWMCM of Gi,j . Note that any subgraph Gi,j of G also belongs
to G.

Let us define G∗ as the family of all graphs in G having an equal number of
slots and jobs. Given a graph G = (U, V,w) in G∗, our dynamic programming
algorithm computes in O(|U | log |U |) total time an optimal set of jobs for each
G|U |,j for 1 ≤ j ≤ |U |. For any graph G′ = (U, V ′, w′) in G, we can construct
a graph G = (U, V,w) in G∗ satisfying G′|U |,j = G|U |,j for all 1 ≤ j ≤ |V ′| by
defining V as the set of |U | slots indexed from 1 through |U |. Thus, given any
graph G′ = (U, V ′, w′) in G, our algorithm can be used to identify an optimal
set of jobs for each subgraph G′|U |,j for 1 ≤ j ≤ |V ′| in O(|U | log |U |) total time.

Throughout the remainder of this section, we fix a graph instance G =
(U, V,w) in G∗. The presentation of the algorithm is organized as follows. Sec-
tion 2.1 introduces the core concept, which we call the acceptance order, that our
algorithm is built on. Section 2.2 presents the key idea (Lemma 5) underlying
our algorithm for computing the acceptance order. Finally, Sect. 2.3 describes
an efficient augmented binary search tree implementation of the algorithm.

2.1 Acceptance Orders

Lemma 1 reduces Problem 1 to the problem of identifying an optimal subset of
U for G. In addition to an optimal set of jobs for G, our algorithm determines
for each integer i and j such that 0 ≤ j ≤ i ≤ |U |, a subset best(i, j) of Ui that is
optimal for Gi,j (Lemma 3). There are quadratically many such sets, so in order
to run in quasilinear time, we compute a compact representation of those sets by
exploiting the following two properties. The first property is that best(i, j − 1)
is a subset of best(i, j) for 1 ≤ j ≤ i ≤ |U |. Thus, for a fixed i, the sequence
of sets best(i, 1), . . . , best(i, i) induces an ordering σi of jobs Ui, which we later
define as the acceptance order of Ui, where the job at position j of σi is the one
that is present in best(i, j) but not in best(i, j − 1). The second property is that
σi−1 is a subsequence of σi for 1 ≤ i ≤ |U |. This second property suggests an
incremental computation of σi’s which will be exploited to find the weights of
MWMCMs for all prefixes of jobs to solve Problem 2, as described in Sect. 3.

We now give the formal definitions of the acceptance order and the optimal
set best(i, j), and present two associated lemmas. The proofs of these two lemmas
are provided in the companion technical report [5, Appendix A.1].

We say that a vertex is essential for an edge-weighted bipartite graph G if it
belongs to every MWMCM of G.

For any integer i such that 0 ≤ i ≤ |U | we define σi inductively as follows:
σ0 is the empty sequence; for i > 0 let u denote the job with index i, then σi
is obtained from σi−1 by inserting job u immediately after the prefix of σi−1
of length p − 1 where p, which we call the position of u in σi, is the minimum
positive integer such that job u is essential for Gi,p. It is easy to see that σi is
a sequence of length i and that 1 ≤ p ≤ i since u is trivially essential for Gi,i.
Furthermore, σi−1 is a subsequence of σi for 1 ≤ i ≤ |U |, as claimed above.

We say that σi is the acceptance order of the set of jobs Ui. Note that σ|U |
is the acceptance order of the set of all jobs.

Lemma 2. Let i and j be any integers such that 1 ≤ j ≤ i ≤ |U | and let u
denote the job with index i. Then job u is essential for Gi,j if and only if the
position of u in σi is at most j.

For any integers i and j such that 0 ≤ j ≤ i ≤ |U |, we define best(i, j) as
the set of the first j jobs in σi. Thus, best(i, j − 1) is a subset of best(i, j) for
1 ≤ j ≤ i ≤ |U |, as claimed above.

Lemma 3. Let i and j be any integers such that 0 ≤ j ≤ i ≤ |U |. Then
matching(best(i, j)) is an MWMCM of Gi,j.

Lemmas 1 and 3 imply that once we compute the acceptance order σ|U |, we

can sort its first d jobs by their indices to obtain a matching to solve Problem 1.

2.2 Computing the Acceptance Order

As we have established the importance of the acceptance order σ|U |, we now
describe how to compute it efficiently. We start with σ1 and introduce the tasks
one by one in index order to compute the sequences σ2, . . . , σ|U | incrementally.
Once we know σi−1, we just need to find out where to insert the job with index i
in order to compute σi. We first introduce some definitions and a lemma, whose
proof is provided in the companion technical report [5, Appendix A.1], and then
we describe the key idea (Lemma 5) for finding the position of a job in the
corresponding acceptance order.

For any integers i and j such that 1 ≤ j ≤ i ≤ |U |, let σi[j] denote the job
with position j in σi, where σi[1] is the first job in σi.

For any job u that belongs to U , we define better(u) as the set of jobs that
precede u in σi where i denotes the index of u. Thus |better(u)| = p − 1 where
p is the position of u in σi. The set better(u) is the set of jobs that precede u
both in index order and in acceptance order.

Lemma 4. Let i and j be integers such that 1 ≤ j ≤ i ≤ |U |, and let i′ denote
the index of job σi[j]. Then the set of jobs in best(i, j− 1) with indices less than
i′ is equal to better(σi[j]).

For any subset U ′ of U , we define sum(U ′) as
∑

u∈U ′ u.priority .
Now we are ready to discuss the idea behind the efficient computation of the

acceptance orders incrementally. Assume that we already know the acceptance
order σi−1 of the set of the first i−1 jobs for some integer i such that 1 < i ≤ |U |.
Let u denote the job with index i. If we can determine in constant time, for any
job in the set Ui−1, whether u precedes that job in σi, then we can perform a
binary search in order to find in logarithmic time the position of u in σi. Suppose
that we would like to know whether u precedes σi−1[j] in σi for some integer
j such that 1 ≤ j < i. In other words we would like to determine whether the
position of u in σi is at most j. In what follows, let u′ denote the job σi−1[j] and
let v denote the slot with index j. Then by Lemma 2, job u precedes u′ in σi if
and only if u is essential for Gi,j .

In order to determine whether job u is essential for Gi,j , we need to compare
the weight of a heaviest possible matching for Gi,j that does not include u to the
weight of a heaviest possible matching for Gi,j that includes u. The former weight
is W (i− 1, j). Since job u has the highest index among the jobs with indices 1
through i, by Lemma 1, the latter weight is equal to w(u, v) + W (i− 1, j − 1).

Let X denote best(i− 1, j − 1). Since best(i− 1, j − 1) + u′ = best(i− 1, j),
Lemma 3 implies that the weight of matching(X + u′) is equal to W (i − 1, j).
By Lemma 3, the weight of matching(X) is W (i − 1, j − 1). Since job u has
the highest index among the jobs in X + u, the weight of matching(X + u) is
w(u, v) + W (i− 1, j − 1).

27513 46 89σ9

X

u′

better(u′)

(a) Acceptance order σ9

1 3 4 5 6 8 9

1 3 4 6 8 9 10

1 2 3 4 5 6 7Slot
v′ v

matching(X + u′)

matching(X + u)

(b) The two matchings to compare

Fig. 1: An example in which we try to determine whether the job with index 10
precedes σ9[7] in σ10. Each box represents the job whose index is shown inside.

Combining the results of the preceding paragraphs, we conclude that job u
is essential for Gi,j if and only if the weight of matching(X + u) is greater than
the weight of matching(X + u′).

Figure 1 shows an example where i = 10 and j = 7. Thus we are trying to
determine whether the job with index 10 precedes σ9[7] in σ10. In this example,
u denotes the job with index 10 and u′ denotes σ9[7], which is the job with
index 5, as shown in Fig. 1a. The set X is the first 6 jobs in σ9. The jobs
appearing past u′ in σ9, jobs with indices 7 and 2, do not participate in the
matchings that we are interested in so they are crossed out. Figure 1b shows
the two matchings matching(X + u′) and matching(X + u) of which we would
like to compare the weights. As seen in Fig. 1b, each job in X with index less
than that of job u′, shaded light gray in the figure, is matched to the same slot
in both matching(X + u) and matching(X + u′). By Lemma 4, those jobs are
the ones in the set better(u′), which are the jobs with indices 1, 3 and 4 in the
example. Hence job u′ occurs in position |better(u′)|+ 1 when we sort the set of
jobs X+u′ by index and thus it is matched to the slot with index |better(u′)|+1
in matching(X + u′). Moreover, each job in X with index greater than that of
job u′ is matched to a slot with index one lower in matching(X + u) than in
matching(X + u′), as depicted by the arrows in Fig. 1b for the jobs with indices
6, 8, and 9.

Hence the weight of matching(X + u) minus the weight of matching(X + u′)
is equal to w(u, v)−w(u′, v′) plus the sum of the priorities of all jobs in best(i−
1, j−1) with indices greater than that of u′, where v′ denotes the slot with index
|better(u′)|+ 1. By Lemma 4, the latter sum is equal to sum(best(i− 1, j− 1))−
sum(better(u′)). These observations establish the proof of the following lemma
which we utilize in computing the acceptance orders incrementally.

Lemma 5. Let i and j be integers such that 1 ≤ j < i ≤ |U |. Let u denote
the job with index i and let u′ denote the job σi−1[j]. Then the following are
equivalent: (1) The position of u in σi is at most j; (2) Job u is essential for
Gi,j; (3) The weight of matching(best(i−1, j−1)+u) is greater than the weight
of matching(best(i − 1, j − 1) + u′); and (4) w(u, v) > w(u′, v′) + sum(best(i −

1, j − 1))− sum(better(u′)) where v denotes the slot with index j and v′ denotes
the slot with index |better(u′)|+ 1.

2.3 Binary Search Tree Implementation

We obtain an efficient algorithm utilizing a self-balancing augmented binary
search tree (BST) for incrementally computing the acceptance orders by a suit-
able choice of ordering the jobs, and an augmentation that is crucial in applying
Lemma 5 in constant time. The jobs are stored in the BST so that an inorder
traversal of the BST yields the acceptance order. The algorithm runs |U | itera-
tions where the job with index i is inserted into the BST at iteration i to obtain
σi from σi−1 by performing a binary search. We first give some definitions that
are useful in the description of the algorithm and then we state in Lemma 6 how
to perform the comparisons for the binary search.

For a binary tree T and an integer i such that 1 ≤ i ≤ |U |, we define the
predicate ordered(T, i) to hold if T contains i nodes that represent the jobs Ui,
and the sequence of the associated jobs resulting from an inorder traversal of T
is σi. The job represented by a node x is denoted by x.job.

Let T be a binary tree satisfying ordered(T, i) for some i. For any node x
in T , precede(x, T) is defined as the set of jobs associated with the nodes that
precede x in an inorder traversal of T .

Lemma 6. Let i be an integer such that 1 < i ≤ |U | and let u denote the job
with index i. Let T be a binary tree satisfying ordered(T, i − 1) and let x be a
node in T . Assume that |precede(x, T)|, sum(precede(x, T)), |better(x.job)|, and
sum(better(x.job)) are given. Then we can determine in constant time whether
u precedes x.job in σi.

Proof. Let j denote |precede(x, T)|+1. Then ordered(T, i−1) implies that x.job
is σi−1[j] and sum(precede(x, T)) is equal to sum(best(i− 1, j − 1)). Now let u′

denote σi−1[j]. Then we can test Inequality 4 of Lemma 5 in constant time to
determine whether the position of u in σi is at most j, thus whether u precedes
u′ in σi. ut

Lemma 6 implies that once we know certain quantities about a node x in
the BST then we can tell in constant time whether the new job precedes x.job
in the acceptance order. The necessary information to compute the first two of
those quantities can be maintained by standard BST augmentation techniques
as described in [3, Chapter 14]. The other two quantities turn out to be equal to
the first two at the time the node is inserted into the BST and they can be stored
along with the node. The details are in the proof of the following result, which
is presented together with a concise implementation in the companion technical
report [5, Appendices A.2 and A.3].

Theorem 1. The acceptance order of U can be computed in O(|U | log |U |) time.

As mentioned earlier, once σ|U | is computed, we can extract an MWMCM
of G|U |,j for any j such that 1 ≤ j ≤ |U |. If we are only interested in solutions
for j up to some given m, then the algorithm can be implemented in O(n logm)
time by keeping at most m nodes in the BST. We achieve this by deleting the
rightmost node when the number of nodes exceeds m. Note that if the jobs are
not already sorted by priorities then we still need to spend O(n log n) time.

If we would like to find out the weights of the MWMCMs of G|U |,j for all
j such that 1 ≤ j ≤ |U |, a naive approach would be to sort all prefixes of σ|U |
and to compute the weights. The companion technical report [5, Appendix D]
explains how to compute all those weights incrementally in linear time.

3 Introducing Tardiness Penalties

Given the improvement in running time that we achieve for Problem 1, we con-
sider solving several variations of that problem and other related problems in
more general families of compact bipartite graphs than the one we introduced in
Sect. 2. A possible variation of Problem 1 is to allow a constant number of jobs
to be scheduled in each time slot instead of only one. However, our approach
of comparing the weights of two matchings that we illustrate in Fig. 1b fails
because only some of the jobs, instead of all, in the set X having indices greater
than the job we compare with are shifted to a lower slot. Solving this variation
would enable us to address scheduling problems having symmetric earliness and
tardiness penalties with respect to a common due date.

Another related problem is finding an MWM in a more general complete
bipartite graph family that is still representable in space linear in the number
of vertices. Consider the following extension to the complete bipartite graph
G = (U, V,w) that is introduced in Sect. 2. For each slot (right vertex) v in
V , we introduce an integer parameter v.quality . We assume that the slots are
indexed from 1 in non-decreasing order of qualities, breaking ties arbitrarily.
We allow an arbitrary number of slots that is less than the number of jobs. We
also modify the edge weights so that w(u, v) between job u and slot v becomes
u.profit + u.priority · v.quality . While we have not been able to solve the MWM
problem in such a graph faster than quadratic time yet, we describe in Sect. 4
how to compute the VCG prices given an MWM of such a graph that represents
a unit-demand auction instance.

Here we describe a special case of the graph structure that is introduced in the
previous paragraph. Suppose that the qualities of the slots form a non-decreasing
sequence which is the concatenation of two arithmetic sequences. We are able
to solve the MWM problem in such a graph instance, thus we solve Problem 2
introduced in Sect. 1 in O(n log n) time. The key idea is to utilize the incremental
computation of the acceptance orders so that we can find the weights of the
MWMCMs between the slots whose qualities form the first arithmetic sequence
(the slots before the common due date) and every possible prefix of jobs. Then
we do the same between the slots whose qualities form the second arithmetic
sequence (the slots after the common due date) and every possible suffix of jobs.

Then in linear time we find an optimal matching by determining which jobs to
assign to the first group of slots and which jobs to the second group. The details
are explained in the companion technical report [5, Appendix B].

4 Unit-Demand Auctions and VCG Prices

In this section, we view an instance G = (U, V,w) of the general complete bi-
partite graph family introduced in Sect. 3 from the perspective of unit-demand
auctions. We refer to elements of U as bids and to elements of V as items. For
any bid u and item v, the weight w(u, v) represents the amount offered by bid
u to item v. We present an O(n log n)-time algorithm for computing the VCG
prices given a VCG allocation (an MWM of G).

We review some standard definitions related to unit-demand auctions and
we present the details of the algorithm in the companion technical report [5,
Appendix C]. Here we briefly describe the approach we take in order to obtain
the desired performance. One characterization of the VCG prices is that it is
the minimum stable price vector [13]. Thus a naive algorithm would start with
zero prices and then look for and eliminate the instabilities. While inspecting
a particular instability, the algorithm would increase the prices just enough to
eliminate that instability.

We take a similar approach that uses additional care. We start with a min-
imum price vector that does not cause an instability involving unassigned bids,
by utilizing the geometric concept of the upper envelope. We then inspect the
instabilities in a particular order, with two scans of the items, first in increas-
ing and then in decreasing order of qualities. The most expensive step is the
computation of the upper envelope, which takes O(n log n) time.

Acknowledgments. In the early stages of this work we had developed an
O(n log2 n)-time algorithm for the problem considered in Sect. 2. The authors
wish to thank Eric Price for pointing out how to improve this bound to
O(n log n), and for allowing us to include this improvement in the present paper.

References

1. Aggarwal, A., Barnoy, A., Khuller, S., Kravets, D., Schieber, B.: Efficient
minimum cost matching and transportation using the quadrangle inequality.
Journal of Algorithms 19(1), 116–143 (1995)

2. Burkard, R.E.: Monge properties, discrete convexity and applications. Eu-
ropean Journal of Operational Research 176(1), 1–14 (2007)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Al-
gorithms. The MIT Press, 3rd edn. (2009)

4. Demange, G., Gale, D., Sotomayor, M.A.O.: Multi-item auctions. The Jour-
nal of Political Economy pp. 863–872 (1986)

5. Domaniç, N.O., Plaxton, C.G.: Scheduling unit jobs with a common deadline
to minimize the sum of weighted completion times and rejection penalties.
Tech. Rep. TR–14–11, Department of Computer Science, University of Texas
at Austin (September 2014)

6. Engels, D.W., Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N.,
Wein, J.: Techniques for scheduling with rejection. Journal of Algorithms
49(1), 175–191 (2003)

7. Epstein, L., Noga, J., Woeginger, G.J.: On-line scheduling of unit time jobs
with rejection: minimizing the total completion time. Operations Research
Letters 30(6), 415–420 (2002)

8. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of
disjoint set union. Journal of Computer and System Sciences 30(2), 209–221
(1985)

9. Glover, F.: Maximum matching in a convex bipartite graph. Naval Research
Logistics Quarterly 14(3), 313–316 (1967)

10. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Opti-
mization and approximation in deterministic sequencing and scheduling: A
survey. Annals of Discrete Mathematics 5, 287–326 (1979)

11. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University
Press, 2nd edn. (1952)

12. Katriel, I.: Matchings in node-weighted convex bipartite graphs. INFORMS
Journal on Computing 20, 205–211 (December 2008)

13. Leonard, H.B.: Elicitation of honest preferences for the assignment of indi-
viduals to positions. The Journal of Political Economy pp. 461–479 (1983)

14. Lipski, Jr., W., Preparata, F.P.: Efficient algorithms for finding maximum
matchings in convex bipartite graphs and related problems. Acta Informatica
15, 329–346 (1981)

15. Plaxton, C.G.: Vertex-weighted matching in two-directional orthogonal ray
graphs. In: Algorithms and Computation, Lecture Notes in Computer Sci-
ence, vol. 8283, pp. 524–534. Springer Berlin Heidelberg (2013)

16. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on offline scheduling with
rejection. Journal of Scheduling 16(1), 3–28 (2013)

17. Shabtay, D., Gaspar, N., Yedidsion, L.: A bicriteria approach to scheduling
a single machine with job rejection and positional penalties. Journal of
Combinatorial Optimization 23(4), 395–424 (2012)

18. Shapley, L.S., Shubik, M.: The assignment game I: The core. International
Journal of Game Theory 1(1), 111–130 (1971)

19. Slotnick, S.A.: Order acceptance and scheduling: A taxonomy and review.
European Journal of Operational Research 212(1), 1–11 (2011)

20. Slotnick, S.A., Morton, T.E.: Selecting jobs for a heavily loaded shop with
lateness penalties. Computers and Operations Research 23(2), 131–140
(1996)

21. Steiner, G., Yeomans, J.S.: A linear time algorithm for determining maxi-
mum matchings in convex, bipartite graphs. Computers and Mathematics
with Applications 31, 91–96 (1996)

	Scheduling Unit Jobs with a Common Deadline to Minimize the Sum of Weighted Completion Times and Rejection Penalties

