Scheduling Unit Jobs with a Common Deadline to
Minimize the Sum of Weighted Completion Times and
Rejection Penalties *

Nevzat Onur Domanic C. Gregory Plaxton

September 2014

Abstract

We study the problem of scheduling unit jobs on a single machine with a common deadline
where some jobs may be rejected. Each job has a weight and a profit and the objective is
to minimize the sum of the weighted completion times of the scheduled jobs plus the sum
of the profits of the rejected jobs. Our main result is an O(nlogn)-time algorithm for this
problem. In addition, we show how to incorporate weighted tardiness penalties with respect
to a common due date into the objective while preserving the O(nlogn) time bound. We
also discuss connections to a special class of unit-demand auctions. Finally, we establish that
certain natural variations of the scheduling problems that we study are NP-hard.

*This research was supported by NSF Grant CCF-1217980.
"Department of Computer Science, University of Texas at Austin, 2317 Speedway, Stop D9500, Austin, Texas
78712-1757. Email: {onur,plaxton}@cs.utexas.edu

1 Introduction

In many scheduling problems, we are given a set of jobs, and our goal is to design a schedule for
executing the entire set of jobs that optimizes a particular scheduling criterion. Scheduling with
rejection, however, allows some jobs to be rejected, either to meet deadlines or to optimize the
scheduling criterion, while possibly incurring penalties for rejected jobs. In this paper we study
the problem of scheduling unit jobs (i.e., jobs with an execution requirement of one time unit)
with individual weights (w;) and profits (e;) on a single machine with a common deadline (d)
where some jobs may be rejected. If a job is scheduled by the deadline then its completion time
is denoted by C}; otherwise it is considered rejected. Let S denote the set of scheduled jobs and
S denote the set of rejected jobs. The goal is to minimize the sum of the weighted completion
times of the scheduled jobs plus the total profits of the rejected jobs. Hence job profits can be
equivalently interpreted as rejection penalties. We represent the problem using the scheduling
notation introduced by Graham et al. [[10] as:

Lp=1di=d|> wCi+) e . ey
S S

We assume that the number of jobs is at least d. If not, letting U, (resp., U_) denoting the set of
the jobs with nonnegative (resp., negative) weights, it is easy to observe that there exists a solution
in which each job in U, (resp., U_) that is not rejected is scheduled in one of the first |U. | (resp.,
last |U_|) slots. Using this observation, we can solve the given instance by solving two smaller
instances for which our assumption is satisfied.

Like many other scheduling problems involving unit jobs, Problem 1| can be solved in poly-
nomial time by a reduction to the maximum weight matching problem in bipartite graphs. Our
contribution is an O(n logn)-time algorithm for Problem (1| where n denotes the number of jobs.
Engels et al. [6] give a pseudo-polynomial-time dynamic programming algorithm for the same
objective except that variable processing times are allowed and no deadline restriction is imposed.
Engels et al.| first show that the decision version of the problem is NP-complete and then give an
FPTAS. They also remark that a running time of O(n?) can be achieved for the special case of unit
processing times; our work improves this bound to O(n logn).

More general cases of Problem I} almost all dealing with variable processing times, have been
studied extensively. One of the earliest works that considers job specific profits and lateness penal-
ties [23] reduces to our problem in the special case of setting all processing times to 1 and all due
dates to 0. Two recent surveys review the research on various scheduling problems in which it is
typically necessary to reject some of the jobs in order to achieve optimality [19, 22]. Epstein et al.
[7] focus on unit jobs but consider only the online version of the problem. Shabtay et al. [18]] split
the scheduling objective into two criteria: the scheduling cost, which depends on the completion
times of the jobs, and the rejection cost, which is the sum of the penalties paid for the rejected
jobs. In addition to optimizing the sum of these two criteria, the authors study other variations
of the problem such as optimizing one criterion while constraining the other, or identifying all
Pareto-optimal solutions for the two criteria. The scheduling cost in that work is not exactly the
weighted sum of the completion times; however, several other similar objectives are considered.
We show that our problem becomes NP-hard if we split our criteria in the same manner and aim
for optimizing one while bounding the other.

Given the improvement in running time that we achieve for Problem |1} it is natural to ask
whether our approach can be adapted to obtain fast algorithms for interesting variants of Problem[I}
We show the following generalization of Problem |1|can also be solved in O(n logn) time:

Lpi=Ldi=dd=d|Y wCi+c) wTi+) e . 2)
s S 3

In Problem |2 every job also has a common due date d, and completing a job after the due date
incurs an additional tardiness penalty that depends on its weight and a positive constant c. The
tardiness of a job is defined as 7; = max{0,C; — d}. Similar to Problem |1, we assume that the
number of jobs is at least d.

We solve Problems [I] and [2] by finding a maximum weight matching (MWM) in a complete
bipartite graph that represents the scheduling instance. Due to the special structure of the edge
weights, the space required to represent this graph is linear in the number of vertices. Thus, aside
from the scheduling applications, this work contributes to the research aimed at developing quasi-
linear algorithms for matching problems in compactly representable bipartite graphs. Both un-
weighted and vertex-weighted matching problems in convex bipartite graphs, the graphs in which
the right vertices can be enumerated such that the neighbors of each left vertex are consecutive,
have been studied extensively [8, 9} 12, 14} 24]. Plaxton [15] studies vertex-weighted matchings
in two-directional orthogonal ray graphs, which generalize convex bipartite graphs. In contrast,
the current paper focuses on a class of compactly representable bipartite graphs that is simpler in
terms of the underlying graph structure (all edges are present), but allows for more complex edge
weights.

The cost (distance) matrix of the complete bipartite graph that we construct for solving Prob-
lems (I} and 2| is a Monge matrix. An n x m matrix C' = (c¢;;) is called a Monge matrix if
Cij +Crs < Cis +cpjforl <i<r <n,1<j<s <m. Burkard [2] provides a survey of the
rich literature on applications of Monge structures in combinatorial optimization problems. When
the cost matrix of a bipartite graph is a Monge matrix, an optimal maximum cardinality matching
can be found in O(nm) time where n is the number of rows and m is the number of columns. If
n = m then the diagonal of the cost matrix is a trivial solution. Aggarwal et al. [1]] study several
weighted bipartite matching problems where, aside being a Monge matrix, additional structural
properties are assumed for the cost matrix. The authors present an O(nlogm)-time divide and
conquer algorithm for the case where the number of rows 7 is at most the number of columns m
and each row is bitonic, i.e., each row is a non-increasing sequence followed by a non-decreasing
sequence. If we represent the edge weights of the bipartite graph that we construct for solving our
problems in a matrix so that the rows correspond to the jobs and the columns correspond to the
time slots, then both the Monge property and the bitonicity property are satisfied; in fact each row
is monotonic. However, we end up having more rows than columns, which renders the algorithm
of [1] inapplicable for our problems. If we had more columns than rows, as assumed in [1]], then
we would have a trivial solution which could be constructed by sorting the jobs with respect to
their weights. In summary, similar to [1], our algorithm efficiently solves the weighted bipartite
matching problem for Monge matrices having an additional structure on the rows. In contrast, the
structural assumption we place on the rows is stronger than that of [1]], and we require more rows
than columns, whereas [1] requires the opposite.

Another application of bipartite graphs is in the context of unit-demand auctions. In a unit-
demand auction, a collection of items is to be distributed among several bidders and each bidder is

2

to receive at most one item [, [13, 20]. Each bidder has a private value for each item, and submits
to the auction a unit-demand bid that specifies a separate offer for each item. The VCG mechanism
can be used to determine the outcome of a unit-demand auction, i.e., allocation and pricing of the
items. The VCG allocation corresponds to an (arbitrary) MWM of the bipartite graph in which each
left vertex represents a bid, each right vertex represents an item, and the weight of the edge from a
bid u to an item v represents the offer of the bid « for item v. The VCG mechanism is known to
enjoy a number of desirable properties including efficiency, envy-freedom, and strategyproofness.
Another contribution of this paper is an O(n log n)-time algorithm for computing the VCG prices,
given a VCG allocation of an auction instance that can be represented by a more general class of
the complete bipartite graphs than the ones that we construct to solve Problems|[I]and 2]

Organization. Section [2|describes the fast O(n log n)-time algorithm for Problem |1} Some of
the proofs and a brief implementation are deferred to App.|Al Section [3|and App. |B|describe how
to extend the algorithm to solve Problem [2] within the same time bound. Section{and App. [C]view
the problem from a unit-demand auction perspective and present an O(n log n)-time algorithm for
computing the VCG prices. Finally, App. |E|proves the NP-hardness of the bicriteria variations of
Problem 1| via reductions from the partition problem.

2 A Fast Algorithm for Problem

We encode an instance of Problem [I] as a weighted matching problem on a graph drawn from a
certain family. Below we define this family, which we call G, and we discuss how to express an
instance of Problem [I]in terms of a graph in G.

We define G as the family of all complete edge-weighted bipartite graphs G = (U, V, w) such
that the following conditions hold: |U| > |V|; each left vertex w in U has two associated integers
u.profit and u.priority; the left vertices are indexed from 1 in non-decreasing order of priorities,
breaking ties arbitrarily; right vertices are indexed from 1; the weight w(u, v) of the edge between
a left vertex w and a right vertex v is equal to u.profit + u.priority - 7 where j denotes the index of
v. Note that a graph G = (U, V,w) in G admits an O(|U|)-space representation.

Let I be an instance of Problem [I] The instance I consists of a set of n jobs to schedule, each
with a profit and a weight, and a common deadline d where we assume that n > d as discussed in
Sect.|l} We encode the instance [as a graph G = (U, V, w) in G such that the following conditions
hold: |U| = n; |V/| = d; each left vertex represents a distinct job in I; each right vertex represents
a time slot in which a job in I can be scheduled; for each job in / and the vertex u that represents
that job, u.profit is equal to the profit of the job and w.priority is equal to the negated weight of
the job. It is easy to see by inspecting the objective of Problem [I] that minimizing the weighted
sum of completion times is equivalent to maximizing the same expression with negated weights,
and minimizing the sum of the profits of the rejected jobs is equivalent to maximizing the sum of
the profits of the scheduled jobs. Hence, instance I of Problem |l|is equivalent to the problem of
finding a maximum weight matching (MWM) of a graph G = (U, V, w) in G that encodes /. Given
this correspondence between the two problems, we refer to the left vertices (resp., right vertices) of
a graph in G as jobs (resp., slots). The problem of computing an MWM of a graph G = (U, V, w)
in G can be reduced to the maximum weight maximum cardinality matching (MWMCM) problem
by adding |V'| dummy jobs, each with profit and priority zero, to obtain a graph that also belongs
to G.

As aresult of the equivalence of the two problems mentioned above and the reduction from the
MWM to the MWMCM problem, we can obtain an O(n log n)-time algorithm for Problem [1| by
providing an O(|U| log |U|)-time algorithm to compute an MWMOCM of a graph G = (U, V, w) in
G. Before discussing this algorithm further, we introduce some useful definitions.

Let G = (U, V,w) be a graph in G. We say that a subset U’ of U is optimal for G if there exists
an MWMCM M of G such that the set of jobs that are matched in M is equal to U’. Lemma
below shows that it is straightforward to efficiently construct an MWMCM of G given an optimal
set of jobs for G. Let U’ be a subset of U with size |[V| and let i; < --- < iy denote the
indices of the jobs in U’. Then we define matching(U’) as the set of |V/| job-slot pairs obtained
by pairing the job with index i, to the slot with index k for 1 < k < |V|. The following lemma is
a straightforward application of the rearrangement inequality [[11, Section 10.2, Theorem 368] to
our setting.

Lemma 1. Let G = (U, V,w) be a graph in G. Let U’ be a subset of U with size |V'|. Let W denote
the maximum weight of any MCM of G that matches U’. Then matching(U’) is of weight .

Having established Lemma (I} it remains to show how to efficiently identify an optimal set
of jobs for a given graph G = (U,V,w) in G. The main technical result of this section is an
O(|U|log |U|)-time dynamic programming algorithm for accomplishing this task. The following
definitions are useful for describing our dynamic programming framework.

Let G = (U, V,w) be a graph in G. For any integer i such that 0 < i < |U|, we define U; as the
set of jobs with indices 1 through . Similarly, for any integer j such that 0 < j < |V, we define
V; as the set of slots with indices 1 through j. For any integers ¢ and j such that 0 < j < ¢ < |U|
and j < |V, we define G, ; as the subgraph of G induced by the vertices U; U V;, and we define
W (i, j) as the weight of an MWMCM of G, ;. Note that any subgraph G, ; of G also belongs to
g.

Let us define G* as the family of all graphs in G having an equal number of slots and jobs. Given
agraph G = (U, V,w) in G*, our dynamic programming algorithm computes in O(|U|log |U]) total
time an optimal set of jobs for each Gy ; for 1 < j < |U|. For any graph G' = (U, V', ') in
G, we can construct a graph G = (U, V,w) in G* satisfying G'|y; = G|y); forall 1 < 5 < |V
by defining V' as the set of |U]| slots indexed from 1 through |U|. Thus, given any graph G’ =
(U,V',w') in G, our algorithm can be used to identify an optimal set of jobs for each subgraph
Gy, for 1 < j < |V'['in O(|U]log |U]|) total time.

Throughout the remainder of this section, we fix a graph instance G = (U, V,w) in G*. The
presentation of the algorithm is organized as follows. Section [2.1] introduces the core concept,
which we call the acceptance order, that our algorithm is built on. Section [2.2] presents the key
idea (Lemma [5) underlying our algorithm for computing the acceptance order. Finally, Sect. 2.3|
describes an efficient augmented binary search tree implementation of the algorithm.

2.1 Acceptance Orders

Lemma [I] reduces Problem [I] to the problem of identifying an optimal subset of U for G. In
addition to an optimal set of jobs for (&, our algorithm determines for each integer 7 and j such
that 0 < j < i < |UJ, a subset best(i, j) of U; that is optimal for G;; (Lemma [3). There
are quadratically many such sets, so in order to run in quasilinear time, we compute a compact
representation of those sets by exploiting the following two properties. The first property is that

4

best(i,j — 1) is a subset of best (i, j) for 1 < j < i < |U|. Thus, for a fixed 7, the sequence of sets
best(i, 1),..., best(i,) induces an ordering o; of jobs U;, which we later define as the acceptance
order of U;, where the job at position j of o; is the one that is present in best(i, j) but not in
best(i, 7 —1). The second property is that o;_; is a subsequence of o; for 1 < i < |U|. This second
property suggests an incremental computation of ¢;’s which will be exploited to find the weights
of MWMCMs for all prefixes of jobs to solve Problem 2] as described in Sect.

We now give the formal definitions of the acceptance order and the optimal set best (7, 7), and
present two associated lemmas. The proofs of these two lemmas are provided in App.[A.T]

We say that a vertex is essential for an edge-weighted bipartite graph G if it belongs to every
MWMCM of G.

For any integer i such that 0 < ¢ < |U| we define o; inductively as follows: oy is the empty
sequence; for ¢ > 0 let u denote the job with index i, then o; is obtained from o;_; by inserting job
u immediately after the prefix of o;_; of length p — 1 where p, which we call the position of u in
0;, is the minimum positive integer such that job u is essential for G, ,. It is easy to see that o, is a
sequence of length ¢ and that 1 < p < ¢ since u is trivially essential for G, ;. Furthermore, o;_; is
a subsequence of o; for 1 < i < |U], as claimed above.

We say that o; is the acceptance order of the set of jobs U;. Note that 0|y is the acceptance
order of the set of all jobs.

Lemma 2. Let i and j be any integers such that 1 < j < ¢ < |U]| and let u denote the job with
index . Then job w is essential for G, ; if and only if the position of u in o; is at most j.

For any integers ¢ and j such that 0 < j < ¢ < |U]|, we define best(i, j) as the set of the first j
jobs in o;. Thus, best(i, j — 1) is a subset of best(i, j) for 1 < j < i < |U]|, as claimed above.

Lemma 3. Let i and j be any integers such that 0 < j < ¢ < |U|. Then matching(best(i, 7)) is an
MWMCM of Gi,j .

Lemmas |1/ and |3|imply that once we compute the acceptance order oy, we can sort its first d
jobs by their indices to obtain a matching to solve Problem|[I]

2.2 Computing the Acceptance Order

As we have established the importance of the acceptance order oy, we now describe how to
compute it efficiently. We start with o; and introduce the tasks one by one in index order to
compute the sequences oy, . .., o)y incrementally. Once we know o;_1, we just need to find out
where to insert the job with index ¢ in order to compute o;. We first introduce some definitions and
a lemma, whose proof is provided in App. and then we describe the key idea (Lemma [5)) for
finding the position of a job in the corresponding acceptance order.

For any integers ¢ and j such that 1 < j < ¢ < |U|, let ;]j] denote the job with position j in
o;, where o;[1] is the first job in o;.

For any job u that belongs to U, we define better(u) as the set of jobs that precede u in o;
where i denotes the index of u. Thus |better(u)| = p — 1 where p is the position of u in ;. The
set better(u) is the set of jobs that precede u both in index order and in acceptance order.

Lemma 4. Let i and j be integers such that 1 < j < i < |U]|, and let i’ denote the index of job
0;[j]. Then the set of jobs in best(i, j — 1) with indices less than ¢’ is equal to better(o;[j]).

5

For any subset U’ of U, we define sum(U’) as) _, .., u.priority.

Now we are ready to discuss the idea behind the efficient computation of the acceptance orders
incrementally. Assume that we already know the acceptance order o;_; of the set of the first i — 1
jobs for some integer ¢ such that 1 < ¢ < |U|. Let u denote the job with index . If we can
determine in constant time, for any job in the set U;_;, whether u precedes that job in o;, then we
can perform a binary search in order to find in logarithmic time the position of u in o;. Suppose
that we would like to know whether u precedes o;_1[j] in o; for some integer j such that 1 < j < i.
In other words we would like to determine whether the position of « in o; is at most j. In what
follows, let v’ denote the job o;_1[j] and let v denote the slot with index j. Then by Lemma job
u precedes v’ in o; if and only if « is essential for G, ;.

In order to determine whether job wu is essential for G; ;, we need to compare the weight of
a heaviest possible matching for G; ; that does not include u to the weight of a heaviest possible
matching for G; ; that includes u. The former weight is W (i — 1, j). Since job u has the highest
index among the jobs with indices 1 through ¢, by Lemma the latter weight is equal to w(u, v) +
W—1,7-1).

Let X denote best(i — 1,7 — 1). Since best(i — 1,5 — 1) + ' = best(i — 1,), Lemma 3]
implies that the weight of matching(X + «) is equal to W (i — 1, j). By Lemma 3] the weight of
matching(X)is W (i — 1, — 1). Since job u has the highest index among the jobs in X + u, the
weight of matching(X + u) is w(u,v) + W(i — 1,7 —1).

Combining the results of the preceding paragraphs, we conclude that job u is essential for G;
if and only if the weight of matching(X + w) is greater than the weight of matching(X + u').

Figure|l{shows an example where ¢ = 10 and 7 = 7. Thus we are trying to determine whether
the job with index 10 precedes oy[7] in 01¢. In this example, u denotes the job with index 10 and v’
denotes oy[7], which is the job with index 5, as shown in Fig.|lal The set X is the first 6 jobs in oy.
The jobs appearing past v’ in og, jobs with indices 7 and 2, do not participate in the matchings that
we are interested in so they are crossed out. Figure|1b|shows the two matchings matching(X +u')
and matching(X + u) of which we would like to compare the weights. As seen in Fig. each
job in X with index less than that of job v/, shaded light gray in the figure, is matched to the same
slot in both matching(X + u) and matching(X + u'). By Lemma] those jobs are the ones in
the set better(u’), which are the jobs with indices 1, 3 and 4 in the example. Hence job v’ occurs
in position |better(u')| + 1 when we sort the set of jobs X + u' by index and thus it is matched
to the slot with index |better(u')| + 1 in matching(X + u'). Moreover, each job in X with index
greater than that of job «’ is matched to a slot with index one lower in matching(X + u) than in
matching(X + u'), as depicted by the arrows in Fig. [Ib|for the jobs with indices 6, 8, and 9.

Hence the weight of matching(X + u) minus the weight of matching(X + u') is equal to
w(u,v) —w(u',v") plus the sum of the priorities of all jobs in best(i — 1, j — 1) with indices greater
than that of «/, where v denotes the slot with index |better(u')| + 1. By Lemmafd] the latter sum
is equal to sum(best(i — 1,5 — 1)) — sum(better(u')). These observations establish the proof of
the following lemma which we utilize in computing the acceptance orders incrementally.

Lemma 5. Let 7 and j be integers such that 1 < j < ¢ < |U|. Let u denote the job with index ¢
and let v’ denote the job o;_1[j]. Then the following are equivalent: (1) The position of « in o is at
most j; (2) Job w is essential for G} ;; (3) The weight of matching(best(i — 1, j — 1) 4+ u) is greater
than the weight of matching(best(i — 1,7 — 1) +u'); and (4) w(u,v) > w(u’,v") + sum(best(i —
1,7 = 1)) — sum(better(u')) where v denotes the slot with index j and v’ denotes the slot with

v’ v

X St 1 23 45 6 7

— 1|32 Bl s | 5] o] matching(X + u')
o9 o [8] e [a]a] s BXTX BERYTTS

— [z[3]a] 6 8]0 [10] matching(X + u)
bette’r’(u/) ; ; ; ; ! ! ! !

(a) Acceptance order og (b) The two matchings to compare

Figure 1: An example in which we try to determine whether the job with index 10 precedes og[7]
in 019. Each box represents the job whose index is shown inside.

index |better(u')| + 1.

2.3 Binary Search Tree Implementation

We obtain an efficient algorithm utilizing a self-balancing augmented binary search tree (BST) for
incrementally computing the acceptance orders by a suitable choice of ordering the jobs, and an
augmentation that is crucial in applying Lemma [5] in constant time. The jobs are stored in the
BST so that an inorder traversal of the BST yields the acceptance order. The algorithm runs |U|
iterations where the job with index ¢ is inserted into the BST at iteration ¢ to obtain o; from o;_; by
performing a binary search. We first give some definitions that are useful in the description of the
algorithm and then we state in Lemma 6| how to perform the comparisons for the binary search.
For a binary tree 7" and an integer ¢ such that 1 < ¢ < |U|, we define the predicate ordered (T, 1)
to hold if 7" contains ¢ nodes that represent the jobs U;, and the sequence of the associated jobs
resulting from an inorder traversal of 7" is ¢;. The job represented by a node x is denoted by x.j0b.
Let T be a binary tree satisfying ordered (T, i) for some i. For any node z in T', precede(x, T)
is defined as the set of jobs associated with the nodes that precede x in an inorder traversal of 7.

Lemma 6. Let ¢ be an integer such that 1 < ¢ < |U| and let u denote the job with index . Let T
be a binary tree satisfying ordered(T,i— 1) and let z be a node in 7. Assume that |precede(z,T)|,
sum(precede(z,T)), |better(x.job)|, and sum(better(zx.job)) are given. Then we can determine
in constant time whether u precedes z.job in o;.

Proof. Let j denote |precede(z,T)| 4+ 1. Then ordered(T,i — 1) implies that x.job is o;_1[j] and
sum(precede(z,T)) is equal to sum(best(i — 1,7 — 1)). Now let v’ denote o;_1[j]. Then we can
test Inequality 4 of Lemma [5] in constant time to determine whether the position of u in o; is at
most 7, thus whether u precedes v’ in o;. [

Lemma [6]implies that once we know certain quantities about a node x in the BST then we can
tell in constant time whether the new job precedes x.job in the acceptance order. The necessary
information to compute the first two of those quantities can be maintained by standard BST aug-
mentation techniques as described in [3, Chapter 14]. The other two quantities turn out to be equal
to the first two at the time the node is inserted into the BST and they can be stored along with
the node. The details are in the proof of the following result, which is presented together with a

concise implementation in Apps. and

Theorem 1. The acceptance order of U can be computed in O(|U|log|U]|) time.

7

As mentioned earlier, once oy is computed, we can extract an MWMOCM of G|y ; for any j
such that 1 < j < |U|. If we are only interested in solutions for j up to some given m, then the
algorithm can be implemented in O(n logm) time by keeping at most m nodes in the BST. We
achieve this by deleting the rightmost node when the number of nodes exceeds m. Note that if the
jobs are not already sorted by priorities then we still need to spend O(nlog n) time.

If we would like to find out the weights of the MWMCMs of Gy ; for all j such that 1 < j <
|U|, a naive approach would be to sort all prefixes of o7 and to compute the weights. Appendix@
explains how to compute all those weights incrementally in linear time.

3 Introducing Tardiness Penalties

Given the improvement in running time that we achieve for Problem[I] we consider solving several
variations of that problem and other related problems in more general families of compact bipartite
graphs than the one we introduced in Sect. 2] A possible variation of Problem [I] is to allow a
constant number of jobs to be scheduled in each time slot instead of only one. However, our
approach of comparing the weights of two matchings that we illustrate in Fig. [Ib] fails because
only some of the jobs, instead of all, in the set X having indices greater than the job we compare
with are shifted to a lower slot. Solving this variation would enable us to address scheduling
problems having symmetric earliness and tardiness penalties with respect to a common due date.

Another related problem is finding an MWM in a more general complete bipartite graph family
that is still representable in space linear in the number of vertices. Consider the following extension
to the complete bipartite graph G = (U, V, w) that is introduced in Sect. |2, For each slot (right
vertex) v in V/, we introduce an integer parameter v.quality. We assume that the slots are indexed
from 1 in non-decreasing order of qualities, breaking ties arbitrarily. We allow an arbitrary number
of slots that is less than the number of jobs. We also modify the edge weights so that w(u,v)
between job u and slot v becomes u.profit + u.priority - v.quality. While we have not been able to
solve the MWM problem in such a graph faster than quadratic time yet, we describe in Sect. d|how
to compute the VCG prices given an MWM of such a graph that represents a unit-demand auction
instance.

Here we describe a special case of the graph structure that is introduced in the previous para-
graph. Suppose that the qualities of the slots form a non-decreasing sequence which is the con-
catenation of two arithmetic sequences. We are able to solve the MWM problem in such a graph
instance, thus we solve Problem [2| introduced in Sect. [1|in O(nlogn) time. The key idea is to
utilize the incremental computation of the acceptance orders so that we can find the weights of the
MWMCMs between the slots whose qualities form the first arithmetic sequence (the slots before
the common due date) and every possible prefix of jobs. Then we do the same between the slots
whose qualities form the second arithmetic sequence (the slots after the common due date) and
every possible suffix of jobs. Then in linear time we find an optimal matching by determining
which jobs to assign to the first group of slots and which jobs to the second group. The details are

explained in App.

4 Unit-Demand Auctions and VCG Prices

In this section, we view an instance G = (U, V, w) of the general complete bipartite graph family
introduced in Sect. 3| from the perspective of unit-demand auctions. We refer to elements of U as
bids and to elements of V" as items. For any bid u and item v, the weight w(u, v) represents the
amount offered by bid u to item v. We present an O(n logn)-time algorithm for computing the
VCG prices given a VCG allocation (an MWM of G).

We review some standard definitions related to unit-demand auctions and we present the details
of the algorithm in App.|Cl Here we briefly describe the approach we take in order to obtain the
desired performance. One characterization of the VCG prices is that it is the minimum stable price
vector [[13]]. Thus a naive algorithm would start with zero prices and then look for and eliminate
the instabilities. While inspecting a particular instability, the algorithm would increase the prices
just enough to eliminate that instability.

We take a similar approach that uses additional care. We start with a minimum price vector
that does not cause an instability involving unassigned bids, by utilizing the geometric concept of
the upper envelope. We then inspect the instabilities in a particular order, with two scans of the
items, first in increasing and then in decreasing order of qualities. The most expensive step is the
computation of the upper envelope, which takes O(n logn) time.

Acknowledgments.

In the early stages of this work we had developed an O(n log® n)-time algorithm for the problem
considered in Sect. 2] The authors wish to thank Eric Price for pointing out how to improve this
bound to O(nlogn), and for allowing us to include this improvement in the present paper.

References

[1] A. Aggarwal, A. Barnoy, S. Khuller, D. Kravets, and B. Schieber. Efficient minimum cost
matching and transportation using the quadrangle inequality. Journal of Algorithms, 19(1):
116-143, 1995.

[2] R. E. Burkard. Monge properties, discrete convexity and applications. European Journal of
Operational Research, 176(1):1-14, 2007.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 3rd edition, 2009.

[4] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 2nd edition, 2000.

[5] G.Demange, D. Gale, and M. A. O. Sotomayor. Multi-item auctions. The Journal of Political
Economy, pages 863-872, 1986.

[6] D. W. Engels, D. R. Karger, S. G. Kolliopoulos, S. Sengupta, R. N. Uma, and J. Wein.
Techniques for scheduling with rejection. Journal of Algorithms, 49(1):175-191, 2003.

[7] L. Epstein, J. Noga, and G. J. Woeginger. On-line scheduling of unit time jobs with rejection:
minimizing the total completion time. Operations Research Letters, 30(6):415-420, 2002.

[8] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union.
Journal of Computer and System Sciences, 30(2):209-221, 1985.

[9] F. Glover. Maximum matching in a convex bipartite graph. Naval Research Logistics Quar-
terly, 14(3):313-316, 1967.

[10] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: A survey. Amnnals of Discrete
Mathematics, 5:287-326, 1979.

[11] G. H. Hardy, J. E. Littlewood, and G. Pélya. Inequalities. Cambridge University Press, 2nd
edition, 1952.

[12] I. Katriel. Matchings in node-weighted convex bipartite graphs. INFORMS Journal on Com-
puting, 20:205-211, December 2008.

[13] H.B. Leonard. Elicitation of honest preferences for the assignment of individuals to positions.
The Journal of Political Economy, pages 461479, 1983.

[14] W. Lipski, Jr. and F. P. Preparata. Efficient algorithms for finding maximum matchings in
convex bipartite graphs and related problems. Acta Informatica, 15:329-346, 1981.

[15] C. G. Plaxton. Vertex-weighted matching in two-directional orthogonal ray graphs. In Al-
gorithms and Computation, volume 8283 of Lecture Notes in Computer Science, pages 524—
534. Springer Berlin Heidelberg, 2013.

[16] E. P. Preparata and M. 1. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, 1985.

[17] A. E. Roth and M. A. O. Sotomayor. Two-sided matching: A study in game-theoretic model-
ing and analysis, volume 18. Cambridge University Press, 1992.

[18] D. Shabtay, N. Gaspar, and L. Yedidsion. A bicriteria approach to scheduling a single ma-
chine with job rejection and positional penalties. Journal of Combinatorial Optimization, 23
(4):395-424, 2012.

[19] D. Shabtay, N. Gaspar, and M. Kaspi. A survey on offline scheduling with rejection. Journal
of Scheduling, 16(1):3-28, 2013.

[20] L. S. Shapley and M. Shubik. The assignment game I: The core. International Journal of
Game Theory, 1(1):111-130, 1971.

[21] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652-686,
July 1985.

[22] S. A. Slotnick. Order acceptance and scheduling: A taxonomy and review. European Journal
of Operational Research, 212(1):1-11, 2011.

10

[23] S. A. Slotnick and T. E. Morton. Selecting jobs for a heavily loaded shop with lateness
penalties. Computers and Operations Research, 23(2):131-140, 1996.

[24] G. Steiner and J. S. Yeomans. A linear time algorithm for determining maximum matchings
in convex, bipartite graphs. Computers and Mathematics with Applications, 31:91-96, 1996.

A An Augmented Binary Search Tree Algorithm

In this appendix, the proofs that are omitted in Sect. 2] and an implementation of the algorithm
that is outlined in Sect. [2.3] are presented. First, App. proves Lemmas [2] [3] and #] Then,
App gives the details of the augmentation of the BST described in Sect. and proves Theo-
rem|l| Finally, App. presents an implementation of the algorithm as described in the proof of
Theorem [11

A.1 Proofs of Lemmas 2, 3, and {4

The following lemma is used in the proof of Lemma 2]

Lemma 7. Let G = (U,V, E) be an edge-weighted bipartite graph, let V' be a subset of V/, let
G’ be the subgraph of GG induced by the set of vertices U U V', and let u be a vertex in U that is
essential for G'. Then u is essential for G.

Proof. Assume that the claim is false, and let M be an MWMCM of G such that u is not matched
in M. Let M’ be an MWMOCM of G’. Since w is essential for G’, vertex u is matched in M’. Let
G" denote the graph (U,V, M & M’). Since u is matched in M’ and not in M, we deduce that
u has degree one in G”. Since no vertex in G has degree more than two, we conclude that the
connected component of G” that includes w is a path, call it P, and that « is an endpoint of P. The
edges of P alternate between M and M’; let X denote P N M and let X' denote P N M'.

Case 1: P is of odd length. Since u is an endpoint of P and is u is matched in M’, we deduce
that | X’| = | X| + 1. It follows that (M \ X) U X’ is a matching of G with cardinality one higher
than that of M, contradicting our assumption that M is an MWMCM of G.

Case 2: P is of even length. Thus |X| = |X’| and every vertex in V' that belongs to P is
matched in both M and M’, and hence belongs to V. It follows that (M \ X’) U X is an MCM
of G’; in what follows, we refer to this MCM of G" as M". Let W denote the total weight of the
edges in X and let W’ denote the total weight of the edges in X'.

Case 2.1: W < W'. Thus (M \ X) U X’ is an MCM of GG with weight higher than that of),
contradicting our assumption that M is an MWMCM of G.

Case 2.2: W > W’. Thus M" is an MCM of G’ with weight higher than that of M’, contra-
dicting our assumption that M’ is an MWMCM of G'.

Case 2.3: W = W'. Thus M" is an MWMOCM of @ that does not match u, contradicting our
assumption that u is essential for G’. [l

Proof of Lemma 2] Immediate from Lemma O

The following lemma is used in the proof of Lemma

11

Lemma 8. For any integers 7 and j such that 1 < j <1 < |U|, we have

best(i — 1,5 — 1) +u if job u is essential for G, ;

best(i, j) = {

best(i — 1, 7) otherwise,
where u denotes the job with index .

Proof. Immediate from the definition of best(i, j) and from Lemma[2] O

Proof of Lemma/3] For any integer ¢ such that 0 < ¢ < |U], let P(i) denote the predicate “for
any integer j such that 0 < j < 4, matching(best(i, j)) is an MWMCM of G, ;”. We prove by
induction on ¢ that P (i) holds for all ¢ such that 0 < ¢ < |U|. It is easy to see that P(0) holds.
Let ¢ be an integer such that 0 < ¢ < |U|, and let u denote the job with index i. We now complete
the proof by arguing that P(i — 1) implies P(7). It is easy to see that matching(best(i,0)) is an
MWMCM of G . Thus in the remainder of the argument we may assume that j is an integer such
that 1 < 5 < 7. We consider two cases.

Case 1: Job u is essential for G; ;. Let v denote the slot with index j. By Lemma [} and
since the index of job w is greater than that of any job in G;_; j_;, we can obtain an MWMCM of
G j by adding the edge (u, v) to an arbitrary MWMCM of G;_; ;_;. By the induction hypothesis,
matching(best(i — 1,j — 1)) is an MWMOCM of G,_; j_;. Thus the matching obtained by adding
edge (u,v) to matching(best(i — 1, j — 1)) is an MWMCM of G, ;. Since Lemma|8]implies that
best(i, 7) is equal to best(i — 1,7 — 1) + u, and since the index of job w is greater than that of any
job in best(i — 1,7 — 1), the latter matching is equal to matching(best(i,j)). We conclude that
matching(best(i, 7)) is an MWMCM of G, ;, as required.

Case 2: Job w is not essential for GG; ;. Thus any MWMCM of G;_, ; is an MWMCM of G, ;.
By the induction hypothesis, we conclude that matching(best(i — 1, 7)) is an MWMCM of G, ;.
Since Lemma|g]implies that best (i, j) is equal to best(i—1, j), we conclude that matching(best (i, j))
is an MWMCM of G ;, as required. O

Proof of Lemmal} Every job in best (7, j) has index at most 7. Since o;[j] belongs to best (3, j),
we conclude that i' < i. Let p denote the position of ¢;[j] in o;,. By definition, job o;[j] occurs
in position j of ;. By the definition of o/, job o;[j] occurs in position p of ;. Since oy is a
subsequence of o;, we conclude that best(i,j — 1) consists of better(o;[j]) plus j — p additional
jobs, each with index greater than ¢’. Since each job in better(o;[j]) has index less than 4’, the
claim follows. [l

A.2 Proof of Theorem [1]

In order to reason about the augmented BST algorithm of Sect.[2.3] we find it useful to define 7" as
the set of all binary trees 7" satisfying the following two conditions: (1) the predicate ordered (T, 1)
holds for some 7; (2) each node x in 7" has integer fields x.size, x.sum, x.sizeLeft, and x.sumLeft
(in addition to the field x.job implied by condition (1)).

For any tree 7" in 7 and any node x in T, we define subtree(z) as the set of all jobs that are
associated with the nodes in the subtree rooted at z. For convenience we define subtree(nil) as the
empty set.

12

For any tree 7" in 7 and any node x in 7', we define the predicate augmented(z) to hold if the
field z.size is equal to |subtree(z)|, and the field x.sum is equal to sum(subtree(x)). We refer to
x.size and x.sum together as the augmented fields of node x.

For any tree 7" in 7 and any node z in 7', we define the predicate historical(z) to hold if the
field z.sizeLeft is equal to |better(z.job)|, and the field x.sumLeft is equal to sum(better(z.job)).
We refer to x.sizeLeft and x.sumLeft together as the historical fields of node x.

For any tree 7" in 7 and any integer i, we define the predicate represent(T,i) to hold if
ordered (T, 1) holds, and for every node x in 7', both augmented(x) and historical(x) hold.

We prove the theorem by giving the details of the algorithm that we outlined earlier in Sect.[2.3]
The algorithm grows an augmented BST by iteratively inserting each of the |U| jobs, in index order.
Let T} denote the BST obtained by the algorithm after 7 iterations, 1 < ¢ < |U|. We establish below
that represent(7T',7) holds for 1 < ¢ < |U|. Given this claim, it is easy to verify that the historical
fields of a node = remain constant after the initial creation of x. Thus the historical fields could
just as easily be maintained in an array outside of the tree. In contrast, the augmented fields form
an integral part of the BST data structure, and may be updated as the structure of the tree changes.

We use a red-black tree to obtain the desired time bound. Cormen et al. [3, Chapters 13 and
14] present an implementation for red-black trees that rebalances the tree in logarithmic time while
maintaining the augmented fields.

First we state an observation that will be utilized in the constant time comparison of the nodes
and in the computation of the historical fields. Let 7" be a tree in 7 such that each node = in T sat-
isfies augmented(z). Then observe that we can compute |precede(r, T)| and sum(precede(r,T))
in constant time where r denotes the root of 7. Moreover, for each non-root node z in 7,
|precede(x,T)| and sum(precede(x,T)) can be computed in constant time given |precede(y,T')
and sum(precede(y,T)) where y denotes the parent of x.

The first iteration of the algorithm creates a BST 7 with a single node x representing the job
with index 1. The two historical fields of x are each initialized to zero, and the augmented fields
are initialized as follows: z.size is set to 1; x.sum is set to the priority of the job with index 1. It
is easy to verify that the predicate represent(17, 1) holds.

We now describe a non-first iteration ¢, 1 < ¢ < |U|, where we assume inductively that
represent(T;_1,7— 1) holds. Let u denote the job with index . In order to obtain 7; from 7;_;, we
first insert a new leaf representing the job w into 7;_; without changing the structure of 7;_; other
than linking the new leaf such that the resulting BST, call it 7] |, satisfies ordered (T} ;,i). Note
that there is a unique such BST 77_; since there is a unique position in the tree such that the new
node representing u can be inserted without changing the edges between the existing nodes. This
insertion position can be found by first comparing the job u with the job represented by the root of
T;_1 (applying Lemmal(6)) and descending either left or right depending on whether u precedes the
root in o;, thus following a path that terminates at the insertion position by comparing v with the
jobs represented by the nodes on that path as in a standard BST insertion operation. By the observa-
tion in the previous paragraph, it is easy to see that |precede(x, T;_1)| and sum(precede(x,T;_1))
can be computed in constant time for each node x on the path that the binary search follows.
Thus, together with the historical fields, we have the information to apply Lemma [] in constant
time for each comparison. Let y denote the new leaf that represents the job u. Again by the
observation in the previous paragraph, since the last node that we compare u with is the parent
of y, |precede(y,T!_,)| and sum(precede(y,T}_,)) can also be computed in constant time. Since
ordered(T}_,, 1) implies better(y.job) is equal to precede(y,T!_,), the historical fields of y can be

13

computed in constant time.

The process described above, which attaches the new leaf y representing the job with index
to 7;_, to obtain 7] ,, takes time proportional to the depth of y in 7} _,. Once y is added, we can
update the augmented fields of the nodes on the path from y to the root within the same time bound
so that augmented(x) holds for each node = on that path. Note that the augmented fields of the
other nodes are not affected by the insertion, thus represent (7} _,,) holds.

The final step at iteration ¢ is to rebalance 7} _; with the RB-INSERT-FIXUP operation [3|
Chapters 13 and 14] in logarithmic time, while maintaining the augmented fields, in order to ob-
tain O(|U|log |U|) overall running time. Let 7; denote the result of the rebalancing operation on
T! . Since the augmented fields are maintained by the rebalancing operation, the BST 7; satisfies
represent(T;, 1) and the algorithm proceeds to the next iteration. Note that it is easy to argue the
same performance for certain other balanced BST structures, e.g., O(|U|log |U|) amortized time
for splay trees [21]] where each insertion, together with the associated splay operation at the end of
each iteration, takes amortized logarithmic time.

A.3 An Implementation

Algorithm [I{ in Fig. [2]is a concise implementation of the algorithm as described in the proof of
Theorem The fields x.size and x.sum of a node = are the augmented fields satisfying the
predicate augmented(x). The fields x.sizeLeft and z.sumLeft of a node x are the historical fields
satisfying the predicate historical(z).

The outer while loop (lines runs for |U] iterations. Each iteration ¢ inserts the job with
index ¢, referenced by the variable u, into the BST, whose root is pointed by the variable x at the
beginning of the iteration. The inner while loop (lines performs the binary search by starting
from the root and descending to the insertion position of the new leaf representing the job «. When
the execution reaches line [14] the variable sizeLeft’ is equal to |precede(x,T)| and the variable
sumLeft' is equal to sum(precede(x, T)). The variable flag is set depending on the outcome of the
application of Lemma [6]

Lines attach the new leaf y to the BST and set its historical fields. The FIXUP routine,
which is called at line |31} fixes the augmented fields of the nodes along the path from the new leaf
to the root, rebalances the BST using the standard techniques of the associated self-balancing BST
implementation, and returns the root of the BST. Thus, at the end of each iteration of the outer
while loop, the BST stores the jobs inserted so far in their acceptance order.

B The Algorithm for Problem

In this appendix, we describe how to solve Problem [2] which incorporates weighted tardiness
penalties with respect to a common due date into the objective, in O(nlogn) time. We start with
formalizing the definition of the family of graphs, which we call H, that extends the family G
by introducing qualities to the slots as mentioned in Sect. [3| Then we define a more restricted
family, H*, that consists of the graphs on which we encode the instances of Problem [2]as weighted
matching problems. Finally we discuss an algorithm that solves the MWMOCM problem on graphs
drawn from the family H*.

14

Algorithm 1 INSERT(U)

1: &« nil

2: 10

3: while i < |U]| do

4: 1—1+1

5: u «— the job from the set U with index ¢

6: sizeLeft, sumLeft «+ 0

7: x—

8 while 2’ # nil do

9: x «— 1

10: sizeLeft' < if x.left = nil then sizeLeft else sizeLeft + x.left.size
11: sumLeft’ « if x.left = nil then sumLeft else sumLeft + x.left.sum
12: v « the slot with index sizeLeft’ + 1
13: v’ « the slot with index x.sizeLeft + 1
14: flag — w(u,v) < w(w.job,v'") + sumLeft’ — x.sumLeft

15: x' — if flag then x.right else x.left

16: sizeLeft «— if flag then sizeLeft' + 1 else sizeLeft

17: sumLeft «— if flag then sumLeft’ + x.job.priority else sumLeft
18: end while

19: y <— a new tree node

20: y.job «— u
21: y.sizeLeft <« sizeLeft
22 y.sumLeft «— sumLeft

23: y.parent <— x

24: if © # nil then

25: if flag then

26: x.right «— 1y
27: else

28: x.left — vy
29: end if

30: end if

31: x «— FIXUP(y)

32: end while

Figure 2: The FIXUP routine rebalances the tree and maintains the augmented fields size and
sum. For a red-black tree implementation, the FIXUP routine can be implemented as the
RB-INSERT-FIXUP operation [3, Chapter 13] with the addition of setting the new node’s color
to red at the beginning, following the guidelines in [3, Chapter 14] for the augmentation.

15

We define H as the family of all complete edge-weighted bipartite graphs G = (U, V, w) such
that the following conditions hold: |U| > |V'|; each job u in U has two associated integers u.profit
and wu.priority; the jobs are indexed from 1 in non-decreasing order of priorities, breaking ties
arbitrarily; each slot v in V' has an associated integer v.quality; the slots are indexed from 1 in
non-decreasing order of qualities, breaking ties arbitrarily; the weight w(u, v) of the edge between
a job u and a slot v is equal to u.profit + u.priority - v.quality. Note that a graph G = (U, V, w)
in ‘H admits an O(|U|)-space representation. Also note that an input graph G = (U, V,w) to
the algorithm presented in Sect. 2] can be interpreted as a graph belonging to the family H that
has |U] slots with qualities forming the arithmetic sequence 1,...,|U|. Observe that the same
algorithm can also be used to find an MWMCM for the case in which the qualities form a different
arithmetic sequence by scaling the priorities, setting qualities to the arithmetic sequence 1, ..., |[U
and modifying the profits.

We now introduce the notion of a “splitting point”, a key technical concept that underlies our
algorithm. Let G = (U, V,w) be a graph in H. We define U;, V;, and G, ; in the same manner as
we did for a graph in G in Sect. 2| For any integer ¢ such that 1 < i < |U|, we define U_; as the
set U \ U;. Similarly for any integer j such that 1 < j < |V/|, we define V_; as the set V' \ V. For
any integers ¢ and j such that 1 < j <4 < |U|and j < |V, we define G_; _; as the subgraph of G
induced by the vertices U_; UV_;. Then it is not hard to see that for any j in the range 1 < j < |V/|,
there exists at least one integer ¢, which we call a splitting point for j, such that the union M; U M,
is an MWMCM of G where M; is any MWMCM of G, ; and M, is any MWMCM of G _; _;. Note
that if 7 is a splitting point for j, then |U;| > |V;| and |U_;| > |V_;]|.

We encode an instance of Problem [2|as a weighted matching problem on a graph drawn from
a family H* that is contained in H. We define H* as the family of all graphs G = (U, V,w) in
‘H such that the qualities of the slots in V', when visited in index order, form a non-decreasing
sequence which is the concatenation of two arithmetic sequences.

Let I be an instance of Problem@ The instance I consists of a set of n jobs to schedule, each
with a profit and a weight; a common due date d and a common deadline d where we assume that
d < d < n; and a positive constant c. We encode the instance I as a graph G = (U, V,w) in
H* such that the following conditions hold: |U| = n; |V| = d; each u in U represents a distinct
job in [; each v in V represents a distinct time slot in which a job in [/ can be scheduled; for
each job in [and the vertex u that represents that job, u.profit is equal to the profit of the job and
w.priority 1s equal to the negated weight of the job; the qualities of the slots in V' are set to form
the sequence 1,...,d, (c+1)(d+1),...,(c+ 1)d. It is easy to see by inspecting the objective of
Problem [2] that the instance / of Problem [2]is equivalent to the problem of finding an MWM of a
graph G = (U, V,w) in ‘H* that encodes /. Analogous to the case for G discussed in Sect. 2} the
problem of finding an MWM of a graph in H* can be reduced to the MWMOCM problem by adding
dummy jobs.

We now describe our algorithm for computing an MWMOCM of a graph G = (U, V, w) in H*.
Let j denote the index such that the qualities of both V; and V_; are arithmetic sequences. If we
can find the weights of MWMCMs of each G ; for j < ¢ < |U| and the weights of MWMCMs of
each G_; _; for1 <i <|U|—|V|+jin O(|U|log|U|) total time, then it takes linear time to find
a splitting point for j, and thus an MWMOCM of G can be constructed in O(|U|log |U|) total time.

Our algorithm consists of two extensions to the algorithm introduced for Problem I} Let G’ =
(U, V', w) be a graph in H such that the qualities of V' form an arithmetic sequence. In the
remainder of this section, we use the shorthand G; (resp., G'_,) to denote the subgraph of G’

)

16

induced by the vertices U; U V' (resp., U_; U V') for any integer i such that 1 < i < |U|. The
first extension, which we discuss in the next paragraph, exploits the incremental computation of
the acceptance orders performed by the algorithm introduced for Problem [I] in order to compute
the weights of MWMCMs of each G/, for |[V'| < i < |U|in O(|U|log |U|) total time. The second
extension, which we discuss in the final paragraph, finds the weights of MWMCMs of each G”_;
for1 <i <|U|—|V’'|in O(JU|log |U]) total time by a simple reduction so that the first extension
is utilized. Then, by setting G’ to the subgraph of GG induced by the vertices U UV} (resp., UUV_))
as an input to the first (resp., second) extension, these two extensions are used to find the weights
of the MWMCMs of each G, ; for j < ¢ < |U| and the weights of MWMCMs of each G_; _; for
1 <i<|U|—=|V|+jin O(|U|log|U]) total time in order to compute an MWMCM of a graph
G = (U,V,w) in H*.

First we show how to modify the algorithm introduced for Problem (1| so that we can compute
the weights of MWMCMs of each subgraph G, for |V'| < i < |U| given a graph G' = (U, V', w)
in H such that the qualities of V' form an arithmetic sequence. As a preprocessing step, we scale
the priorities and modify the profits so that the instance G’ is transformed such that the qualities
form the arithmetic sequence 1,...,|V’|, as mentioned in the observation after the definition of
‘H. In what follows, let 7" denote the BST that the algorithm introduced for Problem (I| maintains.
We modify the algorithm so that we keep at most |V’| nodes in 7" by discarding the rightmost
node when necessary, as mentioned in Sect. Due to these deletions, represent(T, i) no longer
holds for ¢ > |V’|. However, it is easy to argue that, for ¢ > |V’|, the BST 7" in the modified
algorithm contains the first |V’ jobs in o; (i.e., best (i, |V’])), and that these jobs occur in the same
order (with respect to an inorder traversal) as in the BST in the unmodified algorithm. For any
integer ¢ such that i > |[V’|, let M; denote matching(best(i,|V’|)). Then Lemma (3| implies that
M; is an MWMCM of G). We maintain an additional BST 7 that concurrently stores the same set
of jobs that are present in the main BST 7', however in a different order. The keys of the nodes
in 7 are the indices of the corresponding jobs, thus an inorder traversal of 7 yields an increasing
order of indices. We implement 7 as a balanced BST and augment it so that we can query for the
sum of the priorities of all jobs that have indices greater than that of a given job. All the insert,
delete, and query operations can be implemented in logarithmic time using standard augmentation
techniques [3, Chapters 14]. We utilize those queries in order to maintain the weight of M; at each
iteration ¢ > |V”'| in the following way. First, the weight of My can be computed at the end of
iteration |V’| via an inorder traversal of 7. Now suppose that at the end of some iteration i for
i > |V’|, the set of jobs in 7" is changed by an update consisting of insertion of job u, which is the
job with index 4, to 7" (also to 7) and removal of some job «' from 7" (also from 7). Let 7;_; denote
the state of the BST 7 before this update. Let j' be the index of the slot that is matched to «’ in
M;_1. Note that j' is the rank of v’ in 7;_;. Let U’ denote the set of jobs in 7;_; with indices greater
than that of . Since u has the highest index among the jobs that are matched in M;, each job in U’
is matched to a slot with index one lower in M, than in M;_;, and every other job that is matched
in M;_; except v is matched to the same slot in M;. Then, the weight of M; minus the weight of
M;_ is equal to u.profit + u.priority - |V'| —u'.profit — ' .priority - 7' — sum(U’). Since such an
update to 7 and a query for sum(U’) in 7 can be performed in O(log |V'|) time, we can maintain
the weight of each M, for ¢ > |V’| without slowing down the algorithm asymptotically.

In order to compute the weights of MWMCMs of each subgraph G”_, for 1 < i < |U| — |V
given a graph G’ = (U, V', w) in 'H such that the qualities of V'’ form an arithmetic sequence, we
create another instance G by negating both the job priorities and slot qualities, and by reindexing

17

both the jobs and the slots in reverse orders. Then we run the algorithm described in the previous
paragraph on G”. Note that the weight of the edge between the job with an index ¢ and the slot
with an index j in G” is equal to the weight of the edge between the job with index |U| — i + 1
and the slot with index |V'| — j + 1 in G'. Thus the weight of an MWMCM of G is equal to the

weight of an MWMCM of G, for [V'| <4 < [U].

C Computing the VCG Prices

This appendix first presents a fast algorithm for computing the VCG prices given a VCG allocation
and then proves its correctness. The input to the algorithm is a graph G = (U, V, w) from the family
H introduced in App. B] and we fix such an instance G throughout the remainder of this section.
As mentioned in Sect. 4] we refer to the left vertices of GG as bids and to the right vertices of GG as
items. The edge weight w(u, v) between a bid u and an item v represents the amount offered by bid
u to item v. To better relate to the algorithm, we rename the quantities associated with the elements
of U so that u.profit and u.priority of (a job in the scheduling context) u becomes u.intercept and
u.slope of (now a bid) u, respectively. Thus the edge weight w(u, v) between a bid u and an item
v is w.intercept + u.slope - v.quality. A VCG allocation corresponds to an (arbitrary) MWM of GG
and is also given as input. We begin by reviewing some standard definitions and results that prove
to be useful. Some proof details are omitted and can be found in [17, Chapter 8].

For any matching M, let weight(M) denote the total weight of the edges in M. A surplus
vector s assigns a real value s(u) to each bid u in U. A price vector p assigns a real value p(v) to
each item v in V. An outcome is a triple (s, p, M) such that s is a surplus vector, p is a price vector
and M is a matching of G. An outcome (s, p, M)suchthat) . s(u)+> ., p(v) = weight(M)
is said to be feasible. For any feasible outcome (s, p, M), we say that the pair of vectors (s, p) and
the matching M are compatible, and that (s, p) is a feasible payolff.

We say that a bid u (resp., item v) blocks an outcome (s, p, M) if s(u) < 0 (resp., p(v) < 0).
We say that a bid-item pair (u, v) blocks (or, u and v form a blocking pair for) an outcome (s, p, M)
if s(u) + p(v) < w(u,v). A feasible outcome (s, p, M) is stable (or, the payoff (s, p) is stable
with M) if no bid, item, or bid-item pair blocks the outcome. For any stable outcome (s, p, M),
the following are known: M is an MWM; s(u) + p(v) = w(u,v) for all (u,v) matched in M;
s(u) = 0 for all v unmatched in M; p(v) = 0 for all v unmatched in M. It is also known that
any MWM is compatible with any stable payoff. Thus, given the stable price vector p of a stable
payoff, the corresponding utility vector s is uniquely determined by:

(w(u,v) — p(v) if item v is allocated to w in M
s(u) = 0 if w 1s left unassigned in M,

where M is any MWM. For any stable payoff (s, p), p is a stable price vector.

It is known that the stable price vectors form a lattice, hence, there is a unique stable price
vector that is componentwise less than or equal to any other stable price vector. This minimum
stable price vector corresponds to the VCG prices [13]].

Before presenting our algorithm, we introduce some useful definitions concerning the input
graph G = (U,V,w). Let M be an MWM of G and let V' be the set of all items in V' that are
matched in M. Then for any item v in V', we define the successor of v in M as the item v" in V"’

18

with the smallest index that is still larger than that of v. Similarly for any item v in V', we define
the predecessor of v in M as the item v’ in V'’ with the largest index that is still smaller than that
of v. Note that no successor (resp., predecessor) exists for the item in V' with the largest (resp.,
smallest) index.

We say that an MWM M of G is a canonical MWM if for any two matched bids « and v’ in
M such that the item matched to u’ is the successor of the item matched to u, we have u’.slope >
u.slope. To keep the presentation and the correctness argument simpler, we assume that the input
M to the algorithm is a canonical MWM of . It is easy to observe that any non-canonical
MWM can be converted to a canonical one by sorting the matched bids by slopes. Throughout
the remainder of this section, we fix a canonical MWM M of G.

Algorithm [2| in Fig. [3| computes the minimum stable price vector in O(n logn) time given M
and G. The high-level idea is to start with the minimum prices (for loop at lines so that
no unmatched bid can participate in a blocking pair (Lemma [[T), then to raise the prices in a
particular order only when necessary while maintaining the invariant that the price vector is at
most the minimum stable price vector (Lemma [I0). The price increases take place in two scans
of the items, first in increasing and then in decreasing order of qualities. The prices are raised
so that no matched item v can form a blocking pair with a bid that is matched to the predecessor
or to the successor of v (Lemma [I2). The latter result implies that no matched item can form a
blocking pair with a matched bid (Lemma([I3). We start with some lemmas, and then we establish
the correctness and argue the performance of the algorithm in Theorem 2]

The following lemma is used in the proofs of Lemmas|10|and

Lemma 9. Let v be an item in V. Let U’ denote the set of all bids u such that w(u,v) > 0 and u
is unmatched in M. If U’ is empty, then p(v) is 0 upon executing line [0} If U’ is nonempty, then
p(v) is equal to maw,ecy w(u, v) upon executing line 6]

Proof. By the definition of the upper envelope. [

Lemma 10. Let p* denote the minimum stable price vector. Then for any item v, the price set by
the algorithm for v at any point during the execution is at most p*(v).

Proof. Let s* denote the surplus vector corresponding to p*. Suppose that the claim is false, and
consider the first time the price of some item v is set to a value, which we denote by p(v), that is
greater than p*(v). We consider two cases.

Case 1: The first occurrence is at line[5] Then Lemma [9]implies that there is an unmatched bid
w such that w(u,v) = p(v) > p*(v). Since p* is stable and since u is unmatched in M, we know
s*(u) = 0. But then s*(u) + p*(v) < w(u,v), contradicting the stability of p*.

Case 2: The first occurrence is at line|12] (resp., line and we denote the predecessor (resp.,
successor) of v by v’. Let v’ be the bid that is matched to item v" in M. Then, immediately after
the price of v is set to p(v), we have w(u/,v) — p(v) = w(w',v") — p(v'). Since this is the first
time that the price for an item exceeds its minimum stable price, we know that p(v") < p*(v’), and
hence

(e, v) = p(v) 2w, o') — p*(v)).

But, since p(v) > p*(v), we have
w(u',v) = p*(v) > w(w',0) — p(v'),

19

Algorithm 2 VCG-PRICES (G, M)

1: Initialize p(v) to 0 forallv € V'
2: L « the set of lines corresponding to the bids that are not matched in M (the line correspond-
ing to a bid u has slope u.slope and intercept u.intercept)
H « the upper envelope of L
forallv € V do
p(v) «— max(p(v), H(v.quality))
end for
V' « the set of all items in V' that are matched in M
v «— the item in V" with the smallest index
while v # the item in / with the largest index do
10: v" « the successor of v in M
11: u «— the bid matched to v in M
12: p(v') «— max(p(v'), p(v) + u.slope - (v'.quality — v.quality))
13: ve—v
14: end while
15: v’ « the item in V/ with the largest index
16: while v' # the item in V' with the smallest index do
17: v <« the predecessor of v" in M
18: u’ «— the bid matched to v’ in M
19: p(v) < max(p(v), p(v") — «'.slope - (V'.quality — v.quality))
20: v —w
21: end while

R N

Figure 3: The O(nlogn)-time algorithm computing the minimum stable price vector given a
canonical MWM M for bipartite graph G = (U, V, w).

contradicting the stability of p* since ' is matched to v" in M.
Hence the price of an item v is never increased beyond p*(v). [l

Corollary 1. Let s* denote the utility vector corresponding to the minimum stable prices. Then
for any bid u, s(u) > s*(u) upon termination of the algorithm.

Proof. Follows from the definition of s(u) and from Lemma 10|

Lemma 11. Let u be a bid in U that is unmatched in M, and let v be an item in V. Then s(u) +
p(v) > w(u,v) upon termination of the algorithm.

Proof. Since u is not matched in M, we have s(u) = 0. Then the result follows from Lemma [9]
and from the fact that prices never decrease. U

Lemma 12. Let v and v’ be two items in V' such that both v and v’ are matched and v’ is the
successor of v in M. Let u denote the bid that is matched to v and let «/ denote the bid that is
matched to v'. Then s(u) + p(v') > w(u,v’') and s(u’) + p(v) > w(w', v) upon termination of the
algorithm.

20

Proof. First consider the claim s(u) + p(v') > w(u, v'). The first while loop (lines 9] through [14)
iterates through the items from lowest index to highest, so it ensures that

(v) + w.slope - (v'.quality — v.quality)
(v) + w(u,v") — w(u,v)
w(u,v') — s(u)

p(v) > p
D

holds upon termination of the loop. The prices never decrease, so the claim remains satisfied after
any change to the price of item v'. We now show that any increase to the price of item v does not
violate the claim. Note that after the first while loop (lines E] through 18 terminated, such an
increase can only happen once and it occurs in line If it happens, the price of v is set to:

(v") — o' .slope - (v'.quality — v.quality)

p(v) v
(V) —w(w',v') +w(w',v). 3)

p
p

If this increase violates the claim, then we have
w(u,v) — p(v) + p(v') < w(u,v’),
and substituting for p(v) from (3) gives
w(u,v) + wu',v") < wu,v") +w,v),

which contradicts that M is an MWM because switching the items assigned to bids « and u' results
in a heavier matching.
Now consider the claim s(u') + p(v) > w(u/, v). The second while loop (lines [16] through
iterates through the items from highest index to lowest, so it ensures that
p(v) > p(v') — u'.slope - (V'.quality — v.quality)
=p(V) -
!

= w(u',v) — s(u)

w(u',v") +w(u',v)

holds upon termination of the loop. O

Lemma 13. Let u be a bid in U and let v be an item in V' such that both « and v are matched in
M. Then s(u) + p(v) > w(u,v) upon termination of the algorithm.

Proof. If v is matched to u in M, then s(u) + p(v) = w(u,v) by definition. Suppose that v is
matched to some item v’ that is not equal to v. We give the proof for the case where the index of
v is smaller than that of v; the other case is symmetric. Since the index of v’ is smaller than that
of v, there exists a unique sequence (vy, . .., vy) of matched items in M such that v; = v/, v, = v,
and v;; is the successor of v; in M for 1 < ¢ < k. Given such a sequence, let P(i) denote the
inequality s(u) + p(v;) > w(u,v;). We show by induction that P(k) holds. The base case P(2) is
implied by Lemma 12]since vs is the successor of v; = v'. Now assume that P(i) holds for some i
such that 2 < 7 < k. Let u; denote the bid to which item v; is matched. Since v, is the successor
of v;, Lemma|l2|implies that

s(ui) + p(vig1) > w(ug, vig1).

21

Adding inequality P(i) to the preceding inequality we obtain
s(u) + p(vi) + s(w;) + p(vip1) = w(u, v;) + wlug, vipr),

and hence
s(u) + p(vi1) = w(u, v;i) + w(ui, vier) — wlug, v;)
since p(v;) + s(w;) = w(u;, v;).
By the definition of w(u, v), we have

w(u, v;) + w(ug, vigr) — w(ug, v;) = w(u,v;) + w;.slope(viy . quality — v;.quality)

w
> w(u, v;) + u.slope(viyq . quality — v;.quality)
w

(U, Ui—i—l)a

where the second line follows since v;11.quality > wv;.quality and the assumption that M is a
canonical MWM of G implies u;.slope > u.slope. Hence P(i + 1) holds. O

Lemma 14. Let u be a bid in U that is matched in M, and let v be an item in V' that is not matched
in M. Then s(u) + p(v) > w(u,v) upon termination of the algorithm.

Proof. Let v’ be the item that is matched to u. Let p* denote the minimum stable price vector
and let s* denote the corresponding surplus vector. Then s*(u) + p*(v) > w(u,v). Since v is
unmatched in M we have p*(v) = 0. Thus, Lemma[10]and the fact that the algorithm never sets a
price to a negative value together imply that p(v) = 0. Corollary [1]implies s(u) > s*(u). Hence
s(u) > w(u,v), as required. O

Theorem 2. The algorithm computes the minimum stable price vector in O(n logn) time.

Proof. Since the algorithm maintains nonnegative prices, no item blocks M. Corollary |I|implies
that no bid blocks M. Lemmas and [14] together imply that no bid-item pair blocks M.
By combining the preceding observations we deduce that the final price vector is stable. Hence
Lemma [I0]implies that the final price vector is the minimum stable price vector.

The most expensive step in the algorithm is the computation of the upper envelope of n
lines. It is known that the lower convex hull of points and the upper envelope of lines are dual
to each other [4, Section 11.4]. Since the lower convex hull can be computed in O(nlogn)
time [16, Theorem 3.7] and the two while loops take linear time, the complexity of the algorithm
is O(nlogn). O

D Incrementally Computing the Weights for All Prefixes of Slots

Let n denote |U|. Once we have computed o,,, we know a set of jobs that forms an MWMCM of
each G, ; for 1 < j < n, but we are not readily given the weight W (n, j) of such a matching.
In this appendix, we describe how to compute the weights W (n,1),..., W(n,n) incrementally
in linear time by scanning through o,,. It is straightforward to compute W (n,1). When we in-
spect the job at position j in o, (which is o,[j]), we can compute W (n, j) in constant time from
W(n,j — 1) because Lemma [3| implies that we can construct an MWMCM for G,, ;, namely

22

matching(best(n, j)), from matching(best(n, j — 1)), which is an MWMCM for G,, ;_1, by intro-
ducing o,,[7]. Let v/ denote o,,[j] and let i’ denote the index of ¢,,[j]. The change in weight caused
by introducing job u' to matching(best(n,j — 1)) in order to construct matching(best(n, j)) has
two components: (1) w(u/,v") where v’ denotes the slot with index |better(u')| + 1, since Lemmal]
implies that job «’ is matched to the slot with index |better(u')|+1 in matching(best(n, j)); (2) the
sum of the priorities of all jobs in best(n, j) with indices greater than that of v, since each such job
is matched to a slot with index one higher in matching(best(n, 7)) than in matching(best(n, j—1))
and every other job is matched to the same slot in both matchings. By Lemma [] the latter sum
is equal to sum(best(n,j — 1)) — sum(better(i')). Since we scan the jobs in o, starting from
position 1, we can maintain the sum of the priorities of the jobs scanned so far, thus we know
sum(best(n,j — 1)) when we reach job u'. We already store |better(u')| and sum/(better(i'))
at the node representing «/, thus the change in weight caused by introducing the job u’ can be
computed in constant time.

E NP-hardness

It is natural to consider certain other problems within the setting of Problem [I] but with the goal
of optimizing various other related criteria, possibly by imposing some constraints. Shabtay et al.
[18] split the scheduling objective into two criteria: the scheduling cost f, which depends on the
completion times of the jobs, and the rejection cost g, which is the sum of the penalties paid for
the rejected jobs. In addition to the problem of minimizing f + g, Shabtay et al.|also analyze the
following two problems: minimization of f subject to g < R, where R is a given upper bound on
the rejection cost; minimization of g subject to f < K, where K is a given upper bound on the
value of the scheduling criterion. As we will see, it is not difficult to show that Problemmbecomes
NP-hard if we split our criteria in the same manner and aim for optimizing one while bounding the
other. In this appendix, we choose to include the details of the reductions showing the NP-hardness
of the mentioned variations for the sake of completeness.

Recall that the input to Problem |1| may be viewed as a graph G = (U, V,w) in G where the
weight w(u,v) of an edge between a job u in U and a slot v in V' with an index j is equal to
w.profit + u.priority - j. We split the expression w(u,v) = w.profit + u.priority - j denoting
the weight of an edge (u,v) into two summands: the first term w.profit, which we call the profit
component; the second term u.priority - 7, which we call the scheduling component. For a given
MCM M of a graph G in G, we define f(G, M) as the sum of the scheduling components of the
weights of the edges in M, and we define g(G, M) as the sum of the profit components of the
weights of the edges in M.

Given a graph G in G, let M denote the set of all MCMs of GG. Then we define the following
three problems, which are analogous to the problems mentioned above from [[18]].

e P1: Find a matching M in M maximizing f(G, M) + g(G, M).
e P2: Find a matching M in M maximizing f(G, M) subject to (G, M) > R.
e P3: Find a matching M in M maximizing ¢(G, M) subject to f(G, M) > K.

The algorithm we introduced for Problem|I]solves P1 in O(nlog n) time, where n denotes the
number of jobs in GG. In this section, we show that P2 and P3 are NP-hard. We define the decision

23

version of both P2 and P3 as follows: Given a graph G in G and two integers K and R, is there
an MCM M of G such that f(G, M) > K and g(G, M) > R? In what follows, we refer to this
decision problem as DP.

We show the NP-hardness of P2 and P3 by reducing the partition problem, which is known
to be NP-complete, to DP. The partition problem is defined as follows: Given a sequence p of m
positive integers (p1, . .., pm) With sum)" p; = 2W, is there a subsequence of p with sum W?
We assume m > 2 and p; < Wforall1 <i <m.

Throughout the remainder of the section, we fix an arbitrary instance p of this partition problem.
We now describe how to transfer p to an instance (G, K, R) of DP. Our description introduces a
variety of symbols, all of which are fixed in value, throughout the remainder of this section.

Let m denote the size of p. Let W denote % Y%, pi- For any integer ¢ such that 1 < ¢ < m, let
A; denote —2°~'TV. Note that A; = Z;;ll A; — W. For any integer 7 such that 1 < i < m, let B,
denote 3°WV.

Let G be a graph in G with a set U of 2m jobs {u;, . .., usy, }, and aset V of mslots {v;, ..., vy},
and where the profits and priorities are determined as follows. For any ¢ such that 1 < i < m, we
define the profit of job uy; 1 as as; 1 = Aj;, the profit of job us; as ay; = A; — p;, the priority of job
Usgi—1 as by;_1 = B;, and the priority of job wuy; as by; = B; + % Thus, for a given MCM M of G,

f(G7M): Z b; - 7,

(ui,vj)EM

and
g(G,M) = Z a;.
(ugvj)eM
Let K denote) . iB; + W, and let R denote > ;" | A; — W = —2™W. It is straightforward
to verify that (G, K, R) is a DP instance, and the transformation from p to (G, K, R) can be
performed in polynomial time.

Lemma 15. If p is a positive instance of the partition problem, then (G, K, R) is a positive instance
of DP.

Proof. Assume that p is a positive instance of the partition problem. Let .S be a subsequence of p
with sum WW. We construct an MCM M of G as follows: For any 7 such that 1 < ¢ < m, if p; is
in S then match wuy; with v;; otherwise, match wug;_; with v;. It is easy to verify that f(G, M) = K
and g(G, M) = R. 0

Lemma 16. Let U’ be a size-m subset of U. Then among all the MCMs of GG matching the jobs
U’, there is a unique matching M that maximizes f(G, M), and this unique M matches the jobs to
the slots vy, . .., v, in increasing order of indices.

Proof. Observe that b; > b; _; for any ¢ such that 1 < ¢ < 2m. Hence the priorities of the jobs in U’

are distinct. Then the result follows from the rearrangement inequality [[11, Section 10.2, Theorem
368]. O

The following technical lemma is used in the proof of Lemma|I8§]

Lemma 17. Z;lebiﬂ_Q <iB;.

24

Proof. For any j such that 1 < j <m — 1, we have (j + 1)bg; + jboj_1 < 2(j + 1)B; since

(j+1)b2]+jb2]1—(]+1)< J)+]B
<S@U+DBj+2p+ (G +1)B; - B,
<2(j+1)B; +2W —3W
<2(j+1)B;.

Thus

Z]bm 2 < Z(+ 1)baj + jbaj

7j=1
i—1

<2) (j+1)B;
j=1

< 2iB; 4 Z 3J
j=>0

= 37;Bi71
=15;.

O

Lemma 18. Let M be an MCM of G such that f(G, M) > K and (G, M) > R. If (G, K, R)
is a positive instance of DP, then for each ¢ such that 1 < 7 < m, exactly one of wuy;_1 and us; is
matched in M, and it is matched to v;.

Proof. Assume that (G, K, R) is a positive instance of DP. Let P, (i) denote the predicate “at least
one of the jobs us;_; and uy; is matched in M, and let P, (i) denote the predicate “at most one of
the jobs u9; 1 and wuy; is matched in M. Then we claim the following.

Claim 1: If AT", | (P1(j) A (7)) holds for some integer ¢ such that 1 < i < m, then P (i)
holds. It is easy to prove the claim for ¢ = 1. Let ¢ be an integer such that 1 < ¢ < m and
assume that the claim does not hold. Then, A7, ,, (P1(j) A P»(j)) holds and neither us;, nor
ug; is matched in M. We derive an upper on f(G, M) as follows. Let U’ denote the set of jobs
that are matched in A/. We know that U’ consists of exactly one job from each pair (ug;_1, ua;)
for i < j < m, and ¢ other jobs having indices less than 2i — 1. Lemma [16] implies that the
unique MCM M’ that matches U’ and that maximizes f(G, M) has the following structure: for
all i < j < m, the job from the pair (ug;_1, us;) that is present in U’ is matched to the slot v;;
the remaining ¢ jobs in U’ are assigned to the slots vy, ..., v; in increasing order of indices. Let
M* denote this unique MCM, thus f(G, M) < f(G, M*). We construct another matching M"”
by assigning us; to v; for i < j < m, and by assigning u; 1, ..., U2 to vy,...,v;. An upper
bound on f(G, M")is 7\, jbirj2 + D5, i Bj + 2W, where the first term comes from the
subset of M"” involving vy, ..., v;, and the rest is an upper bound for the subset of M" involving
Vit1,- .-, Um. Itis easy to see that f(G,M*) < f(G, M") since for each slot v, either both M"
and M* match the same job to v, or the job that A" matches to v has a priority greater than that of

25

the job that AM/* matches to v. Thus

(G, M) < f(G,M")

< Zjbi-f—j—Q + Z JB; +2W

Jj=1 j=i+1
= Zjbi—i-j—Z + K — Zij +W
j=1 j=1

<iBi+K-Y jBj+W
j=1
i—1
=K-) jBj+W
j=1

< K,

where the fourth line follows from Lemma([I7} This contradicts f(G, M) > K.

Claim 2: If A72, | (P1(j) A Pa(j)) holds for some integer i such that 1 < i < m, then P, (i)
holds. It is easy to prove the claim for ¢« = 1. Let ¢ be an integer such that 1 < ¢ < m and
assume that the claim does not hold. Then, A", (P1(j) A P»(j)) holds and both uy; 1 and uy;
are matched in M. Then, g(G, M) is at most 24; — p; + > 7", | A;. Using the equality A; =
22;11 Aj—W, we deduce that g(G, M) is at most > 7" | A — W — p;, contradicting g(G, M) > R
since p; is positive.

Claim 3: For each integer i such that 1 < i < m, exactly one job from the pair (ug;_1, us;) is
matched in M. This claim is easily seen to hold by reverse induction on ¢ using Claims 1 and 2.

Let U’ denote the set of jobs that are matched in M. Lemma |[16{and Claim 3 imply that the
unique MCM M’ that matches U’ and that maximizes f (G, M') matches exactly one job from each
pair (ug;_1,us;) to v; for 1 < i < m. Let M* denote this unique MCM. It is easy to argue that the
maximum f(G, M’) a matching M’ that matches U’ can attain is K. Since f(G, M) is at least this
maximum, M is M*.]

Lemma 19. If (G, K, R) is a positive instance of DP, then p is a positive instance of the partition
problem.

Proof. Assume that (G, K, R) is a positive instance of DP. Let M be an MCM of G such that
f(G, M) > K and g(G, M) > R. We construct a subsequence .S of p as follows. We iterate over
the slots in G from lowest index to the highest. Lemma [I8]implies that a slot v; is matched either
to ug;_1 Or to ug; in M. We include p; in the subsequence S if and only if v; is matched to us; in
M. Let) denote the sum of the integers in the subsequence S. Then it is easy to verify that
f(G,M)=>""iB;+> gand g(G,M) =>"" A, — > . Finally, f(G, M) > K implies that
>.s>W,and g(G, M) > R implies that), < IW. Hence) o, = W. O

Theorem 3. The optimization problems P2 and P3 are NP-hard.

Proof. Immediate from Lemmas|[I5]and[19] since DP is the decision version of both P2 and P3. [

26

	Introduction
	A Fast Algorithm for Problem 1
	Acceptance Orders
	Computing the Acceptance Order
	Binary Search Tree Implementation

	Introducing Tardiness Penalties
	Unit-Demand Auctions and VCG Prices
	An Augmented Binary Search Tree Algorithm
	Proofs of Lemmas 2, 3, and 4
	Proof of Theorem 1
	An Implementation

	The Algorithm for Problem 2
	Computing the VCG Prices
	Incrementally Computing the Weights for All Prefixes of Slots
	NP-hardness

